
TRACKING THE 'LIFE CYCLE
TRAJECTORY': METRICS AND MEASURES

FOR CONTROLLING PRODUCTIVITY
OF COMPUTER AIDED SOFTWARE

ENGINEERING (CASE) DEVELOPMENT

Rajiv D. Banker
Carlson School of Business

University of Minnesota
Minneapolis, Minnesota 55455

Robert J. KaufFman
Leonard N. Stern School of Business

New York University
New York, New York 10003

and

Rachna Kurnar
Leonard N. Stern School of Business

New York University
New York, New York 10003

January, 1992

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Working Paper Series

STERN IS-92-3

Forthcoming in The Randbook of Sofiware Productivity, Keyes, J. (ed.), McGraw-Hill.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

TRACKING THE 'LIFE CYCLE TRAJECTORYg:

METRICS AND MEASURES FOR CONTROLLING PRODUCTIVITY

OF COMPUTER AIDED SOFTWARE ENGINEERING (CASE) DEVELOPMENT

January 20, 1992

Raj iv D. Banker
Carlson School of Business
University of Minnesota

Minneapolis, Minnesota 55455

Robert J. Kauffman
Stern School of Business

New York University
New York, New York 10003

Rachna Kumar
Doctoral Program in Information Sy

Stern School of Business
New York University

New York, New York 10003

~orthcoming in The Handbook of Software Productivity, Keyes, J.
(ed.), McGraw-Hill.

We wish to acknowledge Mark Baric, Gene Bedell, Tom Lewis and
Vivek Wadhwa for the access they provided us to data on software
development projects and managerst time throughout our field
study of CASE development at the First Boston Corporation and
SEER Technologies. Another version of this paper was presented
at a conference entitled "Integrating Information Technology and
~nalysis: How to Deliver Systems Your Clients Will Love,"
sponsored by the College on the Practice of Management Science of
The Institute of Management Science (TIMS/CPMS), and the
Operations Research Society of ~merica (ORSA). All errors in
this paper are the responsibility of the authors.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

BIOGRAPHIES OF THE AUTHORS

RAJIV D. BANKER holds the Arthur Andersen Chair in Accounting and
Information Systems at the Carlson School of Management, University
of Minnesota. He received a doctorate from Harvard Business
School, specializing in planning and control systems. He currently
serves on the editorial boards of six journals and as co-editor of
the Journal of Productivity Analysis. He has published over 40
refereed articles. His research interests include strategic cost
management, measuringthe business value of informationtechnology,
assessing software development and maintenance productivity and the
economics of information.

ROBERT J. KAUFFMAN is an Assistant Professor at the Stern School
of Business at New York University, where he has taught since 1988.
He completed his masters degree in international affairs at Cornell
university, and was later employed as an international lending and
strategic planning officer at a large money center bank in New York
City. He received a doctorate in Information Systems from the
Graduate School of Industrial Administration, Carnegie Mellon
University in 1988. His current program of research involves
developing new methodologies for measuring the business value of a
broad spectrum of information technologies, using techniques from
management science and economics. He has published refereed
articles in MIS Quarterly, Journal of Management Information
Systems, Information and Software Technologies, and elsewhere.

RACHNA KUMAR is currently in the Doctoral Program in Information
Systems at the Stern School of Business, New York University. She
received the Master of Business Administration degree from the
Indian Institute of Management, Ahmedabad, in 1983. Her current
research interests focus on productivity measurement and cost
estimation for computer aided software engineering environments
(CASE). Her dissertation work involves a field study of the
performance of object-based productivity metrics in the various
CASE life cycle phases.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

TRACKING THE 'LIFE CYCLE TRAJECTORY':

METRICS AND MEASURES FOR CONTROLLING PRODUCTIVITY

OF COMPUTER AIDED SOFTWARE ENGINEERING (CASE) DEVELOPMENT

ABSTRACT

This paper proposes a new vision for the measurement and
management of development productivity related to computer aided
software engineering (CASE) technology. We propose that
productivity be monitored and controlled in each phase of
software development life cycle, a measurement approach we have
termed life cycle trajectory measurement. Recent advances in
CASE technology that make low cost automated measurement possible
have made it feasible to collect life cycle trajectory measures.
We suggest that current approaches for productivity management
involve the use of static metrics that are available only at the
beginning and end of the project. Yet the depth of the insights
needed to make proactive adjustments in the software development
process requires monitoring the range of activities across the
entire software development life cycle. This can only be
accomplished with metrics that can measure performance parameters
in each phase of the life cycle. We develop metrics that have
the ability to measure and estimate software outputs from each
intermediate phase of the development life cycle. These metrics
are based on a count of the objects and modules that are used as
building blocks for application development in repository object-
based CASE environments. The viability of such object-based
metrics for life cycle trajectory measurement has been
empirically tested for the software construction phase using
project data generated in Integrated CASE development
environments.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

1. SOFTWARE PRODUCTIVITY AND THE CASE OPPORTUNITY

Computer aided software engineering (CASE) tools are believed to

represent an industrial revolution in the market for software

development. They have changed the dynamics of software

development from essentially a manual, craft work-like process to

a more automated, rigorous and standardized engineering

discipline. In this paper, we examine new approaches and

opportunities presented by this changed development environment

for managing software development performance. We will argue
that CASE has the potential to improve control of software

development productivity by allowing measurement of software

outputs across the entire development life cycle.

1.1. The Quest For Improving Software Productivity

The sheer size of corporate investments in software indicates the

extent of the hopes that senior managers place in wresting

business value from it03y3. For example, industry specialists

estimated that by 1990 the total investment in existing,

developed and purchased software was in the neighborhood of 13%

of the United Statesf gross national product, a staggering $527

billionGQ. Other projections reveal an annual increase in

software development budgets at the rate of 9% to 12%, exceeding

$150 billion per year by 1990~~~ Is). However, software development

is regarded as a major bottleneck in exploiting the potential of

 IT"^). Substantial backlogs of software development exist in

organizations of all sizes and in many different industries, and

they are reported to be increasing at a rapid One

study even reported the existence of "hidden backlogs,"

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

consisting of user needs that were not formally requested or

commissioned; these hidden backlogs were estimated at 535% of

known backlogso. Reports of software projects months behind

schedule and far over budget are also quite common. As a result,

senior management perceives that it is critical to find ways to

better control the production of corporate software assets.

A common intermediate goal for senior software development

managers is to improve the productivity of applications

development and the quality of applications execution. The low

productivity of software development operations is attributable

to a number of fa~tors('~~~~~~~~). Table 1 lists the major ones among

these.

INSERT TABLE 1 ABOUT HERE
...............................

Improvement of productivity can be achieved by streamlining the

life cycle of software creation through the introduction of new

development techniques. As a result, in recent years we have

witnessed the introduction and adoption of many new software

development tools and techniques. These include: structured

programming; rapid prototyping and protocycling; fourth

generation languages (4 G L s) ; object-oriented and graphical

analysis, design and development techniques; and data-oriented

methodologies.

The most recent addition to this list is integrated computer

aided software engineering (CASE) tools. Input Inc., a

California-based research firm, has indicated that about 6% of

annual software expenditures by American firms in 1989 were

attributable to application development tools in general. In

terms of dollars, this puts the total expenditure in the range of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

$6 billion or more, and spending on such off-the-shelf

application development tools is conservatively estimated to be

growing at a 19% annual ratew).

1.2. The Promise Of CASE Productivity

CASE is often touted as the most promising of all the new tools,

and certainly it is the fastest growing segment. Two different
surveys have indicated that between 55% to 75% of organizations

have adopted CASE tools for various development projects

including pilot projects, departmental projects, and corporate-

wide And, analysts predict that the CASE

market will grow at 35% to 45% per year, to something on the
order of $1 billion in the early 1990s0').

CASE technologies and the methodologies that they promote aim to

transform the process of software development. Paralleling the

structure of production in other industries such as automobile

manufacturing, home construction, and even computer hardware

manufacturing, CASE is enabling a move of the software enterprise

from an assembly industry to a process industry. This means that

each product is no longer custom built, one at a time. Instead,

production occurs through the use of pre-fabricated components

and reusable templates, plans and procedureso5). CASE advocates

and firms investing heavily in CASE argue that software

automation and the "modular softwarew approach is the key to

increasing productivity, controlling quality, and introducing

predictability into the software development process.

An analysis of the structural and functional dimensions of CASE

technology helps to identify the major characteristics of this

methodology that contribute towards potential improvements in

development productivity. These have very broadly been

classified by various authors01730?39) as the standardization of the

software development process, and the automation of software

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

development activities.

Standardization of software development is at the heart of the

"modular approachtt to software creation. It enables reuse of

existing software components, which saves the effort in writing,

testing, and implementing portions of the software currently

being de~eloped('~,*~). Standardization can lead to reduced

development time as well as an improved software quality.

Automation addresses tedious or routine manual tasks such as

verification, validation and consistency checking in early

development phases, or error checking in code. This not only

reduces the labor required for manually performing these tasks,

it also ensures that these tasks are satisfactorily and uniformly

performed. It also supports an increase in the quality of

delivered software.

Thus, standardization and automation can contribute significantly

towards development productivity by impacting the efficiency and

effectiveness of software creation. Efficiency increases

productivity directly by increasing software output per unit

effort input by software developers when a CASE methodology is

used to develop software. Effectiveness impacts productivity

indirectly by ensuring that CASE-developed software accomplishes

the business goals of the organization and therefore the software

output is relevant and has maximal value. The efficiency and

effectiveness dimensions of CASE development are described in

Table 2 below.
...............................

INSERT TABLE 2 ABOUT HERE
...............................

A natural question would be the verification of the promised

productivity benefits of CASE. Although reports on CASE claim a

myriad of benefits ranging from 300% productivity increases to

'zero-maintenancet program code, only a few studies report

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

rigorously substantiated productivity benef itse6p33*45). ~ o s t
studies report on successful (or confessional) implementations of

CASE methods or on surveys compiling usage proportions and

profiles of CASE tools("* 307 31) . Banker and ~ a u f have

presented some of the first empirical results to substantiate

large productivity gains from using CASE development techniques,

especially the leverage created when a firm implements a software

reusability strategy.

This paper examines how management reporting needs to be recast

to support the goal of controlling software productivity as much

as possible with the tools available in the new environment of

CASE. It develops a new vision for the management of the

software development life cycle in the presence of integrated

CASE technologies via automated software metrics and measures.

We will make the case that tracking the life cycle trajectory of

software projects, made possible by automated analysis of the

software development process, will help management to control

productivity in a way that was not possible before CASE.

2. CONTROLLING CASE DEVELOPMENT PRODUCTIVITY

2.1. A New Vocabulary for Tracking Software Development
Performance

We propose a framework to measure, control and influence software

development performance that builds upon the distinguishing

characteristics of CASE environments. We find that existing

approaches to the estimation of software development productivity

and the measurement of subsequent development performance only

provide single point measures -- when a project begins or when it
has reached completion. Such static measures for estimation and

efficiency analysis do not provide sufficiently detailed or

relevant information for proactively managing the software

development process. By contrast, dynamic measures for software

development performance can help management to monitor and

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

control performance through the entire software development life

cycle. We refer to this concept of dynamically measuring and

estimating performance in each phase of the development life

cycle as I f t r ack inq t h e l i f e cycle t r a j e c t o r y f f of a software

project. The life cycle trajectory approach monitors performance

parameters of interest in each life cycle phase and visually

depicts the progress of the project along the measured

performance dimensions.

Static, single-point software development metrics are snapshots

of the results of software development production performance.

Dynamic metrics capture the development process on video tape,

enabling management to play the action back at will as it occurs,

to better understand it, and then to control and improve overall

project performance. ~oehm(') has equated the problem of

accurately estimating development costs for a software project

with the problem an author has in estimating the number of pages

a book will have when the plot has just been sketched out.

Static metrics would only support the comparison of the initial

estimate of the length with what the author subsequently writes.

But, dynamic metrics are meant to describe the process of

producing the book, as the author adjusts the plot, resolves

problems in the relationships among the characters, or deals with

a crucial mental block which hampers the writing. Figure 1

contrasts the richness of the information provided from dynamic

versus static measures.

INSERT FIGURE 1 ABOUT HERE

The figure depicts the trajectories of labor consumed by two

software projects, A and B. Initially, both are estimated to

consume approximately the same level of resources during the life

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

cycle. Suppose, however, that management's estimates are

inaccurate, to an equal extent for both projects. In this

situation, we would observe two similar cost estimates and also

two similar variances between the estimated and actual costs.

Such static metrics might suggest that management take the same

kind of action to improve "similarn projects in the future. But

note that the labor consumption trajectory suggests that the

software development processes occuring in each project were

quite different. Let us assume that the area under the phased

labor consumption curves and the size of the resulting software

are the same for both projects. Project B required relatively

more effort during technical analysis and functional design,

while project A consumed more labor during the construction

phase.

Similar sketches for the life cycle trajectory could be made for

other performance measures such as productivity, defects, the

development team's expertise profile, and so on. In CASE

environments, tracking the life cycle trajectory of 'software

reusef is another dimension which offers a diagnostic performance

sketch. The point is that utilizing such full trajectory

information makes it more likely that managers will ask the right

questions. For example: Were the functional design problems

experienced due to the qualities of the resulting application or

the analysis and design staff? Was the skill mix or experience

level of the staff of Project B unsuited to the development

requirements of the project? Managers can ask more general

questions as well. For example: How much reuse occurs in

software development, and what is the extent of its leverage on

productivity? Does the skill mix or the experience level of the

staff assigned to a project influence the trajectory of its-labor

consumption or productivity?

However, such life cycle trajectory metrics only become feasible

in the CASE environment because the phase activities and phase

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

boundaries are better defined and more rigidly enforced than in

the pre-CASE era. In keeping with the automated character of
CASE development, measurement mechanisms can also be built into

the CASE toolset enabling management to carry out continuous, low

cost monitoring.

2.2. Automating Life Cycle Trajectory Measurement

In effect, we are advocating the collection of finer and more

"perfect information" in the context of software development cost

control, but only to the extent that it is relevant. The

collection of more information in a decision setting only can be

justified after a careful consideration of the costs and benefits

of that information. Traditional software development

environments were unable to support the delivery of such

information as the life cycle progressed without forcing a

project manager to incur unacceptably high costs. But CASE

changes this cost-benefit relationship.

The Benefits Of Measurement: The value of information

describing the software development life cycle to the project

manager are a function of the actions that can be taken based on

the information, and the consequences that the actions can

produce(14). First, measures that are collected should be able to

resolve decision options. Dynamic life cycle metrics enable

actions that influence subsequent software development activities

in a manner illustrated in the previous section. Second, there

is not much value in collecting measures with accurate up-to-the-

minute detail if the software operations cannot (or need not) be

controlled to that level of fineness. This is likely to be the

case in the early phases of development, when order of magnitude

estimates of labor may suffice. Figure 2 depicts the high -

variability and unpredictability of project costs when

estimations are made in the earlier phases.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

,
INSERT FIGURE 2 ABOUT HERE

Efficient control measures in these phases could be rough, first

approximations because they cannot resolve very finely the

management actions vis a vis cost control. In the later phases,

more accurate, refined measures of the costs and cost drivers

will better support decision making for cost control.

The Costs Of Measurement: The other issue in committing to

trajectory measures is an acceptable cost to implement them.

Considerations regarding the decision value of the information

affect the nature and design of suitable metrics. Clearly, the

cost of measuring should not exceed its decision value, or else

it will reduce management's motivation to measure. Johnson and

~aplan(~~) suggest that the reduction in the costs of information

collection and processing no longer justifies highly aggregated,

low-detail process information. They comment:

n . . . t h a t managers [were] not inclined t o compile
[disaggregated and] accurate data r e f l e c t s t h e i r judgment on
the c o s t s and b e n e f i t s and f e a s i b i l i t y o f such information,
no t a l o s t sense o f what information i s relevant t o
[operational] management decisions" (pp. 1 4 4)

This suggests that managers might have been convinced of the

value of measuring across the life cycle, but the cost of such

measurement would have deterred them. The cost of collecting

data and providing prompt reports for each life cycle phase of

software development was too high in the manual programming era

to permit the real time trajectory tracking we are now

advocating.

But, today's CASE development environments make it possible to

automate the measurement and collection of software life cycle

trajectory metrics. The reduced cost of automated measures no

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

longer requires managers to contend with irrelevant, aggregate
measures on complex and critical software development processes.

The challenge, therefore, is to develop dynamic life cycle

performance measures for software development which will be

amenable to automation and repeated collection at a minimal cost.

Only automated measures and metrics for tracking the l i f e cycle

t r a j e c t o r i e s of CASE projects provide ongoing control information

such that their decision value outweighs the costs.

In fact, product development in this area is underway for a

number of CASE development environments, including Texas

Instrumentts IEF~'), Andersen Consultingts ~oundation~~), and Seer

Technologies' High Productivity Systems CASE tools(4). These

firms are undertaking the construction of automated metrics

facilities at a one time-cost, to defray the cost of repetitive

measurements to be made in the future.

2.3, Control Framework For Life Cycle Trajectory Measures

Software development productivity is defined as the ratio of the

size of software output to the costs required to produce it.

SOFTWARE SIZE OUTPUT
PRoDUmVrTY= Drn'LOPMENT EFFORT INPUT

Since the size of software output from the development process is

an external specification as defined by the project description,

it is not regarded as controllable. Thus most approaches to

controlling productivity focus on ways and methods to control the

cost of inputs into the development process, that is, development

effort in the software context.

Effective cost control systems should deliver three basic

capabilities to software development management(41):

[I] Measurement -- The ability to unambiguously and consistently
measure costs associated with identifiable units of work,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

[2] ~stimation -- The ability to accurately estimate and
forecast cost measures.

[3] Variance ~nalvsis -- The ability to isolate variances
between estimated and actual cost measures, enabling
corrective measures to be taken to reduce the discovered
variances.

We next examine these components more closely, as each relates to

our proposal for life cycle trajectory metrics.

Measuring the costs associated with the work of software

development should take into account all inputs into the software

production process. Costs arise from a number of sources, such

as development labor, hardware resources, business transactions,

and so on. However, development labor is by far the largest,

most significant and most variable cost componentG1). Therefore,

the measure for the cost of development usually considers only

labor inputs and is in terms of the number of person-days or

person-months logged on the software project by the development

team over the entire life span of the project.

The second requirement, the ability to accurately estimate costs,

is required because managers gauge how well an activity is being

performed by comparing actuals against estimated performance.

Whatever its sophistication, a specific software development

performance measurement system cannot be effective in controlling

the process unless it incorporates a set of standards which

managers can agree upon and use as anchors on which to base their

performance expectations. The limited ability of software

managers to estimate the time required and costs of development

has long been a major shortcoming, and was first brought to the

attention of the systems development community by Brooks, in his

essay The Mythical Man ~on th ('@. Even experts tend to

underestimate software project development times, and in spite of

this awareness projects continue to be behind schedule and

budget. Sometimes irrational political perspectives have been

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

found to influence the cost estimation process and meaningful

managerial actions for improving estimation can be impliedG8).

Advances in more formal approaches to measuring software size

have centered on empirical models that predict development time

based on historical relationships between software size and

development labor. Models, such as COCOMO, ESTIMACS and SLIM,

exemplify these formal approaches(26).

The third requirement; the ability to isolate variances between

estimated and actual cost measures is a diagnostic capability

which answers an important question: "What is the cause for the

difference between estimates and actuals?" Providing a

satisfactory answer requires an understanding of cost drivers --
those development attributes that impact and mediate the

conversion of development labor into software product. In

software development, as in most production processes, the size

of the software output is the most important cost driver. But

attributes of the development process have also been found to

impact development l a b ~ r ~ ~ ~ ~) . These attributes can be classified

into program attributes (e.g., reliability requirements),

environment attributes (e.g., main memory constraints), personnel

attributes (e.g., average experience of project team), and

project attributes (e.g., type of development tool used).

DEVELOPMENT-EFFORT- INPUT = f (S0E'l.W-E-SIZE-OUTPUT, OTHER-COST-DRIVERS)

In software development, the impact of project development

attributes on the labor effort required for delivering the system

is not a simple relationship. The impact depends on both the

life cycle phase of the software project as well as the value of

other attribute^(^.""). Once managers are able to diagnose the

causes for the deviation in performance, they should be able to

understand what actions are appropriate or necessary to influence

the factors causing the deviation. This ability to influence

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

cost drivers, like isolating the causes of variances, is again

dependent on an understanding of the nature and effect of the

cost drivers. For example, applications with the project

attribute high reliability have been found to be adversely

affected in terms of development time in the functional design

phase, but to a lesser extent than in the coding phase.

Similarly, if the personnel attribute for a project is high

experience for the development team, reliability considerations

would not impact development time as much as if the attribute

were low experience.

So, we see that the cost drivers are phase-dependent and also may
exhibit joint effects. This is summarised in the expression

below.

DEVELOPMENT-EFFORT- INPUT, = fp (SOFTWARE-SIZE-OUTPUTP, OTXER-COST-DRIVERS,)

This considerably complicates the isolation and correction of

variances, and meanwhile places a premium on obtaining better and

more detailed diagnostic information akin to that advocated in

our life cycle trajectory measurement proposal.

3. LIFE CYCLE TRAJECTORY APPROACHES FOR CASE PRODUCTIVITY

In order to implement a dynamic productivity control system

incorporating trajectory measures, we need to identify sound

bases for designing metrics which measure DEVELOPMENT-LABOR-

INPUT, SOFTWARE-SIZE-OUTPUT and OTHER-CASE-COST-DRIVERS in each

development phase.

3.1 Identifying Measures

DEVELOPMENT-EFFORT-INPUT: These measures for each life

cycle phase can be obtained from existing measurement approaches.

Existing labor tracking systems generally account for labor hours

over the entire life cycle. These labor hours can be summed at

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

the end of each phase. Linking labor tracking systems to

automated software development performance analysis facilities

with the proposed trajectory metrics would also help to motivate

measurement.

0 CASE-COST-DRIVERS: Phase measures for the CASE-COST-DRIVERS

require a more substantive change in existing approaches. The

prerequisite for establishing measures for cost drivers is the

identification of relevant cost drivers: those attributes that

significantly affect labor input costs in the different phases.

In a CASE development environment, only some factors will impact

the software development process enough to make a significant

difference in the input labor hours. Thus, the set of relevant

software cost drivers identified in prior research needs to be

revised, based on what can be learned from new research on CASE

development performance. Although more exhaustive, empirical

verification is still needed, some preliminary evidence exists to

suggest that in CASE environments DEVELOPMENT-TEAM-EXPERIENCE and

NEW-OBJECT-PERCENT impact development labor significantlyQ.

DEVELOPMENT-TEAM-EXPERIENCE can generally be measured with

subjective rating methods for each phase.

A bigger challenge is to develop l i f e cycle trajectory metrics

for NEW-OBJECT-PERCENT and SOFTWARE-SIZE-OUTPUT from each phase.

NEW-OBJECT-PERCENT refers to the use of existing software in

order to build an application. Reused software adds to the size

and functionality of the delivered software product without

requiring a proportionate amount of development labor. This

justifies its inclusion as an important cost driver for

DEVELOPMENT-EFFORT-INPUT. NEW-OBJECT-PERCENT is measured in

terms of the proportion of reused code in the total SOFTWARE-

SIZE-OUTPUT.

NEW- OB JECT- PERCENT = TOTAL SOFTWARE-SIZE-OUTPUT
UNIQUE SOFTWARE-SIZE-OUTPUT

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

Since NEW-OBJECT-PERCENT is expressed in terms of a proportion of

SOFTWARE-SIZE-OUTPUT, both drivers can be measured by the same

units of work output. Thus, measures for both SOFTWARE-SIZE-

OUTPUT and NEW-OBJECT-PERCENT are dependent on identifying work

output measures from the development process. This requires

identification of measurable units of work at the end of each of

the life cycle phases.

Identifying measurable units of work from phases was not easy

until the advent of CASE development tools. In traditional

development environments each life cycle phase did not have a

unit of delivered work which could be measured with any degree of

accuracy. For example, the work done in the business analysis

phase was partly represented by diagrams on paper and partly in

the analyst's mind. Similarly, a considerable portion of the

work completed in the functional design phase went undocumented

because of verbal communications between the analyst and the

programmer, unwritten contracts, and so on(15* 37* 43).

3.2. An Illustration Of Trajectory Metrics: CASE Repository

Objects

CASE technologies make it possible to capture outputs from each

life cycle phase. The discipline of CASE development produces

well specified, rigorously defined outputs from each life cycle

phase. These outputs can form the basis for unambiguous work

unit measures.

In keeping with the standardization and reusability aspects of

CASE environments, measures for monitoring phase outputs should

utilize relevant parameters of the pre-fabricated components that

form the basis of the ffmodular approach." In related work, we

explored the possibility of monitoring the use and nature of

these pre-fabricated components themselves, which have been

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

called 110bjectsu02). The results indicated that because objects

act as building blocks to construct the functionality of the

software in repository-based CASE environments, they can be used

to represent the outputs of development in efficiency metrics.

Objects represent specific, well-defined functions in handy,

ready-to-use chunks of code. An object need only be written

once, and all subsequent applications that need to deliver the

same functionality could merely reuse existing objects. In

addition, the definitions and code content of objects in CASE

environments are frequently stored in a centralized repository.

Examples of objects that are often utilized in repository-based

CASE environments are: RULES, SCREEN DEFINITIONS, USER REPORTS,

and so on. The complexity of the objects written afresh by a

programmer, the level of reuse of existing objects by a

programming team, and the total number of objects of all types

used to build an application provide a natural avenue along which

the design of trajectory metrics can proceed.

In integrated CASE environments (ICASE), i.e., those which

automate development in all the life cyce phases), application

development is a process of successive refinement of objects as

development progresses from the earlier life cycle phases of

business analysis and design to the later phases of testing and

implementation. For additional details on an integrated CASE

environment (ICE) that has some of these features, see (4). The

objects created at the business analysis phase are abstract,

higher level representations of functionalities required by the

application. Each subsequent lower level object of the later

phases goes one step further in instantiating the functionality

of the previous phases's object, until finally the code is

written in the construction phase.

Objects created in earlier phases lay out a road map for

subsequent refinement that may occur, or the development of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

additional objects in later phases. Thus, a study of the

deliverables at the end of each life cycle phase of CASE

development would enable the specification of outputs at each

stage. Table 3 illustrates this perspective by identifying

objects that would be useful to gauge output phase-by-phase. The

examples draw on experience we gained in a field study of CASE at

the First Boston Corporation and Seer Technologies. The object

names are used as illustrations of generic outputs that can be

identified from the different life cycle phases.

...............................
INSERT TABLE 3 ABOUT HERE

The Business Analysis phase defines the scope and functions of

the system in terms of user requirements, The output of business

analysis in CASE environments is a model of the processes and the

data involved in the business system. The approach is based on

the concepts of the Entity-Relationship (E/R) model developed by

Chen. This phase often uses tools such as an entity-relationship

diagrammer or a process hierarchy diagrammer , and typically
outputs objects such as ENTITIES, PROCESSES and RELATIONSHIPS

(between ENTITIES and PROCESSES). These are objects defined

according to the E/R model, and their total number and complexity

as they exist in the repository at the end of this phase can be

used to measure the work output from the business analysis phase.

Similarly, the Functional Design phase translates business

requirements to the specific needs of the application's users,

including features, functions, interfaces, and so on. It uses

tools such as a report painter or a window generator, and

typically outputs objects such as RUIiES, WINDOWS, VIEWS, and

RELATIONSHIPS (between RULES, WINDOWS, VIEWS, and so on). The

Technical Design phase further refines the functional

specification of objects by including: the data structures; data

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

flows; and files referenced, input or output. Examples of

objects produced in this phase are FIELDS, FILES, RULES details,

and so on. Software Construction involves adding details to the

software for compiling at the source level. Actual code is

generated only during the application's run-time. Reusable

objects need merely retrieve software construction details from

the repository while objects that have to be written from scratch

will require much more labor. Thus, the NEW-OBJECT-PERCENT will

affect DEVELOPMENT-EFFORT-INPUT very significantly in this phase.

(We are currently studying what the relevant object outputs will

be for the Testing/Implementation and Maintenance/Enhancement

phases.)

To sum up our argument, repository-based objects can act as

distinct and identifiable units of work from each life cycle

phase of CASE development. The total number, complexity or size,

and origin (reused versus written from scratch) of objects can be

used to measure SOFTWARE-SIZE-OUTPUT from each phase. As

explained earlier, the NEW-OBJECT-PERCENT cost driver, dependent

on the same unit of work as SOFTWARE-SIZE-OUTPUT, can also be

distinctly measured USING object-based metrics for each phase.

 his equips us with productivity metrics to track the life cycle
trajectory of CASE developed projects.

3.3. Implementing Object-Based Trajectory Metrics

In an exploratory study conducted earlierc6) we empirically tested

the proposal for object-based trajectory metrics for the

construction phase of the CASE life cycle. Data were obtained on

software projects developed and produced with a multi-million

dollar ICASE tool built by a large investment bank in New York

city. The objective of the study was to evaluate the performance

of an object-based metric for the 'Software Constructiong phase,

Performance of the metric was judged on the basis of its ability

to:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

(i) measure the cost driver SOFTWARE-SIZE-OUTPUT, and

(ii) estimate the DEVELOPMENT-LABOR-INPUT for project delivery.

Each project was manually counted for the number of construction

phase objects in the final delivered software. The sum of the

instances of all object types used for application development in

the construction phase was defined as the first object-based

metric for this phase. We called this metric OBJECT-COUNTS. A

second metric was defined as the effort-weighted sum of the

instances of all object types used in the construction phase.

The weighting with effort accounts for different amounts of labor

required to develop each object type for inclusion in the code

for the software project. This metric was called OBJECT-POINTS.

OBJECT COUNTSconstructlonPhase = OBJECT- I N S T W C E S ,
t

OBJECT- POINTSCO,,,,,,,ionPhase = OBJECT-EFFORT- WEIGHTt * OBJECT- I N S T W C E S ,
t

where

t - - object t y p e s used t o create

a p p l i c a t i o n i n the S o f t w a r e

C o n s t r u c t i o n phase;

OBJECT- INSTANCES, - - t o t a l number o f instances o f object

t ype t i n an a p p l i c a t i o n ;

OBJECT-EFFORT-WEIGHT, - - average deve lopment e f f o r t

a s s o c i a t e d w i t h the construction o f

object t y p e t;

Table 4 presents correlations between the two object-based

metrics defined above and FUNCTION-POINTS. FUNCTION-POINTS is a

metric for the size or functionality of the output delivered by a

software project to the end user(3). We utilize it as a metric

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

for SOFTWARE-SIZE-OUTPUT. Its ability to estimate DEVELOPMENT-

EFFORT-INPUT has also been investigated and implemented. The

FUNCTION-POINT procedure requires counting the occurrence of five

function types (Inputs, Outputs, Logical Files, External

Interfaces and Queries; for details of the FUNCTION-POINTS

procedure, see (15). These units of software work output refer

to the aggregate product delivered; they are not geared towards

identifying the output in each phase. Thus, as currently

defined, FUNCTION-POINTS cannot be used to implement the l i f e

c y c l e t r a j e c t o r y measurement approach to controlling

productivity.

In the exploratory study, we viewed obtaining high correlations

between FUNCTION-POINTS metric and the object-based metrics being

tested as indicators of the validity of the new metrics. Such

convergent v a l i d i t y with the well-established and well-validated

FUNCTION-POINTS metric provides preliminary evidence that the

object-based metrics are measures of the same construct that

FUNCTION-POINTS purports to measure, i.e., the size and

functionality of delivered software as given by SOFTWARE-SIZE-

OUTPUTcmmtimfi,,. As Table 4 indicates, the OBJECT-COUNT and

OBJECT-POINT metrics were highly correlated with FUNCTION-POINTS.

OBJECT-COUNTS had a correlation of 0.89 and OBJECT-POINTS had a

correlation of 0.86 with FUNCTION-POINTS.

The estimation capability of the object-based metrics was

assessed by evaluating their performance in an estimation model

to accurately predict the DEVELOPMENT-EFFORT-INPUT that will be

consumed for developing a project in the construction phase. Two

separate regression models were estimated to predict development

effort (the dependent variable) in terms of the output metrics,

FUNCTION-POINTS, OBJECT-COUNTS and OBJECT-POINTS (one of these

occured as the independent variable in each model). Results of

the regression indicate the extent to which the object-based

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

metric is able to explain the variance in DEVELOPMENT-EFFORT-

INPUT. The results shown in Table 4 reveal an R~ comparable to

the FUNCTION-POINTS metric (0.70 and 0.73 for OBJECT-COUNTS and

OBJECT-POINTS respectively, compared to 0.75 for FUNCTION-

POINTS) .

The above research results suggest the viability of the object-

based metrics. The two metrics tested, OBJECT-COUNTS and OBJECT-

POINTS, performed well as measures for SOFTWARE-SIZE-OUTPUT from

the Software Construction phase. They also successfully

predicted the total DEVELOPMENT-EFFORT-INPUT required for

delivering the completed projects. It remains to test their

predictive capability for DEVELOPMENT-EFFORT-INPUT in the

Software Construction phase alone. Research is also under way to

further define and test object-based metrics for the remaining

phases of the CASE life cycle. This is required before the life

cycle trajectory measurement approach can be more fully

implemented.

4 . CONCLUSION

In view of the large costs of software, systems for controlling

software development should be designed to more closely support

the operations and the strategy of the organization. The

technology necessary to implement the approach to software

development monitoring and control that we advocate is different

from what exists in manual software development shops currently.

But today, CASE makes implementing our vision of software

development tracking increasingly possible.

4.1. Research Contribution

The paper has described a conceptual framework for the

development of managerially relevant procedures to enhance

software control with life cycle trajectory metrics. We also

suggested that automating software control is appropriate and

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

feasible in CASE environments, and that this changes the basic

cost-benefit relationship that exists for software project

performance tracking. The low cost of measurement made possible

through automated analysis and the availability of repository-

based objects as distinct, identifiable units of development work

from each life cycle phase combine to make integrated CASE

environments an ideal testbed for research.

Our approach to implementing dynamic control measures forms the

first step in a broader attack on CASE project planning and

project management methods. Control of software development

activities in each phase will support project management

activities from the earliest phases of the software life cycle.

Tasks such as scheduling, identifying staff requirements, and

performing resource planning can be performed on a phase-by-phase

basis rather than a project-by-project basis. Moreover, these

plans can be revised dynamically as the actual development

performance of a phase becomes known. Such an approach will

allow more powerful project planning which can more readily adapt

to unanticipated changes in performance or parameters.

4.2. Research Agenda

Our proposals for dynamic trajectory measures open up several new

lines research inquiry for the future.

[I] Empirical evidence to identify relevant cost drivers for
CASE development environments would provide valuable
insights into the nature of the cost drivers and the metrics
required to track them.

[2] Research to validate and specify object outputs as measures
of work from each of the different phases is needed to
provide a rigorous, empirical basis for justifying the
implementation of our cost control framework for CASE
development.

[3] Another important extension within our productivity control
framework would be to study and compare the estimation
accuracy and ease of existing and proposed measurement
approaches. Our work on OBJECT-POINTS represented an initial

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

a step in this direction.

We are now involved in investigating the estimation performance

of object-based trajectory metrics for phases other than Software

construction. This should result in an integrated cost

accounting system for CASE performance tracking which makes use

of the features of this development environment. This opens up

the opportunity for software production to be integrated with

strategy formulation to enable a firm to minimize its strategic

software costs.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

REFERENCES

(1) ~lavi, M. High-Productivity Alternatives for Software
Development. Journal of Information Systems Management, 2(4),
Fall 1985, pp. 19-24.

(2) Alloway, R. M. and Quillard, J. A. User Managers' Systems
Needs. MIS Quarterly, 7(2), June 1983, 27-41.

(3) Albrecht, A. J. and Gaffney, J. E. *Isoftware Function,
Source Lines of Code, and Development Effort Prediction: A
Software Science Validation," IEEE Transactions on Software
Engineering, 9:6, November 1983, pp. 639-647.

(4) Banker, R. D., Kauffman, R. J., Wright, C., and Zweig, D.
Automating Output Size and Reusability Metrics in an Object-Based
Computer Aided Software Engineering (CASE) Environment. Center
for Research in Information Systems Working Paper Series, Stern
School of Business, New York University, May 1991.

(5) Banker, R. D., and Kauffman, R. J. Reuse and Functionality:
An Empirical Study of Integrated Computer Aided Software
Engineering (ICASE) Technology at the First Boston Corporation.
Forthcoming in MIS Quarterly, Fall 1991.

(6) Banker, R. D., Kauffman, R. J., and Kumar, R., An Empiical
Test of Object-Based Output Measurement Metrics in a Computer
Aided Software Engineering (CASE) Environment. Forthcoming in the
Journal of Management Information Systems , Winter 1992.
(7) Benson, R. J. and Parker, M. M. Enterprise Wide Information
Management: Strategic Planning For Information Technology - An
Introduction for the Business Executive, IBM Los Angeles
Scientific Center, G320-2775, January 1986.

(8) Boehm, B., Software Engineering Economics, Prentice Hall,
Englewood Cliffs, NJ, 1981.

(9) Boehm, B. W. and Papaccio, P. Understanding and Controlling
Software Costs. IEEE Transactions on Software Engineering,
14 (10) , October 1988, pp. 1462-1477.

(10) Brooks, F. P., Jr. The Mythical Man-Month. Addison Wesley,
NY, 1975.

(11) Burkhard, D. L. and Jenster, P. V. Applications of
Computer-Aided Software Engineering Tools: Survey of Current and
Prospective Users. Database, Fall 1989, pp. 28-37.

(13) ~avis, G. B. Commentary on Information Systems:
Productivity Gains from Computer Aided Software Engineering.
Accounting Horizons, 2(2), June 1988, pp. 90-93.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

(14) ems ski, J. S. Information Analysis, Addison-Wesley
publishing, Reading, MA, 1985.

(15) Dhar, V., Ramesh, B , , and Jarke, M. REMAP Project: An
Environment for Supporting Requirements Analysis and Maintenance.
In Proceedings of Artificial Intelligence and Software
~ngineering Symposium, AAAI-89, Spring Symposium Series,
Stanford, CAI March 1989.

(16) Dreger, J. B. Function Point Analysis, Prentice Hall,
Englewood Cliffs, NJ, 1989.

(17) Grammas, G. W., and Klein, J. R. Software Productivity as a
Strategic Variable. Interfaces 15(3), pp. 116-126, May-June
1985.

(18) Gurbaxani, V., and Mendelson, H. Software and Hardware in
Data Processing Budgets, IEEE Transactions on Software
Engineering, SE-13(9), September 1987, pp. 1010-1017.

(19) Hall, P. A. V. Software Components and Reuse -- Getting
More Out of Your Code. Information and Software Technology
29(1), January-February 1987, pp. 38-43.

(20) Personal communication with Gezinus Hidding, Andersen
Consulting, 1990.

(21) Horowitz, E. and Munson, J. B. An Expansive View of
Reusable Software. IEEE Transactions on Software Engineering,
SE-10(5), September 1984, pp. 477-487.

(22) Johnson, H.T. and Kaplan, R.S. Relevance Lost: The Rise and
Fall of Management Accounting. Harvard Business School Press,
Boston, MA, 1987.

(23) Jones, T. C. Reusability in Programming: A Survey of the
State of the Art. IEEE Transactions on Software Engineering
SE-10(5), September 1984, pp. 484-494.

(24) Jones, T. C. Programming Productivity, McGraw-Hill, NY,
1986.

(25) Kang, K. C., and L. S. Levy. Software Methodology in the
Harsh Light of Economics. Information and Software Technology
31(5), June 1989, pp. 239-249.

(26) Kemerer, C. F. "An Empirical Validation of Software Cost
Estimation ModelsIff Communications of the ACM, 30(5), May 1987,
pp. 416-429.

(27) Kemerer, C. F. An Agenda For Research in the Managerial
Evaluation of Computer-Aided Software Engineering (CASE) Tool
Impacts, Proceedings of the 22nd Hawaii International Conference
on Systems Sciences, Hawaii, January 1989, pp. 219-227.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-92-03

(28) Lederer, A. L., Mirani, R., Neo, B.S., Pollard, C., Prasad,
J., and Ramamurthy, K. Information System Cost Estimating: A
Management Perspective. MIS Quarterly, Volume 14, Number 2, June
1990, pp. 159-178.

(29) Mazzucco, F. Autqmation of Function Counting Techniques,
Texas Instruments, 1990.

(30) McClure, C. The CASE Experience. Byte, April 1989, pp.
235-244.

(31) ~cNurlin, B. Building More Flexible Systems. I/S Analyzer,
October 1989.

(32) Moad, J. The Software Revolution. Datamation, February 15,
1990, pp. 22-30.

(33) Norman, R. J., and Nunamaker, J. F. Jr. CASE Productivity
Perceptions of Software Engineering Professionals.
Communications of the ACM, 32(9), September 1989, pp. 1102-1108.

(34) Nunamaker, J. F. Jr., and Chen, M. Software Productivity: A
Framework of Study and an Approach to Reusable Components. In
Proceedings of the 22nd Hawaii International Conference System
Sciences, Hawaii, January 1989, pp. 959-968.

(35) Pollack, A. The Move to Modular Software. New York Times,
Monday, April 23, 1990, pp. Dl-2.

(36) Ramarnoorthy, C. V., Prakash, A., Tsai, W. and Usnda, Y.
Software Engineering: Problems and Perspectives. IEEE Computer,
17(10), October 1984, pp. 191-209.

(37) Sasso, W.C. and McVay, M. The Constraints and Assumptions
of Systems Design: A Descriptive Process Model. Center for
Research in Information Systems Working Paper #137, Stern School
of Business, New York University, September 1990.

(38) ~cacchi, W., and Kintala, C. M. K. Understanding Software
Productivity. Technical Report CRI-87-67, Computer Science
Department, University of Southern California, Los Angeles, CA,
1987.

(39) Senn, J. A. and Wynekoop, J. L. Computer Aided Software
Engineering (CASE) in Perspective. Working Paper, Information
Technology Management Center, College of Business Administration,
Georgia State University, 1990.

(40) Sentry Market Research. CASE Research Report, Westborough,
MA, 1990.

(41) Shah, P. Cost Control and Information Systems, McGraw Hill
Book Co., NY, 1981.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

(42) Sprague, R. H. and McNurlin, B. C., Eds. Information
Systems Management in Practice, Prentice-Hall, Englewood Cliffs,
NJ, 1986.

(43) Turner, J. A. Understanding Elements of Systems Design. In
critical Issues in Information Systems Research, R. Boland and R.
Hirscheim (eds.), John Wiley and Sons, NY, 1986.

(44) vicinanza, S., Prietula, M. J. and Mukhopadhyay, T. Case-
Based Reasoning in Software Effort Estimation: A Theory, A
Model, and A Test, Proceedings of The Eleventh International
Conference on Information Systems, Copenhagen, Denmark, December
1990.

(45) Vipond, S. A. Achieving the rans sit ion to Computer-Aided
Software Engineering: A Longitudinal Study of Change and
Adaption in Two Software Development Groups. Working Paper, MIS
Research Center, Carlson School of Management, University of
Minnesota, April 1990.

(46) Yourdon, E. Whatever Happened To Structured Analysis?
Datamation, 32(11), June 1986, pp. 133-138.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

Figure 1. Labor Consumption Trajectories for Two Software
Development Projects of Similar Size

Labor Consumed
-- Additional Labor

,. Consumed by Project A
in FD and TD Phases

-- Additional Labor
Consumed by Project B

The Labor in SC Phase only
Consumption -- Labor Consumed by Both

Software
Development

> Life Cycle
S P B A FD TD SC TI ME Phases

Assumptions: Project size in function points and total labor equal
for A and B.

KEY: SP -- Strategic Planning
BA -- Business Analysis
FD -- Functional Design
TD -- Technical Design
SC -- Software Construction
TI -- Testing and Implementation
ME -- Maintenance and Enhancement

i

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

Figure 2. Successive Predictability and Accuracy of Costs

Variability of
Cost Measures

6

SP B A FD TD S C TI ME
> Life cycle phases

m y : SP -- Strategic Planning
BA -- Business Analysis
FD -- Functional Design
TD -- Technical Design
SC -- Software Construction
TI -- Testing and Implementation
ME -- Maintenance and Enhancement

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

Table 1: Factors Responsible For Inefficient Software
Development

Customized application development practices which redevelop from
scratch the fundamental procedures and processes that are common across
applications or business units in an organization.

Outdated and error-prone development methodologies that postpone effort
to the back end of software development life cycle when the software is
coded and implemented; this results in significant additional hidden costs
of maintenance.

Increased complexity, size and scope of the functionality to be
incorporated into software for meeting user needs in the competitive
environment of a firm's business.

The labor-intensive nature of software development, which renders
software quality and productivity very vulnerable to the skills of the
personnel used for development.

A growth rate in user needs for IT applications that exceeds the growth
rate of the supply of experienced and well-trained development staff.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

Table 2. CASE Technology: Cost Impacts of Improved Efficiency and
Effectiveness

Center for Digital Economy Research
Sterri School o f Business
IVorking Paper 19-92-03

MAJOR SOURCES
OF CASE
BENEFITS rE
Productivity
Gains

Speed of
Development

Accuracy of
Development

Methodological
Consistency
of Development

Traceability of
development
operations

Higher
Functionality
of Software
Product

Less onerous
technical
personnel
training
requirements

Makes the
maintenance
phase
manageable

COST IMPACTS

EFFICIENCY DIMENSION

Reuse supports creation of
larger amount of software
for given level of labor

Has potential to help

EFFECTIVENESS DIMENSION

Products of CASE development
create a reusable software
infrastructure for the firm,
further lowering costs.

Allows for flexible, timely
reduce existing backlog I response to rapid changes
of software projects

Reduces debugging and
maintenance costs by
lowering error rates

Provides management with
new leverage to manage
development labor
efficiency across projects

Enables efficient tracking
and coordination of project
activities documented
on the computer

Brings creation of very
complex software within the
bounds of routine project
development practices

Has potential to combat
labor shortages, by
reducing the knowledge-
intensiveness of software
development

Maintenance costs are
lowered by ensuring that
code is highly modularized
and well-documented with
facilities of the CASE
development environment

in business goals

Supports optimizing the
functionality of software to
meet business/user needs

Permits management to make
"optimizing" decisions about
software labor deployment:
software projects need labor
with similar toolsets

Enables continuous checking
and feedback of project
correspondence with initial
business specifications

Supports development of
visionary projects w/ "blue
sky" functionality, and also
encourages innovative IT uses

Ensures that delivered
software is not a function of
new programming team's
preferences, but dependent on
a more fundamental business
analysis

More careful monitoring of
maintenance phase costs can
help management to identify
the optimal time to stop
maintaining and rebuild from
scratch to lower overall cost

Table 3. Possible Object Metrics for the CASE Life Cycle

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

LIFE
CYCLE
PHASE

Bus ines s
A n a l y s i s

Func-
t i o n a l

Tech-
n i c h a l

Design

Sof tware
Construc-
t i o n

~ e s t i n g /
Implemen-
t a t i o n

Mainte-
nance/

Enhance-
ment

POSSIBLE
OBJECT
METRICS

E n t i t i e s ,
Processes ,
Re la t ion-

s h i p s

Rules ,
Windows,
V i e w s
Re la t ion-

s h i p s

F i e l d s ,
F i l e s ,
Rules
(d e t a i l s)

Objec ts
b u i l t ,

Ob jec t s
reused

Number of
p l a t fo rms ,

Number of
o b j e c t s

Number of
r e v i s i o n s
made t o
o b j e c t s

1

ILLUSTRATIVE OBJECT HIERARCHY AM) COMMENTS

APPLICATION

Business E n t i t y #1

I
Business Process #1

Rela t ionsh ip

set B

Re la t i onsh ip

F i l e s Referenced Rule Content

Above h i e r a r c h y must be "naviga ted" whi le
query ing f o r o b j e c t s i n s t a n t i a t e d w i th code and
compris ing f u l l f u n c t i o n a l i t y . Also must query
w i t h i n and a c r o s s p r o j e c t h i e r a r c h i e s t o i d e n t i f y
occur rence of reused o b j e c t s .

Cur ren t ly under i n v e s t i g a t i o n .

Cur ren t ly under i n v e s t i g a t i o n .

Table 4: PERFORMANCE OF OBJECT BASED, CONSTRUCTION PHASE METRICS

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

VALUE OF
R-SQUARED

0.70

0.73

0 .75

METRIC

OB JECT-COUNTS

OBJECT-POINTS

FUNCTION-POINTS

CORRELATION WITH
FUNCTION-POINTS

0.89

0 .86

-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

We wish to acknowledge Mark Baric, Gene Bedell, Tom Lewis and
Vivek Wadhwa for the access they provided us to data on software
development projects and managers1 time throughout our field
study of CASE development at the First Boston Corporation and
SEER Technologies. Another version of this paper was presented
at a conference entitled "Integrating Information Technology and
Analysis: How to Deliver Systems Your Clients Will Love,"
sponsored by the College on the Practice of Management Science of
The Institute of Management Science (TIMS/CPMS), and the
Operations Research Society of America (ORSA). All errors in
this paper are the responsibility of the authors.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-03

