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INTRODUCTION 

It is five years hence, the dawn of the new millenium. The World Wide Web 

serves two hundred million people and is inhabited by perhaps a billion software agents. 

A large part of the world economy is on-line. Organizations are networked in a constantly 

changing kaleidoscope of relationships - some fleeting others mutating slowly. 

Competition is for the intelligent and agile - those organizations that have mastered the 

arts of discovering new value propositions, nurturing customer relationships, and 

executing their core functions rapidly and faultlessly. Human beings in the developed 

nations are totally dependent on the electronic world for their education, entertainment, 

communication and commerce. 

Is such a world possible? Simple extrapolation of current exponential growth 

trends indicates that the above human and software agent population figures are not 

unreasonable. The feasibility of such a vision, however, rests on issues of system 

stability and human benefits. Can an electronic economy making millions of decisions 

per minute and executing billions of transactions and transferring trillions of dollars per 

day remain stable? Or will there be an electronic world financial crisis that will make the 

recent Asian crisis seem like a minor blip? Will the evolving electronic society actually 

benefit mankind? Will it create an elite of whiz-kid millionaires controlling vast electronic 

financial resources and a huge underclass of the less fortunate or less able? We are 

already experiencing an almost unbearable flood of information and communication 

requirements that sap our time, make leisure more difficult, and our time more and more 

valuable. How can we realize the benefits of the increased productivity that we feel 

instinctively can be provided by the information revolution? 

The questions raised in the last paragraph, can probably only be answered in 

practice as new markets, organizational forms and life styles evolve from the maelstrom 

of electronic commerce. In this chapter, we will concentrate on only one necessary 

condition for the existence of such an electronic world. Our thesis is that we need new 

technologies to help individuals and firms cope with the evolving information ecology - 
coping technologies to manage the information producing technologies (which if 

unchecked could actually become disabling technologies). The emphasis in information 

technology research and practice must turn from producing information to controlling and 

managing it. Shaping the information into forms that are more useful and accessible, 

condensing it, filtering out noisy elements, finding useful nuggets of information on 

demand, analyzing them, and creating new knowledge - using every means at our 
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disposal to make the new information universe friendly, understandable, and useful. The 

technologies for doing this are exciting and challenging. Some have been around since 

the early days of computer and management science, others are emerging in response 

to the new electronic realities. 

The technologies fall into four groups (see Figure 1). The technologies for 

discovering information: search engines, directories, electronic markets and electronic 

auctions. The technologies for controlling and restricting the flow of information to which 

we are subject: filtering and alerting systems. The technologies for understanding 

information: knowledge representation, visualization, data mining, and the tools of 

statistics and management science. The technologies to assist decision making: 

recommender systems and "electronic butler" systems [23]. The first three categories of 

technology - those for discovering, controlling and understanding information - provide 

support for the fourth category - that of decision support and decision making 

discovery technologies 

Technologies for controlling 
and filtering information Y 

Technologies for 
understanding information 

Figure 1 

A Classification of Technologies for Coping with the Information Explosion 

+ 

In this chapter, we will concentrate on the fourth set of technologies and within 

Decision support and 
decision making technologies 

that only on a new class of systems that have been called recommender systems. Our 

objective is to provide an overview of recommender systems and their role in the 

information economy. We look at where they fit in the panoply of technologies that have 

been developed to support decision making in electronic commerce, their technical 

foundations, managerial implications, and issues that surround their deployment and 

adoption. 
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RECOMMENDATION SYSTEMS AS A DECISION TECHNOLOGY 

Recommendation systems provide information about the relative merits of 

alternative courses of action. In everyday life, when faced with a choice for which we 

lack adequate information, we often turn to various guides such as Consumer Choice 

magazine, Zagat's restaurant guide, knowledgeable friends, experts, and so on. The 

function of these guides is to increase the probability that we will be satisfied with the 

results of our decision making. Recommendation systems are electronic versions of 

such everyday systems. 

There is a subtle definitional issue. As originally conceived, and by common 

usage, recommender systems are automated systems in which people (recommenders) 

provide recommendations as inputs, which the systems then aggregate and direct to 

appropriate recipients [16]. This is narrower than the definition of the previous 

paragraph, which essentially says that recommender systems make recommendations 

(by any means.) We prefer the broader definition: first, because it is more goal-oriented 

and second, because the narrow definition seems unnecessarily restrictive. Strictly 

interpreted, for example, the narrow definition would not include the use of intelligent 

software agents as recommenders. Nor would it include information filtering systems that 

make recommendations based on content analysis in which a user's interest profile is 

matched with document content profiles. Worse still, many recommender systems are 

really hybrids in which the source of the recommendations is both human and non- 

human (collaborative filtering plus content analysis, for example). To distinguish 

between the broad and narrow definitions of recommender systems, we will call the 

former "recommendation" systems. Because this is a new area for computer support, it 

is worth while taking some pains to make the definitions as clear as possible. We move 

from the general to the particular (see figure 2.). 

The objective of decision technologies in general is to overcome the limits of our 

bounded rationality - to help us make better decisions, to make them more quickly, and 

with less expenditure of effort. Decision making technologies automate the decision 

making process and remove the human element. Automated inventory systems are a 

prime example. More recently, [23] has suggested that automated decision making be 

extended to include everyday activities such as shopping. He has proposed "electronic 

butler" services that use the past history of user purchases to infer a subset of 

purchases that can be made automatically without user consultation. 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-98-17 



/ Decision Technoloaies 1 
I I 

Decision Support Systems Decision Making Systems 
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(Narrow Definition) 
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Figure 2 

Partial Classification of Decision Technologies 

Decision Support Systems (DSS) were originally conceived as an alternative to 

computerized decision making systems for use in situations in which the human inputs 

were necessary because the decision situation was not highly structured 

(programmable) and therefore, required human judgement and intuition [5]. The role of 

the computer was to provide information via databases or models to help in the decision 

making process [I]. An interesting consequence of the new information economy is that 

a decision situation can become unstructured as a result of a glut of information and the 

speed at which decisions have to be made. Users then need computer support, not only 

because of the complexity of a given decision (the original DSS concept), but also, 

because they lack the processing speed and power to cope with an overload of 

information and a myriad of decisions that demand attention. 

Recommendation systems, systems that evaluate choices, fall in this category of 

decision support. Typical uses of recommendation systems have been to suggest the 

information that a decision maker might need (filtering systems), and to rank films, 
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restaurants, books, and so on'. These are small decisions in a way, but demanding in 

the aggregate. However, we do not mean to restrict recommendation systems to low or 

medium matters of importance to individuals or organizations. Systems to assist users 

in decisions of major consequence, such as equipment purchases for corporations and 

home or automobile purchases for individuals, can also be envisaged as outlined below. 

Recommendation systems may use all or any information from whatever source and 

make use of very different processing algorithms to form their recommendations. 

Recommender systems (narrow definition) on the other hand, perform the same 

function as recommendation systems, but involve other human beings as 

recommenders. The recommenders may or may not explicitly collaborate with the 

recipients of the information because the recommenders and recipients may not be 

known to each other [16]. 

Finally, collaborative filtering systems are special purpose recommender systems 

that filter or restrict the information delivered to recipients. They are narrower in scope 

than recommender systems because the latter can suggest new items of interest rather 

than just filter out those that are presumed to have little or no interest [16]. Typically, 

collaborative filtering systems have been used to filter information from Internet Usenet 

groups (as in Grouplens [9]), provide recommendations on books (as in Amazon.com), 

etc. Collaborative filtering techniques can differ in their implementation and approach, 

but all incorporate the use of individuals to annotate or recommend items to others. Of 

course, the same individual can alternate between the roles of recommender and 

recipient at different times. 

RECOMMENDATION SYSTEMS WITHIN A FRAMEWORK FOR ELECTRONIC 

COMMERCE 

The World Wide Web has dramatically altered the availability of information for 

users, but most of this information is useless or of poor quality. Given the magnitude and 

diversity of content and its uncertain quality, familiar search engines, such as Lycos, 

Yahoo and Alta Vista, have proved inadequate. Typically, these search engines employ 

a fairly traditional information retrieval (IR) paradigm augmented by software agents 

(spiders) that continuously examine and index the content of millions of web sites. The 

metamorphosis of the World Wide Web from a digital library (where the focus was on 

' Many existing examples of recommendation systems fit the narrow definition of recommender systems. 
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retrieval) into an electronic marketplace (where the focus now is on transactions) alters 

the rules of the game, calling for a new perspective and a broad range of new 

capabilities, institutions and control mechanisms. The following framework provides 

some pointers for future directions and some insights into the role of recommendation 

systems in the information economy. 

The framework is based on the concept of infermediafion in an economy. Just as 

the traditional economy is populated by physical intermediaries in various forms, who 

serve to facilitate transactions, the information economy requires the service of 

'electronic intermediaries' serving similar roles2 on the Web. Intermediaries, by nature of 

their role-specialization, help to reduce the risks and uncertainties that plague 

transactions in a traditional economy. In addition, intermediaries add value by engaging 

in activities that help reduce coordination costs and provide economies of scale and 

scope. The information economy could, similarly, be greatly benefited by intermediaries 

who can help facilitate transactions. 

The framework in Figure 3 is an adaptation and expansion of that contained in 

[?I. The framework proposes a hierarchy of ten levels of functionality. While some of the 

levels of functionality primarily focus on the needs of customers, others serve the needs 

of suppliers1 manufacturers. Note that these levels are not necessarily conceptualized as 

strict levels in a hierarchy, i.e., we do not claim that higher levels of functionality, by 

themselves, add more value than those below them. While the higher levels of 

functionality indicate potentially greater benefit, they also rank higher in terms of 

complexity of implementation and execution besides requiring human intervention and 

consensus among various players. The higher levels of functionality, being inherently 

more complex in nature, have been slower to evolve. Thus the various levels in the 

framework may be conceptualized as stages in the evolution of e-commerce systems. 

Web-based agents typically focus on one or more levels of functionality and strive to 

gain efficiencies in these. A more complete description of the framework and its 

implications for the design of web-based agents and for electronic commerce in general 

is contained in [21]. 

2 Since we are primarily concerned with 'electronic intermediaries' in an information economy, we restrict 
our discussion to intermehay functions that lend themselves to automation. 
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Figure 3 
A Value Framework for Web-based Agents 

The above framework highlights the role of recommendation systems in 

electronic commerce. Recommendation systems are software agents that attempt to 

incorporate the three functions of search and retrieval, eliciting customer information, 

and signaling quality. In addition, because they convey quality information, they help 

mitigate the risk of executing transactions on the Web. 

The combination of the three functions of search and retrieval, eliciting customer 

information, and signaling quality in recommendation systems makes them ideally 

suitable for "one-to-one marketing" applications. In one-to-one marketing, firms seek to 

learn and satisfy the unique needs of each individual customer [15]. For example, 

Individual Inc.'s First! Service allows it to compete with wire, clipping and information 

retrieval services [http://www.individual.com/]. Clients such as MCI Telecommunications, 

McKinsey & Co., and Avon products, use the service to have customized information 

delivered to executives via fax, e-mail, Lotus Notes, or their corporate Intranets. The 

executives first provide simple descriptions of the kinds of items in which they are 

interested. The system then fine tunes these "user profiles" by asking the executives to 

rate each received article as being of high, medium or low relevance. Over time, the 

ratio of medium plus highly relevant articles to the total number of articles received by 
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the executives, is reported to be as high as 80% [15]. Firefly (hnp:llwwtv.firefly.com/) is 

another example of a commercial recommendation system that facilitates one-to-one 

marketing. The Firefly software enables businesses to create user-centric applications 

and services that manage personal profiles and personalize services for individual users. 

For example, Filmfinder (http:ll~iww.filmfinder.conl/), a site that recommends movies, is 

enabled by Firefly. Other companies that have formed partnerships with Firefly include 

Barnes and Noble, Virtual Emporium, and Yahoo. 

Other applications of recommendation systems on the Web include: personalized 

recommendations of URLs, filtering of Usenet articles, blocking access to undesirable 

Web sites, one-to-one marketing of banking services, and shopping services for music, 

video and books [16]. Some of these applications are discussed in more detail below. 

Within an organization, recommendation systems will be increasingly used in 

organizational learning applications in which employees share knowledge by 

commenting on and rating various company products, sales leads and practices [ZO].  

INFORMATION RETRIEVAL - THE UNDERLYING TECHNOLOGY FOR 

RECOMMENDATION SYSTEMS 

To understand recommendation systems, it is useful to compare them with the 

information retrieval systems from which they have evolved. In this section, we provide a 

broad overview of IR as a background to the framework for recommendation systems 

that we develop in the next section. 

An information retrieval system helps users find documents that best satisfy their 

need for information, or helps them obtain information from knowledge sources for the 

purposes of problem management [3]. The term 'information retrieval' is primarily 

associated with text retrieval. The three major areas of concern in IR Research are 

depicted in Figure 4. These are: representation of the individual's information needs; 

representation of the meaning of the texts/documents, and comparison of the two to find 

the most suitable match. 
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Figure 4 
Basic Inference Network 

Information Needs Representation - The information needs of a user are usually 

represented by means of a query consisting of a simple term or a set of terms. The 

query terms are usually keywords or phrases involving Boolean representation. 

However, given the richness of natural language, query terms are usually not 

accurately indicative of the user's true meaning. 

Document Representation - Documents or texts produced by different sources are 

indexed (manually or automatically) to extract terms that are best representative of 

the documents. As in the case of queries, these document terms too are not 

accurately indicative of the actual document meaning. Various indexing techniques 

(for example Probabilistic Indexing and TF-IDF 1181) have been developed in an 

attempt to more accurately characterize the information content of the document. 

Retrieval Techniques -The third area of concern is the comparison of the query 

terms with the document terms, based on which the relevant documents are 

retrieved. Most of the major IR models have been primarily concerned with this 

process of comparison. 

It is inherently difficult to satisfy specific user needs with a document database 
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indexed by librarians to serve the needs of a general audience. "Associative" search 

techniques based on probability, statistics, set theory and logic (for example, Boolean 

models, Vector Space Models and Probabilistic Retrieval Models [IT]), enable the 

retrieval of documents that are "close" in some sense to the user's query. These same 

measures of closeness can narrow the user's search for relevant documents by 

providing a system-determined relevance rating or ranking of retrieved articles in terms 

of their "relevance" to the user's request. In addition, "relevance feedback techniques - 

continuously improving queries by asking the user to rate the relevance of retrieved 

articles - can greatly improve the performance of IR systems. IR systems that provide 

relevance ratings are a specialized form of recommendation system as we have defined 

the term. 

Current IR systems depend on the 'best-match' principle, i.e., given a query, the best 

possible system response is the text whose representation most closely matches it [4]. 

The 'best-match' principle in turn depends on the assumption of equivalence between 

the expression of need and the document text in that it treats the representation of the 

need as a representation of the document that is ideal for resolving that need. The best- 

match principle looks first for a document, which is just like the expression of need; that 

is, which is functionally equivalent to it 141. If we know precisely what the user wants and 

if we know what documents best satisfy this need, then the problem reduces to a simple 

matching process. Unfortunately, "noise" is inherent in each of the IR components in 

Figure 4. Users generally cannot specify precisely what information is needed to resolve 

a particular problem, documents are represented imprecisely by the document terms, 

and, while many different algorithms have been proposed, the retrievat process may be 

unsatisfactory. 

Precision and recall are the two most common measures for evaluating IR 

effectiveness. Precision is defined as the percentage of items retrieved in a search that 

are relevant to the query, while recall is defined as the percentage of relevant items that 

are retrieved in a search. While one would like the IR system to consistently score high 

on both measures, there is an inherent trade-off between the two. The concept of 

relevance has in itself, been a source of problems. Although, there has been a lack of 

consensus regarding the concept of relevance, a "system's view" of relevance has 

dominated most of IR research. As stated by Saracevic (1976) [19], "the system's view 

of relevance was a result of thinking that relevance is mostly affected by the internal 
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aspects and manipulations of the system. Relevance was conceived in terms of 

indexing, coding, classification, linguistic manipulations, file organization, and e venfually 

question analysis and searching strategies. This thinking led to development of a myriad 

of schemes, and to attention to input processing and manipulation almost to the 

exclusion of other aspectsJJ. Saracevic emphasized the need for a view of relevance that 

included the concept of pragmatic usefulness or "pertinence" to the needs of the user. 

The problems and limitations of IR systems become acute as we move to the domain 

of Web-based commerce. Most of the early attempts at information retrieval on the Web 

(for example search engines and directories) have built upon the models of IR, not 

withstanding the fact that these systems performed best in narrow domains where the 

information was relatively well structured and homogenous. The Web, though, is a very 

different information space, with vast differences in the structure, quantity and quality of 

content. In particular, the development of electronic commerce, where the focus is on 

transactions involving consumer durables as well as informational items, demands a 

much higher level of functionality and a quite different view of "relevance." 

RECOMMENDATION SYSTEMS ARCHITECTURE 

The schematic in Figure 5, provides a framework for recommendation systems 

illustrating both their basic components and the change in perspective that differentiates 

them from traditional IR systems. The dotted lines in the figure encompass the areas of 

concern of IR systems (see Figure 5). 

The major differences between IR and recommendation systems are first, that the 

objects of interest may be general items (goods) as well as informational items, and 

second, that the pertinence, or relevance of the retrieved items to the user's actual 

needs (utility), is paramount. These two differences imply capabilities that are not found 

in IR systems. 

Returning to our earlier discussion, recommendation systems provide information 

about the relative merits of alternative choices or courses of action. The objects of 

choice can be informational, such as articles, books, and web sites. In this case the 

recommendation system might produce a relevance ranking for the user query as in IR 

systems, or choose from a large population of information items only those that should 

be of importance to the user, as in filtering systems. Alternatively, the objects of choice 
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Figure 5 
The Architecture for Recommendation Systems 

could be durables such as cars and houses; consumable items such as plays, movies 

and concerts; or abstract entities such as stocks and other investment vehicles. In the 

sequel, the various alternatives considered by the recommendation system will be said 

to belong to its "choice domain." The choice domain may be constructed on the fly in 

answer to a particular user request, or it might be an index or database that is 

maintained by the system and continuously updated. 

Given the broad range of possible applications of recommendation systems, it is 

of interest to see what minimal set of functions a recommendation system must perform. 

First, a recommendation system, like an IR system, must have search capabilities in 

order to access and process information about the available choices. In some cases, 

recommendation systems have been linked to WWW search engines such as Alta Vista 

[http://altavista.digital.com/]; in other cases, they have accessed and processed 

information in Usenet newsgroups. More generally, the recommendation system might 

access information in web-based shopping malls, on-line auctions, or the homepages of 

car manufacturers. 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-98-17 



Second, the recommendation system must ensure that the relevant information is 

available for each alternative in the choice domain. For information items, the relevant 

information might be annotations and rankings by other users (the recommenders) or a 

set of document terms as in a traditional IR application; for durable goods, the 

information on each alternative will usually consist of a list of attribute values including 

the price of the good, and so on. 

Third, the evaluation system must have some notion of user preferences. In most 

systems, a userprofile will be generated by asking the user to rank some typical 

alternatives or to state their preferences and requirements (for example for certain 

classes of subject matter.) The userprofile is usually updated on a continuous basis 

using relevance feedback techniques. In other systems, those using rating agencies, it 

is tacitly assumed that the quality rankings of third party experts can be used as a proxy 

for the user's own preferences. 

Fourth, the recommendation system must be able to score the alternatives in its 

choice domain by assigning them an ordinal rank or cardinal rating that will signal their 

relative desirability to the user. The scoring mechanisms employed in recommendation 

systems differ depending on the source of expertise that is used to rank the alternatives 

as explained in the next section. 

Finally, the recommendation system must be able to present its results in an 

understandable and convenient fashion to the user. Again, there are many alternatives, 

depending on the type of scoring system used and the application domain. For example, 

in an IR system, information items are generally ranked in terms of their predicted 

relevance to the query - and this may be the only choice-oriented information offered by 

the system. However, especially, in collaborative systems, much more elaborate 

information may be presented to the user, For example, in Amazon.com the user may 

read the full text of book critiques by other users. 

These five sets of capabilities are necessary in any recommendation system. 

Namely, the system must be able to seek out possibilities for user choice, generate or 

maintain relevant information about each alternative in its choice domain, elicit or infer 

the preference profile of each of its users, evaluate the choices in terms of the user's 

profile, and present its recommendations to the user. While each recommendation 

system has these capabilities, there are major differences between them in philosophical 

approach, which will now be sketched. 
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CLASSIFICATION AND EXAMPLES OF RECOMMENDATION SYSTEMS 

Recommendation systems can be classified according to the source of the 

knowledge, or expertise, on which the system bases its recommendations. The major 

alternatives are set out in Table 1 together with some example application domains and 

references to actual systems that have adopted each approach. As in real life, there are 

four sources of such expertise. The users themselves (utility approach), information 

about user preferences and about the choices (content-based systems), the 

recommendations of a peer group (collaborative systems), and the opinions of third party 

experts or rating agencies (third party expertise). Many existing Web-based systems 

combine the content-based and collaborative approaches (hybrid systems). In this 

section, we discuss each of these approaches, provide examples, and overview their 

relative advantages and disadvantages. 

Recommendation 
System 
Technique1 
Philosophy 
Utility estimation 

Content or rule- 
based analysis 

Collaborative 
systems - 

the Recommender? 

Descriptive 

Example System 

as-houses and cars 
Information items - 

information about 
alternatives and user 
interests. Match 
alternative profile to 
user profile. 
The judgements or 
opinions of a like 

No known examples 

information retrieval 
or filtering 

Choices involving 
tastes; alerting and 

Syskill & Webert [I41 
[http:Ilwww.ics.uci. edul- 
pazz'dni11 

Newsweeder [I 01 

Phoaks [22] 
~http://ww.pl~oaks.con~/ 

consult domain 
expert(s) 

consult peers 
Rating Agencies - 

Argus Clearing 
House 
[http://www.clearinghou 

group of peers 
The judgement or 
opinion of one or more 
experts in the choice 
domain 

Table 1 : Recommendation System Approaches 

filtering systems 1 phoaks/ 1 
Problems in an I Referral Web [8] 

I 
organizational 
learning application; 
issues of high 
importance 

Utility Based Techniques: In this approach, the expertise (on what the user requires) is 

assumed to reside only in the user. The system interacts with the user to construct an 

explicit representation of the user's utility function in terms of the features (attributes) of 

the choices. Utility estimation techniques are suitable for choices between extremely 
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valuable items such as cars and houses for which attribute values such as price are 

readily available, but for which the ultimate choice must be made by the user. The 

Prefcalc system [ I  113, for example, requests users to rank a subset (five or six items) 

from a much larger set of choices and uses the rankings to construct an additive piece- 

wise linear utility function for the user. Given values for the attributes of each possible 

choice (such as the price, size, speed and fuel consumption in the case of automobiles), 

it is then a simple matter to rank all the choices - even those for which the user had no 

prior knowledge. In a similar vein, users could interactively and implicitly indicate their 

utility for the various choice possibilities as in multi-criterion decision making techniques 

[25]. While a scoring approach based on utility theory is possible and even desirable in 

some situations, to our knowledge, no existing Web-based recommendation systems 

attempt to estimate user utility functions in this classical, decision theory sense. 

Content-Based Systems: In this approach, the knowledge required to rank alternatives 

is embedded in a combination of descriptive information about the alternatives 

themselves (e.g. document terms or attribute values) plus an explicit user profile (e.g. 

keywords indicating subject interest, or a past history of previous choices by the user.) 

The content-based (or rule-based) approach has its roots in information retrieval (IR) 121. 

The techniques used for full-text searches of Web-based documents are similar to those 

used in IR. The key to improved performance of the content-based approach over 

traditional IR approaches is the use of user profiles containing information on user 

preferences and tastes. These may be explicitly elicited through questionnaires or built 

over time by observing and tracking users as they interact with the Web. Relevance 

feedback, an important component of content-based approaches, is used to update user 

profiles. One or more of the above-mentioned IR methods may be used for weighting 

words to represent documents and text. Similarly several different methods exists for 

updating user profiles. 

"Syskill & Webert" is the name of a software agent that uses a content-based 
approach to recommender systems [14]. Syskill & Webert learns the user's 
interests and preferences and then uses a LYCOS (Web-based search engine) 
query to retrieve Web pages that match the user's profile. The user evaluates the 
retrieved Web pages, which are usually related to a narrow subject domain, and 
these preferences are then stored in the user's profile, which is updated as more 
evaluations are made. A simple Bayesian classifier is used to determine the 
probability that the user would like a Web page. The system uses a boolean 

3 Prefcalc is a stand-alone MCDM application (not web-based.) 
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vector space model for learning 'features' (document terms) that help 
discriminate between interesting sites and uninteresting ones. 

Content-based approaches build upon IR models and consequently inherit many of their 

limitations. In particular, given the diversity of resources on the Web, not all Web-based 

documents are amenable to proper representation using traditional IR indexing 

techniques, which are best suited for text-based documents. Secondly, content-based 

approaches rely heavily on prior feedback from users. This results in 'over-specialization' 

i.e., the system performs best in restricted domains that the users have evaluated in the 

past [Z ] .  Thirdly, obtaining proper feedback from users for retrieved items is time- 

consuming and frustrating - given their limited knowledge and experience, users cannot 

determine what documents best satisfy their needs without actually browsing through 

each and every one of them. More importantly, the user might not be in a position to 

satisfactorily evaluate the quality of the items retrieved. 'Collaborative' recommender 

systems overcome some of the limitations of content-based systems, but have some 

weaknesses of their own. 

Collaborative Systems: In collaborative approaches, the opinions of people that have 

similar interests and tastes to the user provide the basis for the recommendations. This 

is the basic philosophy underlying recommender systems (narrow definition) and 

collaborative filtering applications. "Rather than compute the similarity of the items, the 

collaborative approach computes the similarity of users" [Z ] .  In collaborative systems, the 

user profile does not represent the user's preferences over the various choices that are 

to be recommended. Rather, it helps determine the user's similarity to other users of the 

recommender system. The recommendations are then based on the choices made by 

users with similar profiles. For example, a user might simply indicate a set of keywords 

of interest and will be provided rankings by a subset of users with a similar profile. In this 

approach the software agent finds other users whose preferences are similar to those 

specified by the user and then recommends items that they liked. Clusters of users with 

similar preferences are identified based on the correlation of their earlier evaluations of 

items in the choice domain. This, however, requires that the user have rated the same 

items for comparison. Scores for unseen items are predicted based on a combination of 

scores known from the nearest neighbors in a cluster [2]. 

PHOAKS (People Helping One Another Know Stuff) is a collaborative 
recommender system that mines Usenet News groups for mention of Web pages 
(URLs), which on passing a number of tests are then classified as 
recommendations [22]. Some of the search, classification and filtering techniques 
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common to IR systems are used. URLs that are cross-posted to a number of 
newsgroups and have accompanying text that are suggestive of an 
advertisement or promotion are automatically discarded. URLs recommended by 
a large number of users were found to be of higher quality than those with fewer 
recommendations. Additional information from FAQ (Frequently Asked 
Questions) databases was used to measure and improve the quality of the 
recommendations. One of the limitations of the PHOAKS system is that it does 
not distinguish between different evaluations, thus assigning them equal weights, 
irrespective of their credibility. 

Collaborative approaches can recommend a wide variety of items, not just those 

evaluated by the user. One of the most significant advantages of the collaborative 

approach is how little an individual user has to contribute to be able to retrieve relevant 

documents since the approach relies less on the user's own evaluations and more in the 

evaluations of users with similar tastes. However, the success of such a system 

depends on the availability of a critical mass of users with similar profiles, on the 

willingness of the users to contribute evaluations, and the credibility of their evaluations. 

As some users who benefit from such systems have no incentive to contribute 

evaluations, there may be problems of free riding. Market-mechanisms and pricing 

schemes for evaluations have been suggested to overcome some of these problems 

11'31. 

Third Party Expertise: In the fourth approach to producing recommendations, the 

system facilitates consultation with a domain expert. This approach might be indicated 

for problems and issues of major consequence. The referral web [8], in which users are 

linked into communities around domain specialists, takes this approach. 

The Argus Clearinghouse (http://www.clearinRhouse.net/) serves as a 
clearinghouse for topical guides that identify, describe and evaluate Internet- 
based information sources. The topical guides are rated based on five criteria: (i) 
Level of resource description (content, currency, access, technical performance 
etc.); (ii) Level of resource evaluation (subject quality indicators, information on 
authors, document layouts, graphics etc.); (iii) Guide design (images, layout, 
navigational aids etc.); (iv) Guide organizational schemes; and (v) Guide meta- 
information. Exceptionally good guides are also given a "Digital Librarian's 
Award". Rating agencies (or Clearinghouses) can thus serve as a credible 
source of recommendations in different domains. 

Rating agencies or third party experts are useful in situations where special expertise is 

required in order to make the recommendations. A disadvantage is that the 

recommendations produced by such systems are not usually personalized to the user. 
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Hybrid Systems - Most existing recommendation systems take a hybrid approach 

involving some combination of content-based analysis and collaborative filtering. The 

Barnes and Noble implementation of the Firefly software mentioned earlier uses a 

combination of rule-based and collaborative filtering. 

FAB - The FAB system, a part of the Stanford University digital library project, is 
a hybrid recommendation system 121. It is comprised of three main components - 
collection agents that find pages on a specific topic; selection agents that find 
Web pages for a specific user; and the central router. Users receive items both 
when they score highly against their own profile as well as when they are rated 
highly by a user with a similar profile. While the collection agent's profile 
represents its current topic, the selection agent's profile represents a single 
user's interests based on his/her evaluation. The central router forwards Web 
pages from the collection agent to users based on their profiles, which are stored 
in their personal selection agents. Collection agents specialize in narrow domains 
and adapt to a dynamically changing population of users. The FAB system uses 
Web based full-text search engines to retrieve pages that match the user's 
profile. The success of the system depends largely on how accurately the users' 
profiles reflect their true preferences. 

Hybrid systems overcome some of the limitations of content-based systems. By 

utilizing group feedback we potentially require fewer cycles to achieve the same level of 

personalization [Z ] .  In addition, individuals gain because the group can appraise more 

items and will usually provide a different viewpoint. 

The application domains in Table 1 are suggestive only. Each technique could be 

applied in multiple domains. This is suggested by Table 2, which arranges the 

information described above around some typical problem domains. (The third row in 

the table lists the alternative approaches in each problem domain). 

MANAGERIAL IMPLICATIONS 

From a firm's viewpoint, recommendation systems can be used in two ways - as 

a marketing tool to positively influence consumer perceptions and preferences, and/or as 

a tool for knowledge management and organizational learning. Table 2 shows sample 

problem domains in these two areas of concern. The first and second rows in Table 2 list 

the choice domain and characterize the type of problem to be solved by the 

recommendation system, the third row suggests alternative sources of 

recommendations, while the last row describes the value that the system provides its 

users. 
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As is to be expected, the design and deployment of recommendation systems 

should differ to reflect the concerns of the different problem domains. Columns 2 and 3 

illustrate two contrasting decision situations in e-commerce - high value, one-off decision 

making in which personal preferences are of overriding importance and low value 

decision making where matters of opinion and taste are paramount. The level of trust, 

risk, validity and performance expected in these two situations is vastly different. For 

example, as suggested in the third row of the table, the locus of decision making for high 

value decisions should probably reside in the user, while in low value decision making 

situations it seems feasible to rely on more automated approaches 

What is 
recommended? 

Typical choice 
domains 

Problem type 

Durables - known I Consumables- 
attribute values / matters of opinion 

from a relatively items of low value. 
few big ticket items 

(such as price) 
Cars, houses, 
vacations 

Art, movies, books, 
CDs 

Continuous flow of 
knowable product 

Who is the 
recommender? 

Value added by 
recommendation 
System 

e.g. information 
News feeds, Usenets, 
problem databases, 
organizational learning 
Filtering; prevention of 
information overload; 
directing attention to 
important issues 
(1) Content-based 

(Rules + personal 
profile) 

(2) Collaborative 
(Peer group) 

(3) Experts 
lnformation filtering, 
evaluation and 
presentation; alerting 
to new issues and 
ideas; match to 
personal information 
needs; save time by 
reading only items of 
direct interest 

(1) Utility-based 
(User + 
decision aid) 

(2) Rating 
Agencies 

Information 
gathering and 
presentation; one- 
to-one matching to 
personal 
preferences 

Table 2: Problem Domains, Alternative Approaches and Value Added 

(1) Content-based 
(Rules + personal 
profile) 

(2) Collaborative 
(Peer group) 

(3) Rating Agencies 
Information gathering 
and presentation; 
one-to-one matching 
to personal 
preferences; save 
time and cost of 
sampling; align with 
opinions of others 

As organizations are overwhelmed by the information explosion and as they 

become more knowledge intensive, organizational learning and knowledge management 

within the organization becomes important. Recommendation systems, using some of 

the techniques discussed earlier, can help firms in this area. Column 4 in Table 2 lists 
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information filtering applications in which the chief concern is to bring only interesting or 

new (from the recipients point-of- view) items to the attention of employees and to 

eliminate uninteresting or unimportant items. 

ISSUES SURROUNDING THE USE OF RECOMMENDATION SYSTEMS 

Space does not permit a review of the many interesting issues and problems 

involved in successfully implementing a recommendation system. Obviously, these 

issues span the gamut from the development of advanced software technologies to the 

care and nurturing of customers. In the case of recommender systems in particular, the 

developers must be concerned with how they can develop a community of people who 

will actively contribute to the common good. In this section, we briefly discuss only two 

questions: Why would a user accept the recommendations of a recommendation 

system? And, how can the value of such systems be measured? 

The major factors associated with user acceptance and use of recommendation 

systems are shown in Table 3. The issues of trust, validity, privacy, and risk are 

necessary preconditions for acceptance of recommendation systems, but ultimately, 

their success, will depend on the performance factor - the utility they provide their users 

Trust: Authenticity of source - is the recommender who I think it is? 
Does the recommender provide an unbiased recommendation? 

Validity: Does the system have the correct information/expertise? 
Does the system understand my requirements and wishes? 
How does the system make its recommendations? 

Privacy: Is my personal profile kept secret? 
Are my inquiries and purchases private? 

Risk: What redress do I have if I act on bad recommendation? (e.g. Money 
back if not satisfied?) 

Performance: What value do I derive from the recommendations - do I save money or 
time? 

Table 3: Factors Influencing the Acceptance of a Recommendation System 

Trust - Possible bias in the recommendations due to self-interest of either the owners or 

users of such systems is a major issue, particularly for collaborative recommender 
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systems. "If anyone can provide recommendations, content owners may generate 

mountains of positive recommendations for their own materials and negative 

recommendations for their competitors," [163. 

Validity - The question here is whether the system has the information and expertise to 

be helpful. Just as we associate more or less validity to the pronouncements of wine 

and food critics or human experts in any other walk of life, so too will computer 

recommendation systems acquire reputations for the relative usefulness or otherwise of 

their recommendations. The second question under this heading in Table 3 refers to the 

ability of the recommendation system to adapt its response to the needs of individual 

users. The third question emphasizes the need for recommendation systems to have 

accurate and reliable inference mechanisms - an active area of current research. 

Privacy - Most recommendation systems rely upon the evaluations and ratings provided 

by different users to recommend items. Sharing the opinions of individuals with the 

society at large raises concerns relating to privacy. While anonymity and the use of 

pseudonyms provide a partial solution to this problem, several alternatives have been 

proposed. For example, the Open Personalization Standard (OPS) also known as the 

Open Profiling Standard is yet to be agreed upon by industry participants [6]. Under 

OPS, users could choose to store personal information, hobbies and interests on their 

PC hard drives and then decide whether to disclose that information to a particular web 

site. 

Risk - The risk assumed by users of recommendation systems varies with the choice 

domain. For users of filtered Usenet information the risks are probably inconsequential, 

but for users of recommendation systems for large budget items or stock advisory 

services, the risks of acting upon computer-generated recommendations will be quite 

large. In normal commerce, both competition and legal considerations have shaped the 

way risks are shared between sellers and consumers. We suspect that a proper 

understanding of the risks for both providers and users of recommendation services will 

be similarly shaped over a period of use. 

Performance - The market for recommendation services will ultimately decide which 

ones survive and prosper. Performance will improve over time as the technology 

becomes more sophisticated and the surviving intermediaries reach and surpass critical 

mass. Size is especially important for recommender systems, which depend on 
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evaluations and feedback from users and hence, require a critical mass of 

recommenders and recommendations to be able to perform effectively. 

This leads us to the interesting question of how the performance of 

recommendation systems can be evaluated. One possibility is to use the notions of 

recall and precision that were defined above. More generally, we stated in the 

introduction that the role of a recommendation system is to increase the probability that 

its users will be satisfied by the choices that they make as a result of using the system 

From a similar viewpoint, we have the notion of "predictive utility" [9]. In other words, 

recommendation systems must be able to predict which items in its domain of choice will 

most satisfy each user. A simple cost-benefit analysis approach based on [9] illustrates 

the need for a closer look at performance measures for recommendation systems. 

Table 4 shows the possible outcomes for a recommendation system that makes binary 

predictions as to whether an item will be useful to the user (good) or not useful (bad). 

Illustrative costs and benefits are provided for two different hypothetical recommendation 

systems: one that rates movies and a second that filters news items for financial 

analysts. To illustrate the kind of reasoning that might determine the values in each cell, 

the benefit of the correct prediction of a good movie (one that the user will enjoy) is listed 

as "medium", while the cost of a false positive (the prediction that the user will enjoy the 

movie, when helshe does not), is the cost of buying a ticket and wasting an evening - 

which has been judged to be "high." As another example, the value of a hit and the cost 

(opportunity cost) of a miss of a pertinent news item to a financial analyst are both rated 

as "high" in the table. 

Good ltem 

Bad ltem 

Predict "Good item" 

HIT 
Movie: Medium benefit 
News item: High benefit 

FALSE POSITIVE 
Movie: High cost 
News item: Medium cost 

Predict "Bad item" 

Movie: Low cost 
News item: High cost 

CORRECT REJECTION 
Movie: Medium benefit 
News item: Low benefit 

Table 4: Cost-Benefit Analysis for Recommendation Systems 

As discussed earlier, recall measures the number of relevant items ("hits") divided by the 

total number of items in all four quadrants, while precision records the number of hits 
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divided by the total number of hits plus false positives. But such ratios do little to reflect 

the costs and benefits of the various possible outcomes and can therefore, shed little 

light on whether a recommendation system is beneficial to an individual or an 

organization. A complete cost-benefit analysis, even in such simple applications, is quite 

difficult because it depends on a correct assessment of the utility of the various 

outcomes for each particular user as well as the probabilities of a given recommendation 

ending up in each of the four cells4. Nevertheless, a consideration of the issues raised by 

even an approximate cost-benefit analysis should provide useful guidance for the 

designers of recommendation systems. Further research on the costs and benefits of 

recommendation systems is urgently required. 

SUMMARY AND CONCLUSIONS 

To cope with the ever-increasing complexities of the information economy, we 

suggested in the introduction that research and development of a range of "coping 

technologies" is needed. In fact, we believe that we will need to develop support 

environments that will, among other things, monitor the environment, direct our attention 

to what is urgent, relevant and important, increase our understanding of the world and 

help us with our decision making. Recommendation systems are an important new 

technology that may help us in the decision-making aspect of our lives. We defined 

recommendation systems broadly as systems that provide recommendations by any 

means, reserving the term recommender systems for the important sub-class of 

recommendation systems that make recommendations based on the opinions of other 

people. 

The explosive growth of the Internet and the World Wide Web has resulted in the 

proliferation of information of uncertain quality in widely varying formats, which has 

greatly reduced the effectiveness of traditional IR approaches. More importantly, the 

needs of electronic commerce extend far beyond those of information dissemination and 

retrieval. In this new world, we see a huge potential market for systems that collect and 

analyze user tastes and needs on the one hand, and signal the quality of products and 

services on the other hand. Throughout the chapter, we discussed a number of 

examples of expert-based, content-based, collaborative and hybrid recommendation 

4 A closed form solution for this problem was first proposed in the IR context by [24]. 
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systems. Some of these are research systems; others are already commercial 

successes. 

The framework for recommendation systems clarifies the differences with IR 

systems and the general functions provided by recommendation systems. We also 

identified four general classes of recommendation systems based on the source of 

expertise underlying the recommendation: utility-based systems, content-based 

systems, collaborative systems, and expert consultation. Finally, we briefly discussed 

the issues of user acceptance of recommendation systems and the need for research on 

performance measures. 

This brief survey and classification of recommendation systems has barely 

scratched the surface of a whole new technology of assisted decision making that we 

feel will grow in importance as electronic media become the main vehicles for human 

communication, education and commerce. As we argued in the introduction, 

recommendation systems are a response to the need for individuals and organizations 

to manage the overwhelming flood of new information, products and services, and to 

make more and more decisions under increasing time pressure. For these reasons, we 

believe that recommendation systems are inevitable and that they will be part of a 

thriving new industry of web-based intermediaries. 

The social consequences of such systems are enormous. If recommendation 

systems fulfill their promise, they could make markets more efficient by providing 

consistent, valid and credible quality signals thereby reducing or eliminating the hassle 

associated with search and investigation of a wide range of goods and services. 

Recommendation systems also provide opportunities for one-to-one marketing, which, 

by catering to individual tastes, should increase overall welfare. 

On the other hand, there are several dangers. First, individuals and organizations 

could become overly dependent on such systems creating opportunities for 

unscrupulous companies, or even government agencies, to manipulate user tastes and 

decision making. Second, it is not at all certain whether widespread use of 

recommendation systems will lead to more diversity and freedom of expression or to the 

opposite - an economic and social system in which individual tastes and needs are 

satisfied on the margin, but in which overall cultural and intellectual directions are 

dictated by the majority. Civil liberty groups, for example, are concerned by the power of 

filtering systems to limit free speech on the Internet [13]. In our opinion, the future 
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economic and social consequences of these new technologies are a matter for urgent 

research and debate in academic, industry and governmental regulatory agencies. 
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