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Abstract 

This paper describes a Query-Driven Simulation (QDS) approach to asking questions about 
outcomes of business processes. In this approach a user issues a query about outcomes of simula- 
tion runs and, based on the query asked, appropriate simulations are launched and the answer to 
the query is determined from the outcomes of these simulations. It is argued that Query-Driven 
Simulations provide a more declarative, flexible, and interactive approach to asking questions 
about simulation outcomes than the traditional approaches of letting the end-users run simula- 
tions and gather statistics about simulation outcomes. The paper also presents a new simulation 
system development lifecycle based on the QDS approach. 

KEY WORDS: Query-Driven Simulations, Discrete-Event Simulations, Temporal Databases, 
Query Languages. 

1 Introduction 

Discrete-event simulations have been extensively used for analyzing performance of various complex 

industrial systems in situations when it is difficult or impossible to obtain explicit solutions for the 

analytical models of these systems. For example, in manufacturing organizations decision makers 

might be interested in the utilization ratios of the machines in their plants over a period of time, the 

average waiting time for jobs in queues, the scrap rates for their plants, detection of bottlenecks, and 

so on. To answer these types of questions about future outcomes of processes in a manufacturing 

system, a simulation model of the system is built, and simulations of this model are run several 

times. Based on these runs, statistics related to the questions of interest to  decision makers (e.g. 

the utilization ratios, throughput, waiting times, etc.) are collected and presented to the user. We 

will call this traditional approach simulate-and-gather-statistics (SAGS) approach. 

'Address: 44 West 4th Street, Room 9-78, New York, NY 10012, e-mail: atuzhili@rnd.stern.nyu.edu, 
pbalasub@rnd.stern.nyu.edu 
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Traditionally, simulations collect summary statistics in one of the following two ways. In the 

first approach, summary statistics are computed inside the simulation program, and the program 

presents these statistics to the user. The main problem with this approach is that the end-user 

has to modify the program if he or she wants to ask a question about simulation outcomes that 

goes beyond the set of statistics generated by the program. For example a simulation program may 

output the total time spent in the system (makespan) for a job but the user may want a breakup 

of the time spent in the queue, in transit and in process. 

In the second approach, various simulated events are recorded in the trace files, and then 

statistics are collected from these trace files by either writing programs in one of the programming 

languages, such as Fortran or C, or by using one of the statistical packages, such as SAS [SASSg]. 

The main problem with this approach is that the end-user has to  know either a programming 

language or a statistical package to  be able to collect statistics or ask any other questions about 

the trace files. Otherwise, he or she has to rely on the IS department which provides the end-users 

with a set of "canned" questions. 

Since most of the people who ask questions about future outcomes of business processes in 

their organizations, such as a foreman, a salesman, or personnel manager, do not know much about 

simulations, programming languages, or statistical packages, they cannot ask ad-hoc questions 

about future outcomes of their business processes as the questions arise "on-the-By". Clearly, this 

situation is unsatisfactory in many organizations, such as manufacturing, transportation, or in the 

military, where various users want to ask many different questions about simulation outcomes of 

various models [BT93b]. 

In this paper, we describe the Query Driven Simulations (QDS) approach, that addresses this 

problem. QDS is an approach to simulations in which the user first asks queries about outcomes of 

simulations expressed in a declarative query language, such as SQL [DatSg], and then appropriate 

simulations are launched depending on the query, and events necessary to answer the query are 

recorded in the trace file(s). After the simulation runs are completed, the query is evaluated on the 

trace files(s) of events recorded by the simulation program. We also present a specific QDS system 

Cassandra+ that implements the QDS approach just described. We also present its query language 

about simulation outcomes, called SimQL, and describe how SimQL queries are processed by the 

Cassandra+ system. In addition, we describe issues related to performance of the QDS systems, 

and present the Query-Driven Modeling Lifecycle of the model development process. 

In the next section, we present the SimQL language using a series of examples. A formal 

description of the language can be found in [BT93a]. In Section 3 we describe how SimQL queries 
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are processed by the CassandraS system. Ln Section 4, we compare the QDS and SAGS approach. 

In Section 5, we discuss some optimization issues. In Section 6, we explain what tasks have to be 

performed t o  use a QDS system. We describe the Query-Driven modeling lifecycle in Section 7. 

Finally, in Section 8 we describe some related work. 

2 Description of SimQL Language 

The SimQL language consists of two subcomponents: the core query language subcomponent and 

the shell into which the core query language is embedded. The core query language subcomponent 

is the "heart" of SimQL and is used to  ask temporal queries1 about simulation traces. In this paper, 

we use SQL [Dat89] with timestamps to express core queries, but, as will be explained below, we 

could have used any temporal query language as long as it supports the same data model as the 

simulation component. 

The second subcomponent of SimQL is the shellinto which the temporal query language is em- 

bedded. This shell provides an interface between the querying and simulation parts of CassandraS 

that integrates the two components into one system. For example, we specify in the shell such 

information as the simulation model against which the query is asked. the parameters for that 

model, for how long simulations should be run, what answer we expect back, i.e. a full relation or 

just a number, and various additional information that the simulation component of CassandraS 

needs in order to provide the answer to  a query. 

Example  1 Consider the following query: 

How many parts can be finished in the next 10 hours? 

It can be expressed in SimQL as: 

Initialization: Real- time 
Type: Event-based 
Answer-Semantics: Numeric 
Core-query: 

SELECT COUNT(Part#) 
FROM FINISHED 

Model-Name: Mfc-Model-4 
Confidence-coefficient: 90 
Error-of-estimation: 20 

'Simulation methods deal with process evolving in time and hence we need a temporal query language to ask 
questions about these processes. 
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The core query in this example is expressed in SQL as 

SELECT COUNT(Part#) 
FROM FINISHED 

Note that this core-query is embedded in the SimQL shell that provides additional information 

about the meaning of the query. For example, the parameter Model-Name in the shell specifies 

the name of the simulation model. It tells Cassandra+ that the query is asked against the model 

Mfc-Model-4. 

The parameter Initialization = Real-time, specifies that simulations should be done in "real- 

time," i.e. they should start from the initial state of the system in the model Mfc-Model-4 that 

represents the current state of the physical system. Alternatively, they could be done "off-line," 

meaning that the initial state of the system is not specified, and simulations should be run for some 

time until, e.g., the steady state is reached, and only then the query should be evaluated. 

The second parameter in the query, Type = Event-based, specifies that the trace file of the 

simulation model Mfc-Model-4 must be stored as historical event relations [Sno87]. In this case, the 

simulation trace file(s) are copied into the temporal database without any conversion. Alternatively, 

the Type parameter can be "predicate-based," and this requires conversion from the event-based 

to the predicate-based representation as will be described in Section 3.2. 

The value of the Answer-Semantics parameter in Example 1 is numeric. It specifies that 

the query returns back a single number (the number of finished parts in our case). Alternatively, 

the answer-semantics can be non-numeric if the query returns back a relation. We will discuss 

this semantics in Example 2. We have to distinguish between numeric and non-numeric semantics 

because the types of answers are different in these two cases as Example 2 will show. 

Finally, the parameters Error-of-estimation and Confidence-coefficient specify what the 

estimation error of the answer can be and with what confidence we can provide the answer [MWSSO]. 

In our example, the user wants the estimation error to be within 20% of the mean and the confidence- 

coefficient of the answer to be 90%. 

A possible answer to this query can be 

The average number of parts produced within the next 10 hours is 32 ic 3, and we can 

make this statement with confidence 90%. 

In other words, the probability that the answer to the query falls between 29 and 35 parts is 90%. 

cl 
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In the first example of a SimQL query, we have described some of the shell parameters. It  

turns out that  there are other parameters in the query which are taken as default parameters. For 

example, TIME is one such parameter. If not specified, it is "extracted" from the query (10 hours 

in our case). If it is present then we assume that the simulations are run only for that time and 

that the time domain is restricted by this parameter, as the next example shows. 

Example 2 Consider the following question that a foreman in a manufacturing plant may want 

to ask: 

What are the parts that will always stay in Cell-1 for the next 5 hours. 

This query can be expressed in SimQL as 

Initialization: Real-time 
Type: Predicate-based 
Time: 5 hours 
Answer-Semantics: Relational 
Core-query : 

SELECT Part# 
FROM VISITS 
WHERE Cell# = Cell-1 

AND Begin-Time 5 $NOW 
AND End-Time > SNOW + 5 hours; 

Model-Name: Mfc-Model-2 
Parameters: number-of-cells = 5, job-arrivalrate = 10 
Confidence-coefficient: 95 
Error-of-estimation: 20 
Number-of-answers: 2 

The core query in this example is 

SELECT Part# 
FROM VISITS 
WHERE Cell# = Cell-1 

AND Begin-Time 5 $NOW 
AND End-Time 2 $NOW + 5 hours; 

Note that the core query is unbounded in the sense that we need to know the values of the VISITS 

predicate at all the (arbitrarily removed) points in the future to evaluate its value at present 2 .  

To solve this problem, we specify the Time parameter in the shell. The Time parameter restricts 

2 ~ n l e s s  we provide some intelligent query processing strategies that can recognize that only the instances of 
VISITS within the next 5 hours are needed to answer the query. 
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the temporal domain to the bounded set of times (up to 5 hours from now), and the core query is 

evaluated on that domain. 

This query has additional parameters that did not appear in the previous example since de- 

fault values were assumed for them in Example 1. One of these parameters is Parameters that 

specifies the parameters passed to the simulation model specified in the query. For example, the 

parameters number-of-cells = 5 and j o b - a r r i v a l r a t e  = 10 in the query are passed directly to 

the Mf c-Model-2 model. 

The Answer-semantics parameter in the query in this example has r e l a t i o n a l  as its value. 

This means that the query returns relations (tables) as its answer. Also, the Type parameter 

has the value predicate-based. This means that the relations in the core-query are predicates 

with two timestamp attributes, specifying the times when a tuple was added to and removed 

from a relation (unlike events that have only one timestamp attribute), For example, predicate 

VISITS (Par t# ,  Cell# ,Begin3 ime ,End-t ime) has two times associated with it: when a part begins 

(Begin-time) and ends (End-time) its visit to a cell. Finally, the parameter Number-of-answers 

specifies the number of the most likely answers the user wants specified in the order of decreasing 

probabilities of these answers. This parameter can appear only in the SimQL queries that have 

non-numeric values in the Answer-semantics parameter. 

A possible answer to the query from this example can be 

Most likely, parts PY346, PY378, and PZ216 will always be in Cell-1 within the next five 

hours; the probability of this is 24% f 2%, and we make this statement with confidence 

95%. The second most likely answer is that parts PZ289 and PY378 will always be in 

Cell-1 within the next five hours; the probability of this is 21% f 2%) and we make this 

statement with confidence 95%. 

The query returns two most likely answers because the parameter Number-of-answers is 2 in this 

case. Furthermore, the answers are returned in the decreasing order of their average probability 

estimates. 

Note that the answer to this query is different from the answer to the query in Example 1. 

This query returns the relation that is the most likely answer to the query and an estimate of the 

probability of that answer. In contrast to this, the answer to the query with the numeric value 

of the Answer-semantics parameter returns the average estimate of the value of the numeric 

parameter and the estimated error for this value (32 f 3 in Example 1). 

0 
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In Example 2, we considered the relational value of the Answer-semantics parameter. This 

value directs Cassandraf to return the most likely answer(s) to the query. However, the user may 

sometimes want a different kind of the answer, as the following example shows. 

Example 3 

Consider the query 

How many days would it take to  complete order number JC-243 by each of the three 

manufacturing plants (PL-1, PL-2, PL3)? 

The relational semantics would return a certain answer, e.g. { (PL-1, lodays), (PL-2, 

14days), (PL-3, 12days) }, and would assign a probability estimate for this answer, e.g. prob- 

ability 26% f 2%. However, we may need a different answer. We may want to know probability 

estimates for each plant separately, e.g., { (PL-I, 10days) with probability 23 f 2%, (PL-2, 

14days) with probability 34 f 3%, (PL-3, 12days) with probability 21 f 2% }. 

To accommodate for this type of answer, we provide the tuple value for the Answer-semantics 

parameter, as the following SimQL query shows 

Type: Predicate-based 
Time: 30 days 
~nswer-Semantics: Tuple 
Core-query : 

SELECT Plant#, (End-time - Begin-time) 
FROM PROCESS 
WHERE Order# = JC-243; 

AND Plant# I N  (PL-1, PL-2, PL-3); 
Model-Name: Mfc-Model- 1 

where PROCESS is a relation with schema PROCESS(Order#, Plant#, Begin-time. End-time). 

When the user issues a SimQL query, Cassandra+ determines the simulation model to which 

the query refers to, determines how many simulation runs N are needed to obtain the answer 

within the estimates specified by the user, runs this simulation model for N simulation runs, 

storing simulation traces in trace files, converts the resulting simulation trace files into the temporal 

database format based on the Type parameter, issues the temporal query against each simulation 

trace, and st atistically analyses the answers to  these queries. 
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There are two additional issues related to  the process of interaction between SimQL queries 

and simulations. First, there is the model management issue [Bla92]. Cassandra+ must store a set 

of simulation models against which the user can ask queries. For instance, in Example 2, the query 

was issued against the manufacturing model Mfc-Model-2 and in Example 1 against model Mfc- 

Model-4. Therefore, Cassandra+ must provide the capability to store, query and update various 

models. We will discuss this issue further in Section 3.1. 

Second, different models in the modelbase can be written in different simulation languages. For 

example, Mfc-Model-2 can be written in MODSIM [BDMRgO], Mfc-Model-4 in Simscript [Con87], 

and Bank-Model-12 in Simkit [Int85]. As was stated already in the introduction, one of the im- 

portant advantages of Cassandra+ is that it can support any temporal query language and any 

simulation language as long as the two agree on the data model (so that temporal queries can be 

asked against the corresponding  trace^)^. 

The next example shows that SimQL queries can be asked not only about the future but also 

about the past and the future. 

Example 4 How many parts will be produced by the end of September, assuming that it is now 

September 15. 

Initialization: Real- time 
Type: Event-based 
Answer-Semantics: Numeric 
Time: Combined(Past (l5),  Future(l5)) 
Core-query: 

SELECT COUNT(PART) 
FROM FINISHED 
WHERE $NOW - 15 < Time 

AND Time < $NOW -t- 15 days; 
Model-Name: Mfc-Model-1 

Note that the Time parameter in the query indicates that the simulation model Mfc-Model-1 

should be run for 15 days and then the simulation results should be combined with the history of 

relation FINISHED over the past 15 days4. Finally, the core query is evaluated on the combined 

relation that has the lifespan of 30 days. 

3The only convention is that the trace files generated by programs written in different simulation languages must 
have a certain format. The structure of this format will be discussed in Section 3.2. 

*The historical data can be obtained by gathering the transactional real-time data about all the events and 
activities happening on the manufacturing floor [FDJGt 921 and then processing this data and storing it in the 
historical relational database format. 
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The next example shows how SimQL queries can be used for experimental design. 

Example 5 How many customers will be serviced in the bank per day if we vary the number of 

tellers between 5 and 8? 

Initialmat ion: Off-line(Steady-state) 
Type: Event-based 
Answer-Semantics: Numeric 
Time: 1 day 
Core-query: 

SELECT COUNT(Customers#) 
FROM SERVICED 

Model-Name: Bank-Model-7 
Model-parameter: number-of-tellers = 5..8 
Confidence-coefficient: 95 
Error-of-estimation: 10 

This query is called a range query because it gives rise to four individual queries, one query 

per each number of tellers (5, 6, 7 and 8) specified in the Model-parameter parameter. As a 

result of this, SimQL returns to the user four different answers, one answer for each value of the 

parameter, 

Also note that this is an off-line query. This means that simulations are run initially until 

Bank-Model-7 reaches a steady state. Only after that, simulations wil l  be run for one day of 

simulated time and traces will be generated starting from that time. 

In this section we described SimQL language using a series of examples. In the next section 

we describe how SimQL queries are executed. 

3 Execution of SimQL Queries 

The algorithm that evaluates a SimQL query is presented in Fig. 1. Initially, a SimQL query (Q) 

is parsed and the model against which the query is to  be evaluated is determined together with the 

parameters necessary to evaluate the query. After that, Cassandra+ determines if the query is a 

range query, and evaluates each instance of the range query on the given simulation model in a loop 

(the outermost FOREACH loop). The key part in this process is the evaluation of the query Q on a 

single simulation run (procedure compute-answer3 or-singlerun). It starts with the initialization 
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determine the model M against which query Q is evaluated; 

determine parameters of query Q: 
T - simulation time 
R - range of model instances in Q 
c - error of estimation 
a - confidence coefficient 

FOREACH model instance r in R DO 

determine the number of simulation runs N, needed to evaluate 
r within estimation bounds c and a; 

compute the answer STAT-ANSW, to Q for model instance r based on {AN SW,;) ;=I,N, 

return the answer STAT-ANSW, to the user 

END 

initialize i-th run of model instance r 

run simulation of run i for time T and store the results in trace file TR,; 

convert the trace file TR,; into the database format DB,; 

evaluate the core query core(Q) on DB,; and store the results in ANSI/V,; 

END 

Figure 1: Evaluation of SimQL queries in Cassandrat. 
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of the simulation model to be executed by retrieving the default parameters for this model from the 

modelbase and overriding them with the simulation parameters specified in the query. After that, 

Cassandra+ launches the initialized simulation model for time T. As a result of this simulation, 

the model generates trace files. We assume that these trace files are regular ASCII or EBCIDIC 

files generated by the WRITE statements of the simulation program and that they are stored in 

a certain format that will be described in detail in Section 3.2. After that, Cassandra+ converts 

the trace files into the database tables having the format of the DBMS being used to  express core 

queries. For example, if we use Oracle [Ora87] as a DBMS and the trace file is an ASCII file, then 

the ASCII trace file is converted into Oracle's relational table. Finally, the core query is evaluated 

against the trace files converted into the database format. After all N, simulation runs are executed 

for the model instance r and all the answers ANSW,; are determined, the final statistical answer 

STAT-ANSW,; is computed based on the Answer-Semantics parameter of the query. 

So far we presented a short overview of the query processing strategy used in Cassandra+. In 

the rest of this section, we describe parts of this strategy in detail. We start in Section 3.1 with 

the description of the modelbase and the information it stores to aid in the evaluation of SimQL 

queries. Then we describe in Section 3.2 the format of the temporal database files and how core 

queries are evaluated on these files. After that,  we describe how a SimQL query is evaluated on 

a single simulation run in Section 3.3. In Section 3.4 we describe how Cassandra+ evaluates a 

SimQL query based on the results of multiple runs. Finally, we describe the implementation of the 

Cassandra+ system in Section 3.5. 

3.1 A Modelbase 

The modelbase contains information about the simulation models that the user can query. It is 

a central repository of all the information about all the models used in an organization. The 

modelbase is needed in order to instantiate and run simulation models and to convert their outputs 

into historical relational database formats. In CassandraS, we store the modelbase in a relational 

database as a set of tables since the information we need in the modelbase is not normalized [Ull88], 

and thus it is better not to place all the information pertaining to  the models in a single table5. 

The modelbase contains the main table with one record per one model, and other tables that 

"link" additional information about the model (such as the description of the events for the model) 

to the main table. The main table in the modelbase contains the following fields: 

m or example, we store the descriptions of all the events that a model traces, and i t  is better to keep this information 
in a separate table. 
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1. Model name,  that serves as a key. For instance, Mfc-Model-4, Banking-Model-6 are examples 

of model names. 

2. Target simulation language: the language in which the simulation model is written, e.g. 

Modsim, Simscript, etc. 

3. Default simulation parameters: parameters that are used in the model. These parameters are 

taken as defaults. They can be over-written by the parameters that the user specified in the 

query (such as number-of-cells=5 and job-arrival-rate=lO in Example 2) .  

4. Name of the simulation program: this field contains the name of the object module for the 

simulation model, as stored in the secondary storage. When the actual simulation is ready 

to  be run, this object module is dynamically linked to Cassandra+ module using the name of 

the module stored in this field. 

5. Past information: this field provides the name of the relation that contains the names of 

the relations that stores past information about events and predicates that concerns the 

simulation model. 

6.  Events traced by the model: this field contains the name of the relation that specified the 

names of the events that are traced by the simulation model. 

7. Event-to-predicate conversion programs: this field contains the name of the relation that 

contains the names of the programs that builds the predicates from the events. For instance, 

in Example 2, predicate V I S I T S  can be computed from two event predicates A R R I V E S  and 

DEPARTS.  

8. Online-us-ofline flag: the flag specifying if real-time queries can be asked against this model; 

if the value of the flag is "online" then the modelbase must contain initialization programs 

described in Item 9. 

9 .  Initialization programs for real-time queries: if the flag in Item 8 is "online" then real-time 

queries can be asked on this model; in this case, this field provides the names of initialization 

programs that compute the initial state of the system from which simulations start. 

10. Optimization flag: this is a boolean field specifying if queries on the simulation model can 

be optimized. In order for a query to be optimized on a simulation model, the model should 

have its PRINT statements written according to a certain convention so that the query could 

pass the optimization information t o  the simulation model. 
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Event Paramet er(s) 

Time Stamp I 
Figure 2: Event File Format 

11. Working model-base: this field contains the name of the relation that contains the particulars 

of all the model instances that have to  be executed based on the current query. 

Typically, information is retrieved from a modelbase using some query language [Len93, MW89, 

Geo871. For example, [Geo87] describes a querying language for the structured modeling approach 

that allows the end-user to retrieve, and update information about the models stored in the mod- 

elbase. However, we want to point out the difference between this type of a query language and 

SimQL. SimQL is used to query outcomes of simulations: to answer a SimQL query, we have to 

retrieve the model from the modelbase and run it. In contrast to  this. the query language on 

the modelbase is used to retrieve information about the models stored in the modelbase. Unlike 

SimQL, it does not require execution of these models. 

However, we provide only very limited model retrieval and maintenance capabilities in the 

current version of Cassandra+ since our major goal was to develop a working prototype of a QDS 

system and since model management capabilities are not directly related to this goal. 

3.2 Temporal Databases 

SimQL queries ask questions about outcomes of simulations, and these outcomes are written into 

trace files in the form of events. Therefore, it is natural to  use a temporal query language [TCG+93] 

as a core query language in SimQL since events occur in time and since user questions are temporal 

in their nature. Since a query language comes as part of a database management system, it is also 

natural to  use a temporul database [TCGf 931 to store query traces. 

However temporal databases are not commercially available at present. Therefore, we selected 

SQL with timestamps as the core query language in the paper. Another important reason for 

this choice is that SQL is a very popular query language and is used as a standard in relational 

databases. Furthermore, many temporal queries can be expressed in S QL with timestamps, and 

therefore we do not constrain ourselves by this choice. An obvious disadvantage of using SQL with 

timestamps is that some queries will look quite "ugly" when expressed in it. 
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Figure 3: Trace File for Event ARRIVAL 

Part# 

P3 

Predicate Parameter(s) r 
Begin- Time 

Cell# 

Cell-1 

Figure 4: Predicate File Format 

Time ) 
10:24 

As we saw in Section 2, some core SimQL queries are asked against events and others against 

predicates. To handle this distinction, we consider two types of SQL relations in this paper. One 

type has a single time column (see Figure 2) and corresponds to a historical event relation of TQuel 

[Sno87]. The time column specifies the time at which the rest of the tuple belongs to the relation. 

For example, the relation ARRIVAL(Part#,Cell#,Time) (Figure 3) specifies the time at which a 

part arrives at  a cell. 

The other type of relation has two time columns (see Figure 4) and corresponds to a historical 

interval relation of TQuel [Sno87]. The two time columns indicate the beginning and the end of the 

time when the tuple is true. For example, the relation LOCATED(Part#,Cell#,Begin-time,End-time) 

(Figure 5) specifies the beginning and the end of the time period when a part was located in a cell, 

In the rest of the paper, we will follow TQue17s terminology and call the first type of historical 

relation event relation. The second type of historical relation will be called either predicate-based 

or interval-based. 

We have described two important "building blocks" of a QDS system: the modelbase and the 

temporal database. We are ready to describe the details of the algorithm presented in Figure 1, i.e. 

explain how a query is actually evaluated on a simulation model. We begin with the description of 

this process for a single simulation run. 
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Figure 5: Predicate Located 

L 

3.3 Evaluation of the Core Query on a Single Simulation Run 

In this section, we describe the details of the procedure compute-answer2 or-s inglexun from 

Figure 1. 

P30 
PI0  
P22 

When the simulation program is executed, it writes various events that the query asked it 

to trace into the trace files, one file per event. For example various occurrences of event FIN- 

ISHED for the query from Example 1 are recorded into the trace file FINISHED that may have 

the events { Finished(P3, 10: 23),  Finished(P6, 10 :47) , Finished(P8, 11 : 13) } recorded 

in it. These trace files are stored as ASCII (or EBCIDIC) files. 

After that,  the trace files containing events are converted into historical database relations. 

If Type parameter in the query is "event-based" then the conversion process is simple and is 

done on a record-by-record basis: one event in the trace file generates the corresponding record 

in the historical relation. If Type parameter in the query is "predicate-based" then we have to  

convert events into predicates. To do this, Cassandras accesses the conversion routines for the 

simulation model that are stored in the modelbase. For each predicate-based relation in the query, 

it checks whether the appropriate conversion routine exists in the modelbase. If all of the nec- 

essary routines exist, Cassandras invokes them and does the conversion. After the conversion is 

finished, the resulting trace files are stored as interval-based relations. For example, the events 

ARRIVAL(Part#,Cell#,Time) and DEPARTURE(Part#,Cell#,Time) can be converted into the 

interval-based relation LOCATED(Part#,Cell#,Begin-time,End-time) by setting its attribute Be- 

gin-time to  the time when Part# arrives at  Cell#, and setting End-time to  the time when Part# 

departs from Cell#. 

Cell-1 
Cell-4 
Cell-6 

After the trace files are converted into historical database relations, the core query is evaluated 

on the temporal database according to the semantics of the query language in which the core query is 

expressed. This completes the description of how a SimQL query is evaluated on a single simulation 

run. 
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3.4 Statistical Evaluation of a SirnQL Query 

Once we know the answer to a SimQL query for a single simulation run, we can explain how it can 

be evaluated on multiple simulation runs. However, as we mentioned before, we have to distinguish 

between the two cases when the core query returns a numeric and when i t  returns a non-numeric 

answer because the answers for multiple runs are quite different in these two cases. 

3.4.1 Numeric Answers 

In this case, a query returns a number as an answer for a single simulation run. Therefore, multiple 

simulation runs generate a set of numbers as answers, one number per run. Also, some of these 

numbers may be repeated in the set. For instance, assume we do five simulation runs for the 

query from Example 1 and assume we get the answers { 18, 20, 19, 18, 19 } for these runs. To 

determine the answer to a "numeric" query, we assume that the average of this answer is normally 

distributed. Then we estimate the mean and variance of this normal distribution from the sample 

of answers for individual runs and determine the confidence interval for the average answer based 

on the bounds specified in the query. If this confidence interval is within these bounds (e.g. 20% 

of the mean), we stop the simulations. If not, we increase the number of simulations to be run, as 

we will describe in Section 3.4.3, in order to get the confidence interval within the limits and run 

that many simulations again. 

Therefore, the semantics of a SimQL query for the numeric type of an answer is defined by the 

confidence interval for that value that lies within the estimation error specified in the query. For 

example, if the mean value of the number of parts that will be finished within the next 10 hours is 

20, the estimation error is 30%, and the probability that this number is between 17 and 23 is 95% 

then the answer that Cassandra+ returns to the user who asked this query is 

The average number of parts produced within the next 10 hours is 20 i 3, and we can 

make this statement with confidence 95%. 

3.4.2 Non-Numeric Answers 

In this case, the query returns a relation, and not a single number6. Since we consider relations 

instead of numbers, we cannot make statements about averages for these relations. Instead, we 

60f  course, the relation can also consist of a single number in the degenerate case. For example, we could specify 
Answer-Semantics = Relat ional  for the query in Example 1. However, if we did so, we could not talk about an 
average number of parts produced in 10 hours. 
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Figure 6: Frequencies of Different Answers for the Query From Example 2. 

ANSWER 
(PY346, PY378, PZ216) 

(PY346, PZ216) 
(PU629, PY378, PZ216) 

determine the most likely answers in one of the following two ways. The first way is to determine 

which answer, as a relation, is the most likely one. This alternative can be selected by specifying 

Answer-semantics = r e l a t i o n a l  in the query. The other choice is to determine which tuples 

in the answer are the most likely ones. This alternative can be selected by specifying Answer- 

semantics = tup le .  We describe relational and tuple semantics of answers now, assuming that 

the parameter Number-of-answers in the query is equal to N. 

FREQ UENCI- 

0.4 
0.2 
0.4 

If relational semantics is selected in the query then we compute frequencies for each relation 

returned as an answer in at least one simulation run. This type of semantics is needed when the 

user treats query answers as outcomes of scenarios and wants to know xha t  is the chance of each 

outcome. For instance, assume that we made five simulation runs for the query from Example 2 

"what are the parts that will always stay in Cell-1 for the next 5 hours." and assume we get the 

frequencies for each of the resulting answers as shown in Figure 6. 

As we increase the number of simulation runs, the distribution of the estimate of the fre- 

quencies of each simulation outcome converges to a normal distribution[MWSSO]. Then our goal 

is to estimate N largest frequencies based on the estimation parameters error-of-estimation and 

confidence coefficient specified in the query. 

The semantics of a SimQL query for the relational type of an answer is defined by N relations 

having N largest frequencies in this distribution (based on the estimation of the means of these 

frequencies), i.e. the query returns the first N most likely answers. If 9 = 1 then the query returns 

a most likely answer. If there is more than one most likely answer then either all of them can be 

returned, or one of them selected at random. In our example, either both most likely answers, 

{ PY346, PY378, PZ216 ) and { PU629, PY378, PZ216 ), having frequency 0.4, or one of them 

chosen at random is returned if relational semantics is selected. TT-e assume that N = 1 as the 

default value for the relational semantics of answers. 

If tuple semantics is selected in the query, then we compute frequency of occurrence of each 

tuple in the set of answers. In other words, we want to know the chance of each tuple belonging 
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TUPLE FREQUENCY 
PZ216 100% 
PY378 
PY346 60% 
PU629 40% 

Figure 7: A Sample Tuple Semantics Answer 

to the answer. For example, if we made K simulation runs, and the tuple (al , . .  . , a,) occurred in 

answers for k runs, then the frequency of (al , . .  . , a,) is $. Then the semantics of a SimQL query 

for the tuple type of the Answer-semantics parameter is defined by the first N tuples having 

the highest frequencies. Furthermore the default value for the parameter Number-of-answers is 

All, i.e. the user wants to know frequencies of occurrence of all of the tuples in the answers. For 

example, if five simulation runs produce answers as presented in Figure 6, then the answer to the 

query from Example 2 based on the tuple semantics is shown in Figure 7 for Number-of-answers 

= All. In other words, the tuple semantics for this query specifies the chance various parts will 

always stay in Cell-1 for the next 5 hours. 

In summary, we showed how the same non-numeric query can have two different answers 

depending on whether the semantics is relational or tuple-based. The two examples presented 

above show that the two semantics are complimentary to each other, that both of them are needed 

in practice, and that it is up to the user to  select the semantics he or she wants. 

Once we know the semantics of answers for SimQL queries, our next task is to determine the 

number of simulation runs necessary to  answer a non-numeric query with the estimation error and 

the confidence interval specified in the query. 

3.4.3 Determination of the Number of Simulation Runs Needed to Answer the Query 

An important task for Cassandra+ is to  determine the number of simulations to be run so that the 

answer returned by the query has the error of estimation as specified by the user and this answer 

can be stated with the confidence specified by the user. To do this, we have t o  distinguish between 

numeric and non-numeric answer-semantics. We first describe the numeric case. 

To determine the number of simulation runs for the numeric case, we proceed as follows. We 

start with an initial number of runs, and run simulations for that many runs. Then we compute 

the mean and variance for these runs and test if the result satisfies the constraints as specified in 
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the query. If i t  does, we stop; otherwise, we recompute the number of simulation runs and repeat 

the process again until we either satisfy the query constraints or run out of time, Formally, we 

proceed as follows. 

Let Nk be the number of simulation runs selected at the k-th trial. Let yj, and a,;~ be estima- 

tions of mean and variance of the answer to the numeric query for the k-th trial. Also, let p be the 

error of estimation measured as a percentage of the real (absolute) error to the mean, and let a be 

the confidence coefficient. 

We describe the process of selection of the number of simulation runs inductively. We start 

the process with some set of initial runs, i.e. select No to  be some initial number, e.g. No = 50. 

Assume that we have done k trials already and that we selected Nk. We do Nk simulation runs 

and compute the estimations of mean and variance for these runs, i.e. yi, and ay;c. Then we check 

if the answer for Nk simulation runs satisfies the query constraints. The formulae for the lower and 

upper confidence limits for i are [MWS9O]: 

lower confidence limit (LCL) = j) - Zq a g  

upper confidence limit (UCL) = 5 + 2; crg 

Therefore, the confidence limit itself is 22: a g ,  and it should be less than or equal t o  pij (where p 

is the error-of-estimation specified by the user). Combining these observations, we obtain the test 

specifying if the answer for Nk simulation runs is within the query constraints: 

If this condition holds, then we select Nk as the number of simulation runs. If this condition does 

not hold, then we compute Nk+s using [MWS9O]: 

If it turns out that Nk+s is too large, then we keep running simulations until we reach the 

time limit specified as a default parameter by the user in the modelbase. In this case, we examine 

the number of completed runs N'. If N' > Nk then Cassandra+ evaluates the query based on 

N' simulation runs by estimating the mean and variance of the sample of N' runs; otherwise, it 

returns the answer based on the Nk runs. In either case, the system returns the answer of the form 

ij f d with confidence a ,  where d is the confidence interval for the normal distribution N(ij, ag) and 

confidence coefficient a ,  and ij and a: are the mean and variance of the sample. 

As an example of this process, assume that we do five simulation runs, No = 5, for the query 

from Example 1 and we get the following answers (18, 22, 19, 25, 17  ) for these runs. The mean 
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value of this sample, ?jot is 20.2 and the variance, o:~, is 10.7. We then calculate the 95% confidence 

interval for the parameter which in this case is 20.2 f 5.38. If the user wants the estimation error 

of the answer t o  be within 20% of the mean, then we have not satisfied that constraint and we 

have t o  increase the number of simulation runs Nl and continue the simulations. Substituting the 

2 2 10.5 z 11 numbers into equation (2), we obtain Nl = ( p ,  ) 

Assume that  we make 11 simulation runs and get the following answers (18, 19, 18, 20, 19, 

18, 19, 17, 19, 20, 19 ). We again compute the confidence interval which in this case turns out 

to be 18.72 f 1.48. This value is within the bounds that the user specified (20%). Therefore, 

we terminate the simulation runs. This completes our description for the numeric case of answer 

semantics. 

If the answer-semantics parameter is non-numeric, i.e. either relational or tuple, then we pro- 

ceed as follows. We first estimate probabilities for each possible answer. To do this, we proceed 

as follows. We divide simulation runs in N batches comprised on n runs each. For each batch, 

we run n simulations and compute the proportions of each distinct outcome. Then we determine 

the total set of unique outcomes R1,. . . , R, as a union of distinct outcomes for all N individual 

batches and determine the proportion p;j of outcome j i n  batch i, for i = 1 , .  . . , N and j = 1,. . . , m. 

After that, we compute the mean p j  and variance a: of the sample pl  j, . . . , p ~ j  ( j  = 1, . . . , m) and 

select the first q largest means pi,  where q is the Number-of-answers parameter specified in 

the SimQL query (see Example 2). Ebr each of the selected outcomes, we test if it satisfies the 

constraints specified in the query by using equation (I) ,  in which we substitute the mean pi and 

the variance a:. If all of them satisfy this constraint, we terminate the process of query evaluation 

and return the list of q largest pj's to the user along with the confidence intervals. If even one 

of the constraints is not satisfied, we recompute the batch size N and repeat this process all over 

again. The new batch size N' is determined as follows. For each of the largest selected means pi ,  

j = 1,. . . , q, we compute the size of the next simulation batch Nj  using equation (2) in which we 

substitute the mean p j  and the variance We set the size of the next batch N' to be equal to: 

N' = max( Nj} 
l_<j_<cr 

This completes the description of the procedure of how we compute the batch size for the non- 

numeric type of Answer-semantics parameter. 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-93-44 



3.5 I m p l e m e n t a t i o n  of Cassandra+ 

The Cassandra+ system described in this paper was implemented in C under UNIX. We selected 

Ingres [Ing89, St0861 as the database that stores simulation traces and SQL with timestamps as 

the core query language for SimQL. 

We store the modelbase as an Ingres database because the modelbase can be quite large and 

because we want to  store the models in a central location and want to provide uniform access to it. 

The modelbase is stored in several tables (3 in the current implementation) because, as we pointed 

out in Section 3.1, the data stored in it is unnormalized. The Cassandra+ system interacts with 

the modelbase by using dynamic  SQL [Ing89, EN901 since it is necessary to  formulate SQL queries 

against the modelbase from within Cassandra+ dynamically "on-the-fly." 

The modelbase can store simulation models written in a n y  simulation language, such as Mod- 

sim [BDMRSO], Simscript [Con87], Siman [PSSSO], as long as their WRITE statements satisfy the 

conventions described in Section 3.2. However, it is more difficult to switch from one core query 

language to  another (and hence from one DBMS to another) than to switch between two simu- 

lation languages. f i r  example, it is not possible to switch from Ingres to  Oracle in the current 

implement ation of Cassandra+ without rewriting (small) portions of its code for the following two 

reasons. First of all, we have to use dynamic SQL in order to access the modelbase, and the imple- 

mentation of dynamic SQL is system dependent. Also, the conversion routines from ASCII trace 

files to the database format are also system dependent. For these reasons, we have to provide some 

modifications to  the Cassandras's code when we move from one DBMS to another in the current 

version of Cassandra+. However, these modifications are relatively small and are quite "local" to 

the code. Therefore, we believe that they can be easily automated in the future. 

4 Comparison of QDS and SAGS Approaches 

In Sections 2 and 3, we described a Query-Driven Simulation (QDS) System Cassandra+ and 

presented its query language SimQL. It follows from this description that Query-Driven Simulations, 

and Cassandra+ in particular, have the following advantages over traditional simulate-and-gather- 

statistics (SAGS) approaches. 

First, QDS approach provides a more declarative way of asking questions about outcomes 

of simulations than the SAGS approach. The user formulates questions in a declarative general- 

purpose query language that tells the QDS system what the user wants to know. If the user uses this 

language he/she does not have to specify how the system has to obtain the answer. In particular, 
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the user does not have to know any simulation and statistical packages, or write any programs. 

Second, QDS approach gives the user extra flexibility. The user can ask any query expressible 

in the query language of the QDS system (e.g. SimQL for Cassandra+). This flexibility makes 

end-users less dependent of the MIS department since they do not have to rely on the simulation 

specialists when they want to ask an additional question not supported by the available information 

system. 

Third, QDS approach is more interactive than the traditional SAGS approach. The user of 

the QDS system can ask queries "on-the-fly" as they arise without any help from the simulation 

specialist. 

Finally, QDS approach automatically provides statistical answers to the questions asked by 

the user without any extra work on his/her part. Unlike the SAGS approach, in which the user 

has to determine how many simulation runs are needed in order to obtain the answer within the 

user-specified constraints, the QDS approach does all this work for the user. 

However, the QDS approach has certain limitations in comparison to  the traditional SAGS 

approach. First of all, some of the questions expressible in the SAGS approach cannot be expressed 

as QDS queries. To explain why this is the case, consider Cassandra+, SimQL as its query language, 

and SQL as the core language for SimQL. It is well-known that SQL is not Turing-complete, 

i.e. SQL queries cannot compute arbitrary recursive functions. For example, SQL queries cannot 

compute transitive closure [AU79]. In contrast to  this, the SAGS approach can compute an arbitrary 

recursive function (including the transitive closure) since most of the simulation languages, such as 

MODSIM [BDMRSO], SIMSCRIPT [Con87], GPSS [IBM70], are Turing-complete, Therefore, the 

QDS approach has less expressive power than the SAGS approach in general. 

However, this limitation of SQL and other relational query languages is well-known. It is 

solved in practice by embedding SQL queries in programming languages, such as C, COBOL, and 

ASSEMBLER. Therefore, we expect that the limited expressive power of the QDS approach will 

be solved in the same way as it is solved in practice for SQL. 

Another limitation of the QDS approach is that it requires the generation of large trace files. 

In the worst case, the QDS system must trace every event occurring in the simulation model. In 

contrast to this, the SAGS approach can simply compute summary statistics inside the simulation 

model and thus generate no trace files at all. Furthermore, if the trace files are generated by the 

SAGS approach, the model developer has a control over the events he or she wants to trace. This 

means that only a small fraction of all the events may end up being recorded in the trace files in 

the SAGS approach. Since recording events in the trace files can slow performance of QDS systems 
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in comparison t o  SAGS systems, it is important to develop query optimization techniques for the 

QDS approach. These techniques would allow recording only those events that are necessary for 

answering the query. We will discuss these query optimization techniques in the next section. 

5 Improving Performance of a QDS System 

If a simulation model does not know what types of events the query requires to  trace, then it 

must record all the events occurring during the simulation process into the trace file(s); otherwise, 

the QDS system may not have enough information in order to answer some of the queries. This 

approach can involve a large overhead since recording all the events into the trace file(s) is quite 

a time consuming operation. For example, assume that a simulation model contains 100 different 

types of events, and the query refers only to  3 events. This means that an unoptimized query 

processing strategy has to trace all 100 events instead of 3. 

An alternative approach would be to  determine for the QDS system what events the simulation 

model should trace and pass this information t o  the simulation model. In the context of the previous 

example, this would mean that the simulation model would trace only 3 events relevant to the query. 

However, this information passing can be done only if the simulation model is "ready" to accept this 

information, i.e. if the model is written according to the following conventions. Each event in the 

optimized simulation model has an event flag associated with it. Furthermore, each "WRITE event" 

statement of the unoptimized program must be replaced with the conditional write statement "IF 

event-flag is on THEN WRITE event" in the optimized program. In addition to this convention, an 

optimized simulation program must accept a list of events that the query wants it to trace as one of 

its arguments. Finally, each of the events passed to the simulation program sets its corresponding 

event-flag 6'on" at  the beginning of the program. If a simulation model follows these conventions 

then it is "ready" for optimization. 

To distinguish models that are "ready7' for the optimization from the models that are not 

"ready," the modelbase has an optimization flag as one of the fields in the record describing the 

model. If the flag is "on," then the model is ready for the optimization; otherwise, it is not. 

The query processing strategy for the optimized simulation model (i.e. with the optimization 

flag "on") works as follows. At first, the query determines which events the simulation model should 

trace. This depends on whether the query is event- or predicate-based. If the query is event-based, 

the QDS system parses the core query and determines all the events referenced in it. If the query 

is predicate-based, the QDS system parses the query and determines all the predicates referenced 

in it. Then it accesses the modelbase and, for each predicate, determines the events that are used 
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to compute the predicate. The union of all the events taken over all the predicates determines the 

set of events that the simulation model should trace. After the QDS system determines the set 

of events needed by the query, this information is passed to the simulation model as one of the 

parameters. After that,  the optimized simulation model will trace only the events that were passed 

to it by the query. 

The optimization scheme described in this section imposes minimal constraints on the model 

developer. The model developer has to include events passed by the query as one of the arguments to 

the program, add a piece of code that sets the event flags "on" for the events passed to the program, 

and add conditional WRITE statements to trace the events. These changes that an optimized 

simulation model requires are minimal and can either be checked by some model validation tool or 

automatically inserted into unoptimized model by a pre-processing software. 

The scheme just described helps the QDS system trace only the events referenced in the query. 

However, we can reduce the number of events traced by the system even further if we trace only 

the instances of events necessary to answer the query. For example, consider the query "in which 

machine part PJ-374 will be 5 hours from now?" In order to answer this query, we have just to run 

simulations for 5 hours without tracing any events at all and at the end see in which machine part 

PJ-374 is located a t  that time. 

To solve this kind of optimization problem we have to do three things: 

1. Parse the query and determine under what conditions each event pertinent to  the query must 

be recorded in the trace file. These conditions should be written as programs in the simulation 

language of the model, and we will call them optimization routines. 

2. The event flags in the previous optimization scheme must be replaced with calls to the cor- 

responding optimization routines described in Part 1. 

3. The optimization routines generated by the query optimization module must be compiled 

and dynamically linked to the simulation program while the query is being processed by the 

QDS system. 

As we can see from this description, this optimization problem is a difficult one. It requires 

parsing the query and determination of preconditions for the events the query needs, which is a 

difficult problem in itself. Furthermore, it requires the implementation of the complex dynamic 

linking scheme described above. Therefore, we do not support this type of optimization in the 

current version of Cassandraf system, leaving it as a topic of future research. 
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Note that the query optimization techniques described in this section improve the performance 

of the system but also have certain costs associated with them. First. the simulation models must 

comply with the standards described in this section that model developers must follow to make 

the model suitable for optimization. Second, it becomes more difficult to switch from one core 

query language t o  another because queries have to be parsed now, and each language needs its own 

parser. 

6 Running a QDS System 

In this section we address the question of what it takes for a model developer to build a new 

simulation model and for the model administrator to  install it into the modelbase. In particular, 

we describe what extra steps are needed over and above the traditional SAGS approach to develop 

a model that can be used in a QDS system. 

When a model developer builds a simulation model for a QDS system he or she should follow 

the following guidelines. First of all, an unoptimized simulation model must trace all the events in 

that model. Furthermore, events must have a format described in Section 3.2. In addition, if the 

user intends t o  optimize queries on that model then the model must follow the rules described in 

Section 5. 

Secondly, the simulation program must have a set of arguments that are used by the QDS 

system to pass simulation parameters from a query to the simulation program. These arguments 

must include (i) the number of simulation runs that the program should run, (ii) for how long t o  

run them, (iii) the arguments of the model itself (e.g. the number of tellers, average service times, 

etc. in a banking model), (iv) random seed, (v) the List of events to  be traced by the optimized 

model. We need to pass the random seed to the simulation model as an external parameter so that 

we would not get the same results each time we run the model. The random seed is generated a t  

random by the initialization module of the QDS system that prepares the simulation model for the 

execution. 

Thirdly, if the model is used to do real-time simulations, then the model developer must supply 

the initialization routines. These routines set the initial state of the simulation model to the current 

state of the system that is obtained by accessing the historic data about the system stored in the 

modelbase and retrieving the data that is currently valid, i.e. that has the timestamp now. 

Once a simulation model is developed, it is installed into a modelbase by the model administra- 

tor. As part of this installation procedure, the model administrator must supply all the necessary 
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Figure 8: Query-Driven Modeling Lifecycle 
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information about the model needed by the modelbase, such as the name of the model, the language 

in which it is written, the list of events used in the model, the list of predicates that the user can 

query (see Section 3.1 for the detailed description of these parameters). As part of this process, the 

model administrator must provide a set of routines converting events into predicates, as described 

in Section 3.1. 

Model 
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7 Query-Driven Modeling Lifecycle 

Administrative Changes 

In the paper, we described several activities required to build a working QDS system, such as 

development of simulation models by the model developer, installation of these models into the 

modelbase, and querying simulation outcomes of the models in the modelbase by the end-user. I t  

turns out that these activities are not independent of each other but are related in the way shown 

in Figure 8. 

As Figure 8 shows, the model developer initially designs a simulation model and delivers it 

to  the model administrator who installs the model into the modelbase. Part of this installation 
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procedure is the specification of all the information that the modelbase requires to  know about 

the newly installed model, such as the list of events used in the model, the name of the object 

module containing the model, and the list of the default parameters. After the model administrator 

installs the model in the modelbase, end-users can start using it by issuing queries about simulation 

outcomes expressed in SimQL. 

At this point, either the user is satisfied with the model and keeps using it, or he/she might 

experience some problems. There are two types of problems the user can run into. First, the 

information, as specified in the modelbase, does not satisfy user's needs. For example, it may turn 

out that the user wants to ask a query about a predicate that does not appear in the modelbase 

but can be easily computed from the events that the simulation model traces. As another example, 

the user may want to run a real-time query on a model, but discovers that the QDS system would 

not let him/her do this because the online-vs-offline ftag for the model is set off in the modelbase. 

These two problems can be solved by the model administrator who makes appropriate changes 

to the modelbase. In particular, he or she writes a conversion routine for the new predicate and 

installs this predicate and the routine into the modelbase. To solve the problem in the second 

example, the administrator supplies the initialization routines for the simulation model and sets 

the online-vs-offline flag in the simulation model "on". Note that the simulation model itself is not 

changed for this type of a problem. 

The second problem that the user can encounter arises when he or she asks a query that 

the simulation model cannot handle because it does not have enough information to  answer the 

query. For example, the user may want to know how many parts will be painted in red color within 

the next 10 hours, and the simulation model does not keep track of the colors of different parts 

and the painting information. In this case, the model developer must adjust the simulation model 

accordingly. 

In both cases, Query-Driven Simulations provide a feedback loop in the process of model devel- 

opment: the models are modified based on the feedback coming from the user after the user asks 

various questions about these models. We call the process of development, installation, usage, and 

model adjustment based on the users' feedback a Query-Driven Modeling Lifecycle. The model 

development process can go through several iterations before it converges to a stable simulation 

model satisfying end-user's needs. 
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8 Related Work 

Query languages in the context of simulations were studied before. In [Len93], a database of 

simulation models, called a modelbase, was constructed based on the structured modeling approach 

[Geo87]. As part of the structured modeling approach, [Len931 uses the query language defined 

for this approach by Geoffrion[Geo87]. Although the system supports queries, these queries are 

used in a totally different context than SimQL queries: they are used for asking questions about 

the models themselves (e.g. which models stored in the modelbase are manufacturing models), not 

about simulation traces produced by running the models, as is the case with SimQL. 

In [MW89], Miller and Weyrich developed the SIMODULA system that has its own SQL-like 

query language for asking questions about simulations (with object-oriented features added to it). 

Each model has a relation of input parameters and outcomes of previously executed simulations 

associated with that model. For example, a banking model may have a BankScenario relation 

associated with it that has input parameters, such as number of tellers, mean interarrival rate, 

mean service time, and the output parameters, such as throughput and the service time, as its 

attributes. If the user wants to ask a question about throughput and average waiting time for the 

banking model with input parameters mean interarrival rate being 4.0, mean service time being 

6.0 and the number of tellers equal to 2, then SIMODULA checks in the BankScenario relation 

if this model has been run before. If it was, it retrieves the answer from relation BankScenario 

(values of attributes Throughput and AverageWaitingTime). Otherwise, SIMODULA launches the 

simulation with the input parameters retrieved from the query and the rest of them set to defaults. 

In this paper we present a more extensive approach to Query-Driven Simulations by allowing 

SimQL queries to  drive simulations and not just launch them as is done in [MW89]. We also allow 

the user to  query simulation traces in an ad-hoc manner instead of letting him/her ask a fixed set 

of questions on summary statistics about a single simulation run. Furthermore, we express answers 

in statistical terms that require more than a single simulation run to  obtain the answer. Finally, we 

allow a loose coupling between any database query language and any simulation language as long 

as trace files generated by simulation programs conform to the standard described in Section 3.2. 

In [Tuz92, Tuz931, the idea of asking queries on simulation traces was proposed, and a SimTL 

language was presented. SimTL consists of a simulation and a querying components. The simu- 

lation component is based on a temporal logic programming language [AM89], and the querying 

component is based on temporal logic [MP92]. Thus queries about simulation outcomes expressed 

in temporal logic are asked about simulations generated by temporal logic programs. This means 

that SimTL is a tightly coupled simulation and querying system, in which both components depend 
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on the formalism of temporal logic. 

In this paper, we extend the work of [Tuz92, Tuz931 by integrating an arbitrary temporal query 

language with an arbitrary simulation language. Therefore, unlike SimTL, where the interface 

between querying and simulating components is well-understood and is based on temporal logic, 

we have t o  develop a proper interface between these components in order to  achieve independence 

between the query and simulation languages. Also, unlike the work in [Tuz92, Tuz931, we provide 

answers t o  SimQL queries in statistical terms. 

9 Conclusions 

In this paper, we described a Query-Driven Simulation system Cassandra+ that allows end-users 

to  ask various questions about outcomes of simulations. We described the query language SimQL, 

explained how SimQL queries are executed, and presented some query optimization strategies. We 

also described how model development, installation, usage, and model adjustment are integrated 

into a Query-Driven Modeling Lifecycle. 

One of the important features of Cassandraf is that it can support any temporal relational 

query language asked about simulation models written in any simulation language as long as trace 

files generated by these models conform to a certain standard. 

Query-driven simulations provide more declarative, flexible, and interactive ways of asking 

questions about simulation out comes than the traditional simulate-and-gather-st atistics approaches. 

They allow end-users to  ask various questions in a declarative query language in an ad-hoc manner 

"on the Ay," just as relational query languages allow the users to  ask questions about the data 

stored in databases. 

As a future work, we want to add Query-Driven Animation capabilities to  Cassandraf. Tradi- 

tionally, animations are done for the entire system being simulated. In contrast to  this, we plan to 

do animations only of the parts of the system pertaining to the query being asked. For example, if 

the user wants to know how many parts will go through the manufacturing cell C3 within the next 

shift, it may be sufficient for him or her just to see only the parts arriving a t  and departing from 

cell C3. The challenging question here is to determine for a given query what parts of the system 

should be animated. 

References 

[AM891 M. Abadi and 2. Manna. Temporal Logic Programming. Symbolic Computation, 

Center for Digital Economy Research 
Stem School of Business 
Working Paper IS-93-44 



[AU79] A. Aho and J. Ullman. Optimal partial match retrieval when fields are independently 

specified. A C M  Transactions O n  Database Systems, 4(2):168-179,1979. 

[BDMRSO] R. Belanger, B. Donovan, K. Morse, and D. Rockower. MODSIM I1  Reference Manual. 

CACI, 1990. 

[Bla92] Blanning, R. and Whinston, A. and Ai-Chang, M. and Dhar, V. and Holsapple, C. 

and Jarke, M. and Kimbrough, S. and Lerch, J. and Prietula, M. Model management 

systems. In Edward A. Stohr and Benn R. Konsynski, editors, Information Systems 

and Decision Processes. IEEE Computer Society Press, 1992. 

[BT93a] P. Balasubramanian and A. Tuzhilin. Cassandraf: A System for doing Query Driven 

Simulation. Working Paper IS-93-40, Stern School of Business, NYU, 1993. 

[BT93b] P. Balasubramanian and A. Tuzhilin. Using Query-Driven Simulations for Querying 

Outcomes of Business Processes. Working Paper IS-93-38, Stern School of Business, 

NYU, 1993. 

[Con871 Consolidated Analysis Centers, Inc. UNIX SIMSCRIPT 11.5 User's Manual, 1987. 

[Data91 C.J. Date. A Guide to the SQL Standard. Addison-Wesley, 1st edition, 1989. 

[EN901 R. Elmasri and S. Navate. Fundamental of Database Systems. The Ben- 

jamin/Cummings Publishing Company, 2nd edition, 1990. 

[FDJG+92] K. Fordyce, R. Dunki-Jacobs, B. Gerard, R. Sell, and G. Sullivan. Logistics Man- 

agement System (LMS): An Advanced Decision Support System for Dispatch or Short 

Interval Scheduling. Production and Operations Management, 1(1):70-86, Winter 1992. 

[Geo87] A.M. Geoffrion. An Introduction to Structured Modeling. Management Science, 

33(5):547-588, May 1987. 

[IBM70] IBM. General Purpose Simulation System/360 User's Manual, 1970. 

[Ing89] Ingres. INGRES/OpenSQL Reference Manual for the UNIX and V?MS Operating Sys- 

tem. Relational Technology Inc., 1989. 

[Int85] IntelliCorp, Mountain View, Calif. The S I M K I T  System: Knowledge-Based Simulation 

Tools i n  KEE, 1985. 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-93-44 



[Len931 M.L. Lenard. A Prototype Implementation of a Model Management System for 

Discrete-Event Simulation Models. In Proceedings of the 1993 Winter Simulation Con- 

ference, pages 33-39, 1993. 

[MP92] 2. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems. 

Springer-Verlag, 1992. 

[MW89] J.A. Miller and O.R. Weyrich. Query Driven Simulation Using SIMODULA. In Pro- 

ceedings of the 22nd Annual Simulation Symposium, 1989. 

[MWS9O] W. Mendenhall, D.D. Wackerly, and R.L. Scheaffer. Mathematical Statistics with Ap- 

plications. PWS-KENT, 4th edition, 1990. 

[Ora87] Oracle Corporation. ORACLE Overview and Introduction to SQL ORACLE Part No. 

3801 User's Manual, 1987. 

[PSS9O] C.D. Pegden, R.E. Shannon, and P.P. Sadowski. Introduction to simulation using 

SIMAN. McGraw-Hill, New York, 1990. 

[SAS89] SAS Institute, Raleigh, NC. S A S  User's Guide, 1989. 

[Sno87] R. Snodgrass. The temporal query language TQuel. ACM Transactions On Database 

Systems, 12(2):247-298, 1987. 

[St0861 M. Stonebarker. The INGRES Papers: Anatomy of a Relational Database System. 

Addison Wesley Publishing Company, Inc., 1986. 

[TCGS93] A. Tansel, J .  Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass. Temporal 

Databases. Benjamin/Cummings, 1993. 

[Tuz92] A.Tuzhilin. SimTL:ASimulationLanguageBasedonTemporalLogic. TRANSAC- 

TIONS of The Society for Computer Simulation, 9(2):086-099,1992. 

[Tuz93] A. Tuzhilin. Applications of temporal databases to knowledge-based simulations. In 

A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, editors, 

Temporal Databases. Benjamin Cummings, 1993. 

[Ull88] J Ullman. Principles of Database and Knowledge-Base Systems (Vol. I). Computer 

Science Press, 1st edition, 1988. 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-93-44 


