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Abstract 

This paper describes an Electronic Butler (or e-Butler) that provides a customer-centric personali,-ed 

shopping services to its subscribers across a wide range of products. This service is provided by 

identifying individual customer's shopping needs from the comprehensive purchasing history of that 

person and providing purchasing recommendations or direct purchasing decisions for the customer. e- 

Butler service consists of two components -- the Personal Shopping Assistant (PSA) service that provides 

purchasing recommendations to the customer and the Magic Wand (MW) service that directly makes 

purchases it believes the customer needs without any prior consultations with the customer. In order to 

understand how PSA and MW services of e-Butler are related to the existing one-to-one marketing and 

recommender systems, a general framework classifying various personalized shopping services is 

presented that clearly delineates PSA and MW services from these existing systems. Moreover, the paper 

presents an architecture of the e-Butler service, explains what its business value is, discusses its 

feasibility, and describes what needs to be done to make it a successful service. 
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1. Introduction 

We constantly make various purchasing decisions in our daily lives ranging from the decisions on which 

groceries, to which clothes, books, and appliances, to which cars and houses to buy and where. Since our 

daily lives are becoming increasingly busy and we are becoming increasingly pressed for time, these 

purchasing decisions look more and more as nuisances to some of us. Wouldn't it be wonderful to 

delegate at least some of these decisions to somebody else? 

Well, not all of these decisions can be delegated to others. For example, buying a house, a car, or some 

other complex and expensive "big ticket" item cannot be delegated easily. In more general terms, it is hard 

to delegate unstructured and semi-structured purchasing decisions to others. Therefore, we will focus in 

this paper only on the structured purchasing decisions', such as buying groceries, books, CDs, etc. 

The desire to delegate buying decisions to somebody else existed for many centuries. For example, in one 

of the Russian folk tales, the main hero learns certain magic words2 and, when he utters these words, 

suddenly, delicious foods start arriving out of thin air and jumping straight into his mouth, or beautiful 

clothes would replace his old shabby clothes3. Thus, there is no need for the hero to figure out what foods 

to buy and where, what to cook for dinner, which clothes to buy and where -just say the magic words, 

and your consumer needs are instantly fulfilled. 

This story projects the ultimate consumer paradise or, using mathematical terminology, the limit that can 

never be attained, and that can only exist in fairy tales. However, this limit gives us some vision of what 

we can strive for. After all, as one of the songs of the by-gone communist era in the former Soviet Union 

goes, "Mi rozhdeni chtob skazku sdelat' bilyu" (we are born to make a reality out of a fairy tale). The 

main question, of course, is how closely we can approach this limit. We will address this question in this 

paper. 

Rich people in the past tried to approach this limit by using help of personal assistants, housekeepers, 

and butlers. A butler would know all the idiosyncratic tastes and desires of his master and would take the 

responsibility of making many day-to-day purchasing decisions with limited or no consultation with the 

master. Unfortunately, this type of service could be afforded only by the well-to-do people in the past. 

' Although we are focusing on pzirchasing decisions in the paper, our ideas can be applied to other types of 
decisions that are based on transactional histories, such as medical decisions relying on patient's medical 
histories (e.g. which medical examinations to do and when, which treatments to prescribe, etc.), internet-based 
decisions (e.g., which sites to visit, which ads to show), etc. 
2 The Russian words are "Po schootchemy veleniyu, po moemu hoteniyu," which mean in English "According to 
pike's orders, according to my wishes ..." 
3 Similar tales exist, of course, in many other nations. 
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In this paper we argue that Information Technology can bring this type of service to the masses through 

the creation of an Electronic Butler (or e-Butler) service. e-Butler provides a personalized shopping 

service to its subscribers by identifying individual customer's shopping needs and either giving him or her 

purchasing recommendations across a wide range of products or making purchases directly without any 

prior consultations with the customer. 

The idea of an e-Butler is not entirely new. Some of its elements have already been implemented within 

the framework of concierge services [Peppers&Rogers98], one-to-one marketing [Peppers&Rogers93, 

Pine et a1 951 and recommender systems [CACM97]. The concierge services, provided by such 

companies as World Class Concierge, ConciergeQLarge, Les Concierges, and Capitol Concierge, meet 

individual clients needs by managing an array of activities for them. Some examples of such activities 

include obtaining tickets to various events on a world-wide basis, locating hard-to-find items, arranging 

travel, making hotel and restaurant reservations, organizing itineraries for the clients, organizing 

meetings, and planning events. These activities are targeted to corporate as well as individual clients and 

save them time and trouble of organizing these activities on their own. Many companies, such as 

American Express, Visa, Mastercard, and General Motors, have adopted concierge services as a value- 

added amenity. However, concierge services are examples of passive services: the clients have to 

explicitly initiate a request for specific services they need. Moreover, concierge services are still very 

labor-intensive: they employ people who take care of customers requests. 

In contrast to this, one-to-one and recommender services take a more proactive and more automated 

approach to helping their customers. They recommend them new products often without waiting for 

customers requests. Moreover, it is software rather than people who provides personalized 

recommendations. Some examples of recommender services are First! from Individual Inc., Instant 

Recommendations and BookMatcher from Amazon.com, and Catalog Navigator from Firefly. However, 

e-Butler is quite different from these services. Most of these one-to-one and recommender services take a 

business-centric approach to providing personal recommendations about a narrow set of products. The 

provided recommendations are business-centric because they usually pertain to the group of products 

offered by these companies, such as books by Amazon.com, customized news from Individual, etc. 

Moreover, as will be explained below, most of these recommendations require extensive inputs and/or 

feedback from the customers. Therefore, they are applicable to a narrow set of products. In contrast to 

this, the e-Butler service provides a customer-centric personalized shopping alternative across a wide 

range of products. Moreover, it not only provides purchasing recommendations, but also makes actual 

purchasing decisions in some cases. These differences between today's one-to-one and recommender 

services and e-Butler will become more apparent when we present a framework for the personalized 

shopping services in Section 3 and explain how existing systems and e-Butler fit into different places of 
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this framework. 

In more general terms, there is a gap between the existing one-to-one and recommender services on one 

hand and the "limit" described before in the Russian fairy tale on the other hand. In this paper, we will 

explore this gap and examine how the e-Butler service fills certain parts of this gap. In particular, we will 

explain what e-Butler service is, how it works, and will present its architecture. Moreover, we will 

explain what value it provides to the customers subscribing to the service. We will also examine how 

feasible is the e-Butler service and discuss what needs to be done to make it successful. 

2. State of the Art 

The idea of an e-butler system is not entirely new. Elements of it have already been implemented within 

the framework of one-to-one marketing [Peppers&Rogers93, Pine et a1 951 and recommender systems 

[CACM97] that collectively fall into the category of personalized shopping services. In particular, 

several companies, such as American Express, MCI, Individual, Amazon.com, and Peapod L P , ~  have 

developed such services that we describe below. These services are made possible because of the recent 

development of pevsonalizatioR technologies, introduced by such companies as Firefly, Net Perceptions, 

Open Sesame, LikeMinds, and others. 

American Express launched in 1997 the CustomExtras program that offers merchants, who accept their 

card, the ability to print their own promotional personalized messages on the monthly statements of the 

selected AmEx cardholders that the merchant has identified as their target market (mostly based on the 

past purchasing history with that merchant). To support the CustomExtras program, American Express 

has deployed a very large database that tracks information about customer's purchases, as well as 

numerous rewards and promotions offered by different merchants. 

MCI has developed a decision support system (DSS) that constructs calling history profiles of individual 

customers. Customers' profiles are then scored in order to predict their propensity to use additional MCI 

services, such as international calling. The resulting recommendations of this DSS system are 

subsequently transferred to the MCI telemarketing system and are used for the cross-selling purposes. 

MCI credits this system with helping to increase average customer billings. 

Peapod, Inc. is one of the leading interactive, on-line grocery shopping and delivery services based in 

Evanston, Illinois. It allows its customers to access Peapod's on-line groceries shopping catalogue and 

' This is, certainly, not a complete list of companies embracing the concepts of one-to-one marketing and trying 
to recommend some of their products and services to customers on an individual basis. However, we believe that 
this is a fairly representative list of companies making impact on this area. 
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select products the customer wants to buy. Then the purchased products are delivered to the customer's 

door by Peapod delivery services. The company currently provides grocery services in eight metropolitan 

markets in the U.S. and serves over 60,000 households. As a part of its operations, Peapod provides a 

virtual supermarket for an individual customer that best suits him or her. Customers may request the lists 

of available products by category, by item, by brand, or what is on sale today. They can also create and 

save their preferred shopping lists or groups of items they typically buy together (e.g. milk products). 

Peapod also tries to learn about customers' shopping experiences. At the end of the session it asks "How 

did we do on the last order?" and uses this customer feedback to improve one-to-one relationships with 

individual customers. In addition, Peapod views delivery as another opportunity to interact with its 

customers: the delivery person asks questions about customer satisfaction with Peapod's service and for 

suggestions to improve it. Customers' feedback has prompted the company to make several changes to its 

services, including providing nutritional information, making faster deliveries (at additional price), and 

delivering alcoholic beverages. 

Another category of companies, such as Amazon.com, BarnesandNoble.com, Yahoo, and Individual Inc., 

provide personalized suggestions to customers regarding which books to buy (Amazon.com and 

BarnesandNoble.com), which Web pages to see (Yahoo), and which news to read (Individual). For 

example, Amazon.com, one of the leading on-line book sellers, offers two services to its customers -- 

Instant Recommendations and BookMatcher. The Instant Recommendations service suggests 

Amazon.com customers the books that it thinks they would most likely enjoy based on the book 

purchasing histories of individual customers. This is a truly one-to-one service because it makes 

purchasing recommendations based on individual customers' profiles. An alternative BookMatcher 

service first asks the customer to rate a selection of books, then identifies the group of readers with 

similar tastes, and recommends some additional books to the customer that these readers liked. The 

BookMatcher is essentially a segment marketing service (and not a true one-to-one marketing service) 

because it tries to fit a customer into a certain segment and use purchasing patterns of similar customers 

as its recommendations. 

As another example, the First! service from Individual, Inc. delivers targeted news from multiple news 

sources to its customers on the topics selected by them based on their interests. In particular, Individual's 

SMART software searches through over 400 sources containing more than 12,000 articles [Pine et al 951 

for those pieces that will most likely fit the client's needs. It delivers them by whatever method the client 

has chosen, such as FAX or e-mail. Every week, Individual asks a new client to rate each article as "not 

relevant," "somewhat relevant," and "very relevant." Client's response provides a feedback loop for 

Individual and allows the company to learn clients' needs and preferences and therefore customize the 

news delivery to individual clients' needs. In the first week of service, most customers find only 40% to 

60% of the articles to be somewhat or very relevant [Pine et a1 951. However, this number increases to 
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80% -- 90% by the fourth or fifth week [Pine et a1951 

These personalized services provided by Amazon.com, Yahoo, and Individual, rely on the personalized 

technologies known as recommender [Resnick&Varian97] or, more generally, recommendation systems 

[Stohr&Viswanathan99] that are developed by such companies as Firefly, Net Perceptions, LikeMinds, 

and Open Sesame. A recommendation system [Stohr&Viswanathan99] provides recommendations to its 

users about a group of products or services that they should consider purchasing or using based on the 

evaluation of different choices available to them. These evaluations are based on a broad range of 

information available from different sources, such as opinions of other people, user feedback about the 

recommendations, customers' profiles, etc. In contrast to this, a recommender system 

[Resnick&Varian97] is a special type of a recommendation system in which recommendations are based 

on the opinions expressed by other people. Recommendation systems are classified according to the 

source of the knowledge, or expertise, on which the system bases recommendations into utility estimation, 

content-based, collaborative, and expert-based systems [Stohr&Viswanathan99]. Since there are no 

known examples of utility estimation systems fStohr&Viswanathan99], and expert-based systems are 

only distantly related to e-Butler, we will consider only content-based and collaborative recommendation 

systems. 

Collaborative systems, such as Phoaks (http://www.phoaks.com/phoaks), GroupLens from Net 

Perceptions, Preference Server from LikeMinds, or Passport-based systems from Firefly specialize in the 

development of personalized recommendation systems for the on-line users using the collaborative 

filtering technology [Goldberg et al 921. This technology compares tastes of an individual customer with 

the tastes of many like-minded customers to predict the customer's interests and make appropriate 

recommendations based on the interests and actions of similar customers. To illustrate how the 

collaborative filtering works, consider the Web site http://www.mylaunch.com that sells CDs and uses the 

collaborative filtering technology from Firefly. When you visit this site, you will be first asked to rate 10 

CDs. Then the site will give you a list of five more CDs that it thinks that you might like and asks you to 

rate them. After you rate those, it will recommend you five more CDs. By examining your ratings and 

learning your tastes and preferences, the site generates with each new iteration more and more focused 

lists of recommendations that reflect your preferences and the preferences of other like-minded customers. 

The distinguishing feature of the collaborative filtering technology is that it does not truly provide a one- 

to-one approach. It is, essentially, a segmentation marketing technique because it places a customer into a 

group of similar customers and recommends to that customer the actions taken by similar customers in 

that group. The success of collaborative filtering systems depends on the availability of a critical mass of 

users with similar profiles and credibility of their evaluations. 

Content-based recommendation systems, such as Instant Recommendations system from Amazon.com, 
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First! from Individual, Syskill&Webert [Pazzani et all and Newsweeder [Lang95], base their 

recommendations on user profiles. These profiles are built using information about user preferences that 

is either elicited from them through questionnaires or learned from their transactional behavior over time. 

These profiles are constantly updated in time by obtaining relevance feedback from the users that 

specifies how much they are satisfied with recommendations. One example of a content-based 

recommendation system is the First! service from Individual, Inc. that was described above. 

Content-based recommendation systems have the advantage of learning customer's needs in the one-to- 

one fashion better and better over time (as the Individual's case demonstrates). However, they also have 

the following drawbacks [Stohr&Viswanathan99]. First, reliance on the relevance feedback results in 

"over-specialization" [Balabanovic&Shoham97], i.e., the system works best in the restricted domains that 

the users have evaluated in the past. Secondly, it is often difficult to obtain proper feedback from the 

users about recommendations. This is especially true when the system recommends complex items that 

takes time to evaluate, such as some of the Web documents. In some situations it may even be impossible 

for the user to evaluate properly the quality of the choices presented to him or her. 

Many recommender systems follow a hybrid approach in which they combine collaborative filtering with 

the content-based analysis. For example, Barnes and Noble Web site (BarnesandNoble.com) uses the 

technology developed by Firefly Networks, which combines the content-based and collaborative filtering 

methods. Also, Amazon.com offers two services to its customers -- Instant Recommendations and 

BookMatcher. Instant Recommendations uses the content-based analysis and BookMatcher the 

collaborative filtering approach. 

Although different from each other in many respects, the personalized purchasing services described in 

this section have certain important features in common. First of all, the companies that offer one-to-one 

services, such as MCI and Peapod, and recommendation services, such as Amazon.com and Individual, 

take a business-centric approach. As a part of this service, they attempt to understand individual 

customers by analyzing their demographic, and transactional data pertaining to purchasing of their 

products and services. Once they understand this purchasing behavior, these companies attempt to issue 

recommendations of what additional products and services produced by these companies their customers 

should consider buying. This constitutes a business-centric approach to serving the customers: the 

personalized marketing service is just another method of pushing more and more products and services on 

the consumer by the companies offering this service. A typical example of this is the decision support 

system from MCI whose purpose was to increase customers' billing by offering them additional services 

that MCI felt would be relevant to the customers. An alternative customer-centric approach takes the 

standpoint of the customer and assists him or her in purchasing decisions. The e-Butler service follows 

this approach, and we will describe it below. 

Center for Digital Econotny Research 
Stern School of Business 
Working Paper IS-98-16 



The second feature, common to several of the services described above, is that, in order to assure 

adequate levels of customers' satisfaction, these services require extensive involvement of customers in 

the recommendation process. For example, Individual, Barnes and Noble, Mylaunch, and Amazon.com 

ask customers to provide extensive feedback information on the products that these companies 

recommend. Although, as explained in [Stohr&Viswanathan99], this is not strictly necessary for 

recommendation systems, most of the existing content-based and collaborative systems require extensive 

user inputs. An exception to this norm is the Learn Sesame system from Open Sesame. Learn Sesame 

learns individual profiles of Web users in a non-intrusive manner by observing customers' habits and 

interests as they browse Web pages without burdening site visitors with many questions. This is achieved 

by building individual customer's profiles using neural network technologies. 

The third feature common to the personalized services described above is that all of them offer customers 

a narrow set of products, such as books (Amazon.com), telephone services (MCI), delivery of 

personalized news (Individual), or grocery shopping (Peapod). Therefore, the systems supporting these 

services analyze only a small subset of the total set of all the customer's purchases and deploy the 

methods specifically suitable for that subset. Thus, they can be thought of as expert systems that were 

once popular in Artificial Intelligence in the 70's and the 80's. Therefore, we will call this class of 

services Expert Recommendation Systems (ERS). The tendency to focus on a narrow set of related 

products and services is understandable because most of the services require user inputs. It is hard 

enough for a customer to provide inputs on a small set of products and services, such as books and news. 

It would be practically infeasible to ask the customer to do this for a wide range of products and services. 

We would like to point out that Learn Sesame is, again, an exception here. Since it supports a non- 

intrusive learning of customers' profiles, this means that it can learn their buying patterns across a wide 

range of products and services. 

In summary, the personalized purchasing services described in this section are very useful in practice and 

are a good starting point towards the ideals described in the introduction (such as the one from a Russian 

fairy tale). However, they provide only the first step towards that goal. We will describe an e-Butler 

service in this paper that should take us further towards that ideal. However, before describing the e- 

Butler service, we would like to present a broad framework for classifying various personalized shopping 

services and demonstrate how the services described in this section fit into this framework. Moreover, 

using this framework, we present other types of services broader than the ones considered in this section, 

including the e-Butler service, that can take us closer towards the ideals described in the introduction. 
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3. A Framework for Personalized Shopping Services 

Personalized shopping services either help the user by giving purchasing recommendations for one or 

several categories of products and services or making some purchasing decisions on their own. Therefore, 

personalized shopping services can be classified along the following two dimensions: 

Purchasing decisions: does the shopping service only recommend purchases to its customers or does 

it actually make these purchases without any prior consultations with them? In the former case, the 

service acts as a decision support system by only recommending a purchase and leaving the actual 

purchasing decision to the customer. In the latter case the service automates purchasing decisions. 

Class of products or services: are purchasing decisions made about a narrow or a broad class of 

products or services? If purchasing decisions or recommendations are made about a narrow set of 

products or services, then such a service acts as an expert system specializing in providing services 

for a narrow domain of the system's expertise. Examples of such services are news selection, book 

and CD recommendations, groceries shopping services, and "book-of-the-month" clubs. If purchasing 

recommendations or decisions are made about a broad range of products, then such a service is 

generic. An example of such a service is Custom Extras from American Express because it allows 

different kinds of merchants to offer a very broad range of products and services to a customer. 

These two dimensions give rise to the 2x2 matrix presented in Figure 1 that classifies personalized 

shopping services into the following four quadrants: 

1. Expert Recommendation Service (ERS). This service provides purchasing recommendations about a 

narrow range of products, such as books, news items, and groceries. Most of the developments in 

personal shopping services, including Internet-based shopping services provided by such companies 

as Amazon.com, Barnes and Noble, Mylaunch, Peapod, etc., focus on this quadrant. Examples of 

nonlntemet-based personal services are the MCI's decision support system and Individual's First! 

service. 

2. Expert Decision-making Service (EDS). This service makes automated purchasing decisions about a 

narrow range of products. Examples of these services are the various "book-of-the-month" (or 

"record-of-the-month) clubs that automatically ship its customers a book (or a record, or a CD) each 

month, unless the customer notifies the club that he or she does not want the book scheduled to be 

sent. The problem with these types of services, as they are today, is that most of them are not 

personalized: most of these services do not know their customers well in a one-to-one fashion and, 

therefore, do not target specific books (or other products) to specific customers. Another type of EDS 
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are automated replenishment systems. They automatically reorder supplies whose stocks decrease 

below minimal levels. These systems deal with a single type of decision: when to reorder goods and in 

what quantity. Therefore, they belong to the "expert" category. 

3. General Recommendation Service (GRS). This service provides purchasing recommendations about 

a broad range of products, ideally, about all the purchasing needs of a customer. Custom Extras 

service from American Express falls into this category because it allows different merchants print 

their own promotional personalized messages, and these messages can be about any product or 

service which can be acquired with the American Express card. Although Custom Extras falls into 

this category, it is still an example of a relatively simple service that barely passed the test for the 

GDS quadrant. This is the case because each promotional message is based on the products 

purchased by the customer from that particular merchant rather than it being based on a more 

comprehensive purchasing history of the customer (e.g. the set of all the AmEx transactions). 

A better example of the GRS is the Personal Shopping Assistant (PSA) service. The PSA service 

works with a comprehensive purchasing history of a customer (e.g. the purchasing history containing 

80% - 90% of all the purchasing transactions performed by the customer over the past several years). 

It takes a set of initial inputs (e.g. I want to buy a case of wine and I am ready to spend up to $20 per 

bottle) and produces a set of recommendations from which the customer selects a product. For 

example, it can suggest ordering a case of customer's favorite Merlot of 1992 vintage from 

distributor XYZ (who currently runs a sale on this wine, thus making a purchase a good bargain). 

Moreover, the PSA service is not limited to a group of products (e.g. liquors) and issues purchasing 

recommendations about a broad range of products. The PSA service will be described in much 

greater detail in Section 4. 

4. General Decision-making Service (GDS). Unlike EDS, that is limited to a specific category of 

products (such as books, wines, news services, etc.), the GDS service makes automated purchasing 

decisions about a broad range of products. Such a service has not been implemented yet, and its 

implementation constitutes a serious technical challenge. One specific type of a GDS is the Magic 

Wand (MW) service. As a PSA, Magic Wand service needs a comprehensive purchasing history of a 

customer. However, unlike the PSA, the MW service makes purchasing decisions directly, without 

any prior consultations with the customer. For example, unlike the PSA service that only informs the 

customer about the purchasing possibilities, the MW system can order a case of California's Merlot 

wine of the 1992 vintage, and it is shipped directly to the customer without any prior consultations 

with him or her. We call this type of service "Magic W a n d  because goods arrive at a customer's 

door from "thin air" without any prior thought on his or her part (as if a fairy waived her magic 

wand). The MW service will be described in much greater detail in Section 4. 
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Evaluation of Quadrants in Figure 1. Which of the four types of services provide the most value to the 

customer? The ERS type of service requires the customer to make purchasing decisions (although it 

provides extensive decision support in a way described above). Moreover, it is limited to a narrow set of 

products that it supports and cannot give recommendations for other types of products lying outside of its 

area of expertise. 

buy 

Purchasing 
decisions 

recommend 
(to buy) 

"Book-of-the-Month" 
Clubs 

Automated Replenishment 
Systems 

decision b automation 

I Magic Wand (MW) I 

Recommender Systems 
(Amazon.com, Individual, etc 

MCI's DSS 
Peapod 

Custom Extras (AmEx) 

Personal Shopping 
Assistant (PSA) 

narrow broad 

Class of products/services 

Figure 1. Classification of Personalized Shopping Services. Y-dimension specifies purchasing decisions: 

is the actual buying decision made or only buying recommendation is provided by a shopping service. X- 

dimension specifies the class of products andlor services about which decisions/recommendations are 

made: are purchasing decisions/recommendations made about a narrow or a broad group of products 

andlor services? Abbreviations: ERS -- Expert Recommendation Services, EDS -- Expert Decision- 

making Services, GRS -- General Recommendation Services, GDS -- General Decision-making Services. 

The GRS type of service has a significant advantage over the ERS service in that it makes a much 

broader set of recommendations to the customer. By making a broader set of recommendations, the GRS 

service can also leverage its expertise and a more intimate understanding of the customer by providing 
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more intelligent recommendations than the ERS service. For example, if the GRS service recommends 

books, CDs, concert tickets and movies to a customer, it can leverage its knowledge about purchases in 

other categories to provide more intelligent recommendations in a particular category. For example, such 

a service can provide a better recommendation of CDs if it knows not only which CDs the customer 

purchased in the past and how much she liked them, but also which books the customer read in the past, 

which movies she saw, and which concerts attended. 

Similarly, the EDS service has an advantage over the ERS service in that it simplifies customer's life: the 

customer does not have to provide preferences and feedback inputs to the service so that it could make 

better recommendations. Also, the customer does not have to deal with purchasing decisions because the 

EDS service makes these decisions for him or her and only delivers the products. For these reasons, the 

EDS service has a significant advantage over the ERS service. However, the main challenge for the EDS 

service is to achieve accuracy rates acceptable to the customer. We will discuss this issue in Section 6. 

Finally, the GDS service has advantages over the EDS and GRS services. It provides extra value to the 

customer by being more general than the EDS service and thus being able to make more purchasing 

decisions than the EDS service. It also leverages its more intimate knowledge of the customer in the same 

way the GRS service leverages it over the ERS service. With respect to the GRS service, the GDS service 

has the advantages that the customer does not have to be involved in the decision making process anymore 

and in that the customer does not have to provide feedback information to the service. 

In summary, the GDS service provides the most value to the customer, whereas the ERS service the least. 

However, most of the existing personalized shopping services are of the ERS type. This situation is not 

surprising because of certain technological and behavioral constraints, to be explained in Section 6, that 

make it difficult to reach other three quadrants, especially the GDS quadrant. Nevertheless, some 

companies are capable of moving to other quadrants, mostly EDS and GRS, because they push the limits 

of the existing technologies and because of the recent technological advances (we will discuss some of 

these advances in Section 6). For this reason and because the GDS service provides much more value to 

the customer than the ERS service, we address the following important question: 

How can one move from the ERS to the GDS type of service? 

There are two ways to achieve this (see Figure 1): 

1 .  ERS -+ EDS -+ GDS 

2. ERS -+ GRS -+ GDS 
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An example of the first type of move in the book purchasing domain would be to start with an 

Amazon.com (or BarnesandNoble.com) type of recommendation service and move to the "book-of-the- 

month" type of service performed in a truly one-to-one fashion (with an extensive understanding of an 

individual customer and his or her reading interests and needs). After automatic book purchasing 

decisions are implemented successfully (the ERS -+ EDS move is completed), the service can be 

expanded to other categories besides books (e.g. CDs, movies, etc.). This corresponds to the EDS -+ 
GDS move. The main advantage of this route lies in that the ERS -+ EDS move is not that difficult to 

implement (elements of it have been implemented already by the "book-of-the-month" type of services). 

Similarly, the EDS -+ GDS move can be implemented gradually by including more and more categories 

of products and services at a time. The danger of this move, however, lies in that, in order to expand an 

EDS service to many other categories, one may need totally new processing techniques that may be quite 

different from the methods used in the EDS service. 

The second type of move (ERS -+ GRS -+ GDS) has its own challenges. The challenge of the ERS -+ 
GRS transition lies in that most of the existing recommendation systems rely heavily on the customer 

feedback. Such feedback (either the initial ranking of the products or customer feedback regarding 

specific recommendations) can be obtained for a narrow group of products (such as books, CDs, or 

wines). It is much harder to obtain meaningful feedback across many product categories because it would 

require too much involvement from the customers, and few of them would agree to do this. However, new 

technologies, most notably from Open Sesame, do not require extensive customer inputs and can be used 

for recommending many categories of products. Moreover, the move from GRS to GDS has some 

additional challenges, some of which will be discussed in Sections 5 and 6. 

Both the GRS and GDS systems take the customer-centric point of view in providing personalized 

shopping services: they deal with a wide range of products that are not limited to one specific 

manufacturer and therefore cannot support the interests of a single manufacturer. On the contrary, they 

help the consumer to sort through a great maze of different products in the market and simplify 

consumer's purchasing activities. In the next section, we present e-Butler -- a customer-centric 

personalized shopping service that unifies the GRS and GDS services into one common concept. 

4. The e-Butler Service 

In this section we present an Electronic Butler service (or e-Butler for short) that provides a customer- 

centric personalized shopping alternative across a wide range of products. The notion of e-Butler, as we 

defined it, is a broad concept. It says that e-Butler provides personal shopping services for a wide range 
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of products (as opposed to a limited group of products, such as books, CDs, or news) and that it should 

be customer-centric, i.e. it should be provided by an organization that is not associated with 

manufacturing or distribution of any of the products that it recommends or buys for its customers. 

Since e-Butler deals with a wide range of products and services, it falls into the GRS and GDS quadrants 

of the framework presented in Section 3 (Figure 1). According to this framework, e-Butler can provide 

two types of services to its customers: it can either recommend purchasing of certain products and 

services or it can actually buy them without any prior notification or consultation with the customer. As 

was stated already in Section 3, we call the former type of e-Butler service Personal Shopping Assistant 

JPSA) and the latter Magic Wand (MW) service. We will describe them in detail below. 

The e-Butler service can derive its purchasing recommendations or decisions from a variety of sources. In 

particular, they can be based on the customer inputs as in recommender systems, on the customer 

feedback as in the case of the content-based recommendation systems, on the customer profiles, on the 

analysis of customer's purchasing history, or on the combination of these factors. In the rest of this paper, 

we will focus on the type of e-Butlers that derive their purchasing recommendations or buying decisions 

from the analysis of the comprehensive past purchasing histories of their customers. In other words, at 

the heart of the e-Butler service considered in this paper lies the information on the past purchasing 

histories of its customers that are analyzed in order to make purchasing recommendations or buying 

decisions. 

To be effective, e-Butler should collect data on most of the purchases a customer makes over some period 

of time (e.g. 80% - 90% of the total number of purchases made by the customer over the past 5 years). It 

is certainly very difficult to collect such comprehensive data now for both technical and behavioral 

reasons. We will discuss the ways to address these difficulties in Section 6.1. Since our objective in this 

section is to explain how the e-Butler service works, we only assume at this point that such purchasing 

histories are gathered somehow. 

The general architecture of the e-Butler service is presented in Figure 2. It consists of the following five 

components: the "user" component, the retail environment component, estimated purchases module, and 

the PSA andlor MW service modules. We will describe these components in turn now and explain how 

the whole system works. 

The "user" component (depicted with dotted lines in Figure 2) contains the comprehensive purchasing 

history of the user, as explained above. It also contains a user profile that is obtained from the analysis of 

the past purchasing history," as well as some additional external information about the user, such as his or 

Therefore there is an arrow from the "purchase history" module to the "user profile" module in Figure 2. 
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her demographic and psychographic data. Finally, the "user" component also contains the information 

about the current "state" of the user, such as his or her current desires (e.g. the user wants to buy lunch, 

wants to buy a shirt, etc.), current location (e.g. the user is in Los Angeles on a business trip), current 

preferences (e.g. the user prefers to have a lunch at an expensive seafood restaurant), etc. 

The component "retail environment" in Figure 2 contains information about the current "state-of-the- 

world", i.e., which products and services for which e-Butler is responsible, are sold in which stores, at 

which prices, and what sales and promotions are offered for these products, when and where. In other 

words, this component contains information about what is "going on" in the retail environment pertaining 

to the products and services supported by e-Butler. For example, a typical entry for the "retail 

environment" component is that Macy's sells Christian Doir's perfumes and will offer 30% discount on 

their entire line during the week of March 23. 

The third component is the "estimated purchases" module that estimates the current purchasing needs of 

the customer based on his or her past purchasing history, on the customer profile, on the current "state" 

of the user and the current "state" of the retail environment. By knowing most of the past purchases made 

by the customer, as well as his or her current "state," e-Butler can estimate the customer's future 

purchasing needs6 For example, e-Butler may estimate, based on the past purchases, that the customer 

may need to buy a new case of red wine, a casual shirt, and a few bottles of shampoo for oily hair within 

the next month. By matching predicted future purchasing needs of the customer against the information 

on offerings of various products supplied by the "retail environment" component, the e-Butler generates 

the list of estimated purchases that the customer should consider making. For example, given customer's 

need to buy some red wine, e-Butler may realize that the customer would be happy with the choice of 

1994 Merlot from XYZ vineyards because the customer likes Merlot, 1994 was a very good year for 

Merlot, this wine falls within the price range of previous purchases, and XYZ has a very good price for 

their Merlot, making this purchase a really good bargain. As another alternative, the customer may 

consider 1995 Merlot from ABC wineries which also provides a very good wine, a bit more expensive 

than XYZ but certainly worth the money. Using a similar type of reasoning, e-Butler can generate 

recommendations about shirts and shampoos the customer needs to buy and the places where they can be 

bought. 

Therefore, insistence on having comprehensive purchasing history. Otherwise, it is impossible to estimate 
accurately future purchasing needs of the customer. 
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MW -- Magic Wand 

PSA, -- Personal Shopping Assistant 

I 

Figure 2. Architecture of the e-Butler System (see text for the details). 

After e-Butler generates the list of products that the customer may need to buy, e-Butler has two choices 

(corresponding to the two arrows going from the "estimated purchases" module in Figure 2). As a first 

alternative, it can recommend the customer to purchase some of these products. For example, in the case 

of red wine, the PSA service of e-Butler can recommend the purchase of a case of the 1994 Merlot from 

XYZ wineries or the 1995 Merlot from ABC wineries. The "recommendation" module in Figure 2 is 

responsible for making the actual recommendation. After the customer receives recommendations from 

the PSA service, he or she makes the actual purchasing decisions (these decisions correspond to module 

"purchasing transaction by the user"). The second alternative is associated with making actual 

purchasing decisions based on the set of products that the customer may need to buy generated by the 

"estimated purchases" module of Figure 2. These purchasing decisions are produced by the module 

"purchasing transaction by e-Butler" in Figure 2. As explained before, this alternative corresponds to the 

Magic Wand (MW) service. 

The e-Butler system works as follows (see diagram in Figure 2). First, a set of customer's purchasing 

needs is generated by the "estimated purchases" module based on the content of the customer's 

purchasing history, profile and the current-state modules. An example of a purchasing need may be the 
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need to buy a new casual shirt. Then these estimated purchasing needs are matched against the current 

state of the retail environment and, as a result of this matching process, a list of estimated purchases is 

generated. An example of an estimated purchase is the recommendation to buy a Polo shirt from Macy's 

for $24.99 during the sale next week. If the PSA service of e-Butler is used, then this recommendation is 

presented to the customer along with others, and the decision to do an actual purchase is left to the 

customer. If the MW service is used instead, then this shirt is purchased by the MW service and is sent to 

the customer along with other purchases. In both cases, purchasing transactions are recorded as a part of 

customer's purchasing history, and the process continues. 

To illustrate further how PSA and MW services work, consider the following examples. The first two 

examples deal with the PSA and the third example with the MW service. 

Example 2. Based on the past purchasing history of a customer, the PSA service may discover that 

whenever the customer goes to Paris, she often buys wine there. The PSA service just received 

information that the customer purchased a ticket to Paris (this information is a part of the "user current 

state" module). Moreover, it knows that the duty-free shop at Charles de Gaulle airport has a very good 

price for the customer's favorite Chateau Margoux wine (better than anywhere else in Paris). This 

information is recorded in the "retail environment" module in Figure 2. Based on this information, the 

"estimated purchases" module comes with a recommendation to buy Chateau Margoux at the duty-free 

shop at the Charles de Gaulle airport, and the PSA service sends an appropriate message to the customer. 

Example 3. Assume that a PSA provider company, in addition to collecting past purchasing history of 

its customers, supplies them with a Personal Digital Assistant (PDA) that has a wireless connection to the 

company's Personal Shopping Assistant (PSA) system. The PSA system estimates customer's future 

needs and behavior as described above. The purpose of the PDA device is to gather additional 

information on the current "state" of the customer (e.g. record customer's location information, 

preferences, desires (e.g. the customer is hungry now and wants to eat), etc.). This additional information 

is then transmitted from the PDA client to the PSA server over the communication lines. Using this 

additional information about the current "state" of the customer, the PSA system makes better estimates 

of the customer's needs and future behavior than without the PDA. 

To illustrate how such combined service can work, assume that it is Tuesday, 11 :30 am now, and the 

customer, Tom S., is driving in his car on 1-87 in the Albany region. He has indicated to the PSA service 

through his PDA device that he wants to have a lunch. Based on Tom's past purchasing history, the PSA 

service knows that Tom, whenever traveling on business, likes to have light lunches at good quality 

restaurants (his company foots the bill) and that he likes sea food in general. By knowing that Tom is 

traveling now, the PSA service collects the following information on Tom: location - Albany region, day 
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of the week - Tuesday, time -- 11:30am, traveling purpose -- business. This information is sent from the 

PDA client to the PSA server. By matching this information against Tom's purchasing history, the PSA 

concludes that Tom prefers a lunch at a good quality restaurant and he wants to eat light food. By 

matching this information with the fact that Tom likes seafood, the PSA is searching for highly rated 

seafood restaurants in the Albany region. If it finds any, it lets Tom know the choices by sending him an 

e-mail message and beeping his PDA. If the PSA service does not find any, it goes for other alternatives 

based on his past purchasing history (e.g. highly rated restaurants serving "light" types of food - not 

necessarily seafood). 

Example 4. An example of the Magic Wand service would be the delivery of a case of the 1994 Merlot 

from XYZ wineries to the customer (without any prior notification of hidher). As another example of the 

MW service, Joe Smith who subscribed to this service, may discover one day that UPS delivers two shirts 

and a pair of jeans to his home address totally unexpectedly for Joe. Joe opens the package, examines the 

shirts and really likes them. Moreover, he realizes that he needs these shirts because some of his current 

shirts have become old and need replacement. Similarly, he needs a pair of jeans because his other pair is 

also becoming old and warn out. Moreover, he looks at the price tags and realizes that the prices are very 

competitive. 

Besides buying clothes, other examples of automatic purchasing decisions made by the MW service, can 

include buying books, groceries, wines, and certain home accessories, renting movies, and taping certain 

programs on TV. Examples of purchases that are hard or even impossible to automate include purchases 

of big ticket items, such as houses or cars, concert tickets (or anything that requires knowledge of the 

person's schedule), and making travel arrangements. 

It is important to note that in case of the PSA service actual purchasing decisions are made by the 

customer, not by the e-Butler system. Therefore, the PSA service acts as a Decision Support System 

(DSS) and falls into the GRS quadrant of Figure 1. In contrast to this, MW provides an example of a 

decision automation service and falls into the GDS quadrant of Figure 1. Both PSA and MW services 

deal with a broad range of products and therefore belong to the right two quadrants of Figure 1 ("broad 

category quadrants). 

Implementing the MW is certainly much more difficult than the PSA service for the reasons considered in 

Section 3 and explained further in Sections 6 and 7. In fact, to do this is a bold decision on the part of the 

company because the company must be certain that the customers would be happy with the products it 

sends automatically to them. Simply put, is the MW service realistic or is it too good to be true? The 

answer to this question depends on how much the customer is satisfied with the products being shipped to 

him or her. We will discuss the issue of achieving customer satisfaction with the MW service, with the 
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PSA service, and other related issues in the next section. 

5. What Factors Make e-Butler a Successful Service 

The success of the PSA service depends, to a very large extent, on the accuracy of predicting customer's 

future needs and providing the customer with useful recommendations. For example, if a customer finds 

50% of the PSA suggestions useful for him or her (as in the case of buying wine in a duty-free shop at the 

Charles de Gaulle airport), the customer will, most likely, be satisfied with the service. If, on the other 

hand, the customer finds only 10% of suggestions to be useful, then the remaining 90% of useless 

suggestions will only irritate him or her, and the customer will reject this service. Accuracy of PSA 

recommendations is measured as a percent of the purchasing recommendations or transactions with which 

the customer is satisfied (as judged by the customer). For example, the accuracy levels in the two 

previous examples are 50% and 10% respectively. Another important measure is the tolerance level of a 

customer to useless recommendations. It determines the border line of accuracy rates at which the 

customer is indifferent to using the PSA service. If the accuracy rates are above the tolerance level, the 

customer will subscribe to the PSA service; if they are below the tolerance level, the customer will cancel 

it. Certainly, the tolerance level varies from one customer to another. For the author of this paper, the 

tolerance level constitutes, approximately, 25%, i.e., if less than 25% of the PSA recommendations are 

useful, I would refuse to use the PSA ~ e r v i c e . ~  

Similar argument also holds for the MW service. For each customer using that service, there must also be 

a minimal acceptable accuracy rate. For instance if Joe from Example 4 is not satisfied and returns every 

10" item shipped to him by the MW service, he should probably find the MW service useful. The 

nuisance of returning items back is overcompensated by the advantages it provides to Joe (i.e., mainly, 

that he is freed from thinking what and where to buy and from actually going and buying the products). 

However, if Joe returns every second item back, he would certainly be unhappy with the service and, most 

likely, would cancel it. 

Therefore, the key question for the MW service, as in the case of the PSA service, is what constitutes 

minimal acceptable accuracy rates for that service. In other words, at what accuracy rates Joe would still 

use the service and at what rates he would be irritated by its mistakes and the need to ship useless items 

back? As in the case of the PSA service, this borderline accuracy rate varies from one individual to 

another and will be called the tolerance level of that person. For the author of this article, the tolerance 

level for the MW service constitutes approximately 80%. In other words, if I have to return every 5" item 

Of course, this number varies from one person to another. 
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back because I do not like the item, I will have to think hard if I want to continue using the MW service8. 

Since the tolerance level of the MW service is much higher than the tolerance level of the PSA service, 

this means that the final decision whether to send a product to a customer or not should be much more 

stringent for the MW than the recommendation selection process for the PSA service. This means that the 

MW service should make a purchasing recommendation only if it estimates with very high certainty that 

the customer will be happy with the purchase. 

Although very important, accuracy rates alone is not the only measure for determining if the customer 

would be satisfied with the PSA or MW services. For example, if the PSA service issues one purchasing 

recommendation per month or the MW service makes one purchasing decision per year, then these 

services would become irrelevant to the customers and hence few people would subscribe to them. 

Therefore, the second important factor determining the success of the PSA and the MW services is their 

completeness. Completeness is measured as a percent of the number of purchases made using the PSA or 

the MW services to the total number of purchases made by the customer. 

Figure 3 shows under which conditions the customer is interested in the PSA or MW service. Accuracy is 

plotted on the x-axis and completeness on the y-axis. "Acc-min" on the x-axis of Figure 3 indicates the 

tolerance rates for the PSA or MW services. Of course, these numbers differ significantly between PSA 

and IVlW services. As was stated before, the tolerance rates for this author are 25% and 80% for the PSA 

and MW services respectively. Similarly, "acc-max" specifies the upper level for the accuracy rates that 

are practically attainable because of the technical, economical and behavioral considerations. On the y- 

axis, "comp-min" specifies the minimal completeness rate. If the completeness rate of the PSA or MW 

service is below this number, this means that too few recommendations or purchases are made to make 

this service useful to the customers. Finally, "comp~max" specifies the upper level of completeness that is 

practically attainable, i.e. the completeness rates above these levels are infeasible because it is very hard 

to give automatic recommendations on purchases of certain products (such as buying a house or a car) 

with current technologies. As with "acc-min," the other three constants "acc-max," "comp-min," and 

"comp-max" differ for the PSA and the MW services. 

The four lines drawn in Figure 3 based on "acc-min," "acc-max," "comp-min," and "comp-max" divide 

the area into several regions. At the center is the shaded region defining the range where the PSA (or 

MW) services are feasible. To the left of it, separated by the acc-min line, lies the region in which the 

customer will be irritated and will abandon the PSA/MW service(s). Also, above the PSA (or MW) 

region (separated by the comp-max line) lies the area that is practically unattainable for the PSA/MW 

It should be noted that this is only a very crude estimation of the tolerance level. A more involved analysis 
depends on the return policies and conditions provided by the MW service. However, this detailed analysis is 
beyond the scope of this paper. 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-98-16 



service(s). Below the comp-min line lies the area in which PSAIMW services, belonging to this region, 

would be useless because they would offer very few purchasing recommendations (for PSA) or 

purchasing decisions (for MW) to make any real impact on the customer. Finally, to the right of the 

acc-max line lies the area that is technologically, economically, and behaviorally infeasible because it is 

practically impossible for various reasons to achieve such high accuracy rates. 

It is interesting to observe that the lower bounds (acc-min and comp-min) are determined by the user: the 

user will reject the e-Butler service if it produces the accuracy or completeness rates that fall below these 

levels. However, the upper bounds (acc-max and comp-max) are, to a certain extent, under our control. 

Their values are determined by several sources, some of which can be influenced by technological, 

behavioral, and economical factors (hence the meaning of the two arrows in Figure 3). We will address 

the issue of what determines acc-max and comp-max rates and how they can be increased in Section 6. 

100% 
Completeness 

comp-max 

comp-min 

0 
100% 

acc-max Accuracy 

Customer not interested 
(too few recommendations) 

Figure 3. Customer's satisfaction with PSA and MW services. The shaded region is the area in 

which the customer is satisfied with the PSfWlW services. 
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Based on the discussions in this section, we identified the following major research questions: 

1. How to achieve accuracy and completeness levels for the PSA and MW services that would land 

these services into the shaded region in Figure 3? 

2. Once in the shaded region of Figure 3, how to increase accuracy and completeness rates that would 

push the PSA/MW services further to the "north-east" part of the diagram? 

3. How to "push" out the upper boundaries (acc-max and comp-max) in Figure 3? 

We will study these questions in the next section. 

6. What Needs to Be Done to Make e-Butler a Successful Service 

We posed three questions at the end of the last section. In this section we provide answers to these 

questions. It turns out that the answers to the first two questions are the same because the drivers that 

"push" PSA/MW services into the shaded region are the same that "push" these services deeper into the 

shaded "territory." In other words, the first two questions can be reduced to the question: How to improve 

accuracy and completeness rates for the PSA/MW services. We will address this question in Section 6.1. 

In section 6.2 we will address the second question: how to "push" out the upper boundaries "acc-max" 

and "comp-max." 

6.1 How to improve accuracy and completeness rates for the PSAJMW services 

As it follows from Figure 2, accuracy and completeness rates of the PSA and MW services depend on the 

accuracy and completeness rates that can be achieved by the "estimated purchases" and the "PSA (or 

MW) service" modules. In particular, it is important to (1) improve accuracy and provide a more 

complete set of estimated purchasing needs of customers; (2) given the set of estimated purchases, try to 

make more accurate and complete recommendations (for the PSA service) or actual purchasing decisions 

(for the MW service) based on this set. 

The second issue is, essentially, technical and involves a trade-off between accuracy and completeness, 

which can be formulated as an optimization problem. In particular, if we have a list of purchases 

determined by the "estimated purchases" module in Figure 2, we need to decide which purchases from the 

list should be recommended to the customer (for the PSA service) and which should actually be purchased 

(for the MW service). If we recommend/buy all of the estimated purchases, the completeness value will be 

high, but accuracy low. If, on the other hand, we select only a few products from the list that we feel most 

confident about, the accuracy rate will be high but completeness rate will be low. Therefore, the key issue 

is how to make an "optimal" selection of products out of the list of purchases produced by the "estimated 
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purchases" module. This problem has not been studied before to the best of our knowledge and constitutes 

an interesting technical problem. We will not address it in this paper, however, and will focus only on the 

first issue in the rest of this section. 

The first issue is how to improve accuracy and completeness rates for the "estimated purchases" module 

in Figure 2. The accuracy and completeness of predicting customers needs (that are important both for the 

PSA and MW services) depend on the following factors: 

1. Comprehensiveness of customer's purchasing history. The more complete this purchasing history 

is, the more accurately future purchasing needs of the customers can be estimated, and the more 

complete the set of these purchasing needs can be. 

2. Length of the purchasing history. It makes a big difference if the e-Butler service has 3 months or 3 

years of the purchase history of a customer. The longer the purchase history, the more accurate its 

predictions should be. Moreover, these predictions can be made about a larger set of products and 

services which should improve completeness rates as well. 

3. Inputs from the customers regarding their current needs and preferences. This should serve as a 

valuable input for the e-Butler service. For example, if we know where the customer is located at the 

moment, as in Example 3, and we know what is the purpose of the trip (e.g. business), we can better 

estimate which restaurants to recommend to the customer. The more inputs we can elicit from the 

customer (without alienating h i d e r ) ,  the more accurate and complete set of predictions we can 

make. However, in order to minimize customer involvement in the recommendation and purchasing 

process and in order to avoid his or her irritation with the need to answer many distracting questions, 

the customer inputs should be obtained in a non-interactive fashion. In particular, these inputs should 

be obtained only once before the recommendation computations start. Otherwise, customer 

involvement would be too extensive, and he or she can get irritated and would reject the e-Butler 

service. 

4. Obtaining proper feedback from the customer on the previously provided recommendations or 

purchasing decisions. The customer should provide feedback on how much he or she liked different 

recommendations or purchasing decisions of e-Butler. In its turn, the e-Butler service should take 

these recommendations/decisions into the consideration and revise its procedures in order to improve 

future recommendations/decisions. In other words, e-Butler should have learning capabilities, and 

these capabilities should improve accuracy rates of estimated future purchasing needs. These are the 

same capabilities as the ones used in the content-based recommendation systems discussed in Section 

2. 

5. Good methods for analyzing past purchasing histories. It is not sufficient just to collect past 

purchasing data. This data should be properly processed, extensively analyzed, and the most useful 

information should be extracted from it. One example of such useful information is customers 
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individual profiles. Such profiles would allow the e-Butler service to make better inferences about the 

future needs of the customers. The more precisely these profiles reflect the actual behavior of the 

customers, the more accurate and complete estimations of customer's purchasing needs can be 

obtained. 

Therefore, in order to improve accuracy and completeness rates of the PSA and MW services, it is 

necessary to improve these factors. We will discuss the ways to accomplish this below. 

6.1. I .  Comprehensive Purchasing History. 

The issue of obtaining a comprehensive purchasing history of customers' purchasing transactions is a 

complicated one for both technical and behavioral reasons. We will discuss these issues separately now. 

Technical Issues 

One way of obtaining a comprehensive purchasing history for the e-Butler service would be to issue a 

new (or use an existing) smart credit, debit, or e-cash card that records individual items purchased by the 

customer9. In addition, this card should be accepted in most of the shopping outlets. Finally, the 

customers should be encouraged to use this card in most of their transactions (we will discuss this issue 

below). This would allow the e-Butler service to collect most of the purchasing histories of its customers 

on an item-by-item basis. 

Introduction of such a card is certainly a challenging project that has the following major problem. It 

requires installation of new Point-of-Sale systems that record information about individual itenzs 

purchased either on the card directly (using the smart-card technology) or transfer this information to the 

e-Butler system through communication lines. For this feature to be useful, it should be installed at most 

of the shopping outlets, which makes it a very large project. 

The industry has already taken some steps in this direction. One example of a more "intelligent" Point-of- 

Sale (POS) system is the Pinnacle suit of products from Hypercom, Inc. The Pinnacle Transaction 

Environment allows electronic financial transaction processors to provide value-added features to their 

clients' payment systems. In particular, a financial transaction consists of the core transaction, containing 

the merchant number, personal account number and the total transaction amount, and the value-added 

data, containing data such as the product code, Card Verification Value, tip amount and the POS 

In comparison, most of the existing credit or debit card transactions record only the total amount of purchases 
in a transaction without listing individual items purchased. In some cases, one can obtain individual item 
information; however, it is not easy or even impossible to do this in general. 
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condition code. Pinnacle extracts this value-added data and stores it on the Pinnacle Network Terminal 

Server. One implication of this is that this server contains information on the individual products 

purchased by customers that arrive to the server from the connected terminals. If individual Pinnacle 

Network Terminal Servers can be connected into one system that shares the data from individual servers, 

then this data can contain a comprehensive collection of purchases of some of the customers. 

In summary, it is not easy today from a purely technical point of view to collect comprehensive histories 

of customer purchases. However, new technologies are "around the comer," and we believe that customer 

comprehensive purchasing histories can be collected using these new technologies within the next few 

years. However, we also believe that the "bottleneck" is not technology but customers' behavior. We will 

discuss this issue in the next subsection. 

Behavioral Issues 

Even if it becomes technologically feasible to collect comprehensive purchasing histories, it is not clear if 

the customers want to do that. In fact, as some evidence indicates IVenkatraman981, many customers 

resist the idea of putting all of their financial information, such as checking and saving accounts, CDs, 

credit card, investment, and insurance information into one place. Certainly, purchasing information is 

quite different from the personal financial information, and many people might feel different about putting 

most of their purchasing information into one source. For example, some peopIe link their credit cards 

with a frequent flier program and use the same credit card for most of their purchases to earn extra free 

miles. Nevertheless, it is still not clear how many people would follow this model rather than the financial 

information model. Therefore, we can encounter resistance from many customers to placing their 

comprehensive purchasing information into one source. 

However, this problem can be addressed as follows: 

Educate the customers on the advantages of the e-Butler system and demonstrate what value it can 

bring to them. As was demonstrated in Section 4, e-Butler provides much value to its subscribers. 

The PSA service frees busy customers from the chores of making purchasing decisions and shopping 

around for the products they needs. In addition to this, the MW service automates purchasing 

decisions and frees the customers from the shopping process itself. Using various marketing methods, 

these advantages should be communicated very clearly to the right segments of the population. The 

primary segment initially targeted by the e-Butler system should be the busy professionals who have 

neither time nor desire to shop in a conventional way. After this initial segment "buys" into the e- 

Butler concept, and e-Butler demonstrates its value in practice, e-Butler can then be targeted to other 

segments of the population. 
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Address the privacy issues and assure the customers that their purchasing information will be kept in 

strictest confidence. One of the main reasons why many people do not want to put all of their 

financial information into one source is the concern over the privacy of this information. This is 

certainly a very serious problem. Even though such companies as Firefly, Open Sesame and others 

address this issue by making strong commitments to consumer privacy by proposing and adhering to 

strict privacy standards, such as Open Profiling Standard, the concern for privacy still remains 

[Markoff98]. However, we believe that the concern over privacy can be properly addressed in the 

context of the e-Butler service because it will be provided by some company that will have vital 

interests in keeping customer's data in the strictest form of privacy. This is the case because the 

survival of the company itself is at stake if customer privacy is breached. Therefore, this company 

should keep customer information in such confidentiality as banks keep customers financial 

information, or Coca-Cola keeps the Coke secret. Still there is a task of convincing the customers that 

this is the case, and this task is not an easy one. However, we believe that with the right degree of 

persistence, this task can be accomplished. 

Provide additional incentives for enforcing behavioral patterns that allow to collect comprehensive 

purchasing histories, such as accumulation of frequent flier miles, giving bonus points, etc. In fact, 

some people try to use the same credit card in most of their purchasing transactions in order to earn 

more frequent miles using that credit card. This is a good indication that these incentives can work for 

e-Butler as well. 

Another problem pertaining to collecting comprehensive histories of customers purchases is that not all of 

these purchases are made for the individual consumption. Some of the purchases are made as gifts. It is 

difficult to differentiate between personal and gift purchasing behavior of the customers, and this makes it 

more difficult to estimate their future purchasing needs. For example, assume that a customer purchased 

two shirts as a gift. The e-Butler service would think that the customer has enough shirts and would not 

recommend any shirt purchases for some time, while the customer may need new shirts. However, one 

can use various methods to differentiate between gifts and personal purchases. For example, the e-Butler 

service can encourage the user to record gift purchases. Also it can use various heuristics to distinguish 

between the two. For example, if the purchased shirt is of the size that is different from the sizes of the 

household members, this means, most likely, that it is a gift. Finally, the gift biases would lead only to the 

overestimation mistakes (e.g. the e-Butler service thinks that the customer has enough shirts, whereas he 

needs to buy some more). These mistakes would not result in wrong (and annoying) recommendations 

that are the most harmful for the e-Butler service. 

In summary, it is harder to resolve behavioral issues hampering the collection of comprehensive 
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purchasing histories for e-Butler customers. However, this is not an impossible task, and we believe that, 

eventually, it could be successfully resolved. 

6.1.2. Length of Purchasing Histories. 

Clearly, the longer the purchasing history of a customer is, the more accurate estimation of future 

purchasing needs e-Butler can make. This means that the most serious problem is with the new users 

subscribing for the e-Butler service because they don't have any purchasing histories recorded by the 

service. Therefore, the e-Butler service should first accumulate the purchasing histories for some time 

before it can start giving purchasing recommendations or making buying decisions for the new customers. 

This means that a system of incentives should be developed for the first few months after a person 

subscribes for that service and before purchasing recommendations or buying decisions start being issued. 

Alternatively, other methods for providing recommendations andlor buying decisions can be used initially. 

For example, any of the recommender systems [CACM97] can be used for that purpose. 

In addition, the first purchasing recommendations will be based on a short purchasing history, and 

therefore, the e-Butler service will be able to make initially only few reliable recommendations. However, 

both completeness and accuracy of the e-Butler service should increase over time, when longer 

purchasing histories are generated (and the customers provide feedback on previous recommendations as 

discussed in Section 6.1.4). 

6.1.3 Inputs from the Customers. 

These inputs are very valuable and certainly should be encouraged by the e-Butler service. One incentive 

for the customers to specify their current and anticipated needs lies in the increased accuracy and better 

service provided by the e-Butler system. Nevertheless, it is also useful to develop an additional system of 

incentives to facilitate even more inputs from the user. 

However, excessive requests for inputs can irritate customers and make them abandon the service. For 

example, if a customer is asked for inputs by e-Butler 100 times a day, he or she would certainly be 

irritated and would quit the service. Therefore, requests for customer inputs should be made very 

judiciously by e-Butler. 

6.1.4 Customer Feedback. 

Once the e-Butler service starts issuing recommendations or purchasing decisions, it is important to 

obtain the feedback from the customers on how much they liked or disliked different recommendations or 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-98-16 



decisions. This valuable information should be fed back to e-Butler and the system should learn how to 

revise its recommendation or decision making strategies based on the customers' feedback. There are 

numerous learning methods developed in the Machine Learning branch of Artificial Intelligence field that 

can be applied to this problem [Mitchell97]. As we discussed in Section 2, content-based recommendation 

systems use some of these techniques, and e-Butler can utilize these approaches. 

6.1.5 Methods for Analyzing Purchasing Histories. 

Customer's purchasing needs generated by the "estimated purchases" module in Figure 2 should be 

determined based on the patterns and trends detected in the purchasing histories. For example, it may be 

discovered that a customer tends to buy Bordeaux wine when she goes to Paris. This pattern is certainly 

more useful for recommendation and purchasing capabilities of e-Butler than a simple collection of facts 

enumerating all the purchases that the customer made in Paris. 

There are several approaches proposed on how to analyze purchasing histories of customers. They 

include collaborative filtering, content-based recommendations, non-intrusive learning, and user- 

interaction methods. Collaborative filtering was described in Section 2 within the context of collaborative 

systems, such as GroupLens from Net Perceptions, Preference Server from LikeMinds, and Passport- 

based systems from Firefly. Similarly, content-based recommendation systems, such as Instant 

Recommendations from Amazon.com, First! from Individual, and Syskill&Webert were also described in 

Section 2. All of these systems require extensive user participation in the analysis of purchasing histories 

and recommendations: collaborative filtering systems require extensive user inputs and content-based 

recommendation systems require extensive customer feedback. Therefore, there is a danger of 

overburdening the customer with excessive requests for information. 

In contrast to this, the Learn Sesame system from Open Sesame constructs individual customer profiles 

from the Web click-stream (Web logfile) data in a non-intrusive manner without requiring extensive 

customer inputs. These profiles are build by analyzing histories of customer interactions with a Web site. 

Learn Sesame uses neural network technology for the analysis of the click-stream data and for the 

construction of individual profiles. 

Learn Sesame discovers statistically strong patterns in the customer's click-stream data. However, it is 

our firm belief that it is, ultimately, a human who has to examine and validate the patterns for their 

usefulness and strength. Therefore, we are currently developing new methods for validating individual 

customer patterns obtained from purchasing histories through the involvement of the user in this process. 

In summary, we considered various methods for improving accuracy and completeness rates of 
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recommendations and purchasing decisions made by e-Butler. Although some of these methods a 

relatively easy to implement, others require modification of customer's behavior, which is very hard to 

achieve. However, we believe that none of the issues are insurmountable, and all of them can be resolved 

in due time. However, much work is needed for that purpose. 

6.2 How to "push out" the upper boundaries "acc-max" and "comp-max" in Figure 3 

We will first discuss the issue of "pushing out" the value of comp-max (this corresponds to the upper 

arrow in Figure 3) and then the value of acc-max (right arrow in Figure 3). 

Completeness (comp-max). Consider such products as books and CDs, and other products, such as 

houses and cars. It is certainly much easier to recommend new books and CDs rather than new homes or 

cars. This is the case because we usually buy books and CDs much more often than houses or cars and 

because purchasing a book or a CD is a much less involved decision than purchasing a house or a car 

(purchasing a new house or a new car is such an unstructured decision that it is very hard to design 

machine-generated recommendations for these products). Therefore, books and CDs are on one extreme 

and "big ticket" items, such as houses and cars, are on the other extreme of the ease-of-recommendation 

spectrum. 

In general, there are products for which it is easy to provide purchasing recommendations and other 

products for which it is very hard (or even impossible). Between these two extremes lies the whole 

spectrum of products for which it is "somewhat" hard to provide a good recommendation. An example of 

the "middle-of-the-road product is a vacation. Given several years of the past purchasing history of a 

customer, including a few vacations taken in the past, it is possible to come up with a recommendation for 

the next vacation the customer may like, although it is not easy to do so. 

One way to increase completeness rates for the e-Butler service is to identify such "middle-of-the-road" 

products and services and to develop special subsystems that specialize in the recommendations for these 

types of products'0. For example, a vacation-planning recommendation system would deal exclusively 

with vacations, and a car-buying recommendation system with cars. One advantage of this approach lies 

in that these expert recommendation systems can utilize domain-specific knowledge that helps produce 

better recommendations than the generic recommendation system. Therefore, they could help to increase 

the upper bound of completeness rate (comp-max). An obvious disadvantage of this approach lies in that 

this is a step back to the Expert Recommendation Systems and the drawbacks related to that class of 

"' We would like to point out that these special subsystems for the "middle-of-the-road" products would 
complement a generic recommendation system for the easy-to-recommend products, such as books, wines, and 
CDs. In other words, the two types of systems would operate side-by-side rather than one replacing the other. 
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systems. In particular, this is certainly a very labor-intensive process requiring building an ERS system 

for each product category (vacations, cars, etc.). 

Accuracy (acc-max). In order to "push" the value of acc-max up, we need to identify the factors that 

affect the accuracy rates. In Section 6.1 we identified five factors that affect these rates. Therefore, we 

need to determine the components of these factors that are very hard (or even impossible) to influence 

(and thus the accuracy rates will not go above the limits set by these factors). In order to answer this 

question, we examine each of them one by one. 

Comprehensiveness of purchasing history. We identified technology-based and behavioral factors that 

affect the completeness of a purchasing history. We also argued that the technology-based factors can be 

affected easier than the behavioral factors. Therefore, behavioral factors, such as unwillingness to provide 

complete purchasing history and unwillingness to purchase all of the products with a smart card identify 

one type of limit for the accuracy rates. 

Length of purchasing history. This is, certainly, not a factor. 

Customer inputs. This is another factor limiting accuracy that is very hard or even impossible to 

influence because it is very hard to convince a customer to provide inputs if he or she does not want to do 

so. Therefore, lack of customer inputs is still another factor limiting recommendation accuracy. 

Customer feedback. This is still another limiting factor that is hard or even impossible to influence, As in 

the case of customer inputs, it is very hard to convince the customer to provide feedback if he or she does 

not want to do this. 

Methods for analyzing purchasing histories. This is not a limiting factor because these methods can be 

perfected as our understanding of them advances. 

In summary, all of the factors imposing "hard-core" constraints on the value of "acc-max" are 

behavioral and constitute unwillingness on the part of the customer to 1) provide a complete purchasing 

history to the e-Butler service, 2) purchase most of the products with a smart card, 3) provide systematic 

inputs about his or her preferences, and 4) provide feedback about the levels of satisfaction with the 

purchased products and services. We would also like to point out that all of these behavioral factors vary 

significantly from one customer to another. 

In this section we explained what needs to be done to make e-Butler a successful service, i.e., what needs 

to be done to move it into the shaded region in Figure 3 and further up into the north-eastern part of that 
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region. In particular, we identified the following critical issues: 

1. how to collect a comprehensive purchasing histories of e-Butler customers 

2. how to start e-Butler service (without any prior history) 

3. how to move the upper boundaries (acc-max and comp-max) in Figure 3 (the low boundaries 

acc-min and comp-min are determined by the user and are fixed and not "movable") 

4. how to do the analysis of the past purchasing histories well in order to make better estimations of 

future purchasing needs 

5.  how to make actual purchasing recommendations (for PSA service) and purchasing decisions (for the 

MW service) based on the estimated purchases analysis done by e-Butler. 

Although we explored some of these issues in the paper, certainly, more work is required in order to 

understand them well and to resolve all of them successfully. 

7. Feasibility of the e-Butler Service 

e-Butler has not been implemented yet and, therefore, we don't have any first-hand evidence that it will 

work in practice. However, we believe that the technical issues, discussed in Section 6, pertaining to the 

successful implementation of the PSA service will be resolved soon. Therefore, the bottleneck lies in the 

behavioral issues identified in the previous section, such as unwillingness of the customers to provide 

complete purchasing history, unwillingness to purchase most of the products with a smart card, 

unwillingness to provide customer inputs and customer feedback. Moreover we argued in Section 6 that, 

although these bottlenecks are serious, they are not unsolvable, and could be overcome. We believe that if 

we manage to overcome these behavioral bottlenecks and when the technical solutions are in place, the 

PSA service should be able to achieve the accuracy and completeness rates acceptable to the public (in 

other words, it should land in the shaded area in Figure 3). 

The next question is whether or not the Magic Wand service is feasible. As was explained in Section 5 ,  

the accuracy rates for the Magic Wand service should be much higher than for the PSA service (e.g. 

above 80%). Is it feasible to achieve such rates even if we manage to resolve all the technical and 

behavioral problems described in the previous section? 

We believe that it should take a very intimate understanding of the customer and his or her needs, 

including a very thorough analysis of customer's purchasing history over a long period of time to achieve 

such high accuracy rates for selected products. Examples of such selected products are books and wines. 

If we study purchasing histories of people interested in purchasing books or wines over a long period of 
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time, we can know their preferences and habits well enough to start unsolicited sending of these products 

to them and expect acceptable accuracy rates. Examples of items that should never be used in the MW 

service are concert tickets or any other products, the consumption of which requires knowledge of 

customer's schedule. Moreover, in no case should the MW service be offered to a new or a recently joined 

customer. However, if we start offering MW service for selected products, then we fall back to the EDS 

type of service (from Figure I), such as the book-of-the-month or similar clubs, and the service becomes 

no longer generic. 

Therefore, we believe that it is infeasible to start the MW service from "scratch." What could be done 

instead is the initial introduction of the PSA service and gradual development of a one-to-one relationship 

with a customer by accumulating his or her purchasing history and constantly studying the customer's 

feedback. Once the customer is well-known to the PSA service, gradually and very cautiously we can 

start introducing the MW service on selected products as an augmentation to the PSA service, carefully 

studying the customer's feedback. If the customer feedback is positive, we can gradually expand the MW 

service to a larger set of products until we reach some stable point of satisfactory completeness and 

accuracy rates. However, if the accuracy rates are not satisfactory for a customer, we can scale down the 

MW service for that customer, leaving him or her only with the PSA service. 

This approach corresponds to the ERS -+ GRS -+ GDS path in Figure 1, where the GRS -+ GDS 

transition should be made very carefully and cautiously. However, we believe that the alternative path 

ERS -+ EDS -+ GDS is also promising. In particular, it avoids the bottlenecks of the ERS -+ GRS 

transition. This approach corresponds to the development of expert decision-making services that are 

similar to the book-of-the-month clubs and then gradually and cautiously expanding them to other types 

of products and services, such as a wine-of-the-month, a video-of-the-moment, a shirt-of-the-season type 

of clubs. This is, certainly, a very labor-intensive process because each of the product types has a 

corresponding expert system designed for that product. But once we get enough experience with designing 

such expert decision-making systems, we can start building generic decision-making systems. Hopefully, 

the PSA service will mature at that point, and we will be able to merge the ERS -+ GRS -+ GDS and 

ERS -+ EDS -+ GDS paths into one integral approach. Such approach corresponds to the arrow from the 

ERS to the GDS quadrant in Figure 1. 

In summary, we believe that it is feasible to provide the MW service for a selected group of products and 

services, but it should be done very carefully and very cautiously in a manner described in this section. 
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8. Conclusions 

In this paper, we described an Electronic Butler (or e-Butler) that provides a personalized shopping 

service to its subscribers by identifying individual customer's shopping needs and providing purchasing 

recommendations across a wide range of products or making purchases directly without any prior 

consultations with the customer. We also identified the two components of e-Butler -- the Personal 

Shopping Assistant (PSA) that provides purchasing recommendations and the Magic Wand service that 

makes direct purchases. 

We also addressed the issues of feasibility of the PSA and MW services and identified technological and 

behavioral constraints for the successful deployment of the e-Butler service. Since e-Butler has not been 

implemented yet, it is impossible to provide any hard-core evidence of its feasibility. However, we argued 

that the technologies for solving all the technical constraints associated with the implementation of e- 

Butler are either in place now or are "around the comer." It is more difficult to address the behavioral 

constraints. However, we maintain that they are not insurmountable and will be solved in due time. 

In this paper we considered an e-Butler service that makes personalized purchasing recommendations or 

buying decisions. Clearly, it can be extended to other types of personalized recommendation and decision 

making services, such as personalized health care and personalized Web-browsing services. For example, 

e-Butler can be extended to include personalized recommendations about when to visit a doctor, which 

medicines to take and when, which exercises to do and when, and which types of foods to eat based on the 

health considerations. Although we have not considered them in the paper, these services should not be 

difficult to incorporate into e-Butler because they use the same types of technologies and because they 

have similar types of behavioral constraints. 
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