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Abstract.  There has been much attention given recently to the task 
of finding interesting patterns in temporal databases. Since there are so 
many different approaches to the problem of discovering temporal pat- 
terns, we first present a characterization of different discovery tasks and 
then focus on one task of discovering interesting patterns of events in 
temporal sequences. Given an (infinite) temporal database or a sequence 
of events one can, in general, discover an infinite number of temporal 
patterns in this data. Therefore, it is important to specif\' some measure 
of interestingness for discovered patterns and then select only the pat- 
terns interesting according to this measure. if'e present a probabitistic 
measure of interestingness based on unezpectedness, whereby a pattern P 
is deemed interesting if the ratio of the actual number of occurrences of 
P exceeds the ezpected number of occurrences of P by some user defined 
threshold. We then make use o fa  subset of the propositional, linear tem- 
poral logic and present an efficient algorithm that discovers unexpected 
patterns in temporal data. Finally, we apply this algorithm to synthetic 
data, UNIX operating system calls, and \Veb logfiles and present the 
results of these experiments. 

1 Introduction 

There has been much work done recently on  pattern discovery in temporal and 
sequential databases. Some examples of this work are [14,27,17,10,25,16,8,18, 
9,221. Since there are many different types of discovery problems that  were ad- 
dressed in these references, it is important t o  characterize these problems using 
some framework. One such characterization was proposed in [lo]. In this chapter 
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n-e review this framework and then focus on one specific problem of discover- 
@ unexpected patterns in temporal sequences. To find unexpected patterns in 
a ,sequence of events, we assume that each event in the sequence occurs with 
some probabilin- and assume certain conditional distributions on the neighbor- 
ing events. Based on this, n-e can compute an erpected number of occurrences of 
a certain pattern in a sequence. Lf it turns out that the actual number of occur- 
rences of a given pattern sigdcantly differs for the e-xpected number. then this 
panern is certainl?- u n q c t e d  and. therefore, is interesting [23,21]. We present 
a algorithm for finding such patterns and test it on several types of temporal 
sequence. including Web logfile and sequences of OS 9-stem calls. 

Fig. 1. .Xn exmple af rhe hmhanhshou!der pattern. 

2 Characterization of Knowledge Discovery Tasks in 
Temporal Databases 

CLx-3cierika~on of honledge diwvey tasks in temporal datab-zes. propxed in 
-1 1: k r q r ~ ~ . ~ r f d  by the 2-by-2 a n i x  presented in Table 1. The f h  dimension 
Ir -22 --;;.=%x define the nn, - q . ~  of temporal patterns. The first n-jx of a - - L ~ z x c + r 2  pr;m :qwcifiej h o s  &ra chwa over rime and is defined in terms - -.- , , ?J!  L; ?Y&cc:~.  For e w p k .  rhe pattern 
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2 c of che cikxm-ery task In r~a1;dotwn the %-stern focuses on a parricular 
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pattern and determines whether it holds in the data. For example, we may want 
to validate if the heahandshoulders pattern holds for the IBM stock in a given 
data set or that a certain rule "holdsn on the data. The second purpose of 
discovery can be the generation of new predicates or rules that are previously 
unknown to the system. For example, the system may attempt to discover new 
types of trading rules in financial applications. 

Categorizing patterns in terms of the above two dimensions leads to a two- 
by-two classification framework of the knowledge discovery tasks, as presented 
in Table 1. We will describe each of the four categories in turn now. 

Table 1. Types of Knowledge Discovery Tasks. 

I I 

Class I. The diicomry tasks of this type involve the validation of previously 
defined predicates over the underlying database. For example, assume that we 
haye the temporal database of daily closing prices of stocks at some stock ex- 
change, STOCK(S'tnfBOL,PRICE~DDITE), where SYMBOL is the symbol of a 
security, PRICE: is the closing price of that stock on the date DATE. Consider 
the folloning predicate spec- that the price of a certain stock bottomed out 
and is on the rise again over some time interval: 

Rules 

where increase(x, t l .  t 2 )  and decrease(x, t l ,  tn) are predicates specifying that the 
price of security x respectively "increases" and "decreases" over the time interval 
( t l .  t2Y.  

Then n-e may want to validate that the predicate bottom-reversal(x, t l ,  t z )  
holds on the temporal relation STOCK(SYIv1BOL1PFUCE,DATE). This valida- 
tion can take several forms. For example, we may want to find for the predicate 
bottom-reversal if one of the following holds: 

bottom-reversal(IB~\i, 5/7/93,8/25/93), 

bottom-reversaE(IBh1, t l ,  t2), 

bottom-rez.ersal(x, 5/7/93, 8/25/93) 

I1 

Note that we do not necessariiv assume monotonic increases and decreases. Predi- 

IV 

cates i n e w e  and decrense can be defined in more complex ways, and we purposely 
leave it unspecified how to do this. 
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The first problem validates that the stock of IBbl experienced the -bottom 
reversal' pattern between 5/7/93 and 8/25/93. The second problem finds all 
the time periods when IBSl's stock had "bottom reversal," and the last problem 
finds all the stocks that had "bottom reversals" between 5/7/93 and 8/25/93. 

One of the main issues in the problems of Class I (~redicate d ida t ion  prob- 
lem) is to find approrimate matching patterns. For example, for the IBSI stock 
to exhibit the bottom reversal pattern between 5/7/93 and 8/25/93. it is not 
n e w s a q  for the time wries of IBlrf stock to match predicate bottomreversal 
exactly. =Inother example of the approximate matching problem of Class I comes 
from the speech retognition applications where sounds and a-ords are matched 
only appraximately against the speech signal. 

There has been extensive work done on Class I problems in signal processing 
-20:. speech rewapition i6.211. and data mining communities. In the dara mining 
hmmunitl; t h e  ~ p e s  of problems are often referred as similarity searches and 
hax-e been studied in :1.3.4.12.13.8]. 

Class 11. DLwx-ery tasks of Class I1 involve d ida t ion  of pre\iously asssrted 
r;!a. For example. consider the rule: -If a price correction in a stock is seen 
before the announcement of big nens about the company, then insider trading 
k likely.- 

d ie re  Cor-ez5on. B:g-news. Insider-trading and Soonaffer are ussr-dehed pred- 
icates (xiem defined on relations STOCKS and Xi\-S.  

E.raluz:ion oi this rule on the data entails finding instances of \ariables stock. 
t:. t,. t j  z d  the -srarisical srrengh" of the rule (e.g. measured in t e r m  of its 
ccirriiderce a d  mppon '2:) that make the rule hold on the data (in srarktical 
re=). 

-k h rLe mie of C 1 ~ s  I problems, one of the main issues in rule xalidarion 
:he probtern of approximate matching. The need for approsimare marching 

arises for &e folloaing r e m u .  First of all, rules hold on data only in satistical 
I- (e.g. hax-ing certain levels of confidence and support). Secondly. mme of 
i h  pr&czre in the rule can match the data only appraximately (as is the case 
with &= I problems from Table 1). Sloreo\er. certain temporal operators are 
inherent? 5 i .  For esample, temporal operator S w n a  f ter(t 1 ,  t l )  is fiw- and 
, , to be defined in -fuu?-- terms'. 

5 8 + as 111. Dkwox-en- t a s k  of Class 111 involve the discovery of nex interesting 
P 5 a r r k r i d  parremi that occur in the d a t a b ~ q .  In order to &wwr  such 

04 
+c a. r t e  qrrem should h o w  on what it should focus its search because 
4 0 s  
g VQ are pcltenrially x - e ~  many new patterns in the database. In other nords, 

C h ?  
E td zrem should h o n  what to look for by letting the user specif?- =-hat is 
$ 5  m z; g r rha: i r  in not appropriate to define this operator in terms of the temporal 
.i$ E 

3 aror -\-.,rt becaav of the xiherent ambigwty of the term -soon.- Athough this 
< 
7 aror can be defined in many different ways, one natural approach muld be 
2 ugh rhe w of f i m y  loe;c 23,. 
-. 
5 
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interesting. For example, the pattern bottom-reversal may be interesting because 
it provides trading opportunities for the user. 

Although there are many different measures of interestingness for the user, 
such as frequency, une.qectedness, volatility, and periodicity [lo], the most p o p  
ular measure used in the literature is fi-equency of occurrence of a pattern in the 
database [17,16,18]. In particular, [17,16] focus on discovering frequent episodes 
in sequences, whereas (181 discovers frequent patterns in temporal databases sat- 
isfymg certain temporal logic expressions. 

In this chapter, we use a different measure of interestingness. Instead of 
discovering frequent patterns in the data, we attempt to discover unexpected 
patterns. While it is sometimes the case that the discovery of frequent patterns 
offers useful insight into a problem domain, there are many situations where it 
does not. Consider, for example, the problem of intrusion detection on a network 
of workstations. Xssume we define our events to be operating system calls made 
by some process on one of these workstations. We conjecture, then, that patterns 
of system calls differ for ordinary users as opposed to intruders. Since intrusion 
is a relatively rare occurrence the patterns we would discover using frequency 
as our measure of interestingness would simply be usage patterns of ordinary 
users offering us no information about intrusions. Instead what we propose is to 
assign exogenous probabilities to events and then attempt to discover patterns 
whose number of occurrences differs by some proportion what would be expected 
given these probabilities. In the example of intrusion detection we would assign 
the probabilities of events to reflect the frequency of events in the presence of 
no intruders. Then if an intrusion did occur, it would presumably cause some 
unexpected pattern of system calls which can be an indication of this event. 

-4s wi l l  be demonstrated in Section 3, the new measure of interestingness 
requires discovery techniques that significantly differ from the methods used for 
the discovery of frequent patterns. The main reason for that is that unexpected 
patterns are not monotone. These notions will be made more precise in Section 3. 

Class TV. Discoven. tasks of Class IV involve discovery of new rules con- 
sisting of interesting relationships among predicates. An example of a temporal 
pattern of this type is the rule stating that "If a customer buys maternity clothes 
now, she  ill also buy baby clothes nithin the next few months." 

Discovery tasks of Cla- N constitute challenging problems because, in the 
most general case. they contain problems of Class I11 (discovery of new predi- 
cates) as subproblems. The general problem of discovering interesting temporal 
rules using the concept of an abstmct [ I l ]  has been studied in (71. Discovery of 
temporal association rules was studied in [5,25]. 

In this section, we re\;iewed a characterization of knowledge discovery tasks, 
as presented in (101. In the rest of this chapter, we will focus on one specific 
Class I11 problem dealiig nith discovery of unexpected patterns. In the next 
section, we will formulate the problem. In Section 4 we will present an algorithm 
for finding une.qected patterns, and in Section 5 we will present experiments 
evaluating this algorithm on several applications. 
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3 Discovering Unexpected Patterns in Sequences: The 
Problem F'ormulation 

We start this section with an intuitive presentation of the problem and then 
provide its more formal treatment. 

We want to find unexpected patterns, defined in terms of temporal logic 
expressions, in sequences of events. We assume that each event in the sequence 
occurs with some probability and assume certain conditional distributions on 
the neighboring events. Based on this, we can compute an expected number of 
occurrences of a certain pattern in a sequence. If it turns out that the actual 
number of occurrences of a given pattern significantly differs for the expected 
number, then this pattern is certainly unexpected and, therefore, is interesting 
[23,24]. 

In this chapter, we first present a naive algorithm that finds all unexpected 
patterns (such that the ratio of the actual number of occurrences to the expected 
number of occurrences exceeds a certain threshold). After that, we present an  
improved version of the algorithm that finds most of the unexpected patterns 
in a more efficient manner. We also experimentally compare the naive and the 
more efficient algorithms in terms of their performance. 

More formally, let E = {a,  P, y,  . . .) be a finite alphabet of events. We use a 
subset of propositional linear temporal logic to discover temporal patterns over 
the events. The basic temporal operators of this system are ( a  beforek P) 
which intuitively means that a occurs followed by an occurrence of a within 
k subsequent events, a N P  ( 0  next P) a occurs and the next event is P, and 
a U P  ( a  until p)  which means before P occurs a sequence of a ' s  occurs. This is 
often called the strong until [26]. While the before operator is actually redundant 
as a B P  can be expressed as -.(-Ic~UP) we have chosen to include it separately 
for simplicity and efficiency. A pattern of events is defined as a conjunction of 
ground events over these operators. For example, the simplest case is aNP. Some 
additional examples are (GU((aNP)By)) and aNPNy. 

In the pattern discovery algorithm presented in Section 4.2 we consider the 
following fragment of the Propositional Temporal Logic (PLTL). The syntax of 
this subset is as follows. The set of formulae of our subset is the least set of 
formulae generated by the following rules: 
(1) each atomic proposition P is a formulae; 
In\ .c-  P is a formula and q is a formula containing no temporal operators then 

5 $ 8 9 B ~ q ,  p ~ q ,  q ~ p ,  qBKp, q ~ p  are formu~ae.~  
: assume an exogenous probability distribution over the events. While these 

WQ 0 y rr. g may be dependent or independent, depending on the problem domain of - 
6 O p  - 
g %, gnore disjunctions because what seems to occur in practice when disjunctions are 
E td ?i. ved is that the disjunction of a very interesting pattern, E ,  with an uninteresting 
b E  m 5. 8 ern, F ,  results in an interesting pattern E V F .  This occurs not because E V F  truly 
Q s any insight into our problem domain but rather because the interestingness 

.!$ : "drags up" the interestingness measure of E  v F  to the point where it also 
7 kmes interesting. We choose instead to simply report E  as an interesting pattern. a decision to omit conjuctions and negation will be made clear shortly. 
B 

interest we assume independence of the events unless explicitly stated otherwise. 
For instance, in the application we consider in Section 5.3, events are described 
as hits on Web pages. In this case the probability that a user goes from Web 
page P to Web page Q is clearly dependent on the links that exist on page P. 
In other cases independence may be more appropriate. In any case, given an a 
priori set of event probabilities, we can compute expected values for the number 
of occurrences of any temporal pattern in our string. For example, the expected 
number of occurrences of E[aBP], assuming the events a and P are independent, 
can be computed as follows. Let Xn be the number of occurrences of the pattern 
a B P  up to the nth element of the input string and an the number of a 's  up to 
the nth element of the input string. Then 

Therefore, 

EBXnl- E[Xn-I] =: P r [ a ] ~ r [ ~ ] ( n  - 1) 

Also, E[X2] = Pr[a]*Pr[,B]. From this recurrence equation, we compute E [ ~ B K P ]  
for the input string of length N as 

The expected number of occurrences of patterns of other forms can be similarly 
computed as 

As was stated earlier, we will search for the unexpected temporal patterns in 
the data, where unexpectedness is defined as follows: 

Definition 1 Let P denote some temporal pattern in string S.  Let ABP] be the 
actual number of occurrences and E[Pj the expected number of occurrences of 
pattern P in S.  Given some threshold T ,  we define a pattern P to be unexpected 
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> T .  Themtio  E p  is coiled the Interestingness Measure (IM) of the 

pattern P and will be denoted as IM(P).  

This is a probabilistic measure of interestingness whereby a pattern is unexpected 
if its actual count exceeds its expected count by some proportion T .  As the 
following theorem indicates, however, this is a difficult problem. 
P r o b l e m  ( INTERESTINGNESS) :  
Given a string of temporal events V = v l ,  v2,. . . , v,, does there exist an  inter- 
esting pattern in V of the form X1BkX2Bk.. . BkXm for an  arbitrary m? 

T h e o r e m  1 The INTERESTINGNESS problem is NP-complete. 

Proof:  See Appendix. 
While we are trying to find interesting patterns that  contain a variety of 

temporal operators in an  arbitrary order, this theorem states that finding inter- 
esting patterns that only use the BEFORE operator is hard. Furthermore, we 
would like to put no restrictions on the "interesting" patterns we discover. We 
would simply like to find all patterns that are interesting. The following theorem, 
however, shows that  it is necessary to impose some bounds on the size of the 
patterns that we uncover, since in the case of unrestricted patterns, the most 
unexpected pattern will always be the entire string. 

T h e o r e m  2 Consider a string of temporal events V = v l ,  vz, . . . , V N  and a 
temporal pattern T .  If the length of T (number of temporal operators in it), 
length(T) < < - 1, then there exists another pattern P such that length(P) = 
length(T + 1) and I M ( P )  >_ I M ( T ) ,  where the length of a pattern is defined as 
the number of events in the pattern. 

Proof: 

Let A[T] = p and = CY and Z = {a, 22,. . . , zm} the set of all events. 
E IT - - 

A TNai 
We want to prove that 3 zi E Z s.t. EITNZii - 

Assume this is not true for zl ,  r 2 , .  . !nd show that it must be true for 
2,. By this assumption and because of (1 )  

>re, A1TNz.l < aPriT]Pr[z,j(N - 1).  
g 0 9  
rP O U Q  - 

$ her measure of ~nterestingness is to find patterns P for which AQP]I/EI[P] < T.  
2 5 g sroblem can be treated similarly. We have chosen not to search for these patterns 
b 2 % Ise they are complimentary to the ones described in Definition 1. If a pattern 4 g o  

3 i found to be interesting in our formulation then P will be interesting in this 
S 
p limentary formulation for some new threshold. Thus in the interest of simplicity 

oose to solve these complimentary problems separately and ignore negation. 
h 
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Then, 

m-1 m-l 

C A[TNti] < C crPrj[T]Pr[riB(N - 1) 

Since, C ABTNzi) = ABT] = P, 
i=l 

A[TNzm] > P - crPr[T](N - 1)(1 - Prlzml) 

- - 
P (since - - P 

E[T] - Pr[T](N - 1) = a )  

Intuitively, this theorem tells us that given an interesting temporal pattern, 
there exists a longer pattern that is more interesting. In the limit then, the most 
interesting pattern will always be the entire string of events, as it is the most 
unlikely. 

In order to cope with this, we restrict the patterns that we look for to be of 
length less than or equal to some length limit. Of course, still the most inter- 
esting pattern we will find will be one whose length is equal to the length limit. 
Nevertheless, it is often the case that an  interesting pattern that is not the most 
interesting provides valuable insight into a given domain as we will see later in 
discussing our experiments. 

4 Algorithm 

4.1 Naive Algorithm 

A naive approach to discovering interesting patterns in an  input sequence might 
proceed as follows. Sequentially scan over the input string discovering new pat- 
terns as we go. When a new pattern is discovered a record containing the pattern 
itself as well as a count of the number of occurrences of the pattern is appended 
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to a list of all discovered patterns. This is repeated until all patterns up to a 
user-defined maximum length, have been found. More precisely, the algorithm 
proceeds as follows 

Definition 2 BEFOREK: A user defined constant that determines the mmi- 
m u m  number of events that X can precede Y by, for X B K Y  to  hold. 

Input:  

- Input String 
- Event Probabilities: the exogenously determined probabilities of each atomic 

event. 
- BEFOREK 
- The threshold T for interest&ness. That is the value that, if exceeded by 

the interestingness measure of a pattern, deems it interesting. 
- Maximum allowable pattern length (MAXL). 

Output:  

- All discovered patterns P such that I M ( P )  > T. 

Algorithm: 

Scan the  input s t r i n g  t o  determine the  interes t ingness  measure 
of each event i n  i t ,  and i n i t i a l i z e  l i s t  L with a l l  these  
events 
WHILE L i s  not empty DO 

Amongst a l l  t h e  pa t te rns  of L, choose t h e  pa t te rn  C 
with t h e  l a r g e s t  in teres t ingness  measure as  t h e  next 
candidate t o  be expanded. 

Expand C as  follows. Scan t h e  input s t r i n g  looking 
f o r  occurrences of C. When an instance of C is  
discovered, expand it both as  a pref ix  and as  a 
suf f ix .  By t h i s  we mean, record a l l  occurrences of 
(C op X) and (X op C) where op ranges over t h e  temporal 
operators ,  and X ranges over a l l  events. Final ly ,  
compute the  interes t ingness  of a l l  these  newly 
discovered pat terns  C ' .  

n 
IF Length(C') < MAXL THEN add C '  t o  the  l i s t  L. 

3 Z Remove C from L. 
ND WHILE 

WQ 0 - , S utput in te res t ing  pa t te rns .  
Q E p  - 

%%. )te that the algorithm we just presented is tantamount to an exhaustive 
E td Y - 5 ,  i and is therefore not very efficient. We propose a more efficient algorithm, 

although is not guaranteed to find all interesting patterns, offers speed up - ninimal loss of accuracy. The idea is to expand on the approach presented 
'< 
7 / of beginning with small patterns and expanding only those that offer the 

tial of leading to the discovery interesting, larger patterns. 
5 
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4.2 Main Algorithm 

The difficulty involved in finding interesting patterns is in knowing where to 
look. When interestingness is measured simply by some count (i.e. the number 
of occurrences exceeds some threshold) as is done in [17] it is obvious that for a 
pattern to be frequent so must its component partial patterns be frequent. With 
this in mind, the technique that has been used in [17] is to expand all patterns 
whose count exceeds this threshold and stop when no more exist. When using our 
interestingness measure, however, this is not the case. That is, a pattern can be 
unexpected while its component sub-patterns are not. This lack of monotonicity 
in our interestingness measure is most easily understood with an example. 

Example: Let the set of events be E = {A, B ,  C). Assume the probability 
of these events is Pr[Al = 0.25, PrfB] = 0.25,andPr!jC1 = 0.50. Also assume 
that these events are independent. Let the threshold T = 2. In other words, 
for a pattern to be interesting the value of the actual number of occurrences of 
the pattern divided by the expected number of occurrences of the pattern must 
exceed 2.0. Consider the following string of events. 

ABABABABCCCCCCCCCCCC 

(the length of this string N = 20) 
Given our probabilities, €[A] = 5 and E[B] = 5 .  Also given the expression 

for computing expectations for patterns of the form ANB. 

Since A[A] = 4 and A[Bj = 4, both of the events A and B are not interesting 
(in fact the actual number occurrences of these events was less than what was 
expected), but the pattern ANB which occurred 4 times was interesting with 

This lack of monotonicity in our interestingness measure results in a significantly 
more complex problem especially in terms of space complexity. In the algorithm 
for discovering frequent patterns significant pruning of the search space can oc- 
cur with each iteration. That is, when a newly discovered pattern is found to 
have occurred fewer times than the frequency threshold, it may be discarded as 
adding new events to it cannot result in a frequent pattern. With our measure 
of interestingness, however, this is not the case. The addition of an event to an 
uninteresting pattern can result in the discovery of an interesting one. This in- 
ability to prune discovered patterns leads to an explosion in the amount of space 
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required to find unexpected patterns. Consequently we are limited to expanding 
patterns by only single literals at a time and therefore sill not discover patterns 
like ( ( ~ B K @ ) B K ( ~ N ~ ) ) ,  where two patterns of size greater than one are com- 
bined ria a temporal operator (before, in this example). This is the reason that 
n-e haw not used conjunctions as part of our fra,gnent of temporal logic. Since 
our events occur sequentially. it is impossible for conjunctions to arise unless we 
espanded patterns by multiple literals at  a time. This does present a limitation 
of our algorithm and extendmg our fragment further is an area n-e are pursuing 
currently. 

-1 more efficient algorithm than the naive one for finding unexpected patterns 
in\-011~s sequential scans over the string of events discol-ering new patterns with 
each scan. A list is maintained of those patterns disco\~red so far. and on each 
subsequent iteration of the algorithm the "best" pattern is selected from this I i t  
for expansion to be the seed for the next scan. When a pattern P is espanded, 
the input sequence is scanned and occurrences of P located. For each of these 
occurrences all patterns of the forms XopP and Pop-Y are added to the list of 
diss\-ered patterns, n-here op is a temporal operator, N. BK or. U and -Y is a 
nriable ranC&g over all events. 

Gh-en a pattern to e ~ ~ a n d .  aBK3.  for example. during the wan n-e %;ill 
&.;cover atl patterns. (((1BK3'N7). (- j  BK(OBK3)). erc.. . for atl events 7. 

The heart of the algorithm is how -best7 patterns are chosen. We u-ill explain 
it formally below (in Definition 1), but would like to give some intuition before- 
hand. Clearly. n-e n-ould like to define -best" to mean most likely to produce an 
interesting pattern during e s p a i o n .  BF Theorem 1. s-e knon- that eq~anding 
an already interesting pattern must result in the discovery of additional inter- 
esting patrern(5). The ~ u € E T ~ o ~  remains. hon-ever. amongt interesting patterns 
already diwmred nhich is the b - t  candidate for esqxmsion. and if no inter- 
esting patterns remain unespmded. are there any uninteresting patterns worth 
eqanding'? 

Initially. the algorithm wi with a scan of the input string counting the 
number of occurrences (and therefore. the frequencies) of individual events. Sub- 
sequent to this. n-e continue ro a ~ a n d  best candidates until there are no more 
candidates n-orthy of e s p a i o n .  This notion nill be made clear shortly. 

During each scan of the irput string. when a nexv pattern is &.;co\~red,~ a 
P.%TTTRXRECORD is created for it consisting of the folloning information: 

0 5 " 8 1. Pattern P (e.g ((ON 3 Bn-;)), etc. . . F Z z  
0 - 2. Count: How man?- of these patterns n-ere found 

CdgQ 
B O n  
g 0 ua 

3. Preremainingop: Oce instance of this value is kept for each tem- 
Ch ?' 

E td Y poral operator. It represents the number of patterns remaining 
io 5 ,  m to be diisovered for rrhich P is the prefix and the operator con- 
9 " ~  8 
s g  s necting P to its s&'i is op. HOW these d u e s  are calculated dl 

m i  
": be d i w u s , ~  shortI\*(-see Definition 3).  
7 
I 
g In the case of the initial scan r h w  n-ill simply be the events. 
0 5 
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4. Postremaining-op: Identical to Preremaining-op for suffixes rather 
than prefixes. 

5. Expanded(boo1ean): Whether or not P has been expanded. 

6. INXRESTINGNESSLIST: consists of all events in decreas- 
ing order of interestingness amongst events that can potentially 
complete P during expansion. One of these lists is kept for pre- 
fixes and one for suffixes as well as for each operator next, before, 
and until. That is, for a pattern P = aNP, for example, if a pat- 
tern yNb has already been discovered then the occurrence of 6 
in yN6 cannot possibly complete the pattern (aNP)NX. When 
determining the best candidate for expansion we will be inter- 
ested in knowing what events can potentially complete all of the 
patterns we have already discovered and will ,therefore, make 
use of these lists. In fact, this sorted list represents an ordering 
of most interesting events that could complete the pattern they 
are associated ~ i t h  6. 

Definition 3 The  FORAf(P) of a pattern P i s  a logical expression with all 
ground terms i n  P replaced by variables. 

For example, if P = ( ( ~ N ( O B K ~ ) ) B K ~ )  then FORM(P) = (WN((XBKY)BKZ)). 
Given the length of the input string, we can determine the number of patterns 

of each form in the input string. For example, given a string of length M, the 
number of patterns of form XNY is J f  - 1. The number of patterns XBKY is 
(-11 - K ) K  + ((K)(K - 1)/(2)). 

Definition 4 Given a pattern P and a n  operator op, ActualRemaining(P op 
X )  is the number of patterns of the form P o p X  that have yet to  be expanded. This 
value is maintained for each operator. op and pattern P. That  is, we maintain 
a value for PNX, PBKX, XBKP, etc . . . Again, X ranges over all events. 

For example. if there are 20 occurrences of P = aBKP in the input string 
and 5 patterns of the form ( (a f3~3)NX)  have been discovered so far, then Ac- 
tualRemaining4re-Wext ( ( ( ~ B K P )  NX)) = 15. 

We use the following heuristic to determine which discovered pattern is the 
best one to expand. Given an arbitrary literal D, the best pattern P for expansion 
is the pattern for whom the the value of 

is maximal for some 6. 

For problem domains with a large number of events, in the interest of scalability, 
partial lists may be substituted where only a list of the most interesting events is 
maintained. 
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This heuristic simply states that the pattern P that is most likely to re- 
sult in the discovery of an interesting pattern is the one for whom there exists 
a literal 6 such that the expected value of the interestingness measure of the 
pattern generated when 6 is added to P via one of the temporal operators is 
maximal over all discovered patterns P and literals 6. I t  is necessary for us to  
use the expected value of the interestingness measure because, although we know 
the actual number of occurrences of both P and b,  we don't know the number 
of occurrences of P op 6 or 6 op P. How this expectation is computed follows 
directly from our derivations of expectations in Section 3 and is illustrated in 
the following example. 

Example: If P = a N P  and op iq next, then 

where, 
K = length of input string 
FR(6) = frequency of 6's that could complete the pattern ((aNP)NX) 
#P = number of occurrences of pattern P 
If op is before, 

If P = a B K P  and op is next 

Similar - arguments are used for any combination of the operators before, next,and 

consider the literal 6 which is most likely to result in the discovery of an g 2 2 5 ting pattern when used to complete the pattern P during expansion. We 
S IW argue that this measure accomplishes our goal of expanding patterns 

6 s p  lkely to result in the discovery of interesting patterns. "-5 
'O m - e choice of a best candidate for expansion proceeds in two stages. First, 

2 he purpose of the INTERESTINGNESSLIST for each discovered pattern. 
s g  5 - 
Q r n  0 

3 tefore and until these definitions are slightly erroneous due to losses of patterns 
'< 
7 e ends of the input string. These errors are negligible, however, since the length 

e input string is much larger than the length of individual patterns of interest 
B 
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Each of the INTERESTINGNESSLISTs associated with a pattern P is sorted 
in such a way that the event a t  the head of the list, when added to P is most 
likely to result in the discovery of an interesting pattern. An event D will be 
ahead of an event E on this list if, A[GB/E[6] > A[E]/E/[E]. While the expected 
values here are computed in the usual way, in this case, the actual values are 
not simply equal to the counts of 6 and E, respectively, but rather equal to  the 
number of 6's and E'S that could potentially be added to P. 

Lemma 1 Given two events 6 and E where 6 occurs before E on the 
INTERESTINGNESS-LIST then: 

ProoEWe prove this result for the next operator. 

Assume, E[A[(aNP)NGjl < E[A[(aNP)N&U 
E[(aNP)NGII - E[(crNP)Nc]I 

Let N be the length of the input stringa. Then 

Since # P  and FR(6) are constants we can remove them from the expectations 
and cancel them on each side of the inequality. So, 

Contradicts assumption that 6 occurs before E on the INTERESTINGNESSLIST 
The proofs for the temporal operators before and until are done similarly. 

So, it is now clear, for each discovered pattern P ,  which literal when added to 
P is most likely to produce an interesting pattern and how interesting we expect 
that pattern to be. In the second stage of choosing the best candidate we select 
the already discovered pattern which is likely to produce the most interesting 
pattern. Intuitively, we are saying that the pattern P most worth expanding is 
the one for which there exists a literal that is likely, when added to P, to result 
in the discovery of the most interesting pattern. 

Here FR(6) and FR(E) represents the frequencies of 6's and c's respectively that 
could complete the pattern ((0NP)NX). As discussed earlier this is not equal to the 
frequency of all of the 6's and e's in the input string. 
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Given these prel imjnq moti~ations, we now present the algorithm: 

Input: 

- h p u t  Strilq 
- Ewnt Probabilities 
- B E F O R E :  as disc~rsed earlier we use a bounded version of the before 

o p t o r .  BEFOREK is a defined kariable that is equal to the maximum 
di4~ancm brr\r~en tn-o events X and Y for S B K E -  to hold. 

- Rueshold T for interesting=, that is the value that if exceeded by the 
interesxia@es measure of a pattern deems it interesting 

- \-due of Sfn--TOLWYI>-L\?):. the minimum threshold of interest mess that 
a par:- nus haw in order'to become the next pattern for e\-p=-ion. The 
dh~ErfL=I ;Fill terruinare if no such pattern remains. 

- Si~b11=a 3Uomble partern length 

Output:  

- E-T cr' krzres~ ing parrerns. their number of occurrences and the d u e  of 
ki+iYS-g&= meawes 

siz 6%- ~r 133113 s t r q  t o  determine the  rnterestlngness 
n e ~ ~ z e  zf sach even-, XI i t ,  and l n l t l a l l z e  l l s t  L a t h  
a -Less sTerts ---- - &22 ---..- -:F: exists a pa t te rn  ~n L xhose mterestlag?-ess 

IL+ZS=S :s gzeater *Am YIH-TO-EXPAY?) DO 
Clo=~e-!iar--Cardldat e 
-La a z e - v  ? such t h a t  LENGTH(P) < . U S L  xhlch 
~ t r r .n?z t s  E{A{?opX)/E{PopX)) f o r  all t a p o r a l  
=Ferzzsrs op c d  a l l  events X - - 
i - 
-i -- zzzzerzl P such t h a t  LC.IGTH(P) < Y S L  vhich - - ;u . '7-73s ECA.(XGF?)/E{XO~P)> f o r  all t a p o r a l  
s r e r z z r s  op a d  all events X 

3 i? C = c  f z r  pz t t e ras  f o r  zhlch P i s  the  p re f lx  o r  s u f f i x  

t: 2 ' s l z ~ , F a t t e r n s  
OQ 0 rr z z z * s  ~le-iljr f ourd pa t te rns  t o  l l s t  of already f omd 
CdgQ + - 
6 O n  32,tT"S 

g 0 02 
w + C*=~-&dler 

E td Y 
i o ?  m !kscssec! beloir) z; E C.eci->~-ger 
- 4 $ 5  

3 (&s-sed be lo^) < 33 i-6 
7 

x z e r e s t m g  pa t te rns  
B 
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The algorithm continues until there are no more patterns for which (actual 
remaining/expected remaining) exceeds some minimum threshold MIN-TOEX- 
PAW, a parameter chosen at  the outset. 
UpdateSmaller :  Consider the situation when a pattern CYNP is chosen as the 
next candidate. During the scan, patterns of the form crNPNy, 
LYNPBKY, etc.. . will be discovered. If, for example, M occurrences of aNPNy 
are found then there are M fewer patterns for which PNy is a suffix remaining 
to be found. This decreases the chance that PNy will be chosen as a candidate 
and this change needs to be recorded. 

Likewise, during the scan for aN3, SNaNP may be found to occur L times. 
Therefore, the number of remaining patterns of the form 6NaNX to be found 
has decreased by L. Again this needs to be recorded. 
CheckLarger:  Consider the situation when a is chosen as the next candidate. 
During the scan n-e will discover some number of aNP, say P. As was discussed 
earlier, this implies that there are P patterns of the form aNPNX and patterns 
of the formXNaNJ(n-e can make similar statements for the other operators). 
Some of these may have already been discovered, however. For example, if y was 
already chosen as a candidate, and some PNy were found, and then PNy was 
chosen and J f  ocurences of aN9Ny were found, then the number of remaining 
patterns of the form aN3NX yet to be found is not P but rather P - hi. This 
again needs to be recorded. 

5 Experiments 

lye conducted eqeriments on three different problem domains. The first was a 
simple sequence of independent events. This data was generated synthetically. 
The second domain A-e considered were sequences of UNIX operating system 
calls as part of the sendmail program. The third was that of Web logfiles. In 
the last ass .  events were dependent. 

5.1 Sequential independent events 

lye used an input string of length 1000 over 26 different events. In this case, 
n-e assumed that each event was equally likely and that the events were inde- 
pendent. lye searched for patterns, P ,  for which Length(P)< 5. Our results are 
presented in Table 2. The columns of the above table are as follows: 
.Ugorithm - The algorithm used. The naive algorithm, presented in Section 4.1, 
represents essentially an exhaustive search over the input string and is guaran- 
teed to find all interesting patterns. It is included as a benchmark by which we 
measure the effectiveness of the main algorithm. Percentage is equal to the value 
for the main algorithm divided by the value for the naive algorithm times 100 
for each column respectively. The first number following each algorithm(2 or4) 
is the value of BEFOREK used. The second number(3,4, or 6) is the interest- 
ingness threshold. 



298 Gidwn Berger and Alexander Tuzhilin 

Algorithm 

Saiw(2.3) 
Siain/2,3) 

. . --.- --- 
1 Main[4.6) 1 1631 10731 127 
ipe-%ntage( 39.231 34.6% 98.4% 

Table 2. Ra-ults for independent sequential data 

I . , *  

= of &= - The number of sans over the input -9uence n e e s s  to discover 
al! inra-esxiic patterns found. 
= of E~panded  Pattern= - The number of patterns &wvered. interesting or 
0 t hedTn;.e. 
= of Lniere- Pa t t e rn  - The number of interming patterns found. 

# of Scans 
416 
161 

~ain(4.3) 
Percentage 
Saiw(2.4) 
Slain(2.4) 
Percentage 

B 2 ; s  on the results presented in Table 2. the main algorithm did not find 
all ince--xing patterns. although it disco\-ered mcm while doing 1-2 m r k  than 
rke  mi^ algorithm. -4.k~ note that the main algorithm was more accurate as 
o x  r k ~ h o l d  for inrermie.gness increased. In other xords. n-hen our algorithm 
did IASS i n r e m s g  pat ten= they tended not to be the most i n t e r e s .  

# of Expanded Patterns]# of Interesting Patterns 
24891 290 
9191 268 

- 
Sequences of O S  S j s t e m  Calls 

G g 2 

Sah~(4.4) 1 4l6i 31051 171 

1631 ion( 250 
39.9%1 31.6%( 96.5% 

416' 24891 168 

@ 8 m n d  domain a-e investigated was a -9uence of operating system calls 
WQ by a s e n h a i l  program. The events com5sted of the 31 different system CdgQ 
g o g hzr the program made and our string co~iscred of 31769 q u e n r i a l  calls. 
g 0 ua 

w s : rime of these evperiments we had no knowledge of the actual probabil- 
E td Y 5 m f these events. Therefore. we made an assumption that system cab are 

lndenr from each other and estimated probabilities of individual events by 
.i$ E 

3 - the strin,: and counting the number of actual occurrences of each 
< 
7 For each event E ,  n-e let Pr[e,] = ( number of occurrences of e,),/ (the total 

l e ~ g h ) .  Because of this. the interestingness of each of atomic ex-ent was by 
-t 

5 

161 
38.7% 
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919) 16-1 
36.9Rl 97.6% 

definition exactly 1. This forced us to assign a value to MIN-TOXXPAND that 
exceeds 1 or else the algorithm would not even begin. This resulted in more scans 
of the input string than were actually necessary to discover interesting patterns 
but nonetheless the improvement we achieved over the naive algorithm was con- 
sistent with our experiments in other domains (approximately three times). The 
following represent a selection of interesting patterns discovered. These were se- 
lected because of a combination of their interestingness as well as our confidence 
that these actually represent significant events due to the number of occurrences 
of them. These results were generated on a run where we allowed strings of up 
to length 5. 

EVENT :( (s igblock NEXT setpgrp) NEXT vtrace)  
COUNT :2032 

EVENT :( ( (s igblock NEXT setpgrp) NEXT vtrace)  NEXT vtrace)  
COUNT :455 
ACT/EXP :83.1628 

EVENT :( ( (s igblock NEXT setpgrp) NEXT vtrace)  BEFORE sigvec) 
COUNT :355 
ACT/EXP :52.1150 

EVENT : (sigblock NEXT(setpgrp BEFOREK v t race )  ) 
COUNT :2032 
ACT/EXP :21.5814 

EVENT : ((sigblock BEFOREK setpgrp) NEXT vtrace)  
COUNT :2032 
ACT/EXP :21.5814 

EVENT : ((sigpause NEXT vtrace)  NEXT lseek)  
COUNT :I016 
ACT/EXP :106.672 

EVENT : (sigpause BEFOREK (vtrace  NEXT l seek) )  
COUNT :I016 
ACT/EXP :53.336 

EVENT :(sigvec BEFOREK(sigpause NEXT(vtrace 
NEXT(1seek NEXT l s e e k ) ) ) )  

COUNT : 29 
ACT/EXP :212.349 

EVENT :(sigpause BEFOREK (v t race  BEFOREK l seek) )  
COUNT :2032 
ACT/EXP :53.336 
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EVENT : ( ( v t r a c e  NEXT lseek) NEXT l seek)  
COUNT :I017 
ACT/EXP :35.5112 

In these results COUNT represents the number occurrences of the pattern 
EVENT and ACT/EXP represents the interestingness of this pattern. Notice a 
couple of things. First, most of the interesting patterns that occurred a reason- 
able number of times (the ones shown above) were mostly of length 3. There 
were, of course, more interesting patterns of longer length but the number of oc- 
currences of these patterns was significantly fewer. Also notice that no interesting 
UNTIL patterns were discovered. This is because we never saw AAAAAAB, i.e. 
all the occurrences of until were of the form AB or AAB which were captured 
by NEXT or BEFORE and since fewer instances of NEXT and BEFORE were 
expected these proved more interesting, 

These system calls are from the UNIX operating system. In the future what 
we propose is to assign probabilities of atomic events based on their frequencies 
in a period when we are confident no intrusions to the network occurred and 
then see if we can discover interesting patterns that correspond to intrusions. 

5.3 Web logfiles 

Each time a user accesses a Web site, the server on the Web site automatically 
adds entries to files called togfiles. These therefore summarize the activity on 
the Web site and contain useful information about every Web page accessed a t  
the site. While the exact nature of the information captured depends on the 
Web server that the site uses, the only information we made use of was the user 
identity and the sequence of requests for pages made by each user. The Web 
site we considered was that of one of the schools at a major university. The 
users we considered were the two most frequent indzuidual users. It is important 
to recognize that the Web logfiles simply tell us the hostname from which a 
request originated. Typically, there are a large number of users who may access 
a Web site from the same host, and the hostname, therefore, cannot be used 
to definitively identify individual users. We attempted to identify, with some 
confidence, frequent hostnames that did indeed represent individual users. We 

two Web logfiles for our experiments. First, we considered a synthetic Web 
5 $ 8 This included a Web site with 26 different pages and 236 total links. We 

an input string of length 1000 representing 1000 hits on pages of the site. 
" :.is case events were hits on Web pages. Probabilities were, of course, not 
Cd 0 

6 % n ~endent. The probability of a user reaching a given Web page is dependent 
g 0 02 
; le page he is currently at. In order to compute a priori probabilities of each 

io 5 m we declared several pages to be equally likely "entrance points", to the Web 

5 If there were N "entrance points" then each has a & chance of occurring. 
3 is one of these "entrance points", P has K links on it and one of these links < 
7 page G then the probability of G occurring is (&)(&). By conducting an 

ustive breadth-first search we were able to calculate the probabilities of each 
2 
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event occurring (i.e. each page being "hit"). When calculating expectations for 
various patterns, we used conditional probabilities. So, for example, the EfAN B] 
is no longer Pr[A]Pr[Bl(K - I), where K is the length of the input string. I t  
is now Pr[A]Pr[BIA](K - 1) = Pr[A](l/#of links in page A)(K - 1) if there 
is a link from A to B and 0 otherwise. Our results for this data are presented 

[Algorithm I# of Scans/# of Expanded Patterns]# of Interesting ~atternsJ 
1 Naive2 I 6341 13561 4641 

in Table 3. The interestingness threshold for these experiments was 3.0. Once 
again our algorithm was able to find most interesting patterns while examining 
much less of the search space than the naive algorithm did. 

Finally, we considered data from an actual Website from one of the schools 
of a major university. There were 4459 different pages on this site with 37954 
different links between pages. We used Web log data collected over a period of 
nine months and selected out the two most frequent individual users of the site, 
both of whom accounted for more that 1400 hits and used these sequences of 
hits as our input string. Our experiments using this data were less enlightening 
than when we used synthetic data. The main algorithm found only a handful 
of interesting patterns of length greater than two. In fact, when we applied the 
naive algorithm we found that there were few more interesting patterns to be 
found a t  all. More specifically, the main algorithm found 2 and 3 interesting 
patterns of length greater than two in our two input strings, respectively. The 
naive algorithm found 3 and 3. The primary reason for the lack of interesting 
patterns of greater length was that the size of the Web site dominated the size 
of the input string. The fact that there were 4459 pages and our input strings 
were only of length 1400 made the expected number of occurrences of each event 
very small. So small, in fact, that even a singIe occurrence of many events proved 
interesting. 
Additional factors that compounded the problem are: 

1. Changing Web Structure .  The Web architecture from which 
we built the graph that the algorithm was run on was from a 
single moment in time( we captured the structure of the Web 
site, including the links, on a single day, and extrapolated it to 
9 months of Web log data). Over this period there were some 
changes to the Web site. This creates some difficulties in that 
the Web logfiles showed that users linked from pages to other 

-- - 
437 

94.2% 
462 
437 

94.6% 

Main2 
Percentage 

Naive4 
Main4 

Percentage 
Table 3. Results for synthetic Web logfile data. 

239 
37.7% 

654 
245 

37.5% 

528 
38.9% 

1564 
568 

36.3% 
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pages where links did not exist in the Web we were considering. 
In fact, there were visits to pages in the Web log data that did 
not exist in the site we were using. This had the effect of forcing 
the expected number of occurrences of any patterns that in- 
cluded these pages or links to be zero and thus never considered 
interesting either as patterns or candidates. 

2. Multiple Sessions. While each input string we used had a 
length greater than 1400 events, these Web hits spanned many 
sessions. In fact, the average session length was approximately 
10 hits. The last hit from one session immediately preceded the 
first hit of the NEXT session in our input string. Normally, how- 
ever, a link did not e&t from the last page of the first session to 
the first page of the NEXT session. Therefore, once again this 
had the effect of forcing the expected number of occurrences 
of any patterns that included this sequence of pages to be zero 
and thus never considered interesting either as patterns or can- 
didates. 

3. Caching. Consider what sequence of hits appears in Web log 
data if a user goes to pages A, B, C, D in the following order 
A -+ B 4 C -+ B -+ D. Normally, what occurs is that a 
request is made(and therefore logged) for page A then page B 
then page C then, however, when the user goes back to page 
B no request is made of the server because this page has been 
cached on the users' local machine. Finally, a request for page 
D will be made and logged. Therefore, this sequence of hits will 
appear in the Web log data as follows: A -+ B -+ C -+ D. If no 
link exists from page C to page D then once again the expected 
number of occurrences of any pattern including this sequence 
of events will be zero. Given the wide use by Web users of the 
BACK button, the effect of caching is substantial. 

4. Local Files. Finally, many pages that appeared in the Web 
log data did not appear in the Web site we were using because 
they were files kept on individuals local machines in their own 
directories, rather than on the Web server. These pages had the 

n same effect as the changes made in the Web over the nine month 3 z g  
;.3 e period. 
k. E : 
CdgQ 
6 O p sons Learned. The primary cause of our lack of success in finding interest- 
g 0 ua 5 patterns in the use of our university Web site was the fact that the size of the E td - 
b 5 m was very large in comparison to the size of the input strings we considered. 
m 5' 8 5 g ; are planning to obtain Web logfiles spanning a longer period of time, for 

n o  
3 laller and more stable Web site. We are also considering various models to 
'< 

with the loss of patterns that we experienced due to the multitude of user 
ions. 

-t 

5 

Discovering Unexpected Patterns in Temporal Data Using Tempor& 303 

6 Conclusions and Future Work 

In this chapter, we reviewed the characterization of different knowledge discovery 
tasks in temporal databases (as summarized in Table 1) and focused on a Class 
I11 problem of generating unexpected predicates. In particular, we presented 
an algorithm for finding unexpected patterns, expressed in temporal logic, in 
sequential databases. We used multiple scans through the database and the s t e p  
by-step expansion of the most "promising" patterns in the discovery process. 
To evaluate the performance of the algorithm, we compare it with the "naiven 
algorithm that exhaustively discovers all the patterns and show by how much our 
algorithm outperforms it. We also use our algorithm for discovering interesting 
patterns in sequences of operating system calls and in Web logfiles. 

In its current implementation, our algorithm discovers temporal patterns 
only of a certain type (described in Section 3). As a future work, we plan to 
extend our algorithm to include more complex temporal logic expressions. We 
also plan to extend our methods to discovering unexpected patterns in temporal 
databases, where the patterns will be expressed in first-order temporal logic. 
Finally, we plan to apply our algorithm to the problem of intrusion detection, as 
well as to a more suitable Web site having fewer HTML files and more traffic. 
We expect to find more interesting patterns for such a site. 

We are also interested in pursuing some of the complexity issues that arose 
in the NP-hardness proof. Specifically, The problem CLIQUE that we reduced 
from is actually SNP-complete [19] which is a class of languages that has some 
interesting properties we are investigating. In addition, we are considering a p  
plication of Ramsey's Theorem to our problem domain. 
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A Appendix: Proof of Theorem 1 

Problem: Given a string of temporal events V = vl,v2,. . . , v,, does there exist 
an interesting pattern in V of the form X1BkX2Bk.. . BkXm for an arbitrary m? 
The following proof shows that this problem is NP-complete. 

Proof  of Theorem 1: We show that our problem is NP-hard by proving that 
CLIQUE INTERESTINGNESS. The reduction algorithm begins with an in- 
stance of CLIQUE. Let G = (V, E )  be an arbitrary graph with IVI vertices and 
IEl edges. We shall construct a string of events S such that an interesting pattern 
of the form elBkez..  . Bkem exists if and only if G has a clique of size m. The 
string is constructed as follows. Each vertex vl , vz, . . . , vlvl, in the graph G will 
become an event in our string S, i.e. our events are el, e?, . . . , elvl. Additionally 
we will make use of (IVI + IEl)m "dummy" events called dl,  dz,. . . , d ( l ~ l + I ~ I ) m ,  
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Fig. 2. The graph G(V, E) with vertices vl, vz,. . . , ve and a clique C of size 4. C = 
Iv2,v3,v4,v5) 

where m is the value from the CLIQUE problem. Based on each vertex vi E G 
a substring will be created. The associated event ei will be called the "genera- 
tor" of this substring and the substring will be "generated" by the event. The 
concatenation of these substrings will be the string S. Initially, the vertices in 
G are arbitrarily ordered 1,2, ...I V). Then for each associated event ei, in order, 
we create the substring based on ei by listing, again in sorted order, the list 
of vertices(actua1ly their associated events) ej, for which there exists an edge 
(v,, vj) E E plus the event eilVl times. For example, the substring generated by 
e2 for the graph in Figure 1 would be 

since there are edges in G from v2 to each of e3,ee, and e5. Following each 
substring generated in this fashion we concatenate a substring of all the dummy 
events in sorted order. As will be seen shortly these dummy events are used 
to separate the substrings of events e, and therefore no dummies are needed 
following the substring generated by elvl. Thus, for the above graph the string 

4: 0 

.$ ;otal lengthof S will be 21~)+1V)~+(/V(-l)([IvI+[El)m).  This can beseen 
lows. The substring generated by ei will have [VI occurrences of ei plus one 
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occurrence of each event ej  such that (vi, vj) E E (deg(vi)). Summing over all 
vertices i the total length of these substrings will equal 21EI + IVI2. In addition 
there will be a total of ]V1 - 1 occurrences of the substring dldz . . .d(lE1+IVl)m 
with a total length of (IVI - l)(((VI + (E1)m). The string S can clearly be 
constructed in polynomial time as it is polynomial in the size of the graph. 

Given that our problem allows for an exogenous assignment of probabilities 
we will assume that all of the events are equiprobable. That is 

for X = e, or d,, i E 1.. . IVl, j E 1.. .(let + IV1)m. Since each dummy event 
occurs exactly IVJ - 1 times and each event e, occurs [VI times in the sub- 
string it generates plus an additional deg(lV1) times elsewhere, these exogenous 
probabilities are not consistent with the actual probabilities of the events in S 
as the events corresponding to vertices occur more frequently than the dummy 
events. It is possible to define the probabilities so that the assigned probabilities 
of the dummy events is consistent with their actual frequencies but this requires 
a somewhat more complicated construction and proof and offers little insight 
into the problem so we have chosen to proceed as described above. 
Let BEFOREK = IVI + /El. 

The expected number of occurrences of a pattern 

= (n - K(L - ~ ) ) K ~ - ' P ~ [ x ~ ] P x ~ .  . . Pr1X~1, else 

where K = BEFOREK and n = IS/. This can be derived in a manner analogous 
to how expectations were derived in section 3. It can be seen that in the special 
case of L = 2 this formula reduces to the one derived previously for EIBk]l. 

For the case where K = (VI + IEI,n = 21El-t JVI2 +- (IV) - l)((lV) + JEl)m), 
and L = m we will call the value of this expectation 6. Let the interestin~ness 
threshold 

The relevance of this value is that if a pattern of the form X1BkX2.. . BkX, is 
instantiated only with events e,(no dummies) and it occurs at least JVlm times 
it will be deemed interesting. If it occurs lVlm - 1 times it will not. This will be 
discussed in further detail shortly. 

We must now show that this transformation from CLIQUE to INTEREST- 
INGNESS is a reduction. First, suppose a CLIQUE vl, vz, . . . , v, exists in G 
and therefore corresponding events el ,  e2, . . . , e ,  exist in S. Note that here the 
indexes of the vertices and events are not intended to suggest that the clique 
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must consist of the first m vertices in the original ordering but rather are used 
for ease of exposition. Of course these v l ,  . . . , vm(and e l , .  . . , em) could represent 
any collection of m vertices(events) although we will continue to assume that 
they are in sorted order. By construction, the substring generated by el will 
include 

For an arbitrary i the substring generated by ei will include 

Each substring will contain IV/ occurrences of the pattern el BkezBkesBk.. . &em 
and there are m such substrings so the total number of occurrences of this pat- 
tern is \Vim. Thus 

AlelBk. .  . Bkeml -- JVIm > - 
EielBkez.. . &em] E 

Conversely, suppose that an interesting pattern of the form XlBkX2 . . . BkXm 
exists. We must show that a corresponding CLIQUE of at  least size m exists in 
G. The following lemma is the basis for our showing this. 

Lemma 1. If an interesting pattern exists then it consists only of events e,, 
containing no dummy events. 

Proof: We have already seen that if a CLIQUE of size m exists in G then an 
interesting pattern exists in S. Thus interesting patterns are possible. What is 
left to show is that if 

- a pattern consists only of dummy events then it can't be interesting, and 
- if a pattern consists of both dummy events and events ei it can't be inter- 

esting 

Assume we instantiate the pattern P = X I B k . .  . B k X m  with j dummy events 
and m - j events e, where j = 1 . .  . m. Note that given our definition of BE- 
FOREK for any pattern of this form its total length, i.e. the distance in the 

2 .  S from X I  to X m  can be at most (IEl + 1Vl)m. Therefore, if a pattern 

5 $ ins any dummy events these occurrences must occur only at the beginning 
Z I of the pattern since any dummy event is part of a substring of ((EI+IVI)m 

% 3 1y events. That is there cannot exist a dummy event d3 in the pattern such 
B g ~n event e, occurs before d3 in the pattern and an event ek occurs after it. 
0 0 ua 

$ 111 assume, without loss of generality, that the j dummy events all occur at  
io $ d of the pattern. We will next count the maximum number of occurrences g z  z 2 terns of this form. 

3- 
4 
p re may, of course be vertices that are not part of the clique that are connected 
2 ;ome edge to e,. These vertices would also be included. 
2 
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Each of the m - j events e, generates a substring in S. In that substring 
the event e, occurs jV1 times and all other events occur once. In addition, in 
the substring of d & n y  events immediately following this substring each event 
occurs once. Thus, there can be at  most (V( occurrences of the pattern P that 
include events from the substring generated for each ei. There are a total of m- k 
events e,  in the pattern and therefore a maximum of (m - j)(VI occurrences of 
P that include these substrings. In addition, there exist IVI - (m - j) substrings 
generated by events not in P. In each of these substrings P can occur at  most 
once since each event in P occurs at  most once in a substring that it did not 
generate. This can result in a maximum of IVI - (m - j )  additional instances 
of P for a total of (m - j + 1)IVI - (m - j )  occurrences of P. This expression 
is maximized if j = 1 in which case the maximum number of occurrences of 
P = m(VI - m + 1. Since 

mlVI - m + 1 
E 

< T  

where E: is again the expected number of occurrences of this pattern,this pattern 
cannot be interesting. C1 

We now know that any interesting pattern can consist only of events e,. 
We also know that each occurrence of an interesting pattern can include only 
events generated by a single e, (since BEFOREK < (!El + JVl)m, the length 
of the dummy substrings separating event substrings generated by each event). 
Furthermore, we can use an argument identical to the one used in the proof of the 
above lemma to show that for at least mlVl occurrences of a pattern to exist at 
least mlVl of them must include the generating event from which all the events 
in this instance came. In other words, if an interesting pattern e l B k . .  . Bkem 
exists then there must be at  least mlVl instances which include the e,  that 
generated the substring from which all the other events came. To see this note 
that each time an instance of a pattern that includes a generating event occurs, 
IVI instances will actually occur, one for each copy of the generating event in 
the substring it generated. Let us assume that only (m - 1)IVI instances of a 
pattern exist that include the generating event from which all other events in 
this instance came.'' In all the other substrings generated by events not in the 
pattern there can be at  most one instance of the pattern since each event occurs 
at most once in a substring it did not generate. There are IVJ - (m - 1) such 
events so the total number of instances would only be mlVI - m + 1. Therefore, 
for a pattern to occur at least m(Vl times and thus to be interesting there must 
be mlVf instances that include the generator of the other events in that instance. 
Since each generator results in IVI instances there are m generators that are part 
of instances. The m vertices that correspond to these m events form a clique in 
G. This is clearly true since for any of the e, amongst these m generators there 
is an edge from itself to each of the other generators. 

Finally, note that this problem is also in NP and therefore NP-complete 
since given a certificate(i.e. an instantiation of our pattern in this case) we can 

lo There cannot be any more than this unless there are mlVl since they come in mul- 
tiples of IV). 
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check i f  i t  is interesting by  simply scanning over S. This  clearly can b e  done in  
polynomial time. 0 

Notice tha t  we have phrased our NP-hardness problem as "Does any inter- 
esting pattern exist?" We could have just as easily posed the  question "Do p 
interesting patterns exist"? Our proof can be trivially extended t o  accomplish 
this by enforcing that the  d u m m y  events always contain p- 1 interesting patterns 
and that  the  pth interesting pattern only occur i f  a clique o f  size m exists i n  G. 
Our decision t o  enforce tha t  the  d u m m y  events contain no interesting patterns 
and t o  thus pose our question as we did was rather arbitrary. 
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