
EXTENDING TEMPORAL LOGIC TO SUPPORT HIGH-LEVEL SIMULATIONS

Alexander Tuzhilin

Information Systems Department
Stern School of Business

New York University

44 West 4th Street, Room 9-78
New York, NY 10012

atuzhilin@stern.nyu.edu
212-998-0832

~orkinq Paper Series
STERN IS-93-19

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

A b s t r a c t

A high-level simulation language based on telnporal logic is described. The language combines

a large set of temporal tenses and a rich class of high-level modeling primitives. Also an imple-

lnentation of the language interpreter is presented. Finally. a seal-world case study is described

that shows how a programmer can develop structured. reliable. and well-maintainable sirnulation

programs using the language.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

1 Introduction

There has been a substantial amount of research done in the field of knowledge-based simulations

since the time when tlie first systems ROSS [I<FMSO], IiBS [FRS2], and T-Prolog [FS82] were

introduced. T h e recent developments in the field are presented in the books [FM91, FG90, ~ 0 ~ 8 9 ,

WLNSS] and in the special issues on knowledge-based simulations of SCS Transactions [kbs90] and

ACM Transactions on Modeling and C'omputer Silnulation [tom92]. Many of the knowledge-based

simulation systems provide support for rule-based and object-oriented paradigms and for powerful

knowledge representation schemes such as frames. Esamples of commercial systems of this type

are SIMI\'IT [Int85b]. Simulation Craft [SFBBSG]. and G2 [HSHSS].

T h e rule-based component of tliese systems is typically based on a logic programming language,

e.g. PROLOG, or on a production system. e.g. OPS5 [BFli86]. Therefore, rules used in the

knowledge-based simulation methods described above are based on first-order logic since logic

programming languages and production sJ,stem$ 11al.e their roots in first-order logic.

Since simulation methods deal with processes evolving in time and since first-order logic does

not support time directly, knowledge-based simulation methods must provide an explicit support

for time. For example, nlost of the nietliods esplicitly define and manipulate the system clock and

provide some form of event scheduling. Tliis lneans that tliese systems are quite procedural because

the programmer has to specify explicitly lie\\: t o handle time.

In order t o provide a. more decla.ra.tive support for time, [Tuz92] proposed t o use temporal

logic a,s an alternative t o first-order logic in knowledge-based simula.tions. In particular, [Tuz92j

describes a, temporaa logic progra.mming 1a.nguag.e SimTL t11a.t is specifically designed for sirnula.-

tions. Althougli SimTL programmers do not have to schedule events or a.dvaace the system clock,

tlie la,ngua.ge is still low-level in the sense t.1ia.t it does not support import,ant modeling primitives,

such a.s events, activities, structuring constructs of a.ggregation and generaliza,tion [TLS2], and the

decon~position of activities. The lack of tliese const.ructs in SilnTL forces progranlmers t o encode

them in SilnTL progra.ms, tlius ma.king the programs longer and more difficult t~ write and under-

sta.nd. Tliis ma.kes SimTL comparable to a 3C;L 1angua.ge. such as C or Fortra.n, tha t lacks some

of tlie high-level construct,s present in the JCiL languages. 111 addition. the 1a.ngua.ge contains quite

a few technical symbols tlius maliing SimTL programs difficult t.o understand for a. non-technical

user.

In this paper. we describe a high-level simulation language Templar that addresses tliese con-

cerlls. The language is also based on teli~poral logic. but i t 3upports a much richer set of modeling

primitives than SilnTL does. -4 Teniplar program con>ist> of' a 5et of rules and a set of activity

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

specifications. Templar explicitly supports rules. events and activities. time. hierarchical decompo-

sition of activities, sequential and parallel activities. static and dynamic constraints, decisions, data

lnodelilig abstractions of aggregation and generalization. and user-defined modelling constructs. To

illustrate the use of Templar, consider the following rule:

If a customer comes t o a branch of a bank ~vliile the branch is closed, and the branch

has ATM machines the11 lie or she should use an -4TX4 machine.

I t can be stated in Temp1a.r a.s

when arrives (customer ,branch)
while close (branch)
if has-atm(branch1
then-do use~atm(customer , branch)

This rule is interpreted as follows. Il'lien an (instantaneous) event arrives(customer,branch)

occurs, and if it occurs while the activit~. close(branch) is in effect (i.e. the branch was closed in

the past but has not reopened yet). and if the condition has-atm(branch1 holds then perform the

activity use~atm(customer , branch) (that lasts over some period of time).

The idea t o use a rich set of hig11-level modeling primitives in a silnulation language is not

new. Some of the existing knowledge-ba\ed simulation languages support many high-level model-

ing constructs. For example. botli SIXIliIT and Simulatioli Craft are based on a rich knowledge

representation schemes of AI. For instance. SIXIIiIT ia built on top of I i E E [IntS5a] and therefore

takes full advantage of the expressive representational and xeasoning tools that I<EE provides. As

another example, the simulation language ROBS fRS891 supports rules. objects. parallel communi-

cating processes, and actions.

Wliat differentiates Templar from these languages i \ that it iizfqr(ites a temporal logic that

supports many tenses used in a natural language1 and a rich set of luodeling primitives into one

language. M'e believe tliat this integration will

allow programmers rapidly rodri rice concise. relial~le. and well-maintainable silnulation pro-

grams;

s allow other members of the de\.eloplnent team and es11el.ienced users understand these sim-

ulation programs wit,li a minin~al effbrt.

To validate these points. we did a caw study in \\.lticll \ve wrote a program in Te~nplar tliat

'Examples of these tenses ale wlleil. wliilc. siilce. uiltil, before. after. always, sometimes, etc.

2

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

implements a portion of the Intelligent Adversary system for the Naval Training- Systems Center

that silnulates behavior of navy pilots in combat situations. M7e describe the results of this case

study in Section 6.

In order t o make tlie paper self-contained. we provide some background presentation of tem-

poral logic in the next section before describing Templar.

2 Background: Some Concepts from Temporal Logic and Tem-
poral Logic Programming

We start this section with a review of tenlporal logic and tlien describe its multi-sorted extensions.

The reader is referred to books by 1l;roger [Iiro87] and h?. hlanna and Pnueli [MP92] for a good

introduction t o tlie subject.

Telnporal Logic. Tlie syntas of a predicate tem])ol*al logic is obtained from the first-order

logic by adding various future temporal operators stlcll as sometimesin-the-future (o), al-

waysin-the-future (o). next (0). until and their past -.mirror" images sometimesin-the-past

(+). always-in-the-past (m). previous (e), and since to its syntax2. Tlie meaning of future op-

erators is defined in Fig. 1. The ~neaning of past "lnirror" images of these operators is defined

silnilarly t o the future operators except time is referenced only in the past. Besides these eight stan-

dard operators, otlier temporal operators can be defined. sucli as before. after, while [IiroSi], and

bounded necessity. for-time (T) (Q-). and possibility. within-time (T) (oT), operators [Tuz92].

For example, A for-time (T) is true no\\ if =1 ia alna:,, true within the next T time units, and

A within-time (T) is true noiv if -4 i, true at some tinle \vitliin tlie next T time units. Kroger

[I i ro l i] shows how temporal operators before. after. and while can be expressed in terms of the

operators until and since [liro;l;li]. Fnrtliermore. i t easily follows from the expressive completeness

of the temporal logic l7.S [IiamW] for the discrete or continuous lnodel of time, that tlie operators

of bounded necessity and possjbility can also be espre,aetl in terms of the until, since, next, and

previous operators.

The following exanlple illustratex the use of tenipol.al logic.

Example 1 The sta.tement

If an employee lias been fired from a company (1vor1;ed there in the past but not now)

tlien lie or she cannot be hired 11y the same com~~aii:. in tlie future

'Note that tlie opelators o and can be del ived from o and 1111t<il. a11c1 a 1 ~ 1 fro111 0 al~d since [I<] 087, MP921.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

OA : is true now if .A is true at some time in the future

CIA: is true now if A is always true in the future

oA: is true now if A is true a.t the nest time moment

A until B: is t rue now if B is true a.t some future time t a.nd A is true for all the
moments of time from the time interval [now, t)

Figure 1: Operators of Telnporal Logic

ca.n be expressed in temporal logic as

+EI1fPLOY(compnn y, person) A -IE-\IPLOI'(COI)?~J(I 11 y. 1J61'5012) -

PEA$' PLO17(conzpnlzy.perso~?)

or using a different syntax as

IF sometimesin-the-past EAlPL 0 I '(conzpan y.yerson) and not EA3PLO17(conzpany,g~erson)

THEN always-in-the-future not EI l IPLOl~(con~pcrny .y~~~ .~on)

The semantics of temporal logic formulas is defined u5ith lemporc11 irzlerl~retutions. A temporal

illterpretation for sonle temporal logic language defines tlie domain of discourse, the model of

time (e.g. discrete or continuous. bounded or unbounded. linear or branclzing), assigns values

t o constants and function sylnbols in the language as in classical logic. and specifies a temporal

strz~cture [Iiro$7], i.e. the values of all the predicates in the language at all the time instances. We

assume any arbitrary structure of the domain of discourse and also assume that time is discrete,

linear, bounded in the past and unl)o~incled in the future (i.e. time can be modeled with natural

~ u m b e r s) ~ . A temporal structure defines for each predicate P, in the language a secluence of its

instances Ptt for all the moments of time t = 0.1.2.. . .. \\h denote a teml)oral structure of a

temporal logic language at time 1 a5 I;,. Tlien l < t (P ,) = P,i. since it defines tlle instance of

predicate P, a t tilne t .

Given a. t,elnporal interpreta.t,ion. \ye ca.n defi ne the t.rut,li value of a teluporal logic formula

a t any moment of time in the standard inductive \vay [Iiro87]. For esalnple. we can define

ICt(A until B) in terms of I<t(-4) and lCi (B) as follon-s. 1i2(-4 until B) is true if there is t'

such that 1 5 tl , IYtl(B) is true. and for all t". such that 1 5 1" < i t . I< , , t (A) is true. Other

opera.tors can be defined in a similar \yay (in fa.ct. Fig. 1 contaills some of the informal definitions

3Silrce we consider next and previous operators in this paper. Isre Irave no cl~oice bnt assume t.lrat time is discrete.
A]t.ernat.ivelg, we could disa.llow next and pl.eviolls operators and]?rake tiltle clenst..

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

of other temporal operators). An example of an inducti1.e definition of a non-temporal operator

would be K i (A A B) = I<t (A) A I<t(B).

Multi-Sorted Teillporal Logics. In this paper. we extend single-sorted temporal logic t o multi-

sorted logic using tlie approach taken by the ERAE model [DHRSl] that differs somewhat from the

classical approaches. The reason why ERAE approach is chosen will become apparent in Section 3.7

whell we define structuring mechanisms of Templar.

ER.4E considers a set of elenae~?t(rry sorts - sort names and singletons - and derived sorts

obtained as a closure of the elementary sorts under tlie operations of union and intersection. For

example, the derived sort person is defined as man U woman. This model differs from the classical

model in that it supports derived sortq that can be considered as l y l ~ e s in programming languages.

Each at tr ibute of a temporal predicate and each parameter in an activity specification4 considered

in Templar must belong to a certain sort. For example. in predicate referees(paper,reviewer)

variable paper belongs to the sort Papers ant1 variable reviewer to the sort Reviewers.

3 Overview of Ternplar

In this section. we briefly describe the language Templa1 11) providing several examples of programs

written in it. In Section 4. we fo~.~naIl ,~ define the sylltas of the langnage. and in Section 5 describe

an interpreter that executes Tempar program>.

Templar features will be introduced 1vit1i example5 1)ased on the description of an IFIP Working

Conference [Oll82, Appendix A]. Organization of a \vorliing conference involves several activities:

sending a call for papers. receiving paper submissions and registering these submissions, sellding

papers t o be refereed. receiving repol~ts back from ref'ereeb. maliing acceptance/rejectio~-r decisions,

and so on.

A Templar program simula.ting sucl-r a confel.el~ce collsists of' a, set, of rules a.nd a.ctivities tha t

will be described in t,urn below. \,Ye start wit 11 the ll>ost ha.sic feat,ures of the language in Section

3.1 and introduce a.dditiona1 features in the snbsecjuenr sect.ions.

3.1 Basics of Templar Rules

A Templar rule is based on the .4cl1~~1ly-E1~c1~l-C'o1~tlil~o1~-~4c1~~~zI~ (=IEC'.4) model. AECA is an

extension of the Event-Condition--Action (E C ' A) motlel ol rule5 in active datal~ases [dh4S88. MD89,

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

MTFSO, SJGPSO].

The following is an esa~nple of a Templar rule. To malie an esample simple, we consider a rule

of the ECA type and describe an .4EC1=1 rule in Example -1.

Example 2 The user specifica.tion

When a reviewer receives a paper t,o be refereed. wliicli was sent by the conference

program chairperson, Iie/slie eva.lua.tes tlie paper and sends it back t o the chair

is expressed with tlie Templar rule

when end.send(paper,chairperson,reviewer)
if ref erees(paper ,reviewer)
then next located(paper,reviewer)
then-do review(paper,reviewer); send(paper,reviewer,chairperson)

Tliis rule is interpreted as follo\vs: ~vlien an eel(171 end. send(paper , chairper~on~reviewer)
occurs (reviewer receives a paper) and if the co12(1itto1? ref erees(paper ,reviewer) is true then set

the post-coizdition located(paper,reviewer) to be true at tlie nest time moment and start the

activities review(paper ,reviewer) ailtl send(paper ,reviewer ,chairperson) sequeiztially (i.e.

when the first activity finishes. start the second one).

Tliis rule illustrates tllree 111ajor lliodelillg primitive, in Ternplar: activities. events, and con-

ditions. Activity is a process that occurs otter fzmc. e.&. a paper is being reviewed by a reviewer for

some time. An eveizt is a change to the system state that occurs z12st~rntc1izeozrsly. e.g. a re\ ' 'lewer

receives a paper at sonle moment in time. Prefix "end" in "end.sentl" in Esa~llple 2 specifies tlie

event "activity send(paper , chairperson, reviewer) ha, finished." -A coiztlzlion is a logical for-

lnula tha t describes the state of the ,!.,teni. e.&. pt.etlicate ref erees(paper ,reviewer) indicates

that in the current state of tlie i\.itclll. o1,jecti paper ant1 reviewer are engaged in relationship

referees.

The rule presented above conhi5t~ of C ~ (I I I . . ~ C . ~ w h e n . if. t h e n . and then-do. We distinguish

between state. temporal. and action types of clauses. -A ..stoic clause describes tlie state of the

systenl (the working conference in on]. cahe). If and then clauses are examples of a s ta te clause.

-4 tenaporcrl clause specifies ho\\ tliffelent events and actii-itieb relate to each other in time. When

and after are examples of a teliipor.al cla~ise. 17inall!. the action clause states iml>eratively w!iat

activities will have to be dolie. T h e n - d o 1, ail c . s : ~ ~ l ~ l ~ l ~ of all ; I ~ I ion clauhe.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

Each clause deals with only one type of a modeling primitive. For example, w h e n clause

pertains t o events, if and t h e n clauses to conditions. and t h e n - d o clause to activities5. This means

that in tlie previous rule referees ant1 located are predicates. review and send are activities,

and end. send is an event (the end ol an activity). This relationship between types of clauses and

types of modeling primitives that can appear in the111 forces the user to think more structurally

when writing Templar programs.

3.2 Atomic and Co~nposite Activities

Templar distinguishes between atomic and composite activities. -4 conzposite activity consists of

sub-activities. For instance, the activity review(paper,reviewer) from Example 2 consists of

reading the paper and then evaluating it. This statement can be expressed in Templar with an

activity sljecification as illustratecl in tlie follo\ving esallt1)le.

E x a m p l e 3 A rule for the activity review can be stated in Templar as

ac t iv i ty reviev(paper : Papers, reviewer: Reviewers)

read(paper ,reviewer)

evaluate(paper,reviewer)

end-act iv i ty

where Papers and Reviewers are e1elnentar.v sort5 as tlefilrecl in Section 2 (and in [DHRSI]). This

means that activities have tyl~cs as temporal predicates do.

An activity specification can be coln])ared to a procedure in conventional programmi~lg lan-

guages or t o the body of a method ill object-oriented programming. except that it is defined in

terms of temporally oriented modeling primitives (activitiei). \\b \vill describe ho\v an activity is

"executed" in Section .5.

An activity is ~ i o m i c if i t dot.\ not consist of se\.eral iubactivities. It is defined with a temporal

1)rerlicutc describing hon. one of t lie 1 t.mporal ~)redica t e\ changes over time". For example, consider

the activity specification

ac t iv i ty read(paper : Papers, reviewer: Reviewers)

5\?'hen we define the s y i t a s of temp la^ fo~mally ant1 111t1otl11ce all the clauses 1x1 Sect~on 4 . we will esplaill in
Flgt~re 4 11ow clallses colles1)ond to 11iotle1111~ 131 I I I I I I I \ e.

'Tt.ml~oral predicates will I)r desc~i l)~cI 1 1 1 1,111 111 S ~ C I I O I I 3 i

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

reading(paper ,reviewer) for- t ime T

end-ac t iv i ty

where reading-time(paper,reviewer) is a function that specifies how much time i t takes a re-

viewer t o read a paper. and reading is a temporal predicate. Then "reading(paper ,reviewer)

f o r - t i m e T " is an example of an atomic activity. It states that the predicate

reading(paper,reviewer) will be true for the nest T time units.

Templar allows the mixture of composite and atomic activities inside an activity specification.

For example, the composite activity review(paper,reviewer) can be rewritten as

ac t iv i ty review(paper: Papers, reviewer: Reviewers)

T = reading-time(paper ,reviewer)

reading(paper ,reviewer) for- t ime T

evaluate(paper,reviewer)

end-act iv i ty

Since suba.ctivities in an activity specifica.t,ion ca.n a.lso be composite a.ctivities, Templar sup-

ports the process of IlierarclticaJ decolnposition of a coln])les a.ct,ivit,y into progressively more and

more simple suba.ctivities.

Templar also allows multiple hubactivities in the t h e n - d o clause of a rule. For in-

stance, the t h e n - d o clause in Esample 2 has two hu1)activities review(paper,reviewer) and

send(paper ,reviewer, chairperson). r\lternati\,el-\.. these two subactivities could be combined

into one composite activit?.. and tlle t h e n - d o clause n.ould refer only to this single activity.

The combination of activity specifications and rules makes Templar a powerful simulatioll

language. If Templar programs had only rules then they col~ld contain llundreds of rules, and it

\vould be difficult for the programmer to understand clearly Iton the rules interact. On the other

hand, if Templar programs consisted only of activitieh. then it could be difficult to describe the

control logic with only the i f - ih~n-c ls t \tarementh for certait~ applications. Iliith Ternplar programs,

the user has the flexibility of coml~ining ~ d e s ant1 acti~.itie\ in such a way that there are much fewer

rules than for the strictly rule-hased ~tletllods. and acti\.ity ~pecifications tend to he small, simple

and easy t o understand. ah the case \ t i i t l - \ . in Section h \\-ill tlemotlstraie i t .

3.3 Activity-Event-Condition-Activity Rules

The rule from Example 2 has the Ei-ent-C'ontlitioli--4ctivit~. (EC.4) structure. This structure is

extended to the Activity-Event-('ontlition---\cti\jt! (.-\I('-4) structure in Templar by supporting

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

while, before , and a f t e r temporal clauses as the follotving exanlple shows.

E x a m p l e 4 Assunle the orgaliizers of tlie conference have a rule:

While the paper is being reviewed. any request to \vithdraw the paper will be granted

by the program chailbperson.

This requirement can be expressed in Templar as

whi le do_reviewing(chairperson,paper)
w h e n withdrawal_request(paper)
if submission(paper,author,status)
t h e n - d o withdraw (paper, author)

where do_reviewing(chairperson,paper) is tlie acli~.it\. of sending a paper by tlie program cliair-

person for reviewing, submission(paper , author, status is a condition stating tliat an autlzor

submitted a paper t o the conference. withdrawal_request(paper) is an event indicating that

the request t o withdraw the paper received. and withdraw (paper, author) is an activity of

withdl.awing a paper from the conference.

This rule says that while a certain activity lasts. and when an event occurs. and if a condition

holds. then do a new activity. In this rnle, ulllike tlie rnle from Example 2. the activities in the

t h e n - d o clause depend not only on qome condition, and events but also on home other activities.

Therefore, we call this type of a rille t lie -LZcti\lity-E\ elrt-('ontlit ion-.Activity (AEC.4) rule because it

generalizes tlie Event-Condition---lcti\,it!. (EC-4) rule as defined in [cIMSSS. hllDS9. WF90, SJGP901

by

allowing activities in tlie antecedent pa1.t of the rule:

supporting not only w h e n , if. and t h e n claube, of tlie EC.4 model but several additional

clauses. such as while. before. after . ant1 vasiou, other user-defined clauses:

providing a comprehensive su11l101.t 101. time 11asecl on temposal logic.

111 addition, we assume that Teml~lal. rules are . ici jc [I-IIXS] in tlie sense tliat all the variables

appearing in clauses t h e n . then-do. then-cancel . and t h e n - d o n t - d o 111ust appear positively in

some other clause in that rule. The rule:, in all the esaml~le, considered so far are safe. A n example

of a non-safe rule would be if A(x) t h e n B(x ,y).

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

3.4 Procedures in T e m p l a r

In Section 3.3, we considered a rule of an AECA type and in Section 3.1 its restricted ECA version.

In general, only the action part of the rule (t h e n - d o clause) is mandatory in a rule, and all other

clauses are optional. For esalnple, the "topn~ost" activity specifying that a conference has t o be

organized may not require any preconditions and call be expressed in Tenlplar as

t h e n - d o organize-conf erence

or, using t h e n - d o operator implicitly. as

organize-conf erence

If only the action part of a rule is specified then i t is reduced to a procedure. Therefore, in the

extreme case, Templar programs may contain no rule.; at all. and only procedures. This provides the

user with the range of options and gi\.e\ him/her extra flexibilit!. for writing simulation programs

based on rules, procedures ant1 tlie combination of rule5 a n d procedures.

3.5 Tenlporal P r e d i c a t e s

As was esplained in Section 2. Teml~lar predicates change over time. For example, the predicate

submission(paper , author, status) can have different t 1.ttt11 values at different lllo~llents of time

depending on the value of status a1 rliohc. momen~h.

Therefore. temporal operaton. tlebcribed in Sectioll 2. can be applied t o these predicates in if

and t h e n clauses. I f clause takes otll:. tlie past temporal operators always-in-the-past , s o m e -

t i m e s i n - t h e - p a s t , previous . for-pas t - t ime. and wi thin-pas t - t ime. T h e n clause takes only

the future temporal operators always-in-the-future. sometimesin-the-future,next, fo r - t ime ,

and wi th in - t ime .

E x a m p l e 5 The rule

Only the original papel\ ale c~ccel)tecl for tlre confe~ence. i.e. if a paper has bee11

published in sonle journal in tllc past. i t cannot I)e - ,u l)~n~t ted to the conference.

can be espressed in Templar as

if submission(paper,author,status) and
s o m e t i i ~ ~ e s i n - t h e - p a s t published(paper , author, journal)

t h e n - d o reject (paper, author)

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

where s o i n e t i m e s i n - t h e - p a s t is the temporal 1)ossibility operator defined in Section 2 and reject

is the paper rejection activity.

0

3.6 Static and Dynainic Collstraints

Templar supports static and dynamic col~straints by hpecifying rules only wit11 if and t h e n clauses.

The static constraint does not have any temporal operato1.s in either the head nor the body of a

~sule. For example. the following static constraint

A paper can lia,ve only one specific status at a time.

ca.n be expressed in Temp1a.r a.s

if submission(paper,author,status) and submission(paper,author,status')
t h e n status = status'

Note that this constraint specifieh that paper and author f~~nctionally determine status in predi-

cate submission.

A dynamic constraint is defined a:, an if- then rule where some predicates take temporal

opesators. For example. the follolving (1 ynamir const mint

If a paper has been publisltetl ali.eatl\.. i t canitot appear in any otltel. pttblication in the

future.

call be expressed in Tel.nplar as

if published(publication,paper,author) and list~of~publications(publication')
and publication # publication'

t h e n always-in-the-future not published(pub1ication' ,paper, author)

\vltere list-of-publications describe5 Ihe '.uiii\.ersr" of' publjcittions in lvhich the pa.per cannot

a.pl1ea.r.

3.7 Structuring Mechanisl~ls in Tei1.1plar

Templar supports structuring rnecha~~isnt., of aggregation and generalizatiolt [TLS2] as follows.

Generalization is su1)ported exactly a \ in Ell.-\I;: [Dl-IR91] by u\ing multi-sorted temporal logic

Center for Digital Econotny Research
Stern School of Business
Working Paper IS-93- 19

tha t allows derived sorts (see Section 2) . For example. if tlie sort Papers is defined as the union

of Regular-papers and Invited-papers then Papers is tlie generalization of these two sorts.

Assume it is declared that a variable n. l~elongs t o a sort and we want to state that it should belong

a specialization of this sort. For example, assuliie that R. belongs to Papers and we want x to

be an invited paper. In this case, we follow the approach of ERAE and make a statenlent x in

Invited-papers, where in is an interpreted n~einbersliip predicate.

Aggregation is supported in Templar by tlie use of x .y notation. For example, an address can

be defined by the street address, city. state, and zip. \Ve can say in Templar that a person lives in

Kew York as address .city = 'New York'. Rote that tlie sort of the expression x . y is determined

by the sort of variable y. For example. the sort of address. city is Cities.

3.8 Other Properties of Teil~plai-

In this section, we consider several additional features of Templar. such as parallel activities, exter-

nal events, events defined by explicit specifications of time. periodic events. temporal precedence

operators be fo re and a f t e r , decisionh. cancellation\ of and colistraints on activities.

E x a i n p l e 6 Consider the follo\tring rule:

IV11e11 tlie program con~mittee chair receives a paper before the suhlnission deadline,

the cliair registers the paper, helids it t o the re\.iewers and sends the acknowledgment

letter to the author (a t tlie same time as sending i t to the reviewers).

It is expressed in Templar a.s

w h e n receives(chairperson,paper,author)
before submission-deadline
t h e n n e x t located(paper ,chairperson)
t h e n - d o register-paper (paper, author) ;

(distribute~paper~to~reviewers(paper,chairperson)
1 1 send~acknowledgement(chairperson,paper,author))

a

The rule from Example 6 illuht rate, ,e~.eral import ant feature, of Templar. First. it provides an

exalnple of the l~nrcrllcl o1)erator (/ /). l ' lii, ope1 at 01 ,peciilez that the corresponding activities occur

simultaneously. For instalice. acli\.itie\ distribute-paper-to-reviewers(paper,chairperson)

and send-acknowledgement(chairperson ,paper, author) occur in])a~.allel in Examl~le 6. Sec-

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

ond, the rule illustrates tlte use of Icn,l~oral prcccOcr?ce operators be fo re and a f t e r . The clause

be fo re specifies tha t tlie reviewing process can start only if the paper is received by the program

chair before tlie submission deadline (.tleterminerl by the Icr71poral constant submission-deadline).

Third, tlie rule shows how time can be referenced esplicitly in Templar rules. The temporal con-

stant submission-deadline (e.g. 6/22/98) defines tlie temporal event "the submission deadline is

reached," and the rule can be fired only before this event occurs. Fourth, tlie rule provides an ex-

ample of an exter~zal event, receives (chairperson ,paper, author). This event did not occur as

a result of startilig or ending of any internal activity but occurred because of some activity external

t o tlie system. Finally, tlte t h e n clause provides an esaml~le of using temporal logic operators in

post-conditions (e.g. n e x t) : it says that tlie predicate located(paper,chairperson) will be true

a t the time moment immediately follo\ving tlie execution time of the rule. 111 other words. tlie paper

is "pliysically" located with the cltail.per\on at the nest tiltte Ittoment after lie or she receives it.

Tlie next example slio\vs ho\v Telrlplal. sul>ports pcr~ioOir temporal events.

E x a m p l e 7 Tlie rule

Every r\401iday, tlie program chair examines re\,iei\. reports sent to Iiim/lier by tlie

referees.

can be expressed in Temp1a.r as

w h e n e v e r y Monday
t h e n - d o examinezeports (chairperson)

Also. Templar supports rlcc~.\~ori< 11 Iiich are nor?-fe 1711101ril procedure,. For example. when tlie

l~rogram committee chair receive\ a]lapel. lie/slie rlecitlc \I lio sho~ild t.eview it. and then sends the

paper to the selected reviewels. In t111\ c a w . select-reviewers (paper ,chairperson,Reviewers)

is a decision, which we assume hapl~eny ins ta t r t aneo t t~~ in time7. Since decisioiis do not iltvolve

time, they can be specified either i n 1h1nl)lar wit11 o n l ~ non-temporal o1)erators or in crny conven-

tional programming language. e.g. Fortran or ('. In the lat tel case. decision routines are dyliamically

linked to tlie main Templa]. program during the esecution.

Templar also allo\vs to refer esl)licitly to tlie time of a n event. This call be done by using the

t ime prefis. Tlie nest esanq)lc i l l u . i t ~ . a t ~ ~ tlte 1 1 ~ . of tlris (C) I I S ~ I . I I C ~ . It a150 illustrates the use of the

' I f t,llis decision is ~nacle o*er t i l l l r . I l r e ~ t \\.(- I i.yat i t a s all a c . t i \ . i t ~ .

1 :3

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

then-dont-do and then-cancel clanw? that respectively support concell(~tio~zs of and constraints

on activities.

Example 8 The rule

If a paper was sub~ilitted to a journal and the revie~vs were not received by the au t l~or

within 1.5 years, then withdra\s the paper from t 1le journal and never sublnit any papers

t o it again.

can be expressed in Ternpias a.s

if now - tiine. begin. submiss ion(paper , a u t h o r , j o u r n a l) > 18months
then-cancel submission(paper , a u t h o r , j o u r n a l)
t hen-dont-do somet i rnesi l~- t l~e-futu~e submiss i o n (paper ' , a u t h o r , j ourna l)

u~here now is tlte s?.mbol specii~ing the present t i~ne . submission is a11 activity, be-

gin. submiss ion(paper , a u t h o r , journa l) defines t lle e\.ent when the paper was submitted, and

prefix t ime specifies tlte time xvlten tltis event occurred. The clause then-cancel specifies that

the currently scheduled activity submission (paper , a u t h o r , j ourna l) should be canceled, and the

clause then-dont-do imposes a constraint stating that the activity submission should never occur

for this autliol- and this journal in the fntt~re.

D

Finally, Templar supports nalning\ of the event5 as5ociated \vitlt beginning and ends of activ-

ities. For example. tlie event end. send Irom Esantple 2 can be called a r r i v e by the user.

In the next section. we formally d e ~ c r i l ~ e the 5\-ntas of Tenlplar and in Section 5 how Templar

programs are esecuted.

4 Syntax of Templar

Templa,r progra.ms consist, of' a set of' p~~erlicat,e decla~.;l.tions. a set of rules a.nd a, set of a,ctivity

specifica.tions. Since Templar is I~ascttl 011 ~nulti-so~.tecl t e n ~] > o l ~ ~ l logic. a11 of it,s predica.tes 111ust be

decla.red so t1la.t i t is c1ea.r ~vllat sorts arcJ invol~.etl in their tlefinitions. In order t o do so, we have t o

specify tlie list of sorts that are uhed in the l>rogl.anl. \\h adopt the syntax of ERAE for declaring

sorts and predicates [DHRSl] and ~vjll not present it in tlte paper.

The syntax of a Templar rule is t le l i~t~d \ v i t l ~ t 11e B X F gramst~ar presented in Fig. 2 and 3' (we

@b\:e could not fit , the BVF synt.as on one J)i l ,X,C. and t l r e r e f o ~ . ~ \Ire 1,111 i t illto lwo figure>

14

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

rule
head-of-rule
head-clause
then-clause
do-clause
dont-do-clause
cancel-clause
next,-activity
body-of-rule
body-cla.use

user-defined-operator
activities
events
activity
event
fu tu1.e-condi tions
past-conditions
future-condition
past -condition
future-temp-predicate

past-temp-predicate

predicate
decision
begin-activity
end-activity
external-event
temporal-event
pesiodic-event

[body-of-rule] head-of-rule
head-clause { head-clause)
tlien-clanse I do-clause I dont-do-clause I cancel-clause
t h e n future-conditions
t h e n - d o activity { nest-activity)
t h e n - d o n t - d o activity { nest-activity)
t h e n - c a n c e l activity { nest-activity)
; activit!, { next-activit?.) / 1) activity { nest-activity)
{ body-clause)
if past-conditions
w h i l e activities
w h e n events
b e f o r e activities
be fo re events
a f t e r activities
a f t e r events
user-defined-operato]. acti1,ities
user-clefined-operat or event 5

11 a 111 e
activity { logical-op aetivit! }
event { logical-011 event)
name (arguments)
hegin-activity I end-activity] temporal-event I external-event
fu ture-condi t io~~ { and future-condition)
past-condition { logical-op past-condition)
[n o t] future-temp-psedicate
[n o t] past-tern])-pretljcate I esp r relop e sp r / decision
[war!.-fut ure-temp-oper] 111 edicate
predi ca t c binary- fu t ure- t eltip-opes])re$' l ~ c a t e
[~inas!.-pa~t -temp-opel.] p~.etiicate
psedicate binary-past -1 eln1)-opes predicate
name (arguments) I var i n name
name (argliments)

begin.activity
end.act ivi ty
nalne (asguments)
tempol.aI-const ailt I ~~eliotlic-event
e v e r y periocl

Figure 2: S y ~ ~ t i ~ c t i c Defillitio~l o-f a Rule (P a r t I)

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

period
day-of-week

temporal-constant
expr
term
factor
logical-op
relop
un ary-future- temp-ope].

binary-past-tempopel
arguments
var
const

hour / (lay I weeli I 11lont11 / year 1 day-of-week -

hlontlay I Tuesday I Ilkdnesday (Thursday
Friday I Saturday I Sunday
]lame
tern1 + term I term - term
factor * factor I factor / factor
var I const I t ime.e~.ent
a n d j or

= I # l < l i l > l 2
always-in-the-future j s o m e t i m e s i n - t h e - f u t u r e (n e x t
for- t ime name I with in - t ime name I user-defined-operator
unt i l / user-defined-operator
always-in-the-past j s o m e t i m e s i n - t h e - p a s t I prev ious
for-pas t - t ime name I within-pas t - t ime name
user-defined-opera t or
s ince I user-defined-operator
name {. name }
nalne.var I nalne
now / name

Figure 3: Syntactic Definition of a Rule (Par t 11: continuation).

assume that name is a sequence of characters in Fig. 2 alitl 3) . 4 s Fig. 2 shows, a Telnplar rule

consists of a collection of clauses that are divided into hody and head clauses. There can be more

tlialt one clause of the sanle type in a rule (e.g. one be fo re clause refers to activities and another

to events). However, each clanse deals only ~vith an entity of one type: either with an activity,

or an event, or a condition. Therefore. clauses pro\.icle a natural way to separate activities from

events and from conditions and force the user of T e r n ~ ~ l a ~ language to thinli in these terms. Fig. 4

shows tlie relationship between c la l l \~ \ ancl activities. eLenth. and conditions.

Furthermore. the user call tlefilrr 11ih or ller o\\n clause operators as long as tlie semantics

of these operators is defined precibtl!. These operatori are denoted as "user-defined-operator" in

Figures 2 and 3. For example. tlie uwr can define si1c11 o]>e-!atols as unless . a t n e x t [liroffi]. or any

other temporal operator lie or slie neccly. This])rovicle\ a n extra flexibility in describing real-world

systems in more natural terms.

The syntax of activit) specif~cationy is defined \ \ l t l i the BNF rules plesented in Fig. 5. As

Fig. 5 shows. an activity specificatiol~ con3ists of a l i ~ t ol statelnentb. The for-.~iatenze~zt is needed

for iterations (t o be able t o espley\ ~t , l tenie l r t~ of the folnl "fol each element ... perform some

activity"). If-stntrnzenl is not strlctl! ~ ~ ~ c e s s a r y becauye the activity containing this stateinelit can

l>e expressed in terms of rule, ant1 nc t i \ ities \iitllout rj-~t(itcnzcnt. Holyever. it was added as a

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

/ events] when. before. after I
conditions

I activities then-do. then-dont-do. then-cancel. while. before, after 1

clauses
if, then

Figure 4: Types of Clanses

activity-spec . . . - activity name {(parameter\)] statement-list end-activity
statement-list ..- . stateitlent { ; statelllent)
statement ..- . composite-actiyity

I atomic-activity
I if-statement
I for-statelnent
I parallel-statelllent
I decision-st atement

if-statement . . .- if condition then \tatemen1 -list else statement-list end-if
for-stat ement . . . - foreach ~al . iable suchthat condition do statelnent-list end-for
parallel-statemem ..- . slatcnlt3nt-list / I statement-li\t
decision-statement ..- . [val.ial)l(~ =] liallte (l~arallleterb)
coll~posite-activity ..- . name (parameters)
atomic-activity . . .- futu~e-teni11-predicate
future-temp-predicate ::= same as jlrtulr-tt t?il)oi~crl-l)~rcl~c(~fc in Fig. 2
\rariable . .- . name.~.arial)le I name
parameters ..- . namc: 1.1.1,~ { .]lame: type }
type . . - . ~ia~ttc-'

Figure 5 : Sjmt ac.1 ic 1)efinition of .Act i\.it!. Specificat ioll .

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

1. advance the systelll clock to the liext event t l~a t is scl~eduled in the future;

2. match the antecedents of the rules against the current and the past states of temporal predi-
cates and against the previous events and activities: as a result of this matching process, a set
of tuples is instantiated; form a set of future activities and future values of predicates from
this set of instantiated tuples:

3. resolve conflicts among collflictilig activities and amolig coliflictilig predicates;

4. scliedule the activities and the pretficates that passed the conflict resolution step for the future
esecu tions;

5. execute the previously sclieduled activities ant1 predicates whose esecutioll time has come.

Figure 6: Teml~oral Recognize-+Act ('ycle for Templar Rules.

convenience for the user. -4ctivities occur either secluentially or in parallel. Semicolon (;) is the

operator delineating sequential activities. and parallel bars (1 1) is the operator delilleatilig parallel

activities.

As was pointed out in Section 3.2. we distinguish between atonlic and composite activities. -4n

atomic activity is defined as a future telnporal predicate. For example. deliver(paper,referee)

for-time T, where deliver is a l~rr (l i r (~fr indicating that the paper is being delivered to tlze referee

for T time units, is an atolllic activit).. -4 colllposite activit)' collsists of heveral subactivities and

requires an activity specification that describes the decom])osition of the composite activity into

several subactivities.

As Fig. 5 sho\vs. each elelnelit in tlie list of parameters belongs to a certain type.

5 Executing Ternplar Progranls

In this section, we descrihe ho\\ Tei~il)liil rliles ale esecutecl in a lecognize-act cycle. As irz the

case of production systen-is. 5uch as O P S j [UFIiSO]. the cycle colrsists of the matching, collflict

resolution and execution steps. Tlre $equence of these \tell$ i$ presented in Fig. 6. Steps 1 and

2 in this sequence corresponcl to the matching])art oi the cycle. Step 3 to the conflict resolution

part, and Steps 4 and 5 t o tlle execution part of the cycle. V'e will dehcribe each step in Fig. 6

in detail ill tlie remainder of this section. f-Io\ve\el. befole \ \ e describe these steps, we present the

data structures being used.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

FIELD TYPE DESCRIPTION
FROM: time beginning of a tel-nporal interval \vhen the tuple belonged t o the predicate
TO: time end of the temporal interval \crlien the tuple did not belong to the predicate
NEXT: pointer pointer to tlie nest node (in the decreasing order of time)

Figure 7: Tlie Structure of a. Rode in tlie Pa.st List. of a Dynamic Predica,te Ta,ble.

FIELD TYPE DESCRIPTION
1-D: boolean is equal to 1 if the tuple ~ v i l l be aclded t o the predicate and 0 if

deleted
-4-S: boolean is equal to 1 if the temporal operator associated with the tuple is

cikoays and is 0 if it is sonzcfitnc.~
FROM: time beginning of a temporal intel.va1 n-lien the tuple will be added to the

predicate
TO: tinle end of a temporal interval \vlien the tuple will be added t o the

predicate
NEXT: pointer pointer to tlie nest node

Figure 8: The Structure of a Nocle in the Future List of a Dynamic Predicate Table.

\Ire use two separate data structures for activities and temporal predicates. \Ve first describe

predicate structures. Scliemas of all tlie predicates being used in the application are stored in a

static predicate table. For each])setfirate. there is one record in the table describing how many

arguments tile predicate has. types of arguments. ancl also containing a pointer t o the dynanzic

1)reclictrf e to ble.

Tlie dynamic predicate table for pledicate P contain\ all tlie time-dependent information about

P. Specifically, i t contains tlie liht of all tlie tul~leh l (P) that \yere ever inserted into this predicate.

It also contains two linked lists for each triple f in l (P) . Tlie first list p (f) is the list of all the past

time intervals when P(1) wab true. Each node in t l i i ~ l i > t]la\ the structure presented in Fig. 7.

Nodes in tlie past list are organizetl in the decreasing order of time (from tlie lllost recent t o the

more distant in time). Tlie second lil~lietl list f (f) i \ the set of all the time intervals when tuple t

is schetlnled t o be either inserted into or cleletecl froni tlie ~)ledicate in the fxri~cre. Each node in the

list f (l) consists of tlie fields prehentecl in Fig. X. Notle> in the future list are organized as follows.

If node nl has FROhf and T O field\ equal to F R O l l (n l) and T O (n l) resl~ectively. and node 1z2

lias fields FROR4(n2) and T O (? t r) . ant1 i.1 TOOrl) < F R O l l (n z) tlien node nl must precede node

n;? in f(t). If time inter\.als of the notle\ in f I f) intersect then tliese notles can have an arbitrary

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

John

l3 /18~8,3f27188H 1/15/90. INDO+

KAME

Jim

PLACE

1 7/15/90.8/1190 fC

Hawaii

Pat

Jim

Ausualia

Paris

Mexico

Figure 9: An Instance of the Temporal Predicate Y4C.4T101V.

precedence.

Example 9 Consider the predicate *-4<.'.ATlOK(K=ZN E.PLL4CE) that specifies where a person

spends vacations. X n instance of this predicate may lool< as the one sho\vn in Fig. 9. Assume

t h a t the current tillle is 1/1/93. Then the tuple (.Jim. Hawaii) in Fig. 9 has three nodes in the

future list and two nodes in the past I i b t associated itith i t . T h e Suture list says t ha t Jirn has a

planned vacation in Hawaii from 2/21/93 t o 2/27/93. tha t he will not go t o Hawaii from 4/15/93

t o 6/20/93, and he will go t o Hawaii a t some point between 10/20/93 and 12/26/93 (bu t does

not know whe11 and for ho\v long yet). T h e past list says t h a t Jiln]lad vacations in Hawaii fro111

3/18/88 t o 3/27/88 and also from 1/15/90 t o 1/25/90,

For each actisit '. we maintain t n o da ta structu1.e~. T h e first one. called the stotic uctivity

table, contains all t h e time-invariant infol.matioit allout t he activity. e.g. t h e name of the activity,

descriptions of t he arguments of the activity. \vhat the subactivities of t h e activity are, definition

of t h e activity if it is an atolnic one. etc. T h e static act i~. i t \ . table can be thought of a s a schema

of t he activity.

T h e second da ta s tructure a.;sociated with an activity. called d y 1 ~ (1 ~ 7 z z c (lctitiily table. contaills

all t he time-dependent information about the activit!. FOI an activity -4. t h e dynamic activity

table contains t he instances of the actii if!. I (r (/ - l) . that occurled 01. are ~cheduled t o occur for

A. For each tuple t in la (-4) . we ;tho maintain trio liillietl list.; as for temporal predicates. T h e

first list p (~ (l) is t he list of all the po.\i t ime interval\ \\lrell activity A (i) occurred in t he past for

tuple t . Each node in this list has the \ t luc ture prebentetl in Fig. 10. n'odes in t he past list are also

organized in the decreasing order of t i l l~c (from the nlo5t] w e n t t o t he more distant in time).

T h e second linked list f r i (1) is the Yet of all tlre j ' t i lo~r t ime intervals \ifhen activity A (i) is

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

FIELD TYPE DESCRIPTION
FROM: time starting time of an activity
TO: time ending time of an activity
NEXT: pointer pointer to tlie nest node (in the decl.easitig order of time)

Figure 10: The Structure of a Fode in the Past List of a Dynamic ilctivity Table.

FIELD TYPE DESCRIPTION
TYPE: integer is equal t o 0 if i t is an activity scheduled by the then-do clause, 1

if it is a constraint scheduled by tlie then-dont-do clause, and 2 if
it is a cancellation of an activity

FROkl: time beginning tilne of tlie scljeduled activity
TO: time ending time of tlie sclieduletl actii.it\.
NEXT: pointer pointer t o the nest 11oc1e

Figure 11: The Strnctnre of a Sode ill tlie F'utu~,e List of a Dynamic .Activity Table.

scheduled a t some time in the future for tuple 1. Each node in this list has tlie structure presented

in Fig. 11. Nodes in tlie future list of the dynamic activity table are organized as in the future

list of the dynamic predicate table. lii particular, if node nl has FROM and T O fields equal to

FROR/I(nl) and) respectively. illid node 122 1la5 fields FRORll(n2) and T O (n z) , and if TO(n l)

< FROM(n2) then node 111 ltl~ist prccetle node n 2 jii j t r (1) . If tinle intervals of the nodes in f c l (t)

intersect the11 these nodes can have all arbitrar)])recetleilre.

Exainple 10 Consider an activity STI'DY(NARlE.SC'HOOL) that specifies the past studying his-

tory and future studying plans of a perion. A n instance of the dynamic activity table for STUDY

is shown in Fig. 12. Assume that tlie cul.rent tillle is 1/1/93. Then tlie tuple (John.NYU) has

two nodes in its past activity list. The fil.,t node says that J01in attended NJ ' l i from 9/1/89 until

6/1/93 and fro111 9/1/92 ulitil tlie j>leie~it tilne. Tlie w n e tuple (3 o l i n . N ~ ~ l i) has also three nodes

in the future activity table. Tlie f11.51 notie >a\., that .lohn re~umed 1 1 i ~ attendance of NYU on

9/1/92 and will continue to attend i t until 6/1/9:3. .-\liio. 1 1 ~ \\ill take a year off and will not attend

NYlT from 9/1/93 until 9/1/9-1. and tllen \\.ill rewlne attentlance from 9/1/94 until 6/1/95.

As was stated before. the recognize-act cycle coli>ist\ of the matching. conflict ~.esolution, and

execution parts. \Ve descril>e each pitrt in turn no\\ .

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

Figure 12: -431 Instance of the Dynamic Activity Table for -4ctivity STUDY.

5.1 Matching Part of the Recognize-Act Cycle

1,9/1/93,9/1/94 1-4 0.911/94.6Il/9.5]

0,9/1/90,6/1/94

4 0, 1/6/93,6/6/951

T h e matching par t of the c).cle s ta r t \ \\it11 the helection of the smallest tinre associated with

(iny future event t ha t is scheduled in tile h!.stem. Thiy time 15 determined 11y selecting tlre smallest

tilne > now from the node- of tlre future lists of all tlie predicates and all the activities

appearing in all tlre rules. For esanr1)le. assume that there is only one predicate VACATION and

only one activity STUDY in the plogram. Also assume tha t tlie current time is 1/1/93. Then

tlie s~nal lest tinle i,,,,t based on tlre data in Fig. 9 and Fig. 12 is 1/6/9:3. This time is associated

with the end of John's vacation in --Iustralia and tlre beginning of Pat 's studies a t UCLA. If any

of t he external events occursed I)et\ieen noti? and then 3et t,,,,t t o the value of tlie smallest

t ime among these estel.na1 e- \ . en t~ . -4150. if an). telnporal tolistants in when clauses of any of the

rules happen t o be bet\teelr the cnrlent moment of tinre and I,,,, then set tnert t o the value of the

smallest temporal constant . Aftel i,,, , , ib (letermined a \ ju\1 descsibed. nlalie the current tinre rzow

eclual t o

SCHOOL

NYL

Rulgers

Yale

NAME

John

J ~ r n

Once the time clocli is advancetl t o f,,,t. the matclring psocess s ta r t s . hilatching is done on

a clause-by-clause basis within a rule ba-ed on tlie following ordering of its clauses. Tlre highest

order is associated with tlle when clan-e. then tlie if clauw. then tlre while clause. and finally, the

before and after clauses. For esallrple. if a rnle when. if. alrd before clauses then first the

when clause is matclrecl against tllc (lala. tlrelr tlte if tlau\e. and finally. the before clause.

19/1/90, 1 / 1 / 9 7
P

1-H 9 / 1 / 8 8 , 6 / 1 1 9 ~

The when clause is ~natclred ag~illrit t he data a \ folio\\ -. \\'e first find all tlre events (beginnings

and endings of activities. external ant1 teml)oral events) tliat occur a t (n e w) t ime For example,

if i,,,,t = 1/6/93 and if a rule contain- t he clauhe w l ~ e i ~ begin.STliDY(Pat.UCL-4). then there

is only one event selected for the data fsoln Fig. 12. i.e. begin.STTTDY(Pat,TlCLt\). However,

thel-e can be nl01.e tlralr one event belcct ed in genel.al iinrc. more t han one event can occur a t the

same time. Tlre matclrilrg of t 110 wliei~ c lau-e ~ I ~ ; I I I) \ ~ 1 tiat a prorluce- t Ire elation R,,, (it is

Pa'

Mark

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

{(Pat.UCLA)) in our example). \ I . expect the size of I?,, to be s~nall on average in comparison

t o the size of tlie data because there slro~lld be a sntall nulttber of events that occur exactly a t the

same tili-re oil average. For this reason. we started tlie matching process with the w h e n clause so

that tlte size of the instantiated relation be reducecl at the early stage of the matching process.

After tlie matching of tlte w h e n clause is finished. we match the if clause against the past

data and relation R,, as follows. II'itlront loss of generality. we assume that tlie if clause lias the

form PI and . . . aizd P,. where P, is a temporal literal (otherwise. we convert the clause into tlie

disjulictive normal form and split the rule into seve~.al rules. each rule containing one disjunct).

We replace eacli P, \\lit11 tlie seinijoili [li1188] P: = P7xR,, altcl evaluate P: against the past data in

tlie dynamic predicate table for P, as follows. If P:(i) is s o n ~ e t i i n e s i n - t h e - p a s t P (i) then clleck

for each tuple t in P if tlte past list p (i) is not empty. If P:(t) is always-in-the-past P (t) then

check for eacli tuple 1 in P if p (i) ha.; only one node and if i t covers all tlte time points. If P:(t) is

wi th in -pas t - t ime T P(1) then for eaclt tuple f in P go over tlte nodes in p (i) to see if some node

has times tliat fall between i,ow and T. Tlle case for for-pas t - t ime T P is handled similarly. As

a result of matching the if clause agaiitst tlie data and elation R,. we obtain tlie relation R,,.

After that , we match the whi le clause against tlre data and relation R,, as follows. Also

without loss of generality we assume that tlte whi le clause ltas tlte form .dl (ri?d . . . nizd A,, where

A, is an activity. We replace each -4, ~vi th the semijoin -4: = .d,c~R,,,. For eaclt activity A, and for

eacli tuple 2 , such tliat Ai(i) is true. checli if the first itode in the past list pcr(i) of the dynamic

activit?. table for A, ltas a non-t?7l tililt in tlie FROJI field and itrl in its T O field. -411 tlie tuples

1 that satisfy this condition form a relation P,". Then all the relations Py. i = 1.. . . . i z are joined

together to form the relation R,,,,, . For example. colrsjtlel 1 Ite clauqe whi le STUDY (name , s choo l) ,

and let the tuple (P a t . I1CL:I) beloltg to tlte semijoiit of STITDY and R,,,,. Since tlie first node

in pa(Pat.UCLA) is (9/1/90. 1/1/92). tlte tuple does not pa>s tlte whi le test and does not belong

to R,,,,,. However. if the first node in po(Pat .li('L.4) hail ilil in the T O field (e.g. was (911 190,

n i l)) then tlie tuple (Pa t . ITC'LX) ~\.oultl Itave])asstid t1te whi le teqt ant1 should have been added

to relation R,,,,.

Tlle a f t e r clause is matched agaillit the data hilttilarly to the whi le clause. First. all the

activities in tlie clause are senti-joillctl \ \ i t11 Xu,,,,,. l ' l t e ~ ~ fol each conjunct in tlte a f t e r clause and

each tuple i in tlte newl). created sentijoin in that conju~lc 1. cllerl; if the T O field in tlie first node

in pu(i) is not empty. -A11 tltc tupleh tliat pahhed t l t i , test lorn1 tlre relation R,,,,,, . The matching

process for tlie be fo re clause is tloite sintilarly to tlte a f t e r clau5e. except tlte clteck is done agail~st

the f ~ ~ t u r e list f n (t). Tlie resillting ~.clr?t io~r R,,,,,, .,, fol.nis t lte set of inst antiat ed tuples for tlte rule.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

The relation rub,,,,^ of instantiated tuples i h used to schedule new instances of temporal

predicates to be true or false in tlie future. It is also used to schedule new instances of activ-

ities artd their subactivities. For example, assume that tlie t h e n - d o clause of a rule is t h e n -

d o review(paper , reviewer) , where activity review(paper, reviewer) was defined in Exam-

ple 3, and assume that Rwzvtab contailis two tuples { (paper-29, Jack) , (paper-43 ,Susan)).

Then this predicate instance RUtlwah gives rise to tlie instances of activities read(paper-29, Jack) ,

read(paper-43, Susan) , evaluate(paper-29, Jack) , evaluate(paper-43 ,Susan) that will have

t o be scheduled in the future. The scl~etluling is based on the computations of the time intervals of

illdividual subactivities and on the colnposition of these subactivities into activities. For example

t o scliedule activities mentioned before. we first compute durations of atolnic activities read and

evaluate a t the scheduling tinie (since an atolilic activity is defined as a temporal predicate, and it

is known for how long i t will be true at tlie scliecluling time). Assume that read(paper29, Jack)

will be true for 30 days, read(paper-43, Susan) for 30 days, evaluate (paper-29, Jack) for

1 day, evaluate(paper-43,Susan) fol 2 days. Then read(paper-29,Jack) will be scheduled

from time now until ??ot13 + 30. evaluate(paper-29, Jack) from ?10u3 + 30 ulitil IIOW + 31, and

review(paper-29, Jack) from nouT until t tot~'S31. Similar]!., read(paper-43 ,Susan) will bk sched-

uled from now until nou* + 40. evaluate(paper-43 ,Susan) from 120~' + 30 111itil IIOW + 42, and

review(paper-43 ,Susan) from ? I O U , until nou, + 42.

Note that during tlie execution of the recogliize-act cycle. tlie past activity and predicate lists

grow longer with time. Therefore. a special care \\.as tal;en for tlie Tem1)lar interpreter not to

deteriorate its performance wit11 time. To illustrate ho\t it is done. considel. the operator s o m e -

t i m e s i n - t h e - p a s t P(n.). To cliecl; if i t is true. \ te liave to see if the past list in tlie dynamic

predicate table for P(n.) is not e~npt!.. alitl thi5 can l ~ e accorn]>lished in coltstalit time. Similarly, to

check if tlie operator for-t i ime(T)P(. t) i, true. n e lta1.e to clieck tlie past portion of tlie dynamic

table for a t 111ost T time units. and tliis can be done in tlie aniount of time proportional to 7'.

Therefore, tlie performance of the matching part of tlie cycle does not deteriorate with time in

these two cases. \Ve employ similar techniilues for other temporal operators in the Templar inter-

preter. Therefore. the performance of tlie mat chin:: 1)ai.t of the cycle doe5 not deteriorate with time

for other cases as well.

-4s a result of the ~naicliing stcp of t lie rrcogl~ize-act cycle. \Ye obtain a set of new predicates

and activities to be sclietluled in the f11t11rr and til~iey at \\hiclt these opel.atiotis begin and end. In

the nest step of the cycle. we lia1.e t o re%ol\.e conflict5 alllong tliese operatiolii and (11~0 the conflicts

with tlie previously sclie<luletl operat ioni.

There have been two conflict reholut ion al,pro;~cl~e:, ~)ro],o\ed in tlie past. The first is the logic

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

based approach. It says that if we conclude tliat P and notP are true at the-same time then

this is a contradiction and tlie program esecution sliould stop. Doubly negated Datalog, Datalog'"

[AVgl], follows this approach. In silllilar situation. hlet a te l4 (BFG+89] stops the current execution,

backtracks and tries to find another model in wliich the conflict does not appear. The second

approach is used in production systems. It says that tlie conflict should be resolved according to

some coliflict resolution strategy [BFIiS(j]. We will follon- the production system approach in this

paper and describe liow conflicting actions are resolvecl in Templar in tlie nest section.

5.2 Conflict Resolution Part of t h e Recognize-Act Cycle

In (non-temporal) production systems. such as OPS.5. conflicts between adding t o and relnoving

elements from a worliing memory occul between operations generated within the same recognize-act

cycle. In the temporal case the situation become\ 1i1or.e complex because conflicts can also occur

between activities and between predicate\ sclleduled at d<fcycrrrzt ri2on?e11tn of tznze. For esample,

assume that the current time is XO antl some rule scltetlules predicate P to be true from time 100

t o 120. Suppose that another rule schedulecl predicate P to be false from time 110 t o 130, and

this scheduling occurred at tillle 60. C'learly. these t\\-o rules conflict, even though they sclieduled

predicates t o be true at different nlonlents of time.

According to loannidis and Selli, [ISS9]. collflicts in rules can occur either a t tlie rule, or the

antecedent, or tlie consequent Ievelh. For esample. OPS j resol\.es conflicts at tlie antecedent level.

111 the temporal case. conflicts 1711t.si l)e rebolved at the conbequent level because activities and

temporal predicates call conflict wit11 tlie l~retvo~l.$ly .~chcd~rlerl activities and predicates. For this

reason we consider coltflict resolution5 at tlie consequent level. One consequence of this choice is

tha t rules can be fired in parallel in the temporal case (unlilie OPS.5. \vhicIi can fire olzly one rule

a t a time) since conflicts are resolved at tlie consecluent part.

We describe conflict resolution strategies separately for temporal predicates and activities

because tliey are handled some~vhat differentl!,.

5.2.1 Conflicts B e t w e e n T e n l p o r a l P r e d i c a t e s

Conflicts between two temporal prec1icart.s sclleduletl in t lie future crrr? occur if one predicate is

scheduled to be true over the tinie interval [TI. Tz] and another is scheduler1 t o be false over tlie

time interval [T3. T4]. ant1 tlie time inter\.als [TI . T2] and [T3. T4] intelsect.

Since the schetfuled o])eration, colne in tn.0 "fln\ors" crl~r~cry.~ and .~o??)ct??72tb (based 011 the

value of the A-S field in Fign1.e S) . \\c I~a \ t . t o co t i~ i t l r~~ t l i ~ ~ (> t! pe, of coliflicts: between two ulways

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

operations, between cllu,oys and son~c l i t ~ t c . ~ operation\. ancl between two soiizctinzes operations.

If two potelltially conflicting actiol~s are of the type uluiays then the conflict occurs when

their time intervals intersect. Formally. f i for-t ime TI scl~eduled at time T3 collflicts with

n o t P2 fo r - t ime T2 scheduled at tin](> T4 if tlie time intervals (T3,T3 + TI] and [T4.T4 + T2]

intersect.

tVe consider two types of conflict, between crlzl.(~y.< and soi7zttiri2ts operations. Let the first

operatioil be PI fo r - t ime TI and let i t be scheduled at time T3. Let the second operation be

n o t P2 w i t h i n - t i m e T2 and let i t be scliedulecl at time T4. Then the ztztersectioiz senzantics

of conflicts says that the two operat~ons conflict when intervals [T3,T3 + T I] and [T4,T4 + T2]

zntersect. Intuitively, it says that if alt olu~clys operation overlaps wit11 a soiii~firizes operation then

tlie soiizetinzes operation cannot be scl~etluled at an\. arbitl.ary t i ~ n e in the interval IT4. T4 + T2] and

lnust be restricted to some smaller tlllie domain. \vhich ma). not 1)e what the programmer had in

mind 1v11en he or she had written the]) logra~n. The (o ~ ~ ~ (I I I T ~) ? ~ I I ~ .~tn)(~i?izc,s of conflicts says that

the two operations conflict when interra1 [T3. T3 + TI] <onlnlt?.~ interval IT4, T4 + Tz] . Intuitively, it

says that if olways operation is schetli~led during the wliole time interval of soiizeti9izes operation,

then the son~efinzes operation callliot occnr at on t~ point in this tjme interval. Clearly, this means

that son2etiri2cs operation is invalitl. ant1 the two operations conflict.

The last type of conflict occul5 bet\ieen tlvo .~ot~?clrt?lr~ 01,erations. In this case, we also

consider two types of semantics for conflict\. -4.s in tlie pse\.ious case, if two aonzetinzes operatiolls

occur a t time intervals [T3. T3 + TI] slid [T4. T4 + T2] tlieli the ~r7tcr.scctwt1 type of conflict occurs

\vhen these intervals intersect. Tlie (o I I ~ (I ? ~ T I ? ~ E ~ ? ~ type of conflict occurs \\.hen TI = T2 = 0.

Once we identified when conflict, bet\\.een temporal pretlicateh occur, we are ready to describe

how they can be resolved. As was poilrted out before. we dihtinguish between tlvo types of conflicts:

confl icts between operations schetluletl at the same time. and conflicts between operations sch~duled

a t different moments of time. \I> st art \v i t l l the conflict , l~c t \ \ ren operations .scheduled at the same

moment of time.

Conflicting operat,ions schetlulPtl at tlte same I ~ I O I I I ~ I I I 01 tiille can I)e resolved with a.ny of

the conflict resolu ti011 si.rat egies ~>ro])osetl for product ion syst enis and act,ive da.ta.bases (MD89,

M7F90. SJGYSO, C;J91]. One such st'rategy orrters 1.u1es (either partially or t,otally) according to

t,heir precedence. Then the qualifyi~ig ~ ~ ~ l e s wit,li the higllest precedence a.re selected. This is

the conflict resolution strategy adoptecl in active databases Starburst. [M7F90] and POSTGR.ES

ISJGPSO]. The conflict, resolut,ion strategy of OPS5 is based on sevel.a.1 t.uple selection criteria, that

take int.0 account st.ructmural proi)el.ties of ~.ules a ~ i d I.rc.ellc\. of tnple insert.ions into the wol.king

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

lllemory [BFIi8G]. If all these criteria fail to resolve the conflict. a single instantiation is chosen a t

random. Still another conflict resolutiolr strategy initially proposed in [I\TSS] and later extended

in [TIi91] operates on the consequent part of a rule. It assulnes that the insertion of a tuple has

a precedence over its deletion if the database does not contain tlie tuple and tlie deletion has a

precedence over the insertion if the tuple exists in the database. The intuitive justification for

this strategy is presented in [TIiSl]. Furthermore. de hfaindreville and Simon (dMS881 describe a

conflict resolution strategy (within a rule), such that if an insert operation conflicts with a delete

operation, tlien both operations are canceled. In conclusion. any of these strategies can be used to

resolve conflicts between the operations scheduled at tlie same time.

If the operations are scheduled a t different moments of time. Jve propose the following tenzpnral

conflict resolution strategy:

If tlie operatiolis of two rule5 conflict. then select the operation of the rule that fired

first. If both rules are fired at the salne time tlien apply an). co~lflict resolution strategy

for the lion-temporal case desc~ihed above. e.g. cancel the conflicting operatiolis or

select the conflicti~lg operation fro111 the rule \vith tlie higher precedence.

For example. if rule Rl sclrednled 1)redicate P(tr1.. . . . (1,) t o be always true from time 40 t o
d

time 60 a t time t = 20. and rule R2 sclretluled predicate P(crl. a ,) t o be always false from time

50 t o 80 a t tinle 1 = 30. then the firs1 ol~eration 11as a ~)i~ece<lence o\.elS t11e hecond operation because

rule R1 was fired before rule R 2 .

Il~tuitively, this conflict resolution strategy saJ.5 that once an operation is scheduled for a

future execution, then the commitment is liiatle t o execute it at some later time, and the scheduled

operation cannot be c a ~ i c e l e d ~ .

5.2.2 Conflicts B e t w e e n Act iv i t ies

Activities can be divitlecl into three g~oups : acti\.itie~ tlrat al)])eal in the then-do . t h e n - d o n t - d o ,

and then-cancel clauses. C'orl.e~l)ondingl!. we conbitler tlrlee types of conflicts between activities:

in two t h e n - d o clauseb. in the t h e n - d o and the t h e n - d o n t - d o clauseb. ant1 in the t h e n - d o and

tlie then-cancel clauses.

\Ve define conflicts between acti\.ities recursi~ely. Since atomic activities are defined in terms

of temporal predicates then two atomic activities colrflict if their corresponding temporal predicates

'If there is a need to cancel the j>lev~ollzl\ .clledulcd oj>elatlol~, the nhel h't.; to u.e the then-cancel clause in a
l t~ le Tlie semantics of this clallqe \\.III he tle*ctiI>etl 111 the lrevt .c.ctroli

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

conflict. Two non-at,on~ic act,ivit,ies conflict if some of their suba.ct,ivities conflict. -

If the conflict occurs between 1\10 activities from the t h e n - d o clauses then the conflict is'

resolved in the sanle manner as for temporal pletlicater as described in Section 5.2.1. i.e., one

activity has a precedence over another conflicting act iv i t~ . if it was scheduled before the other

one. If two activities occur at the same time then tie can also use any of the conflict resolution

strategies described for the predicates in tlie same case. If the conflict occurs between activities

f w n the t h e n - d o and then-don t -do clauses then i t means that the program is incorrect because

the explicit "don't do" constraint ilnposed by tlie user is violated, and the execution of tlie program

ter~ninates with an error message. If the conflict occurs lxtween activities from the t h e n - d o and

then-cance l clauses and if the activity in the t h e n - d o clause was scheduled before, then it is

terminated (i.e. is removed from the future list in t l ~ e dynamic activity table).

As a result of the conflict resolntlon step. \ye 11al.e the list of non-conflicting activities tliat are

ready t o be scheduled for the esecutiol~ i n the future and the list of predicates that are ready to

be set true or false at certain times in the future. The nest step in the recognize-act cycle is to

execute scheduled activities and ol~erations.

5.3 E x e c u t i o i l Part of the Recognize-Act Cycle

The esecution part of tlie cycle colisist s of t\so subpart s. I n tile first part. the activities and opera-

tions that survived the elimination j~locesy in the conflict lesolution part of the cycle are scheduled

for tlie future esecut ion. In the second part. previo~tsly scllecluled activities and operations are

actually esecuted. lfie start our descril,tjo~~ \sit11 tlle \cllednling part first.

To schedule a new a c t i v i t ~ .-i(t) tllat takes place from time T t o TI. we liave to go to the future

list f(t(i) of the dynamic activity table .4 for tuple 1. Let the beginning and end times of the node

NODE, in the list f u (t) be TFROdlr. TTO,. for i = 1.. . . . A*. Then the new activity should be placed

in the list f n (t) so that if it turns out t l ia t TTO, < T tllell the ne\v activity sllould be placed after

the node BODE,. Similarly. if T 1 < l'r;.l;o~l, t11e11 the nen activit~. siiould be placed befbre NODE,.

If these two conditions are not satisfied then the nelv acii\.ity can o\,erlap the l~reviously scheduled

one. I-Iowever, this does not cause itltJ- ~ ~ l o l ~ l e l t l i l~~causc . tile activities do not conflict with each

other (conflicts have beell resolvetl in t l ~ e previour s ~ e l)) . Future predicate values are sclleduled

similarly to the futul.e activities. ant1 \vcl omit {lie tle>cl.il)tion of llo\s i t is done.

Once all the new activities and]>retlicate values a le scheduled. we are ready to execute pre-

viot~sly scheduled activities ant1 pretlicates whose esectltioli time\ liave arrived. In the matching

part of tlie cycle descril~etl in Sectioll 3.1. the s~ \ I ell1 t lo(1, \\ a5 atl\-alrced forward to the closest

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

event(s) sclleduled in tlie future. In the execution part of the cycle. we go over all these events and,

depending on their types. do the following thliigs. \Ye first s ta r t with the events associated with

beginnings and endings of tlie time intervals when yrcilicrrlcs are t rue or false. Then we consider
6 beginnings and endings of activities.

If tlie event is associated with the brgiizni?zg of the time interval [TI, T2] during which predicate

P (t) is ulwuys t rue for tuple 1 (note that TI nlust I)e the current moment of time) then we check

the T O field of the first node in the past list y (f) for P(1). If the value is not nil then it means

tha t P (f) is false now, and we Iiave t o nlake i t true again. In tliis case, we create a new node in

tlie past list of time intervals p(1) and put i t in front of the first node of p(1). We also place the

current t ime into the FROM field and ni l into the T O field of tlzat node.

If t he event is associated wit11 the bcyinni~zgof tlie time interval IT1, T2] during which predicate

P (t) is always false for tuple 1 (again. TI must be the current moment of t ime) and if the past list

p (i) lias a node witli the T O fielcl being or/. then this means that P(1) is t rue now. and we have t o

make it false. In this case. n e in>ert t l ~ e value of the c-ur~.elrt time. TI, in tliat node.

If the event is associated witli tlre bcy~nnilzyof tlre t ~ l i ~ e interval [TI. 7;] during which predicate

P (i) is sometinaes t rue . then \ire cl~ecli the T O field of the first node in the past list p (i) for P (i) . If

the value is nil tlien it means that P(1) is t rue now. and the commitment t o have P (t) t rue between

times TI and T2 is fulfilled. Therefore. \ye don't have t o (lo anything in this case. If t he value is

not 17il then i t means tliat P (1) is false now. and \ye at tempt t o malie it t rue now (a t time T I) for

one time instance. To d o tliis. l ie create a ne\\ TRITE llvtle and malie its FKOht and T O fields

equal t o "now" (T I) . Then \ve cliecli il tliis Ben ~ i o d e r o ~ i f l ~ c t ~ with the previously scheduled future

nodes. If i t does. we do notliing. If i t (lots not conflict. p11t i t in front of the first node of the

past list of time intervals y (1) .

If tlie event is associated with the ky71?niny of tlre t inw interval [TI. T2] during which predicate

P (i) is sonzel i~ i~es fulae, then we cliecli the T O field of tlre first node in the past list p (i) for P(t) .

If tlie value is not 1 2 i 1 tlrell it means that P(1) is false non . and the coln~nitment t o have P (t) false

between times TI and T2 is fulfilled. Tlierefore. \ye don't have t o do anything in this case. If the

value is ni l tlien it means tliat P(1) is t rue no\\ . alrcl \\e atrcJ~iipt t o make i t false now (a t time T I)

for one time instance. To (lo tlris. \ye cicate a ne\i T.-lLSlI t~otle ant1 malie its FROM and T O fields

equal t o "no~v" (T I) . Then we cliecli ii this nen node conflicts wit11 the previously scheduled future

nodes. If i t does. \ve d o nothing. If i t tloes not conflict. \it. incorporate it into tlte past list of time

intervals p (t) .

If tlie event is as,ociated \vith tlic o ? d of tlic tilile il~terval {TI. T2] tluring which predicate P (t)

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

is soiizeiinzes true then we check ivhetlle~. the TO field in the first node in the past-list p(t) is either

izil or is greater than TI. If tliis is the case. it meanh that at some point between the tillles TI and

T2 P (t) was made to be true. In this case. the commitment t o make P (f) true sometilne between

times TI and Tz is satisfied, and there is no need to do anything. However, if the T O field has

the value less than TI tlien the cornmitmellt was not satisfied. and we have t o fulfill it a t the last

point of the time interval [TI, T2] by maliing P (t) true now (a t time T2). In tliis case. we create a

new TRUE node wit11 tlie FROh4 and T O fields equal to "llow" (T2) and see if it conflicts with the

previously scheduled future nodes. If i t does, we cciizccl the execution of Templar program (because

we did not satisfy the commitment to make P (1) to be true sometimes between TI and T2). If it

does not conflict, we put it in front of tlie first notle in p(1).

If the event is associated with the cnclof the time interval [I;,Tz] during which predicate P (t)

is sonzefi~izesfulse tlien we clieck whether there is a node in the past list p (t) with begin/end times

(Ti,Ti) such that TI < Ti < f i . If this conditioil is true. tllis means that P(i) was false sometime

after TI and before T2, and therefore tlre commitment to make P (f) false soiuetilne between times

TI and T2 was fulfilled. In this case. \ye don't have to do anything. However. if tlie condition does

not hold, tliis means that we have to flllfill the commitment at the very last point of tlie interval

[TI, Tz], as in tlie previous (t rue) ca5e. In this case. \ye talie steps similar to the previous case,

i.e., create a F-4LSE node with FROhl and T O field, cc~nal to T2 and see if it collflicts with the

previously scheduled future nodes. If i t does collflict. \ye abort the executioir of the program. If it

does not, we put T2 in the T O field of tlte first node in tlre past list of y (i) .

If the event is associated wit11 tlre c17dof the time interval [Tl.T2] during \vhich predicate P (t)

is either rilrunys true or n1u~rry.h fiil.<c then we do nothing. 11-e do nothing because after the predicate

stops to be true, it can take any value. i.e. either true or false. Tllerefore. unless stated otherwise,

the predicate remains to be true. 1-11(~ 5alne argullieitt al)j)lie\ to the caw \vhen tlie predicate is

false.

Also. in case of the events ashociatecl ivitlr endings of the tinte interval [TI. T2] for some P(1).

tlie corresponcling node is removed fronl the fi1tul.e li5t for P (f).

This completes the considerat ion of events associat ed \\ it11 tlie beginnings and endings of the

tillle intervals when predicates are {rue 01 fal5e. 11-e nest consider activitiex.

If the event is associated \villi 1 1 r ~ I~eginning of activit:. . - l i t) . then cliecl; the past list pa (f) of

tuple t in tlie dynamic activity table =-l(i) . If tlre 1-0 field of the f i~s t node i n this table has tlie

value that is different from nil t11c11 cl.eirtc> a lie\\ trotle illit1 11Iac~ i t a1 tlre I~eginning of tlie pa (t)

list. Set tlie FROhl field in this iioclt~ to t 11e current \ .all~c of time. ant1 the T O field to nil.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

If the event is associated with the end of activit). r l (f) . then again check the-past list pa(t) of

tuple t in the dynamic activity table . - I (I) . If tlre TO field of the first node in this table has nil in

i t then replace i t \vitlr the current value of time.
L

This completes tlte tlescription of the recognize-act cycle and the semantics of Templar.

5.4 Ilnplelllentation of the Templar Illterpreter

Tlte Templar interpreter, based on tlie description of the temporal recognize-act cycle presented in

this section (Section 5). was iinplemeilted 011 a Sun \\orkstation in C.

The interpreter tvorks as follows. I t takes a Templar program and parses it using tlre parsing

tables generated by YACC parser generator. Tlte result of the parsing process is a set of internal

data structures, including tlte htatic ~)retlicate table. tlre static activity table. and an internal

representation of Tei~lplar rules. -Aft er 1 Itat. the in1 erpreter initializes the dynamic tables, iltcluding

the dynanlic activity. preclicate and external event tables". by reading the initial s ta te of tlte system

specified by tlie user (e.g. the list of tlte papers being initially submitted. the list of tlte initially

selected reviewers. etc.). F ~ l l o \ ~ i n g t liis st age the interpreter executes tlre telnporal recognize-act

cycle, as described above. either until no rules can be fired or until the time limit specified by the

user is reached.

As was pointed out in Section 5.2. cliflerent strategies can be used by the interpreter to resolve

conflicts between activities ailti bet~veen predicat e5. In our implement at ion. we selected tlie follow-

in;_ strategy (that was described in Section 5.2). If action .-II conflicts \\rith action .A2 and action

A, was scheduled first. then action .--II has precedence over action .A2 . If two conflicting actiolts are

planned t o be sclteduled at tlte same tinle. then \ve cancel both actions".

It took 10 man-months t o develop the interpreter. alid the program contains over 5000 lines of

C code. In tlre Irest section. we descril~e a case stud). tltat \\.ill 1) ~ used for testing the interpreter.

6 Case Study

To test tlte Templar interl~reter descl.il~ed in tlte previous section. and t o test the language in terms

of ease of development. reliability. alitl ~traintainabilit>. of its pl'ograms. we did a case study. In

'O\?'e assume that tile user specifies tlie f l i t tire occnrreilces of external events before t.11e esecut.ion sta1t.s by placing
all of them int,o the est.erna1 e\,ellt file. I-lo~vever. we plan to extetltl r.ltis part of the interpret.er in the future by
l i~odeli~~g est.ernal events wit.11 sonw Poisson arrival processes. a5 i s ~is~rally tloi~e it1 siln~tlatioi~ syst.etns.

"AS was st,ated in Sect.ion 5 . 2 . the i~orr-telnporal cotnpol~ent of this conflict ~.esoltitiot~ st.rat.egy was proposed
it1 [dhiSPP]. However. O I I ~ ii~terl)ret.er can ra~ily inrorporatt- ally otl~er coilflict resoltttion st.rat.eg~1 described in
Section 5.2. This is in tire spirit of OPSS t h i i t call it+(, eitl1~:1- 1.ES or \IE.,t stl.itt.egies [BFli~ifj]

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

this case study, we implemented a portion of the Intelligent Adversary (IA) system for the Naval

Trailling Systems Center that simulates behavior of navy pilots in colnbat situations. This system

llelps t o train navy pilots for air battles and can be tllouglit of as a very sophisticated versioll of

a flight silnulator video game. where the IA subsystem silnulates the behavior of the "bad guys."

The 1.4 systenl has been implemented in OPS.5 before. and i t took two man-years t o develop it. In

our case study, a portion of it was retvritten in Templar.

We selected this case study becau5e it has a very rich temporal component since navy pilots

have t o react t o adversary actions in time. For example. the following statement is a part of an

informal English description of pilot's behavior demonstrating the richness of the temporal domain

in this application [Bod92]:

If the enem?. flies on an intercept course for at lea51 3 seconds and then lie flies with at

least 30" of aspect for .j secontl5 ant1 if the elap5etl time hettveen the end of his flying

intercept and the beginning 01 hi5 fl\.ing aspect i5 le55 than 3 seconds. then this means

that lie]nay have fired a missile at j.ou and is doing an F-pole no\\..

In this case study. we implemented a]nodule of the 1.4 system that selects an appropriate

radar node and then designate5 the target. "Designation*' is a technical term meaning that a

pilot presses a special '.designate" button on his radar that locks the radar on a particular target

and displays vital informati011 about that target. Tlte de5ignation process continues until the pilot

lnakes the final decision wllicli target lo purhue. T l t ~ s ~~lot lu le constitutex about 10% of the total

IA system [Bod92].

The description of the Tem1,lar program that simulate, the selection of a radar mode and tile

designation process is presented in [Rot1931 and is bated on the estensive practical experience of

interviewing navy pilots. It contains 30 Templar rule,. 11 activities. 21 predicates, and 5 esterllal

events. \Ire present e s a m p l e ~ of tlrlee rule5 from thi5]) loyam ill order to show its "flavor."

The first rule says t,l~at if a pilot is \\.ait,ing for a 1.ada1. 1.eturn. while designa,ting a ta.rget, and

tvllen he actua.lly gets the 1.etul.n. tl~etl Ile should stop \\.aitil~g for tlie results of the designa.tion and

check the returned result,s. This rule is esl>re?;setl in Ten11)lar as

when n e w r a d a r - r e t u r n (p i 1 o t)
while d e s i g n a t e (p i l o t , t a r g e t)
if w a i t i n g 2 o r - r a d a r x e t u r n (p i 1 o t)
then-do c h e c k x e s u l t s (p i l o t , t a r g e t)
then not w a i t i n g 2 o r - r a d a r - r e t u r n (p i 1 o t)

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

where n e w x a d a r x e t u r n is an external event specifying that the radar gets a new return, d e s i g n a t e

is an activity designating a target. w a i t i n g 3 or-radar-re turn is a predicate specifying that the

pilot is waiting for the radar return. and check-resul ts is an activity that checks the results of

the new radar return.

The second rule says that when the targets on the radar screen change (the set of targets

becomes different) while the pilot trieh to clioose the tlesired target, then terminate the process of

choosing, and start it all over again. I t is expressed in Templar as

when change-in-targets (p i l o t)
while choose-desired-target (p i l o t
then-cancel choose-desired-target(pilot1
then-do choose-desired-target (p i l o t)

where change- in- targets is an external event. ant1 choose-desired-target is an activity. This

rule cancels the old selectioli act ivi t~. iitttl starts a new one \\.lien the set of targets changes on the

radar screen.

The third rule says that every 10 seconds. if tlie radar has been in tlie RM'S mode colltinuously

for the last 10 seconds, and if the pilot i h not in the yrocec;s of clloosing a desired target then set

tlie radar t o the TWS lnode (for a quicl; look at the air1)laltes). This rule is espressed in Templar

as

when every loseconds
while not-choosing-desired-target (p i l o t)
if RWSmode (p i l o t , r a d a r) for-past-time(l0seconds)
then-do check-TWS-data(pi1ot , r a d a r)

7 Conclusions

In tliis paper we described a higll-le\el simulation lallguage Templar based on temporal logic. We

also described an interpreter for tllc latlgnage tllat eseciitrs Teniplar programs.

Templar combines a large set of temporal logic operat 01 s and a rich set of high-level modeling

primitives, such as events. activitie~. pleclicates. rules. hiel~archical decomposition of activities,

sequential and parallel activities. static and dynamic colr3trail-rts. decisions. and data nlodelillg

abstractions of aggregation ant1 gener~lizatioll. As oul es])e~ience \\it11 a real-world case study

shows. this combination can hell) a itroglamnlel ~,ay)itll~ cle~elol) \tl.nctnrecl. reliable. and \veil-

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

ma.inta.ina.ble simula t,io~t progra.ms.

Acknowledginents

The author wishes to thank David Bocloff for nulnerous discussiolls of some of the issues in this

paper and Ira Minsliy for writing an interpreter for Templar.

References

[AV91] S. Abitehoul and V. Vianu. Datalogeste~isio~ls for database queries and updates. Journal

of Conzpuler ~12d ,Sysleii? ,S(I C I I C ~ S , 43:62-124. 1991.

[BFG+89] H. Barringer. M . Fislier. D. (;al3ba~.. C;. Gougli. a ~ i d R. Owens. XIIETATEM: A frame-

work for programniing in 1 e~ii])oi.al logic. I n .5lrl~u-7.sc Rc.Jinc I V ~ 11 1 of Disiribrrted Systenzs,

pages 93-129. Springer-I7erlag. 19ScJ. L 3 ('5 -130.

[BFIiSG] L. Bro\~~nston. R . Farrell. and E. l iant . Prog1~(r1~~172zr2g Expert S'ystenzs in OPS5: an

Iiztrotluclion lo Rzrlt-B~.~.cd PI l~tlroii217171)y. -Ad disoll-\l\;esley. 1986.

[Bod921 D. Bodoff. Noveml~er-Dere~nl)e~~ 1992. Personal co~n~-i~unicatio~is

[Bod931 D. Bodoff. Te~nplar s1)erification of tlte intelligent adversary system. Unpublished

Manuscript. hlarcli 1993.

[DHRSI] E. Dubois. J . Hagelstein. ant1 -4. Rifaut . =It formal language for t lie requirements engi-

neering of computer system\. In A. Tliaybe. editor. From I\'cri~~rrrl Langu~ge Processing

to Logic for E.7pcrl ,Sy.zlrn>.<. John \t7ile\ and Son>. 1991.

[dX/IS88] C. de XIIaindreville ant1 C. Simon. hIotlelli~ig non deterministic queries and updates

in deductive database>. 111 Inlernotlor~trl (br?jc,cncc on I c r y L(11ye Dc~lnbases, pages

395-406. 19SS.

[FG90] I. Futo and T . Gergely. :11~fific.rtrl It?lcllrgr r,(c ir, .S1mlrlol7o1~. Ellis llorwood/\l~iley, 1990.

[Fh191] P. A. Fish\~icIi and R. B. llotljeslii. editoi .~. h'liolr~lcclgc-B(16c(l .S'71~2~1(11i012: ~/Jethodology

criztl Aljplicrrlion. 1 olume 4 o! -I tll,nncr .< 717 , Y I I? I rilrili/~~~. Springcl-Jerlag. 1991.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

M. S. Fos and Y. 1'. Reddy. linowledge rel~resentation in organizational modeling and

simulation: Definition and interpretation. In P~.oceediizgs of the 13th Anrzual Pittsburgh

Corzjereizce on A/lodeliny (inel Sz~nuI~i t io /~ . 19S2.

I. Futo and J. Szeredi. .A discrete siltlt11atiol-t system based on artificial illtelligence

methods. In .4. Javor. editor. Discrete S'~ri~li/ofio/z crrzd Relattrf Fields. pages 135-150.

North-Holland. 1982.

N. H. Gehani and H. I*. Jagadish. Ode a5 an active database: Constraints and triggers.

In Irzterizntio~zcll Corzfererarc or2 Very Lorgc D(rlobnses, 1991.

A. G. Hofinann, G . hli. Stanley. and L. B. Ha~vliinson. Object-oriented models and their

application in real-time expert systems. In 11'. IVebster, editor. .Sinaulutioiz and A l ,

volume 20. SCS Simulation Series. 19S9.

IntelliC;orj~. hlountain 1'ic.u . ('alif. 1nlc / l i (' o /] ~ . 1iEE ,S'ofi7r.c1rc Dtz~elo~1ii2erzt ,System

User's ~!l(rlzucrl. 19S.5.

IntelliCorp. hlountain Vie\\. ('alif. Thc ,5'I.llIiIT Sy.sie11z: Iii~ou~lctlyt-Bused Sinzulution

Tools irz JiEE. 19S.i.

\Ir.E. loannidis and T.Ti. Sellih. Conflict re5olation of rules assigning values t o virtual

attributes. In P~.occcdlr?g.k oJ' .-l C!Il ,S'IG.ll OD Ctol?jc-rr r?rr, pages 205-214. 1989.

11. I iamp. On the Ter,.kr L q ~ c clnd tltc Thco/.y ,,f Orclcr. P h D thesis. UCLA, 1968.

Transactions of the Societ!. for C'oml~uter Sinlnlation. September 1990. Special Issue on

Iinowledge Based Simulat ion.

[IiFhllO] P. Iilahr. JY. S. Faugllt . ant1 G. R . hlartins. Rule-oriented simulation. Tn Proceedings

of 195'0 JEEE lnlcrncrt~o~~(rI Cbnjcrurlrc or, C'yb~/-ntf7c.c crnd .Society, pages 350-354,

Cambridge. hI-A. 1980.

[l i ro8i] F. Kroger. firi1l~orrrl Lr~gtlllc oj P I * (J ~ / (~ I I ~ ~ . Sj)~illgei-I-el.lag. 19s;. EATC'S hilonograpl-ts on

Theoretical ('oml)ut el S ~ i ~ ~ r c c .

[I\TS9] Z. h l . liedem ant1 -4. T~iz l~i l in . Relational data1)ase 11eha\.ior: litilizing relational discrete

event systelns and models. In Proccce1l11g.k oj' POD.5 .S'yri21)osilrri?. pages 336-346, 1939.

[AIDS91 D. hlicC'arthy ancl IT. Daj-al. Tlie al.cl~itecturr. of an active. object-oriented database

system. In l'r~octccl7ng.h 4 .-l <'.I/ ;i'I(;.\l OD ('oi?j(I* ~ C C . 1989.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

[XIP92] 2. Manna alid A. Pnueli. Tht Tcnlpoi.ctl Logic of Rccrcizvc rrizcl Coizcurreizt Systems.

Springer-Ikrlag, 1992.

[01182] T. W. Olle. Comparative ~.eview of information systems design metliodologies, stage 1:
1

Taking stocli. In T. M'. Olle. H. G. Sol. axid -4. A . Verrijn-Stuart. editors, Information

Systenzs Design Alethorlolr~l/rr.~: A C'on~l~nrcrt~rc Review, pages 1 - 14. North-Holland. +
1982.

[RS89] A. Radiya and R . C ; . Sargent. ROBS: Rules ant1 objects based simulation. In M. S. Elzas,

T.I. d r e n , and B.P. Zeiglelxditors, !l!odrll~i~g (,/,(I ,Szn,rrlntioi? illclhodology: lii2owledg~

Systenzs ' Pnrcrdiynzs. chapter 111.4. Kortli-Hollalid. 1989.

[SFBBgG] N. Sathi. h;I. Fox. V. Raskaran. and J . Bouer. Simulation Craft: A n artificial intelligence

approach t o the simulation life cycle. In P~~oc(cd~i?gb of tlzc .S'C:S' 5'umn~er Sinzulation

Corzfereizct. 1986.

[SJGP90] M. Stonebralier. A. Jliingl an. .I. Goh. and S. Potamiaiios. On rules. procedures, cashing

and views in database systems. In Prorctrl~i~y. oj .-1C'i\.I .5'IG'illOD C'oizjerencc, pages 231

- 290, 1990.

[TIi91] A. Tuzliilin and Z. XI. liedem. hlodeling dynamics of databases with relatiol~al discrete

event systelns ancl model%. *orking Papel IS-91-5. Steln School of Business. NYU,

1991.

[TL82] D. C. Tsicliritzis and F. 11. L0~110vsli\-. D[rt(r Ilotlrla. Prentice-Hall. 1982.

[to111921 AC'X4 T~.ansactions on Ilotleliltg and (. 'ontp~~iei. Siniulation. October 1992. Special Issue

on A1 and Simulations.

[Tuz92] A. Tuzhilin. SimTL: -4 silnnlatiol-r language ba%ed on temporal logic. Trcrn.scrction.s of

the Socicty jar. C'ori~1)~rtci~ ,S'ir~)lrJ(rtioit, 9(2):S;-100. 1992.

[1~1158] J . lillman. Princlylr oj D~rlrrbtr~r- irntl I<i~o~r~lctlgc -Brr.&c Sy.st(i1z.i. volume 1. Computer

Scie~ice Prehs. 19SS.

[\VF90] J . IVidom and S. 3 . I-'inlicl\tein. Set-oliei~tetl l~rotiuction rules in relational database

systelns. In PI-occctl111g.5 oJ --1 <'.\I S'IC;JIOl! ('or~jcrr iicc. page> 259 - 270, 1990. I

[\VLN59] L.E. Widman. 1i.A. Lo1)at.o. a n d N . R . Sielsclr. -lrt<ficinl Ii?ltll7genrc, Szm~rlatzon and

Alocleling. \\'ile\,. 1 9S9. +

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93- 19

