
Discovering Unexpected Patterns in
Temporal Data Using Temporal Logic

Gideon Berger
Courant Institute

New York University

Alexander Tuzhilin
Leonard N. Stern School of Business

New York University

Working Paper Series
Stern #IS-98-7

Center for Digital Economy Research
Stem School of Business
Working Paper IS-98-07

Discovering Unexpected Patterns in Temporal
Data Using Temporal Logic

Gideon Berger and Alexander Tuzhilin '

* Computer Science Department
Courant Institute

New York University
gideonOcs.nyu.edu

Information Systems Department
Stern School of Business

New York University
atuzhili@stern.nyu.edu

Abstract. There has been much attention given recently to the task
of finding interesting patterns in temporal databases. Since there are so
many different approaches to the problem of discovering temporal pat-
terns, we first present a characterization of different discovery tasks and
then focus on one task of discovering interesting patterns of events in
temporal sequences. Given an (infinite) temporal database or a sequence
of events one can, in general, discover an infinite number of temporal
patterns in this data. Therefore, it is important to specif\' some measure
of interestingness for discovered patterns and then select only the pat-
terns interesting according to this measure. if'e present a probabitistic
measure of interestingness based on unezpectedness, whereby a pattern P
is deemed interesting if the ratio of the actual number of occurrences of
P exceeds the ezpected number of occurrences of P by some user defined
threshold. We then make use o fa subset of the propositional, linear tem-
poral logic and present an efficient algorithm that discovers unexpected
patterns in temporal data. Finally, we apply this algorithm to synthetic
data, UNIX operating system calls, and \Veb logfiles and present the
results of these experiments.

1 Introduction

There has been much work done recently on pattern discovery in temporal and
sequential databases. Some examples of this work are [14,27,17,10,25,16,8,18,
9,221. Since there are many different types of discovery problems that were ad-
dressed in these references, it is important t o characterize these problems using
some framework. One such characterization was proposed in [lo]. In this chapter

This work was supported in part by the NSF under Grant IRI-93-18773.

0. Etzion, S. Jajodia, and S. Sripada (Eds.): Temporal Databases - Research and Practice
LNCS 1399. pp. 281-309, 1998. @ Springer-Vertag Berlin Heidelberg 1998

2 @ideon Bergr and Xlcxander Tuzhilin Discovering Unexpected Patterns in Temporal Data Using Temporal Logic 283

n-e review this framework and then focus on one specific problem of discover-
@ unexpected patterns in temporal sequences. To find unexpected patterns in
a ,sequence of events, we assume that each event in the sequence occurs with
some probabilin- and assume certain conditional distributions on the neighbor-
ing events. Based on this, n-e can compute an erpected number of occurrences of
a certain pattern in a sequence. Lf it turns out that the actual number of occur-
rences of a given pattern sigdcantly differs for the e-xpected number. then this
panern is certainl?- u n q c t e d and. therefore, is interesting [23,21]. We present
a algorithm for finding such patterns and test it on several types of temporal
sequence. including Web logfile and sequences of OS 9-stem calls.

Fig. 1. .Xn exmple af rhe hmhanhshou!der pattern.

2 Characterization of Knowledge Discovery Tasks in
Temporal Databases

CLx-3cierika~on of honledge diwvey tasks in temporal datab-zes. propxed in
-1 1: k r q r ~ ~ . ~ r f d by the 2-by-2 a n i x presented in Table 1. The f h dimension
Ir -22 --;;.=%x define the nn, - q . ~ of temporal patterns. The first n-jx of a - - L ~ z x c + r 2 pr;m :qwcifiej h o s &ra chwa over rime and is defined in terms - -.- , , ?J! L; ?Y&cc:~. For e w p k . rhe pattern

3 z g rzz
WQ 0 - h t -adand~ho?~I .= ' c r~ I B J f . 5,/1,97.T, 1'2 97)
H S S " w

2 & ES
rke srock of IBSI & b i d heahanhshoulder trading partern ;Is]

;; $, I 97 mr3 7/1,'9r. as k sbm in Fi,gire 1). The m n d type of remporal
5 " E L. .-,!a. such as if a seek ~uhibits a head-and-shoulder parrcrn and qo5

2 2 !r & levek are lor. then bearish period is likely ro follow.-
$ I :xcocd dimension. the td:dat;on/generution dimension. refers ro the
7 -
2 c of che cikxm-ery task In r~a1;dotwn the %-stern focuses on a parricular
CD

-t

5

pattern and determines whether it holds in the data. For example, we may want
to validate if the heahandshoulders pattern holds for the IBM stock in a given
data set or that a certain rule "holdsn on the data. The second purpose of
discovery can be the generation of new predicates or rules that are previously
unknown to the system. For example, the system may attempt to discover new
types of trading rules in financial applications.

Categorizing patterns in terms of the above two dimensions leads to a two-
by-two classification framework of the knowledge discovery tasks, as presented
in Table 1. We will describe each of the four categories in turn now.

Table 1. Types of Knowledge Discovery Tasks.

I I

Class I. The diicomry tasks of this type involve the validation of previously
defined predicates over the underlying database. For example, assume that we
haye the temporal database of daily closing prices of stocks at some stock ex-
change, STOCK(S'tnfBOL,PRICE~DDITE), where SYMBOL is the symbol of a
security, PRICE: is the closing price of that stock on the date DATE. Consider
the folloning predicate spec- that the price of a certain stock bottomed out
and is on the rise again over some time interval:

Rules

where increase(x, t l . t 2) and decrease(x, t l , tn) are predicates specifying that the
price of security x respectively "increases" and "decreases" over the time interval
(t l . t2Y.

Then n-e may want to validate that the predicate bottom-reversal(x, t l , t z)
holds on the temporal relation STOCK(SYIv1BOL1PFUCE,DATE). This valida-
tion can take several forms. For example, we may want to find for the predicate
bottom-reversal if one of the following holds:

bottom-reversal(IB~\i, 5/7/93,8/25/93),

bottom-reversaE(IBh1, t l , t2),

bottom-rez.ersal(x, 5/7/93, 8/25/93)

I1

Note that we do not necessariiv assume monotonic increases and decreases. Predi-

IV

cates i n e w e and decrense can be defined in more complex ways, and we purposely
leave it unspecified how to do this.

2% Gideon Berger and Alexander 'hzhilin

The first problem validates that the stock of IBbl experienced the -bottom
reversal' pattern between 5/7/93 and 8/25/93. The second problem finds all
the time periods when IBSl's stock had "bottom reversal," and the last problem
finds all the stocks that had "bottom reversals" between 5/7/93 and 8/25/93.

One of the main issues in the problems of Class I (~redicate d ida t ion prob-
lem) is to find approrimate matching patterns. For example, for the IBSI stock
to exhibit the bottom reversal pattern between 5/7/93 and 8/25/93. it is not
n e w s a q for the time wries of IBlrf stock to match predicate bottomreversal
exactly. =Inother example of the approximate matching problem of Class I comes
from the speech retognition applications where sounds and a-ords are matched
only appraximately against the speech signal.

There has been extensive work done on Class I problems in signal processing
-20:. speech rewapition i6.211. and data mining communities. In the dara mining
hmmunitl; t h e ~ p e s of problems are often referred as similarity searches and
hax-e been studied in :1.3.4.12.13.8].

Class 11. DLwx-ery tasks of Class I1 involve d ida t ion of pre\iously asssrted
r;!a. For example. consider the rule: -If a price correction in a stock is seen
before the announcement of big nens about the company, then insider trading
k likely.-

d ie re Cor-ez5on. B:g-news. Insider-trading and Soonaffer are ussr-dehed pred-
icates (xiem defined on relations STOCKS and Xi\-S.

E.raluz:ion oi this rule on the data entails finding instances of \ariables stock.
t:. t,. t j z d the -srarisical srrengh" of the rule (e.g. measured in t e r m of its
ccirriiderce a d mppon '2:) that make the rule hold on the data (in srarktical
re=).

-k h rLe mie of C 1 ~ s I problems, one of the main issues in rule xalidarion
:he probtern of approximate matching. The need for approsimare marching

arises for &e folloaing r e m u . First of all, rules hold on data only in satistical
I- (e.g. hax-ing certain levels of confidence and support). Secondly. mme of
i h pr&czre in the rule can match the data only appraximately (as is the case
with &= I problems from Table 1). Sloreo\er. certain temporal operators are
inherent? 5 i . For esample, temporal operator S w n a f ter(t 1 , t l) is fiw- and
, , to be defined in -fuu?-- terms'.

5 8 + as 111. Dkwox-en- t a s k of Class 111 involve the discovery of nex interesting
P 5 a r r k r i d parremi that occur in the d a t a b ~ q . In order to &wwr such

04
+c a. r t e qrrem should h o w on what it should focus its search because
4 0 s
g VQ are pcltenrially x - e ~ many new patterns in the database. In other nords,

C h ?
E td zrem should h o n what to look for by letting the user specif?- =-hat is
$ 5 m z; g r rha: i r in not appropriate to define this operator in terms of the temporal
.i$ E

3 aror -\-.,rt becaav of the xiherent ambigwty of the term -soon.- Athough this
<
7 aror can be defined in many different ways, one natural approach muld be
2 ugh rhe w of f i m y loe;c 23,.
-.
5

Discovering Unexpected Patterns in Temporal Data Using Temporal Logic 285

interesting. For example, the pattern bottom-reversal may be interesting because
it provides trading opportunities for the user.

Although there are many different measures of interestingness for the user,
such as frequency, une.qectedness, volatility, and periodicity [lo], the most p o p
ular measure used in the literature is fi-equency of occurrence of a pattern in the
database [17,16,18]. In particular, [17,16] focus on discovering frequent episodes
in sequences, whereas (181 discovers frequent patterns in temporal databases sat-
isfymg certain temporal logic expressions.

In this chapter, we use a different measure of interestingness. Instead of
discovering frequent patterns in the data, we attempt to discover unexpected
patterns. While it is sometimes the case that the discovery of frequent patterns
offers useful insight into a problem domain, there are many situations where it
does not. Consider, for example, the problem of intrusion detection on a network
of workstations. Xssume we define our events to be operating system calls made
by some process on one of these workstations. We conjecture, then, that patterns
of system calls differ for ordinary users as opposed to intruders. Since intrusion
is a relatively rare occurrence the patterns we would discover using frequency
as our measure of interestingness would simply be usage patterns of ordinary
users offering us no information about intrusions. Instead what we propose is to
assign exogenous probabilities to events and then attempt to discover patterns
whose number of occurrences differs by some proportion what would be expected
given these probabilities. In the example of intrusion detection we would assign
the probabilities of events to reflect the frequency of events in the presence of
no intruders. Then if an intrusion did occur, it would presumably cause some
unexpected pattern of system calls which can be an indication of this event.

-4s wi l l be demonstrated in Section 3, the new measure of interestingness
requires discovery techniques that significantly differ from the methods used for
the discovery of frequent patterns. The main reason for that is that unexpected
patterns are not monotone. These notions will be made more precise in Section 3.

Class TV. Discoven. tasks of Class IV involve discovery of new rules con-
sisting of interesting relationships among predicates. An example of a temporal
pattern of this type is the rule stating that "If a customer buys maternity clothes
now, she ill also buy baby clothes nithin the next few months."

Discovery tasks of Cla- N constitute challenging problems because, in the
most general case. they contain problems of Class I11 (discovery of new predi-
cates) as subproblems. The general problem of discovering interesting temporal
rules using the concept of an abstmct [I l] has been studied in (71. Discovery of
temporal association rules was studied in [5,25].

In this section, we re\;iewed a characterization of knowledge discovery tasks,
as presented in (101. In the rest of this chapter, we will focus on one specific
Class I11 problem dealiig nith discovery of unexpected patterns. In the next
section, we will formulate the problem. In Section 4 we will present an algorithm
for finding une.qected patterns, and in Section 5 we will present experiments
evaluating this algorithm on several applications.

286 Gideon Berger and Alexander Tuzhilin Discovering Unexpected Patterns in Temporal Data Using Temporal Logic 287

3 Discovering Unexpected Patterns in Sequences: The
Problem F'ormulation

We start this section with an intuitive presentation of the problem and then
provide its more formal treatment.

We want to find unexpected patterns, defined in terms of temporal logic
expressions, in sequences of events. We assume that each event in the sequence
occurs with some probability and assume certain conditional distributions on
the neighboring events. Based on this, we can compute an expected number of
occurrences of a certain pattern in a sequence. If it turns out that the actual
number of occurrences of a given pattern significantly differs for the expected
number, then this pattern is certainly unexpected and, therefore, is interesting
[23,24].

In this chapter, we first present a naive algorithm that finds all unexpected
patterns (such that the ratio of the actual number of occurrences to the expected
number of occurrences exceeds a certain threshold). After that, we present an
improved version of the algorithm that finds most of the unexpected patterns
in a more efficient manner. We also experimentally compare the naive and the
more efficient algorithms in terms of their performance.

More formally, let E = {a, P, y, . . .) be a finite alphabet of events. We use a
subset of propositional linear temporal logic to discover temporal patterns over
the events. The basic temporal operators of this system are (a beforek P)
which intuitively means that a occurs followed by an occurrence of a within
k subsequent events, a N P (0 next P) a occurs and the next event is P, and
a U P (a until p) which means before P occurs a sequence of a ' s occurs. This is
often called the strong until [26]. While the before operator is actually redundant
as a B P can be expressed as -.(-Ic~UP) we have chosen to include it separately
for simplicity and efficiency. A pattern of events is defined as a conjunction of
ground events over these operators. For example, the simplest case is aNP. Some
additional examples are (GU((aNP)By)) and aNPNy.

In the pattern discovery algorithm presented in Section 4.2 we consider the
following fragment of the Propositional Temporal Logic (PLTL). The syntax of
this subset is as follows. The set of formulae of our subset is the least set of
formulae generated by the following rules:
(1) each atomic proposition P is a formulae;
In\ .c- P is a formula and q is a formula containing no temporal operators then

5 $ 8 9 B ~ q , p ~ q , q ~ p , qBKp, q ~ p are formu~ae.~
: assume an exogenous probability distribution over the events. While these

WQ 0 y rr. g may be dependent or independent, depending on the problem domain of -
6 O p -
g %, gnore disjunctions because what seems to occur in practice when disjunctions are
E td ?i. ved is that the disjunction of a very interesting pattern, E , with an uninteresting
b E m 5. 8 ern, F , results in an interesting pattern E V F . This occurs not because E V F truly
Q s any insight into our problem domain but rather because the interestingness

.!$: "drags up" the interestingness measure of E v F to the point where it also
7 kmes interesting. We choose instead to simply report E as an interesting pattern. a decision to omit conjuctions and negation will be made clear shortly.
B

interest we assume independence of the events unless explicitly stated otherwise.
For instance, in the application we consider in Section 5.3, events are described
as hits on Web pages. In this case the probability that a user goes from Web
page P to Web page Q is clearly dependent on the links that exist on page P.
In other cases independence may be more appropriate. In any case, given an a
priori set of event probabilities, we can compute expected values for the number
of occurrences of any temporal pattern in our string. For example, the expected
number of occurrences of E[aBP], assuming the events a and P are independent,
can be computed as follows. Let Xn be the number of occurrences of the pattern
a B P up to the nth element of the input string and an the number of a 's up to
the nth element of the input string. Then

Therefore,

EBXnl- E[Xn-I] =: P r [a] ~ r [~] (n - 1)

Also, E[X2] = Pr[a]*Pr[,B]. From this recurrence equation, we compute E [~ B K P]
for the input string of length N as

The expected number of occurrences of patterns of other forms can be similarly
computed as

As was stated earlier, we will search for the unexpected temporal patterns in
the data, where unexpectedness is defined as follows:

Definition 1 Let P denote some temporal pattern in string S. Let ABP] be the
actual number of occurrences and E[Pj the expected number of occurrences of
pattern P in S. Given some threshold T , we define a pattern P to be unexpected

288 i id eon Berger and Alexander Tuzhilin

> T . Themtio E p is coiled the Interestingness Measure (IM) of the

pattern P and will be denoted as IM(P).

This is a probabilistic measure of interestingness whereby a pattern is unexpected
if its actual count exceeds its expected count by some proportion T . As the
following theorem indicates, however, this is a difficult problem.
P r o b l e m (INTERESTINGNESS) :
Given a string of temporal events V = v l , v2,. . . , v,, does there exist an inter-
esting pattern in V of the form X1BkX2Bk.. . BkXm for an arbitrary m?

T h e o r e m 1 The INTERESTINGNESS problem is NP-complete.

Proof: See Appendix.
While we are trying to find interesting patterns that contain a variety of

temporal operators in an arbitrary order, this theorem states that finding inter-
esting patterns that only use the BEFORE operator is hard. Furthermore, we
would like to put no restrictions on the "interesting" patterns we discover. We
would simply like to find all patterns that are interesting. The following theorem,
however, shows that it is necessary to impose some bounds on the size of the
patterns that we uncover, since in the case of unrestricted patterns, the most
unexpected pattern will always be the entire string.

T h e o r e m 2 Consider a string of temporal events V = v l , vz, . . . , V N and a
temporal pattern T . If the length of T (number of temporal operators in it),
length(T) < < - 1, then there exists another pattern P such that length(P) =
length(T + 1) and I M (P) >_ I M (T) , where the length of a pattern is defined as
the number of events in the pattern.

Proof:

Let A[T] = p and = CY and Z = {a, 22,. . . , zm} the set of all events.
E IT - -

A TNai
We want to prove that 3 zi E Z s.t. EITNZii -

Assume this is not true for zl , r 2 , . . !nd show that it must be true for
2,. By this assumption and because of (1)

>re, A1TNz.l < aPriT]Pr[z,j(N - 1).
g 0 9
rP O U Q -

$ her measure of ~nterestingness is to find patterns P for which AQP]I/EI[P] < T.
2 5 g sroblem can be treated similarly. We have chosen not to search for these patterns
b 2 % Ise they are complimentary to the ones described in Definition 1. If a pattern 4 g o

3 i found to be interesting in our formulation then P will be interesting in this
S
p limentary formulation for some new threshold. Thus in the interest of simplicity

oose to solve these complimentary problems separately and ignore negation.
h

Discovering unexpected Patterns in Temporal Data Using Temporal Logic 289

Then,

m-1 m-l

C A[TNti] < C crPrj[T]Pr[riB(N - 1)

Since, C ABTNzi) = ABT] = P,
i=l

A[TNzm] > P - crPr[T](N - 1)(1 - Prlzml)

- -
P (since - - P

E[T] - Pr[T](N - 1) = a)

Intuitively, this theorem tells us that given an interesting temporal pattern,
there exists a longer pattern that is more interesting. In the limit then, the most
interesting pattern will always be the entire string of events, as it is the most
unlikely.

In order to cope with this, we restrict the patterns that we look for to be of
length less than or equal to some length limit. Of course, still the most inter-
esting pattern we will find will be one whose length is equal to the length limit.
Nevertheless, it is often the case that an interesting pattern that is not the most
interesting provides valuable insight into a given domain as we will see later in
discussing our experiments.

4 Algorithm

4.1 Naive Algorithm

A naive approach to discovering interesting patterns in an input sequence might
proceed as follows. Sequentially scan over the input string discovering new pat-
terns as we go. When a new pattern is discovered a record containing the pattern
itself as well as a count of the number of occurrences of the pattern is appended

290 Gideon Berger and Alexander Tuzhilin

to a list of all discovered patterns. This is repeated until all patterns up to a
user-defined maximum length, have been found. More precisely, the algorithm
proceeds as follows

Definition 2 BEFOREK: A user defined constant that determines the mmi-
m u m number of events that X can precede Y by, for X B K Y to hold.

Input:

- Input String
- Event Probabilities: the exogenously determined probabilities of each atomic

event.
- BEFOREK
- The threshold T for interest&ness. That is the value that, if exceeded by

the interestingness measure of a pattern, deems it interesting.
- Maximum allowable pattern length (MAXL).

Output:

- All discovered patterns P such that I M (P) > T.

Algorithm:

Scan the input s t r i n g t o determine the interes t ingness measure
of each event i n i t , and i n i t i a l i z e l i s t L with a l l these
events
WHILE L i s not empty DO

Amongst a l l t h e pa t te rns of L, choose t h e pa t te rn C
with t h e l a r g e s t in teres t ingness measure as t h e next
candidate t o be expanded.

Expand C as follows. Scan t h e input s t r i n g looking
f o r occurrences of C. When an instance of C is
discovered, expand it both as a pref ix and as a
suf f ix . By t h i s we mean, record a l l occurrences of
(C op X) and (X op C) where op ranges over t h e temporal
operators , and X ranges over a l l events. Final ly ,
compute the interes t ingness of a l l these newly
discovered pat terns C ' .

n
IF Length(C') < MAXL THEN add C ' t o the l i s t L.

3 Z Remove C from L.
ND WHILE

WQ 0 - , S utput in te res t ing pa t te rns .
Q E p -

%%.)te that the algorithm we just presented is tantamount to an exhaustive
E td Y - 5 , i and is therefore not very efficient. We propose a more efficient algorithm,

although is not guaranteed to find all interesting patterns, offers speed up - ninimal loss of accuracy. The idea is to expand on the approach presented
'<
7 / of beginning with small patterns and expanding only those that offer the

tial of leading to the discovery interesting, larger patterns.
5

Discovering Unexpected Patterns in Temporal Data Using Temporal Logic 291

4.2 Main Algorithm

The difficulty involved in finding interesting patterns is in knowing where to
look. When interestingness is measured simply by some count (i.e. the number
of occurrences exceeds some threshold) as is done in [17] it is obvious that for a
pattern to be frequent so must its component partial patterns be frequent. With
this in mind, the technique that has been used in [17] is to expand all patterns
whose count exceeds this threshold and stop when no more exist. When using our
interestingness measure, however, this is not the case. That is, a pattern can be
unexpected while its component sub-patterns are not. This lack of monotonicity
in our interestingness measure is most easily understood with an example.

Example: Let the set of events be E = {A, B , C). Assume the probability
of these events is Pr[Al = 0.25, PrfB] = 0.25,andPr!jC1 = 0.50. Also assume
that these events are independent. Let the threshold T = 2. In other words,
for a pattern to be interesting the value of the actual number of occurrences of
the pattern divided by the expected number of occurrences of the pattern must
exceed 2.0. Consider the following string of events.

ABABABABCCCCCCCCCCCC

(the length of this string N = 20)
Given our probabilities, €[A] = 5 and E[B] = 5 . Also given the expression

for computing expectations for patterns of the form ANB.

Since A[A] = 4 and A[Bj = 4, both of the events A and B are not interesting
(in fact the actual number occurrences of these events was less than what was
expected), but the pattern ANB which occurred 4 times was interesting with

This lack of monotonicity in our interestingness measure results in a significantly
more complex problem especially in terms of space complexity. In the algorithm
for discovering frequent patterns significant pruning of the search space can oc-
cur with each iteration. That is, when a newly discovered pattern is found to
have occurred fewer times than the frequency threshold, it may be discarded as
adding new events to it cannot result in a frequent pattern. With our measure
of interestingness, however, this is not the case. The addition of an event to an
uninteresting pattern can result in the discovery of an interesting one. This in-
ability to prune discovered patterns leads to an explosion in the amount of space

292 Gideon Berger and Alexander Tuzhilin

required to find unexpected patterns. Consequently we are limited to expanding
patterns by only single literals at a time and therefore sill not discover patterns
like ((~ B K @) B K (~ N ~)) , where two patterns of size greater than one are com-
bined ria a temporal operator (before, in this example). This is the reason that
n-e haw not used conjunctions as part of our fra,gnent of temporal logic. Since
our events occur sequentially. it is impossible for conjunctions to arise unless we
espanded patterns by multiple literals at a time. This does present a limitation
of our algorithm and extendmg our fragment further is an area n-e are pursuing
currently.

-1 more efficient algorithm than the naive one for finding unexpected patterns
in\-011~s sequential scans over the string of events discol-ering new patterns with
each scan. A list is maintained of those patterns disco\~red so far. and on each
subsequent iteration of the algorithm the "best" pattern is selected from this I i t
for expansion to be the seed for the next scan. When a pattern P is espanded,
the input sequence is scanned and occurrences of P located. For each of these
occurrences all patterns of the forms XopP and Pop-Y are added to the list of
diss\-ered patterns, n-here op is a temporal operator, N. BK or. U and -Y is a
nriable ranC&g over all events.

Gh-en a pattern to e ~ ~ a n d . aBK3. for example. during the wan n-e %;ill
&.;cover atl patterns. (((1BK3'N7). (- j BK(OBK3)). erc.. . for atl events 7.

The heart of the algorithm is how -best7 patterns are chosen. We u-ill explain
it formally below (in Definition 1), but would like to give some intuition before-
hand. Clearly. n-e n-ould like to define -best" to mean most likely to produce an
interesting pattern during e s p a i o n . BF Theorem 1. s-e knon- that eq~anding
an already interesting pattern must result in the discovery of additional inter-
esting patrern(5). The ~ u € E T ~ o ~ remains. hon-ever. amongt interesting patterns
already diwmred nhich is the b - t candidate for esqxmsion. and if no inter-
esting patterns remain unespmded. are there any uninteresting patterns worth
eqanding'?

Initially. the algorithm wi with a scan of the input string counting the
number of occurrences (and therefore. the frequencies) of individual events. Sub-
sequent to this. n-e continue ro a ~ a n d best candidates until there are no more
candidates n-orthy of e s p a i o n . This notion nill be made clear shortly.

During each scan of the irput string. when a nexv pattern is &.;co\~red,~ a
P.%TTTRXRECORD is created for it consisting of the folloning information:

0 5 " 8 1. Pattern P (e.g ((ON 3 Bn-;)), etc. . . F Z z
0 - 2. Count: How man?- of these patterns n-ere found

CdgQ
B O n
g 0 ua

3. Preremainingop: Oce instance of this value is kept for each tem-
Ch ?'

E td Y poral operator. It represents the number of patterns remaining
io 5 , m to be diisovered for rrhich P is the prefix and the operator con-
9 " ~ 8
s g s necting P to its s&'i is op. HOW these d u e s are calculated dl

m i
": be d i w u s , ~ shortI*(-see Definition 3).
7
I
g In the case of the initial scan r h w n-ill simply be the events.
0 5

Discovering Unexpected Patterns in Temporal Data Using Temporal Logic 293

4. Postremaining-op: Identical to Preremaining-op for suffixes rather
than prefixes.

5. Expanded(boo1ean): Whether or not P has been expanded.

6. INXRESTINGNESSLIST: consists of all events in decreas-
ing order of interestingness amongst events that can potentially
complete P during expansion. One of these lists is kept for pre-
fixes and one for suffixes as well as for each operator next, before,
and until. That is, for a pattern P = aNP, for example, if a pat-
tern yNb has already been discovered then the occurrence of 6
in yN6 cannot possibly complete the pattern (aNP)NX. When
determining the best candidate for expansion we will be inter-
ested in knowing what events can potentially complete all of the
patterns we have already discovered and will ,therefore, make
use of these lists. In fact, this sorted list represents an ordering
of most interesting events that could complete the pattern they
are associated ~ i t h 6.

Definition 3 The FORAf(P) of a pattern P i s a logical expression with all
ground terms i n P replaced by variables.

For example, if P = ((~ N (O B K ~)) B K ~) then FORM(P) = (WN((XBKY)BKZ)).
Given the length of the input string, we can determine the number of patterns

of each form in the input string. For example, given a string of length M, the
number of patterns of form XNY is J f - 1. The number of patterns XBKY is
(-11 - K) K + ((K)(K - 1)/(2)).

Definition 4 Given a pattern P and a n operator op, ActualRemaining(P op
X) is the number of patterns of the form P o p X that have yet to be expanded. This
value is maintained for each operator. op and pattern P. That is, we maintain
a value for PNX, PBKX, XBKP, etc . . . Again, X ranges over all events.

For example. if there are 20 occurrences of P = aBKP in the input string
and 5 patterns of the form ((a f3~3)NX) have been discovered so far, then Ac-
tualRemaining4re-Wext (((~ B K P) NX)) = 15.

We use the following heuristic to determine which discovered pattern is the
best one to expand. Given an arbitrary literal D, the best pattern P for expansion
is the pattern for whom the the value of

is maximal for some 6.

For problem domains with a large number of events, in the interest of scalability,
partial lists may be substituted where only a list of the most interesting events is
maintained.

294 Gideon Berger and Alexander Tuzhilin

This heuristic simply states that the pattern P that is most likely to re-
sult in the discovery of an interesting pattern is the one for whom there exists
a literal 6 such that the expected value of the interestingness measure of the
pattern generated when 6 is added to P via one of the temporal operators is
maximal over all discovered patterns P and literals 6. I t is necessary for us to
use the expected value of the interestingness measure because, although we know
the actual number of occurrences of both P and b, we don't know the number
of occurrences of P op 6 or 6 op P. How this expectation is computed follows
directly from our derivations of expectations in Section 3 and is illustrated in
the following example.

Example: If P = a N P and op iq next, then

where,
K = length of input string
FR(6) = frequency of 6's that could complete the pattern ((aNP)NX)
#P = number of occurrences of pattern P
If op is before,

If P = a B K P and op is next

Similar - arguments are used for any combination of the operators before, next,and

consider the literal 6 which is most likely to result in the discovery of an g 2 2 5 ting pattern when used to complete the pattern P during expansion. We
S IW argue that this measure accomplishes our goal of expanding patterns

6 s p lkely to result in the discovery of interesting patterns. "-5
'O m - e choice of a best candidate for expansion proceeds in two stages. First,

2 he purpose of the INTERESTINGNESSLIST for each discovered pattern.
s g 5 -
Q r n 0

3 tefore and until these definitions are slightly erroneous due to losses of patterns
'<
7 e ends of the input string. These errors are negligible, however, since the length

e input string is much larger than the length of individual patterns of interest
B

Discovering Unexpected Patterns in Temporal Data Using Temporal Logic 295

Each of the INTERESTINGNESSLISTs associated with a pattern P is sorted
in such a way that the event a t the head of the list, when added to P is most
likely to result in the discovery of an interesting pattern. An event D will be
ahead of an event E on this list if, A[GB/E[6] > A[E]/E/[E]. While the expected
values here are computed in the usual way, in this case, the actual values are
not simply equal to the counts of 6 and E, respectively, but rather equal to the
number of 6's and E'S that could potentially be added to P.

Lemma 1 Given two events 6 and E where 6 occurs before E on the
INTERESTINGNESS-LIST then:

ProoEWe prove this result for the next operator.

Assume, E[A[(aNP)NGjl < E[A[(aNP)N&U
E[(aNP)NGII - E[(crNP)Nc]I

Let N be the length of the input stringa. Then

Since # P and FR(6) are constants we can remove them from the expectations
and cancel them on each side of the inequality. So,

Contradicts assumption that 6 occurs before E on the INTERESTINGNESSLIST
The proofs for the temporal operators before and until are done similarly.

So, it is now clear, for each discovered pattern P , which literal when added to
P is most likely to produce an interesting pattern and how interesting we expect
that pattern to be. In the second stage of choosing the best candidate we select
the already discovered pattern which is likely to produce the most interesting
pattern. Intuitively, we are saying that the pattern P most worth expanding is
the one for which there exists a literal that is likely, when added to P, to result
in the discovery of the most interesting pattern.

Here FR(6) and FR(E) represents the frequencies of 6's and c's respectively that
could complete the pattern ((0NP)NX). As discussed earlier this is not equal to the
frequency of all of the 6's and e's in the input string.

296 Gideon Berger and Alexander Tuzhilin

Given these prel imjnq moti~ations, we now present the algorithm:

Input:

- h p u t Strilq
- Ewnt Probabilities
- B E F O R E : as disc~rsed earlier we use a bounded version of the before

o p t o r . BEFOREK is a defined kariable that is equal to the maximum
di4~ancm brr\r~en tn-o events X and Y for S B K E - to hold.

- Rueshold T for interesting=, that is the value that if exceeded by the
interesxia@es measure of a pattern deems it interesting

- \-due of Sfn--TOLWYI>-L\?):. the minimum threshold of interest mess that
a par:- nus haw in order'to become the next pattern for e\-p=-ion. The
dh~ErfL=I ;Fill terruinare if no such pattern remains.

- Si~b11=a 3Uomble partern length

Output:

- E-T cr' krzres~ ing parrerns. their number of occurrences and the d u e of
ki+iYS-g&= meawes

siz 6%- ~r 133113 s t r q t o determine the rnterestlngness
n e ~ ~ z e zf sach even-, XI i t , and l n l t l a l l z e l l s t L a t h
a -Less sTerts ---- - &22 ---..- -:F: exists a pa t te rn ~n L xhose mterestlag?-ess

IL+ZS=S :s gzeater *Am YIH-TO-EXPAY?) DO
Clo=~e-!iar--Cardldat e
-La a z e - v ? such t h a t LENGTH(P) < . U S L xhlch
~ t r r .n?z t s E{A{?opX)/E{PopX)) f o r all t a p o r a l
=Ferzzsrs op c d a l l events X - -
i -
-i -- zzzzerzl P such t h a t LC.IGTH(P) < Y S L vhich - - ;u . '7-73s ECA.(XGF?)/E{XO~P)> f o r all t a p o r a l
s r e r z z r s op a d all events X

3 i? C = c f z r pz t t e ras f o r zhlch P i s the p re f lx o r s u f f i x

t: 2 ' s l z ~ , F a t t e r n s
OQ 0 rr z z z * s ~le-iljr f ourd pa t te rns t o l l s t of already f omd
CdgQ + -
6 O n 32,tT"S

g 0 02
w + C*=~-&dler

E td Y
i o ? m !kscssec! beloir) z; E C.eci->~-ger
- 4 $ 5

3 (&s-sed be lo^) < 33 i-6
7

x z e r e s t m g pa t te rns
B

Discovering Unexpected Patterns in Temporal Data Using Temporal Logic 297

The algorithm continues until there are no more patterns for which (actual
remaining/expected remaining) exceeds some minimum threshold MIN-TOEX-
PAW, a parameter chosen at the outset.
UpdateSmaller : Consider the situation when a pattern CYNP is chosen as the
next candidate. During the scan, patterns of the form crNPNy,
LYNPBKY, etc.. . will be discovered. If, for example, M occurrences of aNPNy
are found then there are M fewer patterns for which PNy is a suffix remaining
to be found. This decreases the chance that PNy will be chosen as a candidate
and this change needs to be recorded.

Likewise, during the scan for aN3, SNaNP may be found to occur L times.
Therefore, the number of remaining patterns of the form 6NaNX to be found
has decreased by L. Again this needs to be recorded.
CheckLarger: Consider the situation when a is chosen as the next candidate.
During the scan n-e will discover some number of aNP, say P. As was discussed
earlier, this implies that there are P patterns of the form aNPNX and patterns
of the formXNaNJ(n-e can make similar statements for the other operators).
Some of these may have already been discovered, however. For example, if y was
already chosen as a candidate, and some PNy were found, and then PNy was
chosen and J f ocurences of aN9Ny were found, then the number of remaining
patterns of the form aN3NX yet to be found is not P but rather P - hi. This
again needs to be recorded.

5 Experiments

lye conducted eqeriments on three different problem domains. The first was a
simple sequence of independent events. This data was generated synthetically.
The second domain A-e considered were sequences of UNIX operating system
calls as part of the sendmail program. The third was that of Web logfiles. In
the last ass . events were dependent.

5.1 Sequential independent events

lye used an input string of length 1000 over 26 different events. In this case,
n-e assumed that each event was equally likely and that the events were inde-
pendent. lye searched for patterns, P , for which Length(P)< 5. Our results are
presented in Table 2. The columns of the above table are as follows:
.Ugorithm - The algorithm used. The naive algorithm, presented in Section 4.1,
represents essentially an exhaustive search over the input string and is guaran-
teed to find all interesting patterns. It is included as a benchmark by which we
measure the effectiveness of the main algorithm. Percentage is equal to the value
for the main algorithm divided by the value for the naive algorithm times 100
for each column respectively. The first number following each algorithm(2 or4)
is the value of BEFOREK used. The second number(3,4, or 6) is the interest-
ingness threshold.

298 Gidwn Berger and Alexander Tuzhilin

Algorithm

Saiw(2.3)
Siain/2,3)

. . --.- ---
1 Main[4.6) 1 1631 10731 127
ipe-%ntage(39.231 34.6% 98.4%

Table 2. Ra-ults for independent sequential data

I . , *

= of &= - The number of sans over the input -9uence n e e s s to discover
al! inra-esxiic patterns found.
= of E~panded Pattern= - The number of patterns &wvered. interesting or
0 t hedTn;.e.
= of Lniere- Pa t t e rn - The number of interming patterns found.

of Scans
416
161

~ain(4.3)
Percentage
Saiw(2.4)
Slain(2.4)
Percentage

B 2 ; s on the results presented in Table 2. the main algorithm did not find
all ince--xing patterns. although it disco\-ered mcm while doing 1-2 m r k than
rke mi^ algorithm. -4.k~ note that the main algorithm was more accurate as
o x r k ~ h o l d for inrermie.gness increased. In other xords. n-hen our algorithm
did IASS i n r e m s g pat ten= they tended not to be the most i n t e r e s .

of Expanded Patterns]# of Interesting Patterns
24891 290
9191 268

-
Sequences of O S S j s t e m Calls

G g 2

Sah~(4.4) 1 4l6i 31051 171

1631 ion(250
39.9%1 31.6%(96.5%

416' 24891 168

@ 8 m n d domain a-e investigated was a -9uence of operating system calls
WQ by a s e n h a i l program. The events com5sted of the 31 different system CdgQ
g o g hzr the program made and our string co~iscred of 31769 q u e n r i a l calls.
g 0 ua

w s : rime of these evperiments we had no knowledge of the actual probabil-
E td Y 5 m f these events. Therefore. we made an assumption that system cab are

lndenr from each other and estimated probabilities of individual events by
.i$ E

3 - the strin,: and counting the number of actual occurrences of each
<
7 For each event E , n-e let Pr[e,] = (number of occurrences of e,),/ (the total

l e ~ g h) . Because of this. the interestingness of each of atomic ex-ent was by
-t

5

161
38.7%

Discovering Unexpected Patterns in Temporal Data Using Temporal Logic 299

919) 16-1
36.9Rl 97.6%

definition exactly 1. This forced us to assign a value to MIN-TOXXPAND that
exceeds 1 or else the algorithm would not even begin. This resulted in more scans
of the input string than were actually necessary to discover interesting patterns
but nonetheless the improvement we achieved over the naive algorithm was con-
sistent with our experiments in other domains (approximately three times). The
following represent a selection of interesting patterns discovered. These were se-
lected because of a combination of their interestingness as well as our confidence
that these actually represent significant events due to the number of occurrences
of them. These results were generated on a run where we allowed strings of up
to length 5.

EVENT :((s igblock NEXT setpgrp) NEXT vtrace)
COUNT :2032

EVENT :(((s igblock NEXT setpgrp) NEXT vtrace) NEXT vtrace)
COUNT :455
ACT/EXP :83.1628

EVENT :(((s igblock NEXT setpgrp) NEXT vtrace) BEFORE sigvec)
COUNT :355
ACT/EXP :52.1150

EVENT : (sigblock NEXT(setpgrp BEFOREK v t race))
COUNT :2032
ACT/EXP :21.5814

EVENT : ((sigblock BEFOREK setpgrp) NEXT vtrace)
COUNT :2032
ACT/EXP :21.5814

EVENT : ((sigpause NEXT vtrace) NEXT lseek)
COUNT :I016
ACT/EXP :106.672

EVENT : (sigpause BEFOREK (vtrace NEXT l seek))
COUNT :I016
ACT/EXP :53.336

EVENT :(sigvec BEFOREK(sigpause NEXT(vtrace
NEXT(1seek NEXT l s e e k))))

COUNT : 29
ACT/EXP :212.349

EVENT :(sigpause BEFOREK (v t race BEFOREK l seek))
COUNT :2032
ACT/EXP :53.336

300 ' Gideon Berger and Alexander Tuzhilin

EVENT : ((v t r a c e NEXT lseek) NEXT l seek)
COUNT :I017
ACT/EXP :35.5112

In these results COUNT represents the number occurrences of the pattern
EVENT and ACT/EXP represents the interestingness of this pattern. Notice a
couple of things. First, most of the interesting patterns that occurred a reason-
able number of times (the ones shown above) were mostly of length 3. There
were, of course, more interesting patterns of longer length but the number of oc-
currences of these patterns was significantly fewer. Also notice that no interesting
UNTIL patterns were discovered. This is because we never saw AAAAAAB, i.e.
all the occurrences of until were of the form AB or AAB which were captured
by NEXT or BEFORE and since fewer instances of NEXT and BEFORE were
expected these proved more interesting,

These system calls are from the UNIX operating system. In the future what
we propose is to assign probabilities of atomic events based on their frequencies
in a period when we are confident no intrusions to the network occurred and
then see if we can discover interesting patterns that correspond to intrusions.

5.3 Web logfiles

Each time a user accesses a Web site, the server on the Web site automatically
adds entries to files called togfiles. These therefore summarize the activity on
the Web site and contain useful information about every Web page accessed a t
the site. While the exact nature of the information captured depends on the
Web server that the site uses, the only information we made use of was the user
identity and the sequence of requests for pages made by each user. The Web
site we considered was that of one of the schools at a major university. The
users we considered were the two most frequent indzuidual users. It is important
to recognize that the Web logfiles simply tell us the hostname from which a
request originated. Typically, there are a large number of users who may access
a Web site from the same host, and the hostname, therefore, cannot be used
to definitively identify individual users. We attempted to identify, with some
confidence, frequent hostnames that did indeed represent individual users. We

two Web logfiles for our experiments. First, we considered a synthetic Web
5 $ 8 This included a Web site with 26 different pages and 236 total links. We

an input string of length 1000 representing 1000 hits on pages of the site.
" :.is case events were hits on Web pages. Probabilities were, of course, not
Cd 0

6 % n ~endent. The probability of a user reaching a given Web page is dependent
g 0 02
; le page he is currently at. In order to compute a priori probabilities of each

io 5 m we declared several pages to be equally likely "entrance points", to the Web

5 If there were N "entrance points" then each has a & chance of occurring.
3 is one of these "entrance points", P has K links on it and one of these links <
7 page G then the probability of G occurring is (&)(&). By conducting an

ustive breadth-first search we were able to calculate the probabilities of each
2

Discovering Unexpected Patterns in Temporal Data Using Temporal Logic 301

event occurring (i.e. each page being "hit"). When calculating expectations for
various patterns, we used conditional probabilities. So, for example, the EfAN B]
is no longer Pr[A]Pr[Bl(K - I), where K is the length of the input string. I t
is now Pr[A]Pr[BIA](K - 1) = Pr[A](l/#of links in page A)(K - 1) if there
is a link from A to B and 0 otherwise. Our results for this data are presented

[Algorithm I# of Scans/# of Expanded Patterns]# of Interesting ~atternsJ
1 Naive2 I 6341 13561 4641

in Table 3. The interestingness threshold for these experiments was 3.0. Once
again our algorithm was able to find most interesting patterns while examining
much less of the search space than the naive algorithm did.

Finally, we considered data from an actual Website from one of the schools
of a major university. There were 4459 different pages on this site with 37954
different links between pages. We used Web log data collected over a period of
nine months and selected out the two most frequent individual users of the site,
both of whom accounted for more that 1400 hits and used these sequences of
hits as our input string. Our experiments using this data were less enlightening
than when we used synthetic data. The main algorithm found only a handful
of interesting patterns of length greater than two. In fact, when we applied the
naive algorithm we found that there were few more interesting patterns to be
found a t all. More specifically, the main algorithm found 2 and 3 interesting
patterns of length greater than two in our two input strings, respectively. The
naive algorithm found 3 and 3. The primary reason for the lack of interesting
patterns of greater length was that the size of the Web site dominated the size
of the input string. The fact that there were 4459 pages and our input strings
were only of length 1400 made the expected number of occurrences of each event
very small. So small, in fact, that even a singIe occurrence of many events proved
interesting.
Additional factors that compounded the problem are:

1. Changing Web Structure . The Web architecture from which
we built the graph that the algorithm was run on was from a
single moment in time(we captured the structure of the Web
site, including the links, on a single day, and extrapolated it to
9 months of Web log data). Over this period there were some
changes to the Web site. This creates some difficulties in that
the Web logfiles showed that users linked from pages to other

-- -
437

94.2%
462
437

94.6%

Main2
Percentage

Naive4
Main4

Percentage
Table 3. Results for synthetic Web logfile data.

239
37.7%

654
245

37.5%

528
38.9%

1564
568

36.3%

302 ' Gideon Berger and Alexander Tuzhilin

pages where links did not exist in the Web we were considering.
In fact, there were visits to pages in the Web log data that did
not exist in the site we were using. This had the effect of forcing
the expected number of occurrences of any patterns that in-
cluded these pages or links to be zero and thus never considered
interesting either as patterns or candidates.

2. Multiple Sessions. While each input string we used had a
length greater than 1400 events, these Web hits spanned many
sessions. In fact, the average session length was approximately
10 hits. The last hit from one session immediately preceded the
first hit of the NEXT session in our input string. Normally, how-
ever, a link did not e&t from the last page of the first session to
the first page of the NEXT session. Therefore, once again this
had the effect of forcing the expected number of occurrences
of any patterns that included this sequence of pages to be zero
and thus never considered interesting either as patterns or can-
didates.

3. Caching. Consider what sequence of hits appears in Web log
data if a user goes to pages A, B, C, D in the following order
A -+ B 4 C -+ B -+ D. Normally, what occurs is that a
request is made(and therefore logged) for page A then page B
then page C then, however, when the user goes back to page
B no request is made of the server because this page has been
cached on the users' local machine. Finally, a request for page
D will be made and logged. Therefore, this sequence of hits will
appear in the Web log data as follows: A -+ B -+ C -+ D. If no
link exists from page C to page D then once again the expected
number of occurrences of any pattern including this sequence
of events will be zero. Given the wide use by Web users of the
BACK button, the effect of caching is substantial.

4. Local Files. Finally, many pages that appeared in the Web
log data did not appear in the Web site we were using because
they were files kept on individuals local machines in their own
directories, rather than on the Web server. These pages had the

n same effect as the changes made in the Web over the nine month 3 z g
;.3 e period.
k. E :
CdgQ
6 O p sons Learned. The primary cause of our lack of success in finding interest-
g 0 ua 5 patterns in the use of our university Web site was the fact that the size of the E td -
b 5 m was very large in comparison to the size of the input strings we considered.
m 5' 8 5 g ; are planning to obtain Web logfiles spanning a longer period of time, for

n o
3 laller and more stable Web site. We are also considering various models to
'<

with the loss of patterns that we experienced due to the multitude of user
ions.

-t

5

Discovering Unexpected Patterns in Temporal Data Using Tempor& 303

6 Conclusions and Future Work

In this chapter, we reviewed the characterization of different knowledge discovery
tasks in temporal databases (as summarized in Table 1) and focused on a Class
I11 problem of generating unexpected predicates. In particular, we presented
an algorithm for finding unexpected patterns, expressed in temporal logic, in
sequential databases. We used multiple scans through the database and the s t e p
by-step expansion of the most "promising" patterns in the discovery process.
To evaluate the performance of the algorithm, we compare it with the "naiven
algorithm that exhaustively discovers all the patterns and show by how much our
algorithm outperforms it. We also use our algorithm for discovering interesting
patterns in sequences of operating system calls and in Web logfiles.

In its current implementation, our algorithm discovers temporal patterns
only of a certain type (described in Section 3). As a future work, we plan to
extend our algorithm to include more complex temporal logic expressions. We
also plan to extend our methods to discovering unexpected patterns in temporal
databases, where the patterns will be expressed in first-order temporal logic.
Finally, we plan to apply our algorithm to the problem of intrusion detection, as
well as to a more suitable Web site having fewer HTML files and more traffic.
We expect to find more interesting patterns for such a site.

We are also interested in pursuing some of the complexity issues that arose
in the NP-hardness proof. Specifically, The problem CLIQUE that we reduced
from is actually SNP-complete [19] which is a class of languages that has some
interesting properties we are investigating. In addition, we are considering a p
plication of Ramsey's Theorem to our problem domain.

7 Acknowledgments

The authors wish to thank Bud Mishra from the Computer Science Department
at NYU for his general input to the contents of this chapter as well as specifically
for his help with the proof of Theorem 1.

A Appendix: Proof of Theorem 1

Problem: Given a string of temporal events V = vl,v2,. . . , v,, does there exist
an interesting pattern in V of the form X1BkX2Bk.. . BkXm for an arbitrary m?
The following proof shows that this problem is NP-complete.

Proof of Theorem 1: We show that our problem is NP-hard by proving that
CLIQUE INTERESTINGNESS. The reduction algorithm begins with an in-
stance of CLIQUE. Let G = (V, E) be an arbitrary graph with IVI vertices and
IEl edges. We shall construct a string of events S such that an interesting pattern
of the form elBkez.. . Bkem exists if and only if G has a clique of size m. The
string is constructed as follows. Each vertex vl , vz, . . . , vlvl, in the graph G will
become an event in our string S, i.e. our events are el, e?, . . . , elvl. Additionally
we will make use of (IVI + IEl)m "dummy" events called dl, dz,. . . , d (l ~ l + I ~ I) m ,

404 Gideon Berger and Alexander Tuzhilin

Fig. 2. The graph G(V, E) with vertices vl, vz,. . . , ve and a clique C of size 4. C =
Iv2,v3,v4,v5)

where m is the value from the CLIQUE problem. Based on each vertex vi E G
a substring will be created. The associated event ei will be called the "genera-
tor" of this substring and the substring will be "generated" by the event. The
concatenation of these substrings will be the string S. Initially, the vertices in
G are arbitrarily ordered 1,2, ...I V). Then for each associated event ei, in order,
we create the substring based on ei by listing, again in sorted order, the list
of vertices(actua1ly their associated events) ej, for which there exists an edge
(v,, vj) E E plus the event eilVl times. For example, the substring generated by
e2 for the graph in Figure 1 would be

since there are edges in G from v2 to each of e3,ee, and e5. Following each
substring generated in this fashion we concatenate a substring of all the dummy
events in sorted order. As will be seen shortly these dummy events are used
to separate the substrings of events e, and therefore no dummies are needed
following the substring generated by elvl. Thus, for the above graph the string

4: 0

.$;otal lengthof S will be 21~)+1V)~+(/V(-l)([IvI+[El)m). This can beseen
lows. The substring generated by ei will have [VI occurrences of ei plus one

Discovering Unexpected Patterns in Temporal Data Using Temporal Logic 305

occurrence of each event ej such that (vi, vj) E E (deg(vi)). Summing over all
vertices i the total length of these substrings will equal 21EI + IVI2. In addition
there will be a total of]V1 - 1 occurrences of the substring dldz . . .d(lE1+IVl)m
with a total length of (IVI - l)(((VI + (E1)m). The string S can clearly be
constructed in polynomial time as it is polynomial in the size of the graph.

Given that our problem allows for an exogenous assignment of probabilities
we will assume that all of the events are equiprobable. That is

for X = e, or d,, i E 1.. . IVl, j E 1.. .(let + IV1)m. Since each dummy event
occurs exactly IVJ - 1 times and each event e, occurs [VI times in the sub-
string it generates plus an additional deg(lV1) times elsewhere, these exogenous
probabilities are not consistent with the actual probabilities of the events in S
as the events corresponding to vertices occur more frequently than the dummy
events. It is possible to define the probabilities so that the assigned probabilities
of the dummy events is consistent with their actual frequencies but this requires
a somewhat more complicated construction and proof and offers little insight
into the problem so we have chosen to proceed as described above.
Let BEFOREK = IVI + /El.

The expected number of occurrences of a pattern

= (n - K(L - ~)) K ~ - ' P ~ [x ~] P x ~ . . . Pr1X~1, else

where K = BEFOREK and n = IS/. This can be derived in a manner analogous
to how expectations were derived in section 3. It can be seen that in the special
case of L = 2 this formula reduces to the one derived previously for EIBk]l.

For the case where K = (VI + IEI,n = 21El-t JVI2 +- (IV) - l)((lV) + JEl)m),
and L = m we will call the value of this expectation 6. Let the interestin~ness
threshold

The relevance of this value is that if a pattern of the form X1BkX2.. . BkX, is
instantiated only with events e,(no dummies) and it occurs at least JVlm times
it will be deemed interesting. If it occurs lVlm - 1 times it will not. This will be
discussed in further detail shortly.

We must now show that this transformation from CLIQUE to INTEREST-
INGNESS is a reduction. First, suppose a CLIQUE vl, vz, . . . , v, exists in G
and therefore corresponding events el , e2, . . . , e , exist in S. Note that here the
indexes of the vertices and events are not intended to suggest that the clique

506 Gideon Berger and Alexander Tuzhilin

must consist of the first m vertices in the original ordering but rather are used
for ease of exposition. Of course these v l , . . . , vm(and e l , . . . , em) could represent
any collection of m vertices(events) although we will continue to assume that
they are in sorted order. By construction, the substring generated by el will
include

For an arbitrary i the substring generated by ei will include

Each substring will contain IV/ occurrences of the pattern el BkezBkesBk.. . &em
and there are m such substrings so the total number of occurrences of this pat-
tern is \Vim. Thus

AlelBk. . . Bkeml -- JVIm > -
EielBkez.. . &em] E

Conversely, suppose that an interesting pattern of the form XlBkX2 . . . BkXm
exists. We must show that a corresponding CLIQUE of at least size m exists in
G. The following lemma is the basis for our showing this.

Lemma 1. If an interesting pattern exists then it consists only of events e,,
containing no dummy events.

Proof: We have already seen that if a CLIQUE of size m exists in G then an
interesting pattern exists in S. Thus interesting patterns are possible. What is
left to show is that if

- a pattern consists only of dummy events then it can't be interesting, and
- if a pattern consists of both dummy events and events ei it can't be inter-

esting

Assume we instantiate the pattern P = X I B k . . . B k X m with j dummy events
and m - j events e, where j = 1 . . . m. Note that given our definition of BE-
FOREK for any pattern of this form its total length, i.e. the distance in the

2 . S from X I to X m can be at most (IEl + 1Vl)m. Therefore, if a pattern

5 $ ins any dummy events these occurrences must occur only at the beginning
Z I of the pattern since any dummy event is part of a substring of ((EI+IVI)m

% 3 1y events. That is there cannot exist a dummy event d3 in the pattern such
B g ~n event e, occurs before d3 in the pattern and an event ek occurs after it.
0 0 ua

$ 111 assume, without loss of generality, that the j dummy events all occur at
io $ d of the pattern. We will next count the maximum number of occurrences g z z 2 terns of this form.

3-
4
p re may, of course be vertices that are not part of the clique that are connected
2 ;ome edge to e,. These vertices would also be included.
2

Discovering Unexpected Patterns in Temporal Data Using Temporal Logic 307

Each of the m - j events e, generates a substring in S. In that substring
the event e, occurs jV1 times and all other events occur once. In addition, in
the substring of d & n y events immediately following this substring each event
occurs once. Thus, there can be at most (V(occurrences of the pattern P that
include events from the substring generated for each ei. There are a total of m- k
events e, in the pattern and therefore a maximum of (m - j)(VI occurrences of
P that include these substrings. In addition, there exist IVI - (m - j) substrings
generated by events not in P. In each of these substrings P can occur at most
once since each event in P occurs at most once in a substring that it did not
generate. This can result in a maximum of IVI - (m - j) additional instances
of P for a total of (m - j + 1)IVI - (m - j) occurrences of P. This expression
is maximized if j = 1 in which case the maximum number of occurrences of
P = m(VI - m + 1. Since

mlVI - m + 1
E

< T

where E: is again the expected number of occurrences of this pattern,this pattern
cannot be interesting. C1

We now know that any interesting pattern can consist only of events e,.
We also know that each occurrence of an interesting pattern can include only
events generated by a single e, (since BEFOREK < (!El + JVl)m, the length
of the dummy substrings separating event substrings generated by each event).
Furthermore, we can use an argument identical to the one used in the proof of the
above lemma to show that for at least mlVl occurrences of a pattern to exist at
least mlVl of them must include the generating event from which all the events
in this instance came. In other words, if an interesting pattern e l B k . . . Bkem
exists then there must be at least mlVl instances which include the e, that
generated the substring from which all the other events came. To see this note
that each time an instance of a pattern that includes a generating event occurs,
IVI instances will actually occur, one for each copy of the generating event in
the substring it generated. Let us assume that only (m - 1)IVI instances of a
pattern exist that include the generating event from which all other events in
this instance came.'' In all the other substrings generated by events not in the
pattern there can be at most one instance of the pattern since each event occurs
at most once in a substring it did not generate. There are IVJ - (m - 1) such
events so the total number of instances would only be mlVI - m + 1. Therefore,
for a pattern to occur at least m(Vl times and thus to be interesting there must
be mlVf instances that include the generator of the other events in that instance.
Since each generator results in IVI instances there are m generators that are part
of instances. The m vertices that correspond to these m events form a clique in
G. This is clearly true since for any of the e, amongst these m generators there
is an edge from itself to each of the other generators.

Finally, note that this problem is also in NP and therefore NP-complete
since given a certificate(i.e. an instantiation of our pattern in this case) we can

lo There cannot be any more than this unless there are mlVl since they come in mul-
tiples of IV).

s.

308 Gideon Berger and Alexander Tuzhilin Discovering Unexpected Patterns in Temporal Data Using Temporal Logic 309

check i f i t is interesting by simply scanning over S. This clearly can b e done in
polynomial time. 0

Notice tha t we have phrased our NP-hardness problem as "Does any inter-
esting pattern exist?" We could have just as easily posed the question "Do p
interesting patterns exist"? Our proof can be trivially extended t o accomplish
this by enforcing that the d u m m y events always contain p- 1 interesting patterns
and that the pth interesting pattern only occur i f a clique o f size m exists i n G.
Our decision t o enforce tha t the d u m m y events contain no interesting patterns
and t o thus pose our question as we did was rather arbitrary.

References
"

1. R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in sequence
databases. In In Proc. of the conference on foundations of data organizations and
algorithms (FODO), October 1993.

2. R. Agrawal, T . Imielinsky, and A. Swami. Mining association rules between sets
o f items in large databases. In Proceedings of ACM SIGMOD Conference, pages
207-216, 1993.

3. R. Agrawal, K-I Lin, H.S. Sawhney, and K. Shim. Fast similarity search in the
presence o f noise, scaling, and translation in time-series databases. In In Proc. of
the 21st VLDB conference., 1995.

4. R. Agrawal, G. Psaila, E. Wimmers, and M. Zait. Querying shapes o f histories. In
In Proc. of the 2lst VLDB conference., 1995.

5. R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. of the Interna-
tional Conference on Data Engineering., March 1995.

6. W . A . Ainsworth. Speech recognition by machine. Peter Peregrinus Ltd., London,
1998.

7. D. Berndt. AX: Searching for database regularities using concept networks. In
Proceedings of the WITS Conference., 1995.

8. D. J . Berndt and J . Clifford. Finding patterns in time series: A dynamic program-
ming approach. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-
rusamy, editors, Advances i n Knowledge Discovery and Data Mining. AAAI Press/
T h e MIT Press, 1996.

9. C. Bettini, X.S. Wang, and S. Jajodia. Testing complex temporal relationships
involving multiple granularities and its application to data mining. In Proceedings
of PODS Symposium, 1996.

10. J . Clifford, V. Dhar, and A. Tuzhilin. Knowledge discovery from databases: The
NYU project. Technical Report IS-95-12, Stern School o f Business, New York
University, December 1995.
V. Dhar and A. Tuzhilin. Abstract-driven pattern discovery in databases. IEEE 3~~ F Z z 'l?r-ansactions on Knowledge and Data Engineering, 5(6), 1993.

, C. Faloutsos, M. Ranganathan, and Y . Manolopoulos. Fast subsequence matching
+c ' in time-series databases. In In Proceedings of the SIGMOD conference., 1994.
$;g D.Q. Goldin and P.C. Kanellakis. On similarity queries for time-series data: con-
;j to E straint specification and implementation. In In Proc. of the 1st Int'l Conference

5. " on the Principles and Practice of Constraint Programming. LNCS 976, September 9". 8 2 Z + 1995.

,I P. Laird. Identifying and using patterns in sequential data. In Algorithmic Learning
7 Theory, 4th International Workshop, Berlin, 1993.
I

15. J.B. Little and L. Rhodes. Understanding Wall Street. Liberty Publishing Com-
pany, Cockeysville, Maryland, 1978.

16. H. Mannila and H. Toivonen. Discovering generalized episodes using minimal
occurrences. In Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining, Portland, Oregon, August 1996.

17. H. Mannila, H. Toivonen, and A. Verkamo. Discovering frequent episodes in se-
quences. In Proceedings of the First International Conference on Knowledge Dis-
covery and Data Mining, Montreal,Canada, August 1995.

18. B. Padmanabhan and A. Tuzhilin. Pattern discovery in temporal databases: A
temporal logic approach. In Proceedings of the Second International Conference
on Knowledge Discovery and Data Mining, Portland, Oregon, August 1996.

19. C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
20. H.V. Poor. An Introduction to signal detection and estimation. Springer-Verlag,

New York, 1988.
21. L.R. Rabiner and S.E. Levinson. Isolated and connected word recognition: Theory

and selected applications. In Readings in speech recognition. Morgan Kaufrnann
Publishers, San Mateo, CA., 1990.

22. P. Seshadri, M. Livny, and R. Ramakrishnan. Design and implementation o f se-
quence database system. In Proceedings of ACM SIGMOD Conference, 1996.

23. A. Silberschatz and A. Tuzhilin. On subjective measures o f interestingness in
knowledge discovery. In Proceedings of the First International Conference on
Knowledge Discovery and Data Mining, Montreal, Canada, August 1995.

24. A. Silberschatz and A. Tuzhilin. What makes patterns interesting in knowledge
discovery systems. IEEE Pansactions on Knowledge and Data Engineering, 8(6),
December 1996.

25. R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and perfor-
mance improvements. In Proceedings of the International Conference on Extending
Database Technology, 1996.

26. J . van Leeuwen. Handbook of Theoretical Computer Science: Volume I3 Formal
Models and Semantics. The MIT Press/Elsevier, 1990.

27. J. T.-L. Wang, G.-W. Chirn, T . G . Marr, B. Shapiro, D. Shasha, and I<. Zhang.
Combinatorial pattern discovery for scientific data: Some preliminary results. In
Proceedings of ACM SIGMOD Conference on Management of Data, 1994.

28. L. Zadeh. The role o f fuzzy logic in the management o f uncertainty in expert
systems. In fizzy Sets and Systems, vol. 11, pages 199-227. 1983.

