
MAXIMIZATION OF ORGANIZATIONAL UPTIME USING AN INTEfiACTIVE
GENETIC-FUZZY SCHEDULING AND SUPPORT SYSTEM

Roger M. Stein
Moody's Investors Service

New York

Vasant Dhar
Stern School of Business

New York University
New York

Workinq Paper Series
STERN IS-93-27

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-27

Maximizat ion of Organizational Upt ime Using an Interactive Genetic-Fuzzy
Scheduling a n d Suppor t System

Roger M. Stein Vasant D h a r
Moody's Investors Service Stern School Of Business

New York, New York New York University

Abstract

This paper addresses the problem of scheduling multiple
tinre and priority sensltlve tasks eflicientl,~ in an envrron-
ment where the number ofresources is litnited and the re-
sources have vatying capabilities and restricted capacities.
We use a help desk environrnenr as our work~ng model,
however, the methodologv could also be adapted to a vari-
ety ofjob shop scheduling problems in general. It'e intro-
duce a metric called priority time usage as a measure of
task urgency and of schedule efficiency. We also introdztce
a method of considering user satisfaction in scheduling b-v
uti!izing f u z y monotonic reasoning. CVe propose a meth-
odology for imp/ernenting a heuristic genetic algorithn~
(GA) to accomplish the scheduling task. CVe discuss how
such a qvstem can use ongoing data about historical
schedule performance to adapt and create progressive(v
more accurate schedules in the future. We consider
mod$cations to the scheduling approach which could
allow for task inter-dependencies. We present an inizritive
user interface which we developed to aid help desk
adt?~inishators in using the system. In addition to providing
a front end to the SOGA system, the inferfoce allows the
user ofthe system to perform "what i f ' anaLvsis with actual
schedules. Lastly, we present preliininary assessnients of
the utility of both the optinzization engine and the user
interface.

Ke?wonls: scheduling, genetic algorithm fuzzy logic. constraint satisfac-
tion problems, hslp desk, optimization hsuristics, graphical user interface.
hybrid expert s)stem, monotonic reasoning.

1 Introduction

The effectiveness of an organization hinges on the qualie ,
of support it is able to provide to its infrastructure of
equipment and employees. In panicular. as computers.
nehsork equipment and other t?ges of hard~vnrc and

sofhvare become increasingly prevalent in organizations.
there is an increasing and critical need to support such an
infrastructure.

In large organizations. help desks are often
implemented by MIS groups within the organization to aid
computer users in resolving system problems as well as to
provide a central point where users can report troubles.
Simple problems are often resolved directly over the phone
or in person at the time of reporting. However, more
complex technical issues (tasks) must often be dispatched to
hardware or sofnvare specialists (resources) for more in-
depth diagnosis and resolution.

The central objective of the help desk is to
ma\rimize organizational productivity by minimizing down
time of people, tools, or equipment. Tasks should be
scheduled efficiently, according to some meaningful
prioritizaton scheme, so that the amount of productive time
lost by the community of users is minimized. In order to
provide quality senice, the prioritiation scheme must also
attempt to minimize the total dissatisfaction of the user
community. In addition, the scheduler must consider that
the availability of the resources and that their ability to per-
form a given task can vary greatly. These factors depend
on issues such as the experience. training, work schedules.
and the other non-help-desk related commitments of each
resource.

Where support is being provided to employees, a
seconda~y objective may be to maximize user satisfaction by
providing prompt senice and estimates of expected start
and completion times of tasks.

Both objectives can be achieved through judicious
use of mathematical modeling and computer technology.
In this paper, we use the help desk as an example of a
protohpical support function. Such a function involves
generating realistic plans and modifying them as new tasks
are received and others are completed. While this might
appear to be a relatively straightforward problem. it is
exceedingly difficult to perform in practice. Inappropriate
assignments or miscalcula~ions can result in bad schcdules
which. in turn. result in longer d o ~ s n timcs than arc

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-27

necessan . and u here. users are in\ olved, increased
dlssatlsfaction. frustration, and loss of goodwi11

In this paper, we demonstrate one method for
addressing the above mentioned objectives and providing a
computer-based scheduling system that can be used for
scheduling resources and contlnuall updatlng schedules as
the set of outstanding problems changes The problem
faced by help desks in large organizations is one such
~p icc i l problem However, we should point out that the
approach descnbed herein cames over to a vanety of other
domains where scarce resources must be contlnuallg
scheduled to perform pending tasks in as optlmal a manner
possible

The paper is divided into seven sections. The first
through fifth sections deal largely with the theoretical prop-
enies of the methodology, while the remaining two sec-
tions discuss and report on a system that has been devel-
oped for a help desk environment based on this methodol-
O@.

The first section deals with a descriptions of the
help-desk environment and a general statement of the
scheduling problem. The second section introduces the
priorify time usage metric as a means for measuring
schedule efficiency. The basic formulation of the schedul-
ing problem is presented as well. The thlrd section deals
with genetic algorithms and the applicability of these tech-
niques to the problem. The fourth section describes m o d s -
cations that were made to account for the limited or partial
availability of resources. The fifth sectlon introduces modi-
fications which, although not implemented, could be made
and which might allow the system to be used to find
solutions for the multiprocessor type problems where there
are inter-task dependencies. The s i s h section provides a
description of an interactive user interface that the authors
designed to facilitate the use of the optimization system.
The interface allows a good deal of flexibility and the
ability to perform "what if" analysis on schedules. The last
section discusses preliminary findings.

1.1 The Help Desk Environment

In many large organizations, technology departments are
large enough, and the computer user base is broad enough
to warrant a special function within the organization that is
responsible for user support and problem resolution. These
support units, called help desks, can range in size from one
or two specialists to much larger groups.

T!pically, in a help desk environment problems
are processed in a series of stages. Users contact the help
desk with a specific problem. Where possible the problem
is resol\.ed at that time. However. more complex or time
consuming problems are fonvarded to specialists \rho visit

the user site directly. In some cases. multiple visits are re-
quired before a problem can be resolved.

The challenge facing the help desk administrator
is to schedule tasks in such a manner that the loss of value
by the firm due to computer dotm time is minimized. An-

,

other concern is to minimize the dissatisfaction e.qerienced
by the user community regarding the quality and timeliness
of support.

To minimize the first constraint, the administrator
must consider the priority of the various tasks in the queue
as well as the time each will take to resolve. The ability of
the various technicians to perform the tasks will also
impact schedule design. All things being equal, it makes
little sense to have a highly e.qerienced technician perform
a relatively simple task while a more complex task remains
undone because the other (idle) technicians do not have the
requisite skill to perform it.

To address the constraint of user satisfaction, the
administrator must also consider the amount of time that a
given task has been outstanding since it was reported. As
this time increases, the user will tend to become more and
more disturbed by the slow response time of the help desk.
The length of time which passes .before the user registers
dissatisfaction will v a p with the nature of the task.

1.2 Scheduling Constraints

In most cases. not all resources can perform all tasks. Thus
schedules must be constructed which only allow tasks to be
assigned to resources that have the ability to perform them.
In addition, not all resources are available at all tlmes to
perform tasks. Moreover, only legal, complete (wherever
possible) schedules should be generated.

A legal schedule is one which does not violate any
of the above constraints A complete schedule is one in
which no assignable task is left un-assigned. A task is as-
signable if there is a resource which can perform the task
available dunng the scheduling period.

2 Schedule Efficiency and Optimality

In order to optimize a system of schedules of tasks of vary-
ing priority, we must first characterize what we mean by an
optimal schedule. We start with the far simpler special
case in which we seek to optimize a system containing only
a single resource. We then proceed to the more complex
multiple resource system scheduling problem.

2.1 Efficiency of a Single Resource Schedule

To evaluate the e f i c i e n q of a given schedule. I t is first use-

ful to define s s ~ e r a l \.srinblcs Let T={t, $,} be a list of n

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-27

tasks to be done. We also define ei as the estimated time to

complete task I,. We can now define a schedule S =
{s]... s,j to be a vector of integers where sj is the index of

the j~ task to be performed in schedule S. (So, for
example. ii s2 were equal to 15, it would mean that the
fifieenth task. t,!, would be performed second on the
schedule.)

A schedule can be cons t~c ted such that the total
time that passes before the completion the a task, cj is de-
fined recursively as:

q,, when j=l
+es,.'otherwise. (Eq. 1)

The total waiting time to complete a schedule of n items to
is therefore simply equal to the finjsbng time of the last
task, c,. However, note that the total time lost by the user
comnrunity is:

since each user must wait while all prior tasks are per-
formed. That wait time is time lost by the user community
and should be considered in assessing the efficiency of a
schedule.

To appreciate this point, consider the following
case: assume that there are two users with tasks, tl and t;?,
with estimated times to completion el= 0:05 and e2 = 5:OO.
It can be seen that the schedule S = {1,2) will have an
estimated time cost of 5:10 hours, since both users must
wait five minutes for the completion of t, and one user
waits an additional five hours for the completion of t2 in
contrast, the schedule S = {2,1) will result in the much
higher cost of 10:05 hours since both users must wait five
hours, and one user must wait an additional five minutes.

2.2 Priority Time Usage

If we were concerned with minimizing the usehl time lost
before the completion all of the tasks in a schedule. we
could seek to optimize the schedule by trying to minimize
Eq. 2. However, Eq. 2 does not take into account the
priority of a given task and is therefore usehl only if all
tasks are of equal importance or urgency. However. this is

* not usually the case. To incorporate priorih into our
scheduling evaluation paradigm we now define prior;@
:irrre usage. u., as the amount of priority iveishted time lost

J .
by the community of users while waiting for the jth item in

S to be completed. To define uj, let pi be the priority of task
ti. We define pi as the number of productive hours lost by
the community of users for every hour that task ti is
unfinished. (pi is defined more fully below.) For any sj in

S, uj can be defined as:

where p denotes the priority of task sj.
'1

We can now calculate the total amount of priority

time usage, U, for a schedule S as follows:

J

Our task in optimizing a schedule now becomes
simply to minimize U. In doing so, we minimize the total
value of the time lost by the user community while the tasks
are performed.

2.3 Task Priority (pi)

We now return to a more complete definition of pi , the
prionty of a ,:en task, t,.

Let h be the value of one hour of the average
user's tlme to the user community. Let hk be the value of
one hour of the kh user's time. (Note that hk > k when
worker k's time is more valuable than average.) If we as-
sume that there are m users affected by task ti, and that the
severity of task ti is such that any user k who is affected by
task t; loses all ability to perform usefully until the task is
completed then:

A substantially similar, but somewhat more com-
ples definition of pi can be derived if the above assumption
about the severity of time lost is relaxed.

If we define a series of m weights, wk, represent-
ing the degree (0.0 to 1.0) to which task ti causes a loss of
functionality to user k (i.e.: the percentage of user k's job
that the user is prevented from performing), we can then
weight appropriately the impact of the task on the commu-
nity of users as follo\vs:

Center for Digital Econon~y Research
Stern School of Business
Working Paper IS-93-27

2.4 Eficiency of a h'lultiple Resource Schedule
System

As we move from the special case of a single resource sys-
tem to the more general case of a multiple resource system.
there are addition factors to be considered.

Since we are assigning tasks to multiple resources
we must assign them in such a way that the over all priority
time usage to complete all tasks is minimized. If we have q
resources, we create a multiple schedule system by creating
a separate schedule S, for each resource where I=l..q.

(Each SI is analogous to S in Section 2.1.) Tasks in T are
then distributed among the various SJ. Each schedule S I .
is evaluated to yield a priority time usage UI. (Here again.
each UI is analogous to U in Section 2.2.) To determine
the priority time usage of the multiple schedule system we
calculate:

n

To optimize the schedule. we must minimize Eq. 7.

2.5 User Satisfaction and Goodwill: A Fuzzy
Set Representation

While minimizing Eq. 7 reduces the total priority hours lost
by the user community, it does not consider the level of
satisfaction and goodwill experienced by the user commu-
nity.

Consider the case where there are nvo tasks tl and
$ of equal priority and duration. Assume further that tl was
initiated five hours earlier than t2. From the standpoint of
Eq. 7, we are indiEerent as to whether we perform t l first
or t, first. Since the five hour digerence is time that has al-
reaiy been lost by the user community, it is not considered
in our schedule formulation since it will have no impact on
the future completion time of any new schedules. It is a
sunk cost. Nonetheless. fairness might compel us to
consider performing tl before t2 since it was initiated first.
Such decisions become more complex when priorities and
durations are not equal.

Additionally, we might argue that as user satisfac-
tion declines, so does productivi~. A user whose task is
continually postponed or placed at the end of task queues
will become progressively more dissatisfied and less pro-
ductive.

Even if this were not the case, we might be ~villing
to compromise overall Tstern efficiency as measured only

by total priority hours iost so that we could Increase overall
user satisfacuon with suppon.

To accommodate the concept of satisfaction. we
can introduce two new measures: we define oi as the
amount of time that task ti has been outstanding at the time
of the formulation of the schedule; and we define the func-
tion g@,t,o) which returns the level of goodwill or satisfac-
tion (0 < g(.) 2 1) that user k ex~eriences as a result of the
fact that task t has been outstanding for time o. We can
now offer an alternative formulation of Eq. 6:

where j is chosen such that sj= i. Note that the outstanding
time parameter passed to g(.) is considered to be the sum of
both the total time that the task has been outstanding at the
point of the creation of the schedule, and the total time that
the user will have to wait (oi + cj) while other tasks are
being processed.

If we elect to do sot substituting t h ~ s alternative
definition for pi into Eq. 3 lets us consider the satisfaction
of the user community due to unresponsive senice as well
as the total priority hours lost by the community when we
optimize a schedule.

2.5.1 Properties of g(.)

Since g(k,t,o) reflects the level of satisfaction that
user k experiences as a result of the status of task t for the
time period o, there are several characteristics wonh not-
ing.

Firstly, the level of satisfaction will vary depend-
ing on the nature of the task. For example, what is consid-
ered to be a long time for a certain type of hardware repair,
may not be considered to be a long time for a major instal-
lation.

Secondly, the degree to which g(.) varies with re-
spect to o is often non-linear. A user may not be concerned
if a certain task is not completed within some moderate
time frame. However, as that time frame increases beyond
some threshold. the rate at which a user's patience becomes
exhausted may rapidly increase with time.

2.5.2 Fuzzy Logic

Fuzzy log~c offers a narural means to encode g(.). It
provides a framework for dcnling with uncertainty. One of
the premises of fuzzy lope is that most natural phenomena
do not fa11 into cnsp catcgorlcs In fact. most events and

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-27

objects occur in the gray areas between categories or where
they overlap.

Fuzzy logic defines the degree to which the value
of a variable is (partially) contained in a fuzzy set that
describes that variable as the value's rnetnbership (p) in the
fuzzy set. p is defined as continuous on [0,1]. p=0.0 is
equivalent to a Boolean value of FALSE, and p=1.0 is
similarly equivalent to a Boolean value of TRUE. All other
values indicate partial membership in a set. A fuzzy set is
a biairectional mapping, either functional or painvise, of
values within the domain of the variable space to their
fuzzy membership values [Zadeh].

Monotonic reasoning allows the mapping from an
antecedent clause of the form "IF <v,> is (in) <FIB" to con-
sequent clauses of the form "THJ34 <vz> is (in) <Fz>".
where vl and v2 are variables, and Fland Fz are fuzzy sets.

The degree to which the consequent clause is ese-
cured (fired) will depend upon the level of membershp
that the value of <vl> has in the hzzy set <F1>. When the
value of <vl> has a membership of p in the fuzzy set <F1>.
the value of <v2> is derived by mapping p into <F2>.

2.5.3 A Fuzzy Set Representation of g(-)

To address these factors we chose to define g(.) as
an object oriented fuzzy membership function. We define a
fuzzy membership surface LOW for g(.) which ranges from
zero to 1.00. We then define the fuzzy sets LONG for time
outstanding (0) as appropriate for each of the classes of
task. Figure 1 shows an example of a fuzzy set represent-
ing LONG for o.

Figure I
I

i 1
1 Long for Time Outstanding

Lastly we define the simple rule:

IF o is LONG (for task t)
THEV g(.) is LOW

Apply~ng monotonic reasoning, we can now infer
the level of satlsfact~on for the tline that a given task has
been outmndlng at any point in time The shape of the
membersh~p surfaces of the fuzzy sets can take any form
desired (s~gmoid, step, eqonen t~a l , etc) These sets. of
course, must be contemplated carefully so as to reflect the
actual senuments of the user communitj

Here we note agaln that 11 1s not necessaq to in-
clude this measure in our formulauon of U, only that if we
elect to. we now have a means of doing so

3 Genetic Algorithms

Genetic algorithms (GAS) have their basis in the biological
metaphor of survival of the fittest. GAS have been found to
be useful for finding good solutions for a wide variety of
problems, including classes of problems that were previ-
ously computationally prohibitive jDavis, Goldberg,
1989a1.

A genetic algorithm attempts to solve a problem by
creating a range @opu/arion) of possible solutions. These
usually take the form of strings. Each member of the popu-
lation (an individual) is then interpreted and evaluated in
the context of the problem and ranked in terms of its $t-
ness. Fitness is an assessment of how well a particular in-
dividual solves the problem at hand. (In a biological con-
te.xt, the problem specifications can be seen as analogous to
the environmental constraints brought to bear on an organ-
ism. and fitness as a measure of how well the organism
survives in its environment.) The individuals are then
matched with other individuals in the population such in a
way that those with higher fitness are more likely to be se-
lected fitness proportionate reproduction). The results of
h s mating form the offspring that make up the population
of the ne.xt generation and the process can be repeated with
this new population.

During the reproduction process two operations
take place: mutation and crossover. Mutation involves
changing the value of an information unit (an allele) in an
individual. Crossover involves the exchange of portions in-
formation between two individuals.

By mutating and crossing over, the GA is, in ef-
fect. ex~erimenting w\ith new solutions while preserving
potentially valuable interim. results or building blocks
p a % ; Goldberg, 19S9a; Goldberg. et. al, 1991; Goldberg.
et al, 1992; Kargupta. et all. If an esperiment (crossover or
mutation) fails (that is. produces a relatively unfit
offspring). then the offspring will, in all likelihood. be
dropped from the population within a few generations due
to its inferior fitness. On the other hand, if the esperiment
is successful, then these new interim results can be passed
on to the future generations for further refincmcnt. Thus

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-27

the more promising areas of a solution space are esplored.
and lower payoff areas are examined more in a more
cursory manner.

The genetic algorithm paradigm therefore allows
the search of potentially huge problem spaces in a parallel
and efficient manner. Because of the constant adjustments
due to mutations and crossovers, the risk of converging to a
local minima or maxima is low in comparison to many
other methods, provided that the problem is coded suf3-
ciently to avoid deceptive lower-order schema. [Goldberg,
et A. 1992; Kargupta, et al. 19921.

3.1 Motivat ion for Using A GA for Optimization

Earlier research has shown that constrained problems, such
as scheduling. lend themselves well to heuristic optimiza-
tion methodologies jDhar]. In contrastt applying
mathematical optimization methods such as integer
programming (IP) to such problems can sometimes result
in unpredictable and, in some cases, unacceptable,
execution time for optimization. This is particularly
problematic when a solution must be recomputed
frequently, as is the case when a scheduled is updated in
response to c h a n ~ n g task data.

In addition, the added precision which might be
gained from the application of IP or other numerical tech-
niques, is not necessarily required for a job scheduling
application such as the one described in this paper. While
fully optimal solutions are desirable, they are not essential
in order for the application to be successful. In fact, a near
optimal solution, if derived in reasonable time, will always
suffice. While GAS often do not produce optimal solutions,
if designed carefully, they have been shown to produce very
good, near optimal, solutions.

Lastly, the nature of the help desk scheduling
problem dictates that constraints be added, modified. and
deleted with some regularity. In addition, the introduction
of factors such as goodwill and the continuous nature of
time in this domain make formulation of the problem
difficult for some numerical techniques.

3.2 Genetic Scheduling Operators

Permutation problems, such as task scheduling. require a
somewhat different set of operators than those found in
traditional genetic algorithms.

Since, in these problems, the esact value of the of
the individual tasks at a given position in a list is often not
as important as their relative ordering pav i s : Goldberg. et
al. 1992; Kargupta. et all, the goal of operators in these
problems should be to preserve t h e ordering information

within good strings while. at the same time creatlng strings
which are not illegal

We chose as operators variants of order-based
mutation and order-based crossover as described in
[Syswerda]

In addition to having the attractive property of op-
erating on the ordering information contained in the string
representations, these operators have the added advantage
that they do not create illegal or incomplete lists from legal
complete ones; that is, no tasks are deleted, no new tasks
are created. and no tasks are duplicated.

The order based mutation operator works as fol-
lows: two tasks within a list are selected at random and
their position in the task list are exchanged.

The order based crossover operator imposes the
order of seiected tasks in one parent on the other parent.
That is, a subset of tasks is selected in one parent A, and
those tasks are shuffled so that they are in the same order as
in parent B.

A more complete treatment of these operators can
be found in [Sysrverda].

We use scaled fitness proportionate reproduction
with partial steady state generational replacement. We
always preserve the single individual from the previous
generation \\lth the highest fitness, a technique called elit-
ism.

4 The Schedule Optimizing GA (SOGA)

We now apply the genetic algorithm approach to the prob-
lem of designing good schedules for the resolution of tasks
in our environment. We start by defining a structure to
hold our task list (rl). (Ail of the information needed for
the calculation of uj, as described above is assumed to be
present.)

We also design a "greedy" schedule builder
(similar, in some respects, to that used in [Whitley, et all).
The schedule builder reads tasks from the task list and
heuristically assign each in order to a resource (see Figure
2). The schedule builder \\ill only assign a task to a
resource if the resource meets the constraints required by
the task. Ifthere is more than one resource that meets these
constraints. the task is assigned to the least utilized
resource. This results in a legal complete schedule system
for any task list provided there are resources available with
the abil ip to perform each of the tasks. If this is not the
case, we add another "virtual" resource. This resource nil1
serves to track all unassigned tasks. An appropriate penalty
function is added to the calculation of U to compensate for
this. This, however. is ne\:er the case in our environment.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-27

Figure 2

Task List

Schcdulc

Buildm

To search for a good schedule, we:

1. Generate a random population of task lists.

2 . After build~ng a schedule system from each
list, evaluate each schedule system using the
objective function described in Eq. '7
(incorporating either Eq. 6 or Eq. 6a).

3. Using fitness based reproduction, perform
genetic crossover and mutation on the original
population to yield a new population.

4. Repeat steps 2 and 3 until an arbitrary desired
fitness is achieved,' the population converges,
or some masimum number of generations has
been created.

(Optional) After the global schedule has been
optimized, repeat steps 1 through 4 for each
sub-schedule, that is, for each resource's
schedule. Instead of using all tasks in the task
list, use only those assigned to the individual
resource. When distributing tasks, only as-
sign tasks to that resource. Repeat this for
each resource.

4.1 Time constraints on resources

Due to the simplicity of both the objective function
t

and the schedule building algorithm. additional'constraints
can ofien be added without a great amount of effort. For
esample. we wished to impose time availability constraints

b

on the resources (i.e.: each resource has other obligations
besides just resolw~ing the tasks in T). so we designed a
framework for describing the schedule of available and

non-available tlmes for each resource Then, we modified
Eq 1 to also take Into account the tlme spent wa~tlng wh~le
the resource is unable to perform task resolution (1 e the
resource 1s elther absent or must perform other obllgat~ons.
not related to task resolut~on) For example, assume that a
resource was golng to be absent for one hour between the
end of the first task and the start of second tasks In h s or
her queue The calculat~on of c,. the completion tlme for
the first task, would remain unchanged, but the calculation
of c2, would be exqended for one hour to account for the
dead bme between tasks w h ~ l e the resource 1s scheduled to
be absent

Alternauvely, rf we had wwshed to make such a
constralnt a hard constralnt, the schedule builder could
have been modified such that it would only schedule t a s k
on a resource that had time to complete them fully before
being called away. This later constraint, however, results
in a schedule builder that is considerably more time inten-
sive. Since this was not a requirement of our environment,
we elected to implement SOGA wvithout hard availability
constraints.

Parenthetically, by implementing time availability
functionality, we get the added benefit of being able to
generate new schedules d~namically, as new tasks amve. .
Since we have an estimate of the completion time of each
task, ei, we can, at any time during the execution of task ti.
approsimate the time at which the resource performing the
task will become available again, upon completion of the
task. This is done by calculating the difference between
the current time and the time at which task ti was assifled.
This value is then subtracted from ei to give the time
remaining until completion of a task. As new tasks amve.
we can thus calculate new schedules as necessary,
incorporating the knowledge of the future availability of all
resources in our planning.

4.2 Adapting Schedule Planning Over Time

The SOGA system relies upon estimates of task duration
(ei) in order to formulate schedules. The accuracy of these
estimates impacts greatly the degree to which proposed
schedules reflect the reality of the help desk environment..
If these estimates are inaccurate, the resulting schedules
w i l l not make efficient use of the resources time.

In addition. as new task types are added to the
enwlronment, resources will not be familiar with the nature
of these tasks. As a result. good estimates of rime to
completion are not usually available. Furthermore, the time
that tasks take to complete will vary over time based upon
such factors as the experience of resources, the introduction
of new technologies. and the changing complcsir\.. of the
user environment.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-27

In short, estimates of task duration may be
unstable over tlme. As a result. ~t would be useful for a
scheduling system to dynamically adjust estimates of task
duration in response to changlng en\ ,~ronments.

By providing SOGA with a link to a database of
task case histories, the system will be able to perform
simple statistical analysis across the database once it hs
been d l c i e n t l y populated with historical data. This data
can then be used to calculate more accurate estimates of
task duration. In doing so, the system uses the historical
experiences of a help desk to generate more accurate plans.

5.Similarity to the NIultiprocessor Problem

The task scheduling problem can be seen as similar to the
problem of efficiently assigning n tasks to q identical mul-
tiprocessors. In our case, we assign n tasks to q resources.
The multiprocessor problem is NP-complete.

The complexip of the problem presented here is
drfferent than that of the problem described above. In the
traditional multiprocessor problem, all processors are as-
sumed to be identical. In our case. we have stated that the
resources are, in fact, not identical. Certain resources can
perform tasks that others cannot. On the other hand, in the
classic multiprocessor problem, tasks may be dependent
upon other tasks. This is currently not so in the
formulation of our problem.

5.1 Introducing inter-task dependencies

Thls last constraint, that of inter-task dependen-
cies, while not currently addressed, could be added to the
problem described in Section 2 of this paper without losing
the generality of the methodology.

To do this we could adopt a methodology which
would allow the coding of precedence in schedules while
maintaining our overall framework. One such methodol-
ogy, a portion of which might suffice, is proposed in mou,
et all. In this methodology, each task is assigned a value
representing its height in a task graph of dependencies. (A
task dependent on no tasks takes a height of 0; a task de-
pendent on one predecessor takes on a height of 1; a task
with two predecessors takes on the height of the larger of
the two, etc.)

We could then implement SOGA as before escept
that 1) prior to evaluation of each uj we son all tasks on
each resource so that they are ordered in terms of height;
and 2) ~vhen we calculate uj we consider the additional idle
time in cases where a task on one processor must wait for
the completion of a task that is on another processor and on
which it depends.

In choosing a sorting algorithm for item 2, above,
we should take care to choose one that docs not change the

ordering of elements in the list that are already in the cor-
rect order, thus minimizing disrupt~on to good strings.

We note that such an addition could. depending on
the implementation, require that we modify or eliminate
Srep 5 of the algorithm described in Section 4, since we
would now need to introduce global relationships among
the resources in the system. In addition, the introduction of
inter-task dependencies could result in added complexity
and considerable overhead in terms of additional
calculation time and bookkeeping.

In our environment, the occurrence of inter-task
dependencies is rare.

6. The representational user interface
A secondary objective of the system was to provide for help
desk administrators (HDAs) a mechanism whereby they
could assess more easily the overall load of the help desk
and better track problems as they progressed through the
resolution queue.

In addition we wished to provide the users with a
means for modifiiing optimized schedules to fit unusual cir-
cumstances or non-es~licit preferences. Such functionality
is also usefirl in that it de-mystifies the underljlng technol-
ogy by putting the user, who may not be familiar u i th k z y
logic or genetic algorithms, back in control of the schedul-
ing process.

We designed a user interface that would allow the
user of the SOGA system to manipulate tasks and resources
in an interactive and intuitive manner. The interface is
useful either in conjunction with the SOGA system, or as a
stand alone tool. In practice, however, it is almost always
used in conjunction with SOGA, rather than on its o m .

The interface represents both tasks and resources
as screen objects. The size of the task object is proportional
to its estimated]en,* (ei). A rudimentary coloring scheme
indicates the relative priority (pi) of each task. Detailed in-
formation about each task and resource can be accessed by
clicking with the mouse on the object of interest.

The user may manipulate the task objects by
moving them between resources with the mouse. Doing so
updates the data structures that these objects represent. In
addition. a status window provides the user with feedback
on the effect of a proposed change. This window provides
information on constraint violations and on the overall
number priority hours gained or lost by making a change.
Fig. 3 shows a screen image of this ponion of the interface.

t

This last feature allows the user of the SOGA sys-
tem to perform "what i f ' types of analysis with acrual
schedules. The user can see the results of altering a *
schedule and determine whether the cost in priority time
(and user satisfaction. if applicable) is worth the change.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-27

I*] Eilc Edit S c h e d u l e R e s o u r c e s I a s k s Y iew Window H e l p 1:

AM 08/061 TOM JV'J WEB SCT ??? Pend.

Data about the tasks themselves is obtained via a
link to the help desk case database, a component of the
existing problem enuy and tracking system. However,
knowledge about the resource proficiencies, average
completion times, etc. is stored in separate proprietary
tables used by the SOGA system.

In order to calculate the goodwill function, g(.),
knowledge about the acceptable duration of tasks, and the
fuuy surfaces that represent them must be maintained. We
have developed an intuitive user interface to allow users to
define both the shape and parameters of these fuzzy sets.
The user is able. through mouse clicks and movement, to
manipulate and transform the shape of the fuzzy surfaces
within the fuzzy sets, as well as the boundaries of the sets.
Fig. 4 shows a screen image of this portion of the interface.

Other features of the interface include the ability to
generate tex-tual representations of schedules for any re-

, source, djnamically locate schedule information about any
task in the system, and the ability to manipulate parameters
of the GA and firzzy portions of the SOGA systems
optimization engine.

Since the above interface is designed only for the
use of the HDA a separate interface component of the
system, not discussed in detail in this paper, was designed
for CSR use. It provides each CSR with access to the
schedules generated by SOGA. This link allows CSRs to
view their own current queues, and to accept, update, re-
assign, suspend. and close tasks in the queue as they work.
Detailed informarlon about tasks is available both on-line
and in printed form.

Both components of the interface communicate
with the SOGA optimization engine and the help desk case
database. Thus the results of changes made by either the
help desk administrator or by a CSR are visible
dynamically to both parties, and the case database also
reflects these changes.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-93-27

a f File Edit S c h e d u l e Resources T a s k s View Window Help

7. Preliminary findings

The system has been very well received by the help desk
administrators. Nonetheless, for reasons that will be
enumerated below. it is diff'cult to make rigorous
quantitative assessments of the system in terms of field per-
formance.

Firstly. the nature of the help desk environment
makes it difficult to run controlled ez;periments. An actual
help desk is a dynamic system in which actors and events
are constantly changing. Furthermore. at the time that the
SOGA system was being developed. the particular help
desk environment for which it was designed \vas
undergoing a series of modifications. making isolation of
influential factors difficult.

In addition. the priman objective of the help desk
is to resolve user problems as quickly as possible. so

replicating scheduling with the SOGA system both on- and
off-line was not a viable option due to the cost in time. If
the system were instead tested statistically on- and off-line
over a'period of time, the breadth and complexity of various
tasks would require such testing to take place over a period
of many months before reasonable analysis could be done.
The users of SOGA felt that the system was useful enough
to warrant on-line usage 100% of the time from a business
perspective.

Secondly, historical comparisons are difficult since
the schedules available in a historical database represent an
audit trail of tasks as they were actually done. not as they
were scheduled to be done. It is difficult to say how much
more or less efficient a proposed schedule (with estimated
times to completion. etc.) is in comparison to a schedule
that \].as acr~aI(v execlrred without also esecuting the pro- *
posed schedule itself.

Compounding this second issue, in c~alunt ing the
SOGA Fstem. \ye faccd problems in data suficienc?..

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-27

noise. and coarseness. in actual practice. In our specific
case. the h~storical data was determined to be generally of
too poor quality to yield statistically meaningful results for
our purposes.

e m r d l y , even if we were to have perfect historical
data, we would still be faced uith the problem of
determining how to evaluate the successfulness of an . hstorical schedule. One might suggest using the objective
functions defined in this paper. but this is clearly unfair
since SOGA is designed specifically to optimize U, while
other methods are not. One would naturally expect SOGA
to outperform other methods based on this criterion.

A serious complication arises in comparing
hstorical schedules with those generated by SOGA. It is
very mcult to detennine whether the historical objective
of the help desk was exactly the same as that of the GA
optimization engine. Even if we assume that the historical
objective was implicitly the same, it is difficult for us to
claim that our method of nleasurlng it. as described in this
paper, is the correct method. Thus, while we hypothesize
that the objective function that we have developed is robust
and addresses the concerns of a help desk administrator,
there may be other competing means of measuring the
productivity other than maximization of uptime and
goodwill of users.

Lastly, as alluded to in the beginning of t h s
section, the users of the system felt that it was useful
enough to be brought on-line after minimal testing. The
system is currently in the process of being brought on line
for field testing. As professionals faced with the job of
serving a user community, their concern was and remains
resolving the problems of that user community, not
demonstrating the validty of the hypotheses set forth in
this paper.

7.1 Comparison with original system

Useful insight can be gained by comparing the recording.
scheduling, and trachng of tasks under the original system,
versus under the new system incorporating SOGA and the
interactive interface.

7.1.1 Task Scheduling Without SOGA

The following process describes how the help desk
functions without SOGA.

I A call is received by the help desk. Where
possible, the call is resolved over the phone at the time of
contact. Where the call is too complex, a determination is

, made as to the broad task type categoq to which the call
belongs. Associated with each task type is a ranked
(relative) priority. The call is then entered into a
computer-based problem tracking qstem. with p r i o r i ~ .

description. and timing information. A paper document
called a call ticket is generated and this is filed in one of
about fifteen different folders in a public area within the
help desk.

Customer Service Representatives (CSR)
periodically scan the tasks in the folders for the broad types
of tasks in which they are proficient and remove the task
tickets for the problems that they are able to and elect to
resolve. Preference may be given to the higher priority
tasks. The CSR then logs the tasks that have been chosen
into the tracking Fstem thus, accepting responsibility for
the task. Upon completion, the CSR logs completed tasks
into the trachng system. The CSR usually logs tasks for an
entire day at the same time.

The prior procedures, as described above, have
several drawbacks. Firstly, the priority assignment system
focuses on reIative priorities of tasks rather than mapping
priorities to an organizational cost. As a as a result, it is
drfficult to determine how much preference should be given
tasks of varying priority when other factors such as
duration and time in the queue needed to be considered.

Secondly, CSR personnel tend to focus on high
priority tasks, regardless of their duration or time in the
queue. As there are almost always many high priority tasks
in the queue, often resulting in many of the lower priority?
but nonetheless important, tasks being ignored for long
periods of time, thus increasing the level of fmstration that
was felt by the user community.

Thirdly, the HDA, and other CSR personnel have
little control over the overall eficiency of the task
scheduling. In essence, they cannot "see the forest for the
trees." CSRs are unable to consider fully the proficiencies
and availabilities of other CSRs when they make their task
selections, and it is difficult for the administrator to
determine the overall load and characteristics of the task
queue. T h s makes planning difficult and also makes it
difficult to estimate when a given task will be started or
completed.

Fourthly, CSRs exhibit preferences for some opes
of tasks over others, and this also impacts their scheduling
decisions. Tedious or difficult tasks often get postponed in
favor of more interesting ones.

Lastly, since the tasks types are not defined to a
very low level of detail, and, since CSRs often do not log
the completions of tasks as they occur, but rather in batch
form at the end of the day, tracking trends and developing
statistical analysis of problem behavior is difficult.

7.1.2 Task Scheduling Under SOGA

With the SOGA system and interface. tasks and resources
are scheduled by the follo\\ing process

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-27

A call is received by the help desk. '4s bcforc.
where possible. the call is resolved over the phone at the
time of contact. In cases where the call IS too complex. a
determination is made as to the specijc task type category
to which the call belongs. Cursory information about the
caller is obtained and entered into a modified version of the
t rac lng sysrem. An initial priority is calculated for the
task based upon the hourly cost of the downtime associated
with the task to the user community (i.e.: priority time
usage). Information for t h ~ s calculation is retrieved from
SOGA's proprietary tables. We note that with respect to
priority time usage, our current implementation makes a
simpllfqing assumption. Specifically. with respect to pi in
equations 6 and 6a, we currently assume that each task
affects only one user.

The SOGA optimization engine runs in the
background behind the t rac lng system. It updates
schedules based upon a predefined time threshold (every
fifteen minutes, for example). 'The IDA. through the
interactive interface, has the option to change priorities,
assign tasks to a resource, or rearrange tasks on the
resource queues as needed.

CSRs access their current job queues through an
interface in the tracking system. and are only allowed to
accept a specified (small) number (two or three) of tasks at
any time. If necessary, job tickets are printed at that time.
When the jobs are completed, re-assigned, or suspended,
CSRs log the status of the tasks either directly or remotely.
Since CSRs can only have a'limited number of tasks open
at any g v e n time, the system requires t h s logging to take
place before assigning new tasks. This encourages CSRs to
log tasks in a timely manner.

The SOGA optimization engine can use this
historical data to better estimate task lengths going
forward.

'7.2 Improvements Under SOGA

The new procedures, as described above, address
several of the weaknesses of the prior system.

The SOGA enhanced system allows priorities to be
assi-med automatically, and based on a consistent
framework. The scheduling is done in a manner so as to
favor global minimization of downtime while giving
consideration to user satisfaction. Since duration in the
queue and lengths of tasks are both considered in addition
to priorie \\.hen scheduling, the tendency for low priorih
tasks to be indefinitely postponed is reduced.

Furthermore, the function of determining priorities
and ordering of tasks in the queue is now done by the
SOGA optimization engine. with oversight from the help
desk administrator. Because of the interactive interface, the

admlnlstrator can get a broader and deeper vlew of the
status of the job queue, as well as everclse better control
ober how and when the tasks are evecuted Thls facllltates
plannlng and allows some estlmatlon of task start and
completion tlmes Thls also reduces the tendency of CSRs s

to act on preferences for different tasks
Lastly, slnce the tasks types have been redefined,

and slnce the new system encourages prompt logglng of
completed tasks, t r ac lng trends and developing stausucal
analys~s of problem behawor at a much hlgher level of
detall and accuracy 1s now posslble

8. Conclusions

We have presented a methodology for scheduling and
tracking tasks that have vaxying priorities in an
environment in which the resources that available to
perform the tasks have differing abilities and limited time
availability. This methodology has applications to a wide
variety of problems. The help desk, which is an important
support function in many large organizations, was used to
illustrate the workability of our solution. We have
introduced a metric called priority time usage which allows
the ordering and distribution of tasks in a schedule of
multiple resources to be evaluated in terms of the value of
productive time lost, U, by the user community. We nez2
proposed an alternative formulation of this metric that also
incorporates user satisfaction or goodwill in relation to the
response speed of task resolution. We have proposed a
fuzzy set based impiementation of this a1ternatiw.e metric.
We have described a system that uses such a hewistic

genetic algorithm to minimize U for a given set of re-
sources and tasks. While the current formulation of our
problem does not call for them, we discussed possible
modifications which \vould allow the system to be used to
schedule tasks that have inter-task dependencies. This
renders the problem similar to the multiprocessor problem.
We presented an intuitive graphical user interface which
acts as a front end for this system and goes beyond simple
schedule optimization to allow the user to experiment and 2i

perform "what if' analysis with schedules. Finally, we
discussed preliminary findings and user response to the
system. We plan report further findings in future
publications.

The c~rthors wish to ackno,vierige the prograt~~r)ring efforts C

of Spencer Ki~nball of CrC Berkie-v. He ~ v a s responsible/or
the ~t~~pler~lentarion of large portions of the C- + code for
the user inrerface. t

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-27

References

Davis, L., (1991). Handbook of Generic Algorith~ns. Van
* Nostrand Reinhold.

Dhar, V. and Ranganathan, N.. (1990) Integer
Programming vs. Expen Systems: An esperimental
comparison, Cornrnun~cations of the AC;t(, Vol. 33 , No.
3.

Goidberg, D. E., (1989a). Genetic Algorithms in Search,
Optimization, & .tlachine Learning, Addison-Wesley.

Goldberg, D. E., Deb, K., and Clark, J.H., (1991). Generic
Algorithms, Noise, and the Siiing of Populations
(IIIiGAL Report No. 91010), University of Illinois at
Urbana-Champaign, Illinois Genetic Algorithm Labora-
tory.

Goldberg, D. E., Deb, K., and Horn, 3.. (1992). Massive
multimodality, deception, and genetic algorithms, Par-
allel Problem Solving ?om ivature, 2, Manner, R and
Manderik B., editors, Elevier Science.

Hou, E. S. H., Ren, H., and Ansari, N., (1992). Efficient
Multiprocessor Scheduling Based on Genetic Algo-
rithms, Dynamic, Genetic, and Chaotic Programming,
Soucek, B and the IRIS Group, John Wiley & Sons.

Kargupta, H., Deb, K., and Goldberg, D. E., (1992). Order-
ing genetic algorithms and' deception, Parallel Probieln
Solving)om Nature, 2, Manner, R and Manderik B.:
editors, Elevier Science.

Sywerda, G., (1991). Schedule Optimization Using Ge-
netic Algorithms, Handbook of Genetic Algorithms,
Davis, L., Editor, Van Nostrand Reinhold.

Whitley, D. Starkweather, T., and Shaner, D., (1991). The
Traveling Salesman and Sequence Scheduling: Quality
Solutions Using Genetic Edge Recombination. Hand-
book ofGenetic Algorithms, Davis, L., Editor, Van Nos-
trand Reinhold.

Zadeh, L., (1965) Fuuy Sets, Information and Control,
Vol. 8.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-27

