
A QUERY-DRIVEN APPROACH TO SIMULATIONS

Alexander Tuzhilin

P. Balasubramanian

Information Systems Department
Stern School of Business

New York University

Workinq Paper Series
STERN IS-93-44

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-44

A Query-Driven Approach to Simulations

Alexander Tuzhilin * P. Balasubramanian

Information Systems Department
Leonard N. Stern School of Business

New York University

Abstract

This paper describes a Query-Driven Simulation (QDS) approach to asking questions about
outcomes of business processes. In this approach a user issues a query about outcomes of simula-
tion runs and, based on the query asked, appropriate simulations are launched and the answer to
the query is determined from the outcomes of these simulations. It is argued that Query-Driven
Simulations provide a more declarative, flexible, and interactive approach to asking questions
about simulation outcomes than the traditional approaches of letting the end-users run simula-
tions and gather statistics about simulation outcomes. The paper also presents a new simulation
system development lifecycle based on the QDS approach.

KEY WORDS: Query-Driven Simulations, Discrete-Event Simulations, Temporal Databases,
Query Languages.

1 Introduction

Discrete-event simulations have been extensively used for analyzing performance of various complex

industrial systems in situations when it is difficult or impossible to obtain explicit solutions for the

analytical models of these systems. For example, in manufacturing organizations decision makers

might be interested in the utilization ratios of the machines in their plants over a period of time, the

average waiting time for jobs in queues, the scrap rates for their plants, detection of bottlenecks, and

so on. To answer these types of questions about future outcomes of processes in a manufacturing

system, a simulation model of the system is built, and simulations of this model are run several

times. Based on these runs, statistics related to the questions of interest to decision makers (e.g.

the utilization ratios, throughput, waiting times, etc.) are collected and presented to the user. We

will call this traditional approach simulate-and-gather-statistics (SAGS) approach.

'Address: 44 West 4th Street, Room 9-78, New York, NY 10012, e-mail: atuzhili@rnd.stern.nyu.edu,
pbalasub@rnd.stern.nyu.edu

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-44

Traditionally, simulations collect summary statistics in one of the following two ways. In the

first approach, summary statistics are computed inside the simulation program, and the program

presents these statistics to the user. The main problem with this approach is that the end-user

has to modify the program if he or she wants to ask a question about simulation outcomes that

goes beyond the set of statistics generated by the program. For example a simulation program may

output the total time spent in the system (makespan) for a job but the user may want a breakup

of the time spent in the queue, in transit and in process.

In the second approach, various simulated events are recorded in the trace files, and then

statistics are collected from these trace files by either writing programs in one of the programming

languages, such as Fortran or C, or by using one of the statistical packages, such as SAS [SASSg].

The main problem with this approach is that the end-user has to know either a programming

language or a statistical package to be able to collect statistics or ask any other questions about

the trace files. Otherwise, he or she has to rely on the IS department which provides the end-users

with a set of "canned" questions.

Since most of the people who ask questions about future outcomes of business processes in

their organizations, such as a foreman, a salesman, or personnel manager, do not know much about

simulations, programming languages, or statistical packages, they cannot ask ad-hoc questions

about future outcomes of their business processes as the questions arise "on-the-By". Clearly, this

situation is unsatisfactory in many organizations, such as manufacturing, transportation, or in the

military, where various users want to ask many different questions about simulation outcomes of

various models [BT93b].

In this paper, we describe the Query Driven Simulations (QDS) approach, that addresses this

problem. QDS is an approach to simulations in which the user first asks queries about outcomes of

simulations expressed in a declarative query language, such as SQL [DatSg], and then appropriate

simulations are launched depending on the query, and events necessary to answer the query are

recorded in the trace file(s). After the simulation runs are completed, the query is evaluated on the

trace files(s) of events recorded by the simulation program. We also present a specific QDS system

Cassandra+ that implements the QDS approach just described. We also present its query language

about simulation outcomes, called SimQL, and describe how SimQL queries are processed by the

Cassandra+ system. In addition, we describe issues related to performance of the QDS systems,

and present the Query-Driven Modeling Lifecycle of the model development process.

In the next section, we present the SimQL language using a series of examples. A formal

description of the language can be found in [BT93a]. In Section 3 we describe how SimQL queries

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-44

are processed by the CassandraS system. Ln Section 4, we compare the QDS and SAGS approach.

In Section 5, we discuss some optimization issues. In Section 6, we explain what tasks have to be

performed t o use a QDS system. We describe the Query-Driven modeling lifecycle in Section 7.

Finally, in Section 8 we describe some related work.

2 Description of SimQL Language

The SimQL language consists of two subcomponents: the core query language subcomponent and

the shell into which the core query language is embedded. The core query language subcomponent

is the "heart" of SimQL and is used to ask temporal queries1 about simulation traces. In this paper,

we use SQL [Dat89] with timestamps to express core queries, but, as will be explained below, we

could have used any temporal query language as long as it supports the same data model as the

simulation component.

The second subcomponent of SimQL is the shellinto which the temporal query language is em-

bedded. This shell provides an interface between the querying and simulation parts of CassandraS

that integrates the two components into one system. For example, we specify in the shell such

information as the simulation model against which the query is asked. the parameters for that

model, for how long simulations should be run, what answer we expect back, i.e. a full relation or

just a number, and various additional information that the simulation component of CassandraS

needs in order to provide the answer to a query.

Example 1 Consider the following query:

How many parts can be finished in the next 10 hours?

It can be expressed in SimQL as:

Initialization: Real- time
Type: Event-based
Answer-Semantics: Numeric
Core-query:

SELECT COUNT(Part#)
FROM FINISHED

Model-Name: Mfc-Model-4
Confidence-coefficient: 90
Error-of-estimation: 20

'Simulation methods deal with process evolving in time and hence we need a temporal query language to ask
questions about these processes.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-44

The core query in this example is expressed in SQL as

SELECT COUNT(Part#)
FROM FINISHED

Note that this core-query is embedded in the SimQL shell that provides additional information

about the meaning of the query. For example, the parameter Model-Name in the shell specifies

the name of the simulation model. It tells Cassandra+ that the query is asked against the model

Mfc-Model-4.

The parameter Initialization = Real-time, specifies that simulations should be done in "real-

time," i.e. they should start from the initial state of the system in the model Mfc-Model-4 that

represents the current state of the physical system. Alternatively, they could be done "off-line,"

meaning that the initial state of the system is not specified, and simulations should be run for some

time until, e.g., the steady state is reached, and only then the query should be evaluated.

The second parameter in the query, Type = Event-based, specifies that the trace file of the

simulation model Mfc-Model-4 must be stored as historical event relations [Sno87]. In this case, the

simulation trace file(s) are copied into the temporal database without any conversion. Alternatively,

the Type parameter can be "predicate-based," and this requires conversion from the event-based

to the predicate-based representation as will be described in Section 3.2.

The value of the Answer-Semantics parameter in Example 1 is numeric. It specifies that

the query returns back a single number (the number of finished parts in our case). Alternatively,

the answer-semantics can be non-numeric if the query returns back a relation. We will discuss

this semantics in Example 2. We have to distinguish between numeric and non-numeric semantics

because the types of answers are different in these two cases as Example 2 will show.

Finally, the parameters Error-of-estimation and Confidence-coefficient specify what the

estimation error of the answer can be and with what confidence we can provide the answer [MWSSO].

In our example, the user wants the estimation error to be within 20% of the mean and the confidence-

coefficient of the answer to be 90%.

A possible answer to this query can be

The average number of parts produced within the next 10 hours is 32 ic 3, and we can

make this statement with confidence 90%.

In other words, the probability that the answer to the query falls between 29 and 35 parts is 90%.

cl

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-44

In the first example of a SimQL query, we have described some of the shell parameters. It

turns out that there are other parameters in the query which are taken as default parameters. For

example, TIME is one such parameter. If not specified, it is "extracted" from the query (10 hours

in our case). If it is present then we assume that the simulations are run only for that time and

that the time domain is restricted by this parameter, as the next example shows.

Example 2 Consider the following question that a foreman in a manufacturing plant may want

to ask:

What are the parts that will always stay in Cell-1 for the next 5 hours.

This query can be expressed in SimQL as

Initialization: Real-time
Type: Predicate-based
Time: 5 hours
Answer-Semantics: Relational
Core-query :

SELECT Part#
FROM VISITS
WHERE Cell# = Cell-1

AND Begin-Time 5 $NOW
AND End-Time > SNOW + 5 hours;

Model-Name: Mfc-Model-2
Parameters: number-of-cells = 5, job-arrivalrate = 10
Confidence-coefficient: 95
Error-of-estimation: 20
Number-of-answers: 2

The core query in this example is

SELECT Part#
FROM VISITS
WHERE Cell# = Cell-1

AND Begin-Time 5 $NOW
AND End-Time 2 $NOW + 5 hours;

Note that the core query is unbounded in the sense that we need to know the values of the VISITS

predicate at all the (arbitrarily removed) points in the future to evaluate its value at present 2 .

To solve this problem, we specify the Time parameter in the shell. The Time parameter restricts

2 ~ n l e s s we provide some intelligent query processing strategies that can recognize that only the instances of
VISITS within the next 5 hours are needed to answer the query.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-44

the temporal domain to the bounded set of times (up to 5 hours from now), and the core query is

evaluated on that domain.

This query has additional parameters that did not appear in the previous example since de-

fault values were assumed for them in Example 1. One of these parameters is Parameters that

specifies the parameters passed to the simulation model specified in the query. For example, the

parameters number-of-cells = 5 and j o b - a r r i v a l r a t e = 10 in the query are passed directly to

the Mf c-Model-2 model.

The Answer-semantics parameter in the query in this example has r e l a t i o n a l as its value.

This means that the query returns relations (tables) as its answer. Also, the Type parameter

has the value predicate-based. This means that the relations in the core-query are predicates

with two timestamp attributes, specifying the times when a tuple was added to and removed

from a relation (unlike events that have only one timestamp attribute), For example, predicate

VISITS (Par t# , Cell# ,Begin3 ime ,End-t ime) has two times associated with it: when a part begins

(Begin-time) and ends (End-time) its visit to a cell. Finally, the parameter Number-of-answers

specifies the number of the most likely answers the user wants specified in the order of decreasing

probabilities of these answers. This parameter can appear only in the SimQL queries that have

non-numeric values in the Answer-semantics parameter.

A possible answer to the query from this example can be

Most likely, parts PY346, PY378, and PZ216 will always be in Cell-1 within the next five

hours; the probability of this is 24% f 2%, and we make this statement with confidence

95%. The second most likely answer is that parts PZ289 and PY378 will always be in

Cell-1 within the next five hours; the probability of this is 21% f 2%) and we make this

statement with confidence 95%.

The query returns two most likely answers because the parameter Number-of-answers is 2 in this

case. Furthermore, the answers are returned in the decreasing order of their average probability

estimates.

Note that the answer to this query is different from the answer to the query in Example 1.

This query returns the relation that is the most likely answer to the query and an estimate of the

probability of that answer. In contrast to this, the answer to the query with the numeric value

of the Answer-semantics parameter returns the average estimate of the value of the numeric

parameter and the estimated error for this value (32 f 3 in Example 1).

0

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-44

In Example 2, we considered the relational value of the Answer-semantics parameter. This

value directs Cassandraf to return the most likely answer(s) to the query. However, the user may

sometimes want a different kind of the answer, as the following example shows.

Example 3

Consider the query

How many days would it take to complete order number JC-243 by each of the three

manufacturing plants (PL-1, PL-2, PL3)?

The relational semantics would return a certain answer, e.g. { (PL-1, lodays), (PL-2,

14days), (PL-3, 12days) }, and would assign a probability estimate for this answer, e.g. prob-

ability 26% f 2%. However, we may need a different answer. We may want to know probability

estimates for each plant separately, e.g., { (PL-I, 10days) with probability 23 f 2%, (PL-2,

14days) with probability 34 f 3%, (PL-3, 12days) with probability 21 f 2% }.

To accommodate for this type of answer, we provide the tuple value for the Answer-semantics

parameter, as the following SimQL query shows

Type: Predicate-based
Time: 30 days
~nswer-Semantics: Tuple
Core-query :

SELECT Plant#, (End-time - Begin-time)
FROM PROCESS
WHERE Order# = JC-243;

AND Plant# I N (PL-1, PL-2, PL-3);
Model-Name: Mfc-Model- 1

where PROCESS is a relation with schema PROCESS(Order#, Plant#, Begin-time. End-time).

When the user issues a SimQL query, Cassandra+ determines the simulation model to which

the query refers to, determines how many simulation runs N are needed to obtain the answer

within the estimates specified by the user, runs this simulation model for N simulation runs,

storing simulation traces in trace files, converts the resulting simulation trace files into the temporal

database format based on the Type parameter, issues the temporal query against each simulation

trace, and st atistically analyses the answers to these queries.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-44

There are two additional issues related to the process of interaction between SimQL queries

and simulations. First, there is the model management issue [Bla92]. Cassandra+ must store a set

of simulation models against which the user can ask queries. For instance, in Example 2, the query

was issued against the manufacturing model Mfc-Model-2 and in Example 1 against model Mfc-

Model-4. Therefore, Cassandra+ must provide the capability to store, query and update various

models. We will discuss this issue further in Section 3.1.

Second, different models in the modelbase can be written in different simulation languages. For

example, Mfc-Model-2 can be written in MODSIM [BDMRgO], Mfc-Model-4 in Simscript [Con87],

and Bank-Model-12 in Simkit [Int85]. As was stated already in the introduction, one of the im-

portant advantages of Cassandra+ is that it can support any temporal query language and any

simulation language as long as the two agree on the data model (so that temporal queries can be

asked against the corresponding trace^)^.

The next example shows that SimQL queries can be asked not only about the future but also

about the past and the future.

Example 4 How many parts will be produced by the end of September, assuming that it is now

September 15.

Initialization: Real- time
Type: Event-based
Answer-Semantics: Numeric
Time: Combined(Past (l5), Future(l5))
Core-query:

SELECT COUNT(PART)
FROM FINISHED
WHERE $NOW - 15 < Time

AND Time < $NOW -t- 15 days;
Model-Name: Mfc-Model-1

Note that the Time parameter in the query indicates that the simulation model Mfc-Model-1

should be run for 15 days and then the simulation results should be combined with the history of

relation FINISHED over the past 15 days4. Finally, the core query is evaluated on the combined

relation that has the lifespan of 30 days.

3The only convention is that the trace files generated by programs written in different simulation languages must
have a certain format. The structure of this format will be discussed in Section 3.2.

*The historical data can be obtained by gathering the transactional real-time data about all the events and
activities happening on the manufacturing floor [FDJGt 921 and then processing this data and storing it in the
historical relational database format.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-44

The next example shows how SimQL queries can be used for experimental design.

Example 5 How many customers will be serviced in the bank per day if we vary the number of

tellers between 5 and 8?

Initialmat ion: Off-line(Steady-state)
Type: Event-based
Answer-Semantics: Numeric
Time: 1 day
Core-query:

SELECT COUNT(Customers#)
FROM SERVICED

Model-Name: Bank-Model-7
Model-parameter: number-of-tellers = 5..8
Confidence-coefficient: 95
Error-of-estimation: 10

This query is called a range query because it gives rise to four individual queries, one query

per each number of tellers (5, 6, 7 and 8) specified in the Model-parameter parameter. As a

result of this, SimQL returns to the user four different answers, one answer for each value of the

parameter,

Also note that this is an off-line query. This means that simulations are run initially until

Bank-Model-7 reaches a steady state. Only after that, simulations wil l be run for one day of

simulated time and traces will be generated starting from that time.

In this section we described SimQL language using a series of examples. In the next section

we describe how SimQL queries are executed.

3 Execution of SimQL Queries

The algorithm that evaluates a SimQL query is presented in Fig. 1. Initially, a SimQL query (Q)

is parsed and the model against which the query is to be evaluated is determined together with the

parameters necessary to evaluate the query. After that, Cassandra+ determines if the query is a

range query, and evaluates each instance of the range query on the given simulation model in a loop

(the outermost FOREACH loop). The key part in this process is the evaluation of the query Q on a

single simulation run (procedure compute-answer3 or-singlerun). It starts with the initialization

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-44

determine the model M against which query Q is evaluated;

determine parameters of query Q:
T - simulation time
R - range of model instances in Q
c - error of estimation
a - confidence coefficient

FOREACH model instance r in R DO

determine the number of simulation runs N, needed to evaluate
r within estimation bounds c and a;

compute the answer STAT-ANSW, to Q for model instance r based on {AN SW,;) ;=I,N,

return the answer STAT-ANSW, to the user

END

initialize i-th run of model instance r

run simulation of run i for time T and store the results in trace file TR,;

convert the trace file TR,; into the database format DB,;

evaluate the core query core(Q) on DB,; and store the results in ANSI/V,;

END

Figure 1: Evaluation of SimQL queries in Cassandrat.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-44

of the simulation model to be executed by retrieving the default parameters for this model from the

modelbase and overriding them with the simulation parameters specified in the query. After that,

Cassandra+ launches the initialized simulation model for time T. As a result of this simulation,

the model generates trace files. We assume that these trace files are regular ASCII or EBCIDIC

files generated by the WRITE statements of the simulation program and that they are stored in

a certain format that will be described in detail in Section 3.2. After that, Cassandra+ converts

the trace files into the database tables having the format of the DBMS being used to express core

queries. For example, if we use Oracle [Ora87] as a DBMS and the trace file is an ASCII file, then

the ASCII trace file is converted into Oracle's relational table. Finally, the core query is evaluated

against the trace files converted into the database format. After all N, simulation runs are executed

for the model instance r and all the answers ANSW,; are determined, the final statistical answer

STAT-ANSW,; is computed based on the Answer-Semantics parameter of the query.

So far we presented a short overview of the query processing strategy used in Cassandra+. In

the rest of this section, we describe parts of this strategy in detail. We start in Section 3.1 with

the description of the modelbase and the information it stores to aid in the evaluation of SimQL

queries. Then we describe in Section 3.2 the format of the temporal database files and how core

queries are evaluated on these files. After that, we describe how a SimQL query is evaluated on

a single simulation run in Section 3.3. In Section 3.4 we describe how Cassandra+ evaluates a

SimQL query based on the results of multiple runs. Finally, we describe the implementation of the

Cassandra+ system in Section 3.5.

3.1 A Modelbase

The modelbase contains information about the simulation models that the user can query. It is

a central repository of all the information about all the models used in an organization. The

modelbase is needed in order to instantiate and run simulation models and to convert their outputs

into historical relational database formats. In CassandraS, we store the modelbase in a relational

database as a set of tables since the information we need in the modelbase is not normalized [Ull88],

and thus it is better not to place all the information pertaining to the models in a single table5.

The modelbase contains the main table with one record per one model, and other tables that

"link" additional information about the model (such as the description of the events for the model)

to the main table. The main table in the modelbase contains the following fields:

m or example, we store the descriptions of all the events that a model traces, and i t is better to keep this information
in a separate table.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-44

1. Model name, that serves as a key. For instance, Mfc-Model-4, Banking-Model-6 are examples

of model names.

2. Target simulation language: the language in which the simulation model is written, e.g.

Modsim, Simscript, etc.

3. Default simulation parameters: parameters that are used in the model. These parameters are

taken as defaults. They can be over-written by the parameters that the user specified in the

query (such as number-of-cells=5 and job-arrival-rate=lO in Example 2) .

4. Name of the simulation program: this field contains the name of the object module for the

simulation model, as stored in the secondary storage. When the actual simulation is ready

to be run, this object module is dynamically linked to Cassandra+ module using the name of

the module stored in this field.

5. Past information: this field provides the name of the relation that contains the names of

the relations that stores past information about events and predicates that concerns the

simulation model.

6. Events traced by the model: this field contains the name of the relation that specified the

names of the events that are traced by the simulation model.

7. Event-to-predicate conversion programs: this field contains the name of the relation that

contains the names of the programs that builds the predicates from the events. For instance,

in Example 2, predicate V I S I T S can be computed from two event predicates A R R I V E S and

DEPARTS.

8. Online-us-ofline flag: the flag specifying if real-time queries can be asked against this model;

if the value of the flag is "online" then the modelbase must contain initialization programs

described in Item 9.

9 . Initialization programs for real-time queries: if the flag in Item 8 is "online" then real-time

queries can be asked on this model; in this case, this field provides the names of initialization

programs that compute the initial state of the system from which simulations start.

10. Optimization flag: this is a boolean field specifying if queries on the simulation model can

be optimized. In order for a query to be optimized on a simulation model, the model should

have its PRINT statements written according to a certain convention so that the query could

pass the optimization information t o the simulation model.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-44

Event Paramet er(s)

Time Stamp I
Figure 2: Event File Format

11. Working model-base: this field contains the name of the relation that contains the particulars

of all the model instances that have to be executed based on the current query.

Typically, information is retrieved from a modelbase using some query language [Len93, MW89,

Geo871. For example, [Geo87] describes a querying language for the structured modeling approach

that allows the end-user to retrieve, and update information about the models stored in the mod-

elbase. However, we want to point out the difference between this type of a query language and

SimQL. SimQL is used to query outcomes of simulations: to answer a SimQL query, we have to

retrieve the model from the modelbase and run it. In contrast to this. the query language on

the modelbase is used to retrieve information about the models stored in the modelbase. Unlike

SimQL, it does not require execution of these models.

However, we provide only very limited model retrieval and maintenance capabilities in the

current version of Cassandra+ since our major goal was to develop a working prototype of a QDS

system and since model management capabilities are not directly related to this goal.

3.2 Temporal Databases

SimQL queries ask questions about outcomes of simulations, and these outcomes are written into

trace files in the form of events. Therefore, it is natural to use a temporal query language [TCG+93]

as a core query language in SimQL since events occur in time and since user questions are temporal

in their nature. Since a query language comes as part of a database management system, it is also

natural to use a temporul database [TCGf 931 to store query traces.

However temporal databases are not commercially available at present. Therefore, we selected

SQL with timestamps as the core query language in the paper. Another important reason for

this choice is that SQL is a very popular query language and is used as a standard in relational

databases. Furthermore, many temporal queries can be expressed in S QL with timestamps, and

therefore we do not constrain ourselves by this choice. An obvious disadvantage of using SQL with

timestamps is that some queries will look quite "ugly" when expressed in it.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-44

Figure 3: Trace File for Event ARRIVAL

Part#

P3

Predicate Parameter(s) r
Begin- Time

Cell#

Cell-1

Figure 4: Predicate File Format

Time)
10:24

As we saw in Section 2, some core SimQL queries are asked against events and others against

predicates. To handle this distinction, we consider two types of SQL relations in this paper. One

type has a single time column (see Figure 2) and corresponds to a historical event relation of TQuel

[Sno87]. The time column specifies the time at which the rest of the tuple belongs to the relation.

For example, the relation ARRIVAL(Part#,Cell#,Time) (Figure 3) specifies the time at which a

part arrives at a cell.

The other type of relation has two time columns (see Figure 4) and corresponds to a historical

interval relation of TQuel [Sno87]. The two time columns indicate the beginning and the end of the

time when the tuple is true. For example, the relation LOCATED(Part#,Cell#,Begin-time,End-time)

(Figure 5) specifies the beginning and the end of the time period when a part was located in a cell,

In the rest of the paper, we will follow TQue17s terminology and call the first type of historical

relation event relation. The second type of historical relation will be called either predicate-based

or interval-based.

We have described two important "building blocks" of a QDS system: the modelbase and the

temporal database. We are ready to describe the details of the algorithm presented in Figure 1, i.e.

explain how a query is actually evaluated on a simulation model. We begin with the description of

this process for a single simulation run.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-44

Figure 5: Predicate Located

L

3.3 Evaluation of the Core Query on a Single Simulation Run

In this section, we describe the details of the procedure compute-answer2 or-s inglexun from

Figure 1.

P30
PI0
P22

When the simulation program is executed, it writes various events that the query asked it

to trace into the trace files, one file per event. For example various occurrences of event FIN-

ISHED for the query from Example 1 are recorded into the trace file FINISHED that may have

the events { Finished(P3, 10: 23), Finished(P6, 10 :47) , Finished(P8, 11 : 13) } recorded

in it. These trace files are stored as ASCII (or EBCIDIC) files.

After that, the trace files containing events are converted into historical database relations.

If Type parameter in the query is "event-based" then the conversion process is simple and is

done on a record-by-record basis: one event in the trace file generates the corresponding record

in the historical relation. If Type parameter in the query is "predicate-based" then we have to

convert events into predicates. To do this, Cassandras accesses the conversion routines for the

simulation model that are stored in the modelbase. For each predicate-based relation in the query,

it checks whether the appropriate conversion routine exists in the modelbase. If all of the nec-

essary routines exist, Cassandras invokes them and does the conversion. After the conversion is

finished, the resulting trace files are stored as interval-based relations. For example, the events

ARRIVAL(Part#,Cell#,Time) and DEPARTURE(Part#,Cell#,Time) can be converted into the

interval-based relation LOCATED(Part#,Cell#,Begin-time,End-time) by setting its attribute Be-

gin-time to the time when Part# arrives at Cell#, and setting End-time to the time when Part#

departs from Cell#.

Cell-1
Cell-4
Cell-6

After the trace files are converted into historical database relations, the core query is evaluated

on the temporal database according to the semantics of the query language in which the core query is

expressed. This completes the description of how a SimQL query is evaluated on a single simulation

run.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-44

10:45
12:Ol
12:55

NOW
12:31
13:15

J

3.4 Statistical Evaluation of a SirnQL Query

Once we know the answer to a SimQL query for a single simulation run, we can explain how it can

be evaluated on multiple simulation runs. However, as we mentioned before, we have to distinguish

between the two cases when the core query returns a numeric and when i t returns a non-numeric

answer because the answers for multiple runs are quite different in these two cases.

3.4.1 Numeric Answers

In this case, a query returns a number as an answer for a single simulation run. Therefore, multiple

simulation runs generate a set of numbers as answers, one number per run. Also, some of these

numbers may be repeated in the set. For instance, assume we do five simulation runs for the

query from Example 1 and assume we get the answers { 18, 20, 19, 18, 19 } for these runs. To

determine the answer to a "numeric" query, we assume that the average of this answer is normally

distributed. Then we estimate the mean and variance of this normal distribution from the sample

of answers for individual runs and determine the confidence interval for the average answer based

on the bounds specified in the query. If this confidence interval is within these bounds (e.g. 20%

of the mean), we stop the simulations. If not, we increase the number of simulations to be run, as

we will describe in Section 3.4.3, in order to get the confidence interval within the limits and run

that many simulations again.

Therefore, the semantics of a SimQL query for the numeric type of an answer is defined by the

confidence interval for that value that lies within the estimation error specified in the query. For

example, if the mean value of the number of parts that will be finished within the next 10 hours is

20, the estimation error is 30%, and the probability that this number is between 17 and 23 is 95%

then the answer that Cassandra+ returns to the user who asked this query is

The average number of parts produced within the next 10 hours is 20 i 3, and we can

make this statement with confidence 95%.

3.4.2 Non-Numeric Answers

In this case, the query returns a relation, and not a single number6. Since we consider relations

instead of numbers, we cannot make statements about averages for these relations. Instead, we

60f course, the relation can also consist of a single number in the degenerate case. For example, we could specify
Answer-Semantics = Relat ional for the query in Example 1. However, if we did so, we could not talk about an
average number of parts produced in 10 hours.

16

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-44

Figure 6: Frequencies of Different Answers for the Query From Example 2.

ANSWER
(PY346, PY378, PZ216)

(PY346, PZ216)
(PU629, PY378, PZ216)

determine the most likely answers in one of the following two ways. The first way is to determine

which answer, as a relation, is the most likely one. This alternative can be selected by specifying

Answer-semantics = r e l a t i o n a l in the query. The other choice is to determine which tuples

in the answer are the most likely ones. This alternative can be selected by specifying Answer-

semantics = tup le . We describe relational and tuple semantics of answers now, assuming that

the parameter Number-of-answers in the query is equal to N.

FREQ UENCI-

0.4
0.2
0.4

If relational semantics is selected in the query then we compute frequencies for each relation

returned as an answer in at least one simulation run. This type of semantics is needed when the

user treats query answers as outcomes of scenarios and wants to know xha t is the chance of each

outcome. For instance, assume that we made five simulation runs for the query from Example 2

"what are the parts that will always stay in Cell-1 for the next 5 hours." and assume we get the

frequencies for each of the resulting answers as shown in Figure 6.

As we increase the number of simulation runs, the distribution of the estimate of the fre-

quencies of each simulation outcome converges to a normal distribution[MWSSO]. Then our goal

is to estimate N largest frequencies based on the estimation parameters error-of-estimation and

confidence coefficient specified in the query.

The semantics of a SimQL query for the relational type of an answer is defined by N relations

having N largest frequencies in this distribution (based on the estimation of the means of these

frequencies), i.e. the query returns the first N most likely answers. If 9 = 1 then the query returns

a most likely answer. If there is more than one most likely answer then either all of them can be

returned, or one of them selected at random. In our example, either both most likely answers,

{ PY346, PY378, PZ216) and { PU629, PY378, PZ216), having frequency 0.4, or one of them

chosen at random is returned if relational semantics is selected. TT-e assume that N = 1 as the

default value for the relational semantics of answers.

If tuple semantics is selected in the query, then we compute frequency of occurrence of each

tuple in the set of answers. In other words, we want to know the chance of each tuple belonging

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-44

TUPLE FREQUENCY
PZ216 100%
PY378
PY346 60%
PU629 40%

Figure 7: A Sample Tuple Semantics Answer

to the answer. For example, if we made K simulation runs, and the tuple (al , . . . , a,) occurred in

answers for k runs, then the frequency of (al , . . . , a,) is $. Then the semantics of a SimQL query

for the tuple type of the Answer-semantics parameter is defined by the first N tuples having

the highest frequencies. Furthermore the default value for the parameter Number-of-answers is

All, i.e. the user wants to know frequencies of occurrence of all of the tuples in the answers. For

example, if five simulation runs produce answers as presented in Figure 6, then the answer to the

query from Example 2 based on the tuple semantics is shown in Figure 7 for Number-of-answers

= All. In other words, the tuple semantics for this query specifies the chance various parts will

always stay in Cell-1 for the next 5 hours.

In summary, we showed how the same non-numeric query can have two different answers

depending on whether the semantics is relational or tuple-based. The two examples presented

above show that the two semantics are complimentary to each other, that both of them are needed

in practice, and that it is up to the user to select the semantics he or she wants.

Once we know the semantics of answers for SimQL queries, our next task is to determine the

number of simulation runs necessary to answer a non-numeric query with the estimation error and

the confidence interval specified in the query.

3.4.3 Determination of the Number of Simulation Runs Needed to Answer the Query

An important task for Cassandra+ is to determine the number of simulations to be run so that the

answer returned by the query has the error of estimation as specified by the user and this answer

can be stated with the confidence specified by the user. To do this, we have t o distinguish between

numeric and non-numeric answer-semantics. We first describe the numeric case.

To determine the number of simulation runs for the numeric case, we proceed as follows. We

start with an initial number of runs, and run simulations for that many runs. Then we compute

the mean and variance for these runs and test if the result satisfies the constraints as specified in

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-44

the query. If i t does, we stop; otherwise, we recompute the number of simulation runs and repeat

the process again until we either satisfy the query constraints or run out of time, Formally, we

proceed as follows.

Let Nk be the number of simulation runs selected at the k-th trial. Let yj, and a,;~ be estima-

tions of mean and variance of the answer to the numeric query for the k-th trial. Also, let p be the

error of estimation measured as a percentage of the real (absolute) error to the mean, and let a be

the confidence coefficient.

We describe the process of selection of the number of simulation runs inductively. We start

the process with some set of initial runs, i.e. select No to be some initial number, e.g. No = 50.

Assume that we have done k trials already and that we selected Nk. We do Nk simulation runs

and compute the estimations of mean and variance for these runs, i.e. yi, and ay;c. Then we check

if the answer for Nk simulation runs satisfies the query constraints. The formulae for the lower and

upper confidence limits for i are [MWS9O]:

lower confidence limit (LCL) = j) - Zq a g

upper confidence limit (UCL) = 5 + 2; crg

Therefore, the confidence limit itself is 22: a g , and it should be less than or equal t o pij (where p

is the error-of-estimation specified by the user). Combining these observations, we obtain the test

specifying if the answer for Nk simulation runs is within the query constraints:

If this condition holds, then we select Nk as the number of simulation runs. If this condition does

not hold, then we compute Nk+s using [MWS9O]:

If it turns out that Nk+s is too large, then we keep running simulations until we reach the

time limit specified as a default parameter by the user in the modelbase. In this case, we examine

the number of completed runs N'. If N' > Nk then Cassandra+ evaluates the query based on

N' simulation runs by estimating the mean and variance of the sample of N' runs; otherwise, it

returns the answer based on the Nk runs. In either case, the system returns the answer of the form

ij f d with confidence a , where d is the confidence interval for the normal distribution N(ij, ag) and

confidence coefficient a , and ij and a: are the mean and variance of the sample.

As an example of this process, assume that we do five simulation runs, No = 5, for the query

from Example 1 and we get the following answers (18, 22, 19, 25, 17) for these runs. The mean

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-44

value of this sample, ?jot is 20.2 and the variance, o:~, is 10.7. We then calculate the 95% confidence

interval for the parameter which in this case is 20.2 f 5.38. If the user wants the estimation error

of the answer t o be within 20% of the mean, then we have not satisfied that constraint and we

have t o increase the number of simulation runs Nl and continue the simulations. Substituting the

2 2 10.5 z 11 numbers into equation (2), we obtain Nl = (p ,)

Assume that we make 11 simulation runs and get the following answers (18, 19, 18, 20, 19,

18, 19, 17, 19, 20, 19). We again compute the confidence interval which in this case turns out

to be 18.72 f 1.48. This value is within the bounds that the user specified (20%). Therefore,

we terminate the simulation runs. This completes our description for the numeric case of answer

semantics.

If the answer-semantics parameter is non-numeric, i.e. either relational or tuple, then we pro-

ceed as follows. We first estimate probabilities for each possible answer. To do this, we proceed

as follows. We divide simulation runs in N batches comprised on n runs each. For each batch,

we run n simulations and compute the proportions of each distinct outcome. Then we determine

the total set of unique outcomes R1,. . . , R, as a union of distinct outcomes for all N individual

batches and determine the proportion p;j of outcome j i n batch i, for i = 1 , . . . , N and j = 1,. . . , m.

After that, we compute the mean p j and variance a: of the sample pl j, . . . , p ~ j (j = 1, . . . , m) and

select the first q largest means pi, where q is the Number-of-answers parameter specified in

the SimQL query (see Example 2). Ebr each of the selected outcomes, we test if it satisfies the

constraints specified in the query by using equation (I) , in which we substitute the mean pi and

the variance a:. If all of them satisfy this constraint, we terminate the process of query evaluation

and return the list of q largest pj's to the user along with the confidence intervals. If even one

of the constraints is not satisfied, we recompute the batch size N and repeat this process all over

again. The new batch size N' is determined as follows. For each of the largest selected means pi ,

j = 1,. . . , q, we compute the size of the next simulation batch Nj using equation (2) in which we

substitute the mean p j and the variance We set the size of the next batch N' to be equal to:

N' = max(Nj}
l_<j_<cr

This completes the description of the procedure of how we compute the batch size for the non-

numeric type of Answer-semantics parameter.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-44

3.5 I m p l e m e n t a t i o n of Cassandra+

The Cassandra+ system described in this paper was implemented in C under UNIX. We selected

Ingres [Ing89, St0861 as the database that stores simulation traces and SQL with timestamps as

the core query language for SimQL.

We store the modelbase as an Ingres database because the modelbase can be quite large and

because we want to store the models in a central location and want to provide uniform access to it.

The modelbase is stored in several tables (3 in the current implementation) because, as we pointed

out in Section 3.1, the data stored in it is unnormalized. The Cassandra+ system interacts with

the modelbase by using dynamic SQL [Ing89, EN901 since it is necessary to formulate SQL queries

against the modelbase from within Cassandra+ dynamically "on-the-fly."

The modelbase can store simulation models written in a n y simulation language, such as Mod-

sim [BDMRSO], Simscript [Con87], Siman [PSSSO], as long as their WRITE statements satisfy the

conventions described in Section 3.2. However, it is more difficult to switch from one core query

language to another (and hence from one DBMS to another) than to switch between two simu-

lation languages. f i r example, it is not possible to switch from Ingres to Oracle in the current

implement ation of Cassandra+ without rewriting (small) portions of its code for the following two

reasons. First of all, we have to use dynamic SQL in order to access the modelbase, and the imple-

mentation of dynamic SQL is system dependent. Also, the conversion routines from ASCII trace

files to the database format are also system dependent. For these reasons, we have to provide some

modifications to the Cassandras's code when we move from one DBMS to another in the current

version of Cassandra+. However, these modifications are relatively small and are quite "local" to

the code. Therefore, we believe that they can be easily automated in the future.

4 Comparison of QDS and SAGS Approaches

In Sections 2 and 3, we described a Query-Driven Simulation (QDS) System Cassandra+ and

presented its query language SimQL. It follows from this description that Query-Driven Simulations,

and Cassandra+ in particular, have the following advantages over traditional simulate-and-gather-

statistics (SAGS) approaches.

First, QDS approach provides a more declarative way of asking questions about outcomes

of simulations than the SAGS approach. The user formulates questions in a declarative general-

purpose query language that tells the QDS system what the user wants to know. If the user uses this

language he/she does not have to specify how the system has to obtain the answer. In particular,

Center for Digital Economy Research
Stem School of Business
IVork'ing Paper IS-93-44

the user does not have to know any simulation and statistical packages, or write any programs.

Second, QDS approach gives the user extra flexibility. The user can ask any query expressible

in the query language of the QDS system (e.g. SimQL for Cassandra+). This flexibility makes

end-users less dependent of the MIS department since they do not have to rely on the simulation

specialists when they want to ask an additional question not supported by the available information

system.

Third, QDS approach is more interactive than the traditional SAGS approach. The user of

the QDS system can ask queries "on-the-fly" as they arise without any help from the simulation

specialist.

Finally, QDS approach automatically provides statistical answers to the questions asked by

the user without any extra work on his/her part. Unlike the SAGS approach, in which the user

has to determine how many simulation runs are needed in order to obtain the answer within the

user-specified constraints, the QDS approach does all this work for the user.

However, the QDS approach has certain limitations in comparison to the traditional SAGS

approach. First of all, some of the questions expressible in the SAGS approach cannot be expressed

as QDS queries. To explain why this is the case, consider Cassandra+, SimQL as its query language,

and SQL as the core language for SimQL. It is well-known that SQL is not Turing-complete,

i.e. SQL queries cannot compute arbitrary recursive functions. For example, SQL queries cannot

compute transitive closure [AU79]. In contrast to this, the SAGS approach can compute an arbitrary

recursive function (including the transitive closure) since most of the simulation languages, such as

MODSIM [BDMRSO], SIMSCRIPT [Con87], GPSS [IBM70], are Turing-complete, Therefore, the

QDS approach has less expressive power than the SAGS approach in general.

However, this limitation of SQL and other relational query languages is well-known. It is

solved in practice by embedding SQL queries in programming languages, such as C, COBOL, and

ASSEMBLER. Therefore, we expect that the limited expressive power of the QDS approach will

be solved in the same way as it is solved in practice for SQL.

Another limitation of the QDS approach is that it requires the generation of large trace files.

In the worst case, the QDS system must trace every event occurring in the simulation model. In

contrast to this, the SAGS approach can simply compute summary statistics inside the simulation

model and thus generate no trace files at all. Furthermore, if the trace files are generated by the

SAGS approach, the model developer has a control over the events he or she wants to trace. This

means that only a small fraction of all the events may end up being recorded in the trace files in

the SAGS approach. Since recording events in the trace files can slow performance of QDS systems

Center for Digital Economy Research
Stem School of Business
Working Paper IS-93-44

in comparison t o SAGS systems, it is important to develop query optimization techniques for the

QDS approach. These techniques would allow recording only those events that are necessary for

answering the query. We will discuss these query optimization techniques in the next section.

5 Improving Performance of a QDS System

If a simulation model does not know what types of events the query requires to trace, then it

must record all the events occurring during the simulation process into the trace file(s); otherwise,

the QDS system may not have enough information in order to answer some of the queries. This

approach can involve a large overhead since recording all the events into the trace file(s) is quite

a time consuming operation. For example, assume that a simulation model contains 100 different

types of events, and the query refers only to 3 events. This means that an unoptimized query

processing strategy has to trace all 100 events instead of 3.

An alternative approach would be to determine for the QDS system what events the simulation

model should trace and pass this information t o the simulation model. In the context of the previous

example, this would mean that the simulation model would trace only 3 events relevant to the query.

However, this information passing can be done only if the simulation model is "ready" to accept this

information, i.e. if the model is written according to the following conventions. Each event in the

optimized simulation model has an event flag associated with it. Furthermore, each "WRITE event"

statement of the unoptimized program must be replaced with the conditional write statement "IF

event-flag is on THEN WRITE event" in the optimized program. In addition to this convention, an

optimized simulation program must accept a list of events that the query wants it to trace as one of

its arguments. Finally, each of the events passed to the simulation program sets its corresponding

event-flag 6'on" at the beginning of the program. If a simulation model follows these conventions

then it is "ready" for optimization.

To distinguish models that are "ready7' for the optimization from the models that are not

"ready," the modelbase has an optimization flag as one of the fields in the record describing the

model. If the flag is "on," then the model is ready for the optimization; otherwise, it is not.

The query processing strategy for the optimized simulation model (i.e. with the optimization

flag "on") works as follows. At first, the query determines which events the simulation model should

trace. This depends on whether the query is event- or predicate-based. If the query is event-based,

the QDS system parses the core query and determines all the events referenced in it. If the query

is predicate-based, the QDS system parses the query and determines all the predicates referenced

in it. Then it accesses the modelbase and, for each predicate, determines the events that are used

Center for Digital Economy Research
Stem School of Business
IVork'ing Paper IS-93-44

to compute the predicate. The union of all the events taken over all the predicates determines the

set of events that the simulation model should trace. After the QDS system determines the set

of events needed by the query, this information is passed to the simulation model as one of the

parameters. After that, the optimized simulation model will trace only the events that were passed

to it by the query.

The optimization scheme described in this section imposes minimal constraints on the model

developer. The model developer has to include events passed by the query as one of the arguments to

the program, add a piece of code that sets the event flags "on" for the events passed to the program,

and add conditional WRITE statements to trace the events. These changes that an optimized

simulation model requires are minimal and can either be checked by some model validation tool or

automatically inserted into unoptimized model by a pre-processing software.

The scheme just described helps the QDS system trace only the events referenced in the query.

However, we can reduce the number of events traced by the system even further if we trace only

the instances of events necessary to answer the query. For example, consider the query "in which

machine part PJ-374 will be 5 hours from now?" In order to answer this query, we have just to run

simulations for 5 hours without tracing any events at all and at the end see in which machine part

PJ-374 is located a t that time.

To solve this kind of optimization problem we have to do three things:

1. Parse the query and determine under what conditions each event pertinent to the query must

be recorded in the trace file. These conditions should be written as programs in the simulation

language of the model, and we will call them optimization routines.

2. The event flags in the previous optimization scheme must be replaced with calls to the cor-

responding optimization routines described in Part 1.

3. The optimization routines generated by the query optimization module must be compiled

and dynamically linked to the simulation program while the query is being processed by the

QDS system.

As we can see from this description, this optimization problem is a difficult one. It requires

parsing the query and determination of preconditions for the events the query needs, which is a

difficult problem in itself. Furthermore, it requires the implementation of the complex dynamic

linking scheme described above. Therefore, we do not support this type of optimization in the

current version of Cassandraf system, leaving it as a topic of future research.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-44

Note that the query optimization techniques described in this section improve the performance

of the system but also have certain costs associated with them. First. the simulation models must

comply with the standards described in this section that model developers must follow to make

the model suitable for optimization. Second, it becomes more difficult to switch from one core

query language t o another because queries have to be parsed now, and each language needs its own

parser.

6 Running a QDS System

In this section we address the question of what it takes for a model developer to build a new

simulation model and for the model administrator to install it into the modelbase. In particular,

we describe what extra steps are needed over and above the traditional SAGS approach to develop

a model that can be used in a QDS system.

When a model developer builds a simulation model for a QDS system he or she should follow

the following guidelines. First of all, an unoptimized simulation model must trace all the events in

that model. Furthermore, events must have a format described in Section 3.2. In addition, if the

user intends t o optimize queries on that model then the model must follow the rules described in

Section 5.

Secondly, the simulation program must have a set of arguments that are used by the QDS

system to pass simulation parameters from a query to the simulation program. These arguments

must include (i) the number of simulation runs that the program should run, (ii) for how long t o

run them, (iii) the arguments of the model itself (e.g. the number of tellers, average service times,

etc. in a banking model), (iv) random seed, (v) the List of events to be traced by the optimized

model. We need to pass the random seed to the simulation model as an external parameter so that

we would not get the same results each time we run the model. The random seed is generated a t

random by the initialization module of the QDS system that prepares the simulation model for the

execution.

Thirdly, if the model is used to do real-time simulations, then the model developer must supply

the initialization routines. These routines set the initial state of the simulation model to the current

state of the system that is obtained by accessing the historic data about the system stored in the

modelbase and retrieving the data that is currently valid, i.e. that has the timestamp now.

Once a simulation model is developed, it is installed into a modelbase by the model administra-

tor. As part of this installation procedure, the model administrator must supply all the necessary

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-44

Figure 8: Query-Driven Modeling Lifecycle

Model Model Changes
Development '*

L J

9
I \

information about the model needed by the modelbase, such as the name of the model, the language

in which it is written, the list of events used in the model, the list of predicates that the user can

query (see Section 3.1 for the detailed description of these parameters). As part of this process, the

model administrator must provide a set of routines converting events into predicates, as described

in Section 3.1.

Model
~dministration-e

7 Query-Driven Modeling Lifecycle

Administrative Changes

In the paper, we described several activities required to build a working QDS system, such as

development of simulation models by the model developer, installation of these models into the

modelbase, and querying simulation outcomes of the models in the modelbase by the end-user. I t

turns out that these activities are not independent of each other but are related in the way shown

in Figure 8.

As Figure 8 shows, the model developer initially designs a simulation model and delivers it

to the model administrator who installs the model into the modelbase. Part of this installation

Center for Digital Economy Research
Stem School of Business
Working Paper IS-93-44

Model
Querying

i I No

Is No
User Changes Yes

to the
Model? a

procedure is the specification of all the information that the modelbase requires to know about

the newly installed model, such as the list of events used in the model, the name of the object

module containing the model, and the list of the default parameters. After the model administrator

installs the model in the modelbase, end-users can start using it by issuing queries about simulation

outcomes expressed in SimQL.

At this point, either the user is satisfied with the model and keeps using it, or he/she might

experience some problems. There are two types of problems the user can run into. First, the

information, as specified in the modelbase, does not satisfy user's needs. For example, it may turn

out that the user wants to ask a query about a predicate that does not appear in the modelbase

but can be easily computed from the events that the simulation model traces. As another example,

the user may want to run a real-time query on a model, but discovers that the QDS system would

not let him/her do this because the online-vs-offline ftag for the model is set off in the modelbase.

These two problems can be solved by the model administrator who makes appropriate changes

to the modelbase. In particular, he or she writes a conversion routine for the new predicate and

installs this predicate and the routine into the modelbase. To solve the problem in the second

example, the administrator supplies the initialization routines for the simulation model and sets

the online-vs-offline flag in the simulation model "on". Note that the simulation model itself is not

changed for this type of a problem.

The second problem that the user can encounter arises when he or she asks a query that

the simulation model cannot handle because it does not have enough information to answer the

query. For example, the user may want to know how many parts will be painted in red color within

the next 10 hours, and the simulation model does not keep track of the colors of different parts

and the painting information. In this case, the model developer must adjust the simulation model

accordingly.

In both cases, Query-Driven Simulations provide a feedback loop in the process of model devel-

opment: the models are modified based on the feedback coming from the user after the user asks

various questions about these models. We call the process of development, installation, usage, and

model adjustment based on the users' feedback a Query-Driven Modeling Lifecycle. The model

development process can go through several iterations before it converges to a stable simulation

model satisfying end-user's needs.

Center for Digital Economy Research
S t em School o f Business
IVorking Paper IS-93-44

8 Related Work

Query languages in the context of simulations were studied before. In [Len93], a database of

simulation models, called a modelbase, was constructed based on the structured modeling approach

[Geo87]. As part of the structured modeling approach, [Len931 uses the query language defined

for this approach by Geoffrion[Geo87]. Although the system supports queries, these queries are

used in a totally different context than SimQL queries: they are used for asking questions about

the models themselves (e.g. which models stored in the modelbase are manufacturing models), not

about simulation traces produced by running the models, as is the case with SimQL.

In [MW89], Miller and Weyrich developed the SIMODULA system that has its own SQL-like

query language for asking questions about simulations (with object-oriented features added to it).

Each model has a relation of input parameters and outcomes of previously executed simulations

associated with that model. For example, a banking model may have a BankScenario relation

associated with it that has input parameters, such as number of tellers, mean interarrival rate,

mean service time, and the output parameters, such as throughput and the service time, as its

attributes. If the user wants to ask a question about throughput and average waiting time for the

banking model with input parameters mean interarrival rate being 4.0, mean service time being

6.0 and the number of tellers equal to 2, then SIMODULA checks in the BankScenario relation

if this model has been run before. If it was, it retrieves the answer from relation BankScenario

(values of attributes Throughput and AverageWaitingTime). Otherwise, SIMODULA launches the

simulation with the input parameters retrieved from the query and the rest of them set to defaults.

In this paper we present a more extensive approach to Query-Driven Simulations by allowing

SimQL queries to drive simulations and not just launch them as is done in [MW89]. We also allow

the user to query simulation traces in an ad-hoc manner instead of letting him/her ask a fixed set

of questions on summary statistics about a single simulation run. Furthermore, we express answers

in statistical terms that require more than a single simulation run to obtain the answer. Finally, we

allow a loose coupling between any database query language and any simulation language as long

as trace files generated by simulation programs conform to the standard described in Section 3.2.

In [Tuz92, Tuz931, the idea of asking queries on simulation traces was proposed, and a SimTL

language was presented. SimTL consists of a simulation and a querying components. The simu-

lation component is based on a temporal logic programming language [AM89], and the querying

component is based on temporal logic [MP92]. Thus queries about simulation outcomes expressed

in temporal logic are asked about simulations generated by temporal logic programs. This means

that SimTL is a tightly coupled simulation and querying system, in which both components depend

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-44

on the formalism of temporal logic.

In this paper, we extend the work of [Tuz92, Tuz931 by integrating an arbitrary temporal query

language with an arbitrary simulation language. Therefore, unlike SimTL, where the interface

between querying and simulating components is well-understood and is based on temporal logic,

we have t o develop a proper interface between these components in order to achieve independence

between the query and simulation languages. Also, unlike the work in [Tuz92, Tuz931, we provide

answers t o SimQL queries in statistical terms.

9 Conclusions

In this paper, we described a Query-Driven Simulation system Cassandra+ that allows end-users

to ask various questions about outcomes of simulations. We described the query language SimQL,

explained how SimQL queries are executed, and presented some query optimization strategies. We

also described how model development, installation, usage, and model adjustment are integrated

into a Query-Driven Modeling Lifecycle.

One of the important features of Cassandraf is that it can support any temporal relational

query language asked about simulation models written in any simulation language as long as trace

files generated by these models conform to a certain standard.

Query-driven simulations provide more declarative, flexible, and interactive ways of asking

questions about simulation out comes than the traditional simulate-and-gather-st atistics approaches.

They allow end-users to ask various questions in a declarative query language in an ad-hoc manner

"on the Ay," just as relational query languages allow the users to ask questions about the data

stored in databases.

As a future work, we want to add Query-Driven Animation capabilities to Cassandraf. Tradi-

tionally, animations are done for the entire system being simulated. In contrast to this, we plan to

do animations only of the parts of the system pertaining to the query being asked. For example, if

the user wants to know how many parts will go through the manufacturing cell C3 within the next

shift, it may be sufficient for him or her just to see only the parts arriving a t and departing from

cell C3. The challenging question here is to determine for a given query what parts of the system

should be animated.

References

[AM891 M. Abadi and 2. Manna. Temporal Logic Programming. Symbolic Computation,

Center for Digital Economy Research
Stem School of Business
Working Paper IS-93-44

[AU79] A. Aho and J. Ullman. Optimal partial match retrieval when fields are independently

specified. A C M Transactions O n Database Systems, 4(2):168-179,1979.

[BDMRSO] R. Belanger, B. Donovan, K. Morse, and D. Rockower. MODSIM I1 Reference Manual.

CACI, 1990.

[Bla92] Blanning, R. and Whinston, A. and Ai-Chang, M. and Dhar, V. and Holsapple, C.

and Jarke, M. and Kimbrough, S. and Lerch, J. and Prietula, M. Model management

systems. In Edward A. Stohr and Benn R. Konsynski, editors, Information Systems

and Decision Processes. IEEE Computer Society Press, 1992.

[BT93a] P. Balasubramanian and A. Tuzhilin. Cassandraf: A System for doing Query Driven

Simulation. Working Paper IS-93-40, Stern School of Business, NYU, 1993.

[BT93b] P. Balasubramanian and A. Tuzhilin. Using Query-Driven Simulations for Querying

Outcomes of Business Processes. Working Paper IS-93-38, Stern School of Business,

NYU, 1993.

[Con871 Consolidated Analysis Centers, Inc. UNIX SIMSCRIPT 11.5 User's Manual, 1987.

[Data91 C.J. Date. A Guide to the SQL Standard. Addison-Wesley, 1st edition, 1989.

[EN901 R. Elmasri and S. Navate. Fundamental of Database Systems. The Ben-

jamin/Cummings Publishing Company, 2nd edition, 1990.

[FDJG+92] K. Fordyce, R. Dunki-Jacobs, B. Gerard, R. Sell, and G. Sullivan. Logistics Man-

agement System (LMS): An Advanced Decision Support System for Dispatch or Short

Interval Scheduling. Production and Operations Management, 1(1):70-86, Winter 1992.

[Geo87] A.M. Geoffrion. An Introduction to Structured Modeling. Management Science,

33(5):547-588, May 1987.

[IBM70] IBM. General Purpose Simulation System/360 User's Manual, 1970.

[Ing89] Ingres. INGRES/OpenSQL Reference Manual for the UNIX and V?MS Operating Sys-

tem. Relational Technology Inc., 1989.

[Int85] IntelliCorp, Mountain View, Calif. The S I M K I T System: Knowledge-Based Simulation

Tools i n KEE, 1985.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-44

[Len931 M.L. Lenard. A Prototype Implementation of a Model Management System for

Discrete-Event Simulation Models. In Proceedings of the 1993 Winter Simulation Con-

ference, pages 33-39, 1993.

[MP92] 2. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.

Springer-Verlag, 1992.

[MW89] J.A. Miller and O.R. Weyrich. Query Driven Simulation Using SIMODULA. In Pro-

ceedings of the 22nd Annual Simulation Symposium, 1989.

[MWS9O] W. Mendenhall, D.D. Wackerly, and R.L. Scheaffer. Mathematical Statistics with Ap-

plications. PWS-KENT, 4th edition, 1990.

[Ora87] Oracle Corporation. ORACLE Overview and Introduction to SQL ORACLE Part No.

3801 User's Manual, 1987.

[PSS9O] C.D. Pegden, R.E. Shannon, and P.P. Sadowski. Introduction to simulation using

SIMAN. McGraw-Hill, New York, 1990.

[SAS89] SAS Institute, Raleigh, NC. S A S User's Guide, 1989.

[Sno87] R. Snodgrass. The temporal query language TQuel. ACM Transactions On Database

Systems, 12(2):247-298, 1987.

[St0861 M. Stonebarker. The INGRES Papers: Anatomy of a Relational Database System.

Addison Wesley Publishing Company, Inc., 1986.

[TCGS93] A. Tansel, J . Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass. Temporal

Databases. Benjamin/Cummings, 1993.

[Tuz92] A.Tuzhilin. SimTL:ASimulationLanguageBasedonTemporalLogic. TRANSAC-

TIONS of The Society for Computer Simulation, 9(2):086-099,1992.

[Tuz93] A. Tuzhilin. Applications of temporal databases to knowledge-based simulations. In

A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, editors,

Temporal Databases. Benjamin Cummings, 1993.

[Ull88] J Ullman. Principles of Database and Knowledge-Base Systems (Vol. I). Computer

Science Press, 1st edition, 1988.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-44

