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TRACKING THE 'LIFE CYCLE TRAJECTORY': 

METRICS AND MEASURES FOR CONTROLLING PRODUCTIVITY 

OF COMPUTER AIDED SOFTWARE ENGINEERING (CASE) DEVELOPMENT 

ABSTRACT 

This paper proposes a new vision for the measurement and 
management of development productivity related to computer aided 
software engineering (CASE) technology. We propose that 
productivity be monitored and controlled in each phase of 
software development life cycle, a measurement approach we have 
termed life cycle trajectory measurement. Recent advances in 
CASE technology that make low cost automated measurement possible 
have made it feasible to collect life cycle trajectory measures. 
We suggest that current approaches for productivity management 
involve the use of static metrics that are available only at the 
beginning and end of the project. Yet the depth of the insights 
needed to make proactive adjustments in the software development 
process requires monitoring the range of activities across the 
entire software development life cycle. This can only be 
accomplished with metrics that can measure performance parameters 
in each phase of the life cycle. We develop metrics that have 
the ability to measure and estimate software outputs from each 
intermediate phase of the development life cycle. These metrics 
are based on a count of the objects and modules that are used as 
building blocks for application development in repository object- 
based CASE environments. The viability of such object-based 
metrics for life cycle trajectory measurement has been 
empirically tested for the software construction phase using 
project data generated in Integrated CASE development 
environments. 
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1. SOFTWARE PRODUCTIVITY AND THE CASE OPPORTUNITY 

Computer aided software engineering (CASE) tools are believed to 

represent an industrial revolution in the market for software 

development. They have changed the dynamics of software 

development from essentially a manual, craft work-like process to 

a more automated, rigorous and standardized engineering 

discipline. In this paper, we examine new approaches and 

opportunities presented by this changed development environment 

for managing software development performance. We will argue 
that CASE has the potential to improve control of software 

development productivity by allowing measurement of software 

outputs across the entire development life cycle. 

1.1. The Quest For Improving Software Productivity 

The sheer size of corporate investments in software indicates the 

extent of the hopes that senior managers place in wresting 

business value from it03y3. For example, industry specialists 

estimated that by 1990 the total investment in existing, 

developed and purchased software was in the neighborhood of 13% 

of the United Statesf gross national product, a staggering $527 

billionGQ. Other projections reveal an annual increase in 

software development budgets at the rate of 9% to 12%, exceeding 

$150 billion per year by 1990~~~ Is). However, software development 

is regarded as a major bottleneck in exploiting the potential of 

 IT"^). Substantial backlogs of software development exist in 

organizations of all sizes and in many different industries, and 

they are reported to be increasing at a rapid One 

study even reported the existence of "hidden backlogs," 
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consisting of user needs that were not formally requested or 

commissioned; these hidden backlogs were estimated at 535% of 

known backlogso. Reports of software projects months behind 

schedule and far over budget are also quite common. As a result, 

senior management perceives that it is critical to find ways to 

better control the production of corporate software assets. 

A common intermediate goal for senior software development 

managers is to improve the productivity of applications 

development and the quality of applications execution. The low 

productivity of software development operations is attributable 

to a number of fa~tors('~~~~~~~~). Table 1 lists the major ones among 

these. 

INSERT TABLE 1 ABOUT HERE 
............................... 

Improvement of productivity can be achieved by streamlining the 

life cycle of software creation through the introduction of new 

development techniques. As a result, in recent years we have 

witnessed the introduction and adoption of many new software 

development tools and techniques. These include: structured 

programming; rapid prototyping and protocycling; fourth 

generation languages ( 4 G L s ) ;  object-oriented and graphical 

analysis, design and development techniques; and data-oriented 

methodologies. 

The most recent addition to this list is integrated computer 

aided software engineering (CASE) tools. Input Inc., a 

California-based research firm, has indicated that about 6% of 

annual software expenditures by American firms in 1989 were 

attributable to application development tools in general. In 

terms of dollars, this puts the total expenditure in the range of 
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$6 billion or more, and spending on such off-the-shelf 

application development tools is conservatively estimated to be 

growing at a 19% annual ratew). 

1.2. The Promise Of CASE Productivity 

CASE is often touted as the most promising of all the new tools, 

and certainly it is the fastest growing segment. Two different 
surveys have indicated that between 55% to 75% of organizations 

have adopted CASE tools for various development projects 

including pilot projects, departmental projects, and corporate- 

wide And, analysts predict that the CASE 

market will grow at 35% to 45% per year, to something on the 
order of $1 billion in the early 1990s0'). 

CASE technologies and the methodologies that they promote aim to 

transform the process of software development. Paralleling the 

structure of production in other industries such as automobile 

manufacturing, home construction, and even computer hardware 

manufacturing, CASE is enabling a move of the software enterprise 

from an assembly industry to a process industry. This means that 

each product is no longer custom built, one at a time. Instead, 

production occurs through the use of pre-fabricated components 

and reusable templates, plans and procedureso5). CASE advocates 

and firms investing heavily in CASE argue that software 

automation and the "modular softwarew approach is the key to 

increasing productivity, controlling quality, and introducing 

predictability into the software development process. 

An analysis of the structural and functional dimensions of CASE 

technology helps to identify the major characteristics of this 

methodology that contribute towards potential improvements in 

development productivity. These have very broadly been 

classified by various authors01730?39) as the standardization of the 

software development process, and the automation of software 
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development activities. 

Standardization of software development is at the heart of the 

"modular approachtt to software creation. It enables reuse of 

existing software components, which saves the effort in writing, 

testing, and implementing portions of the software currently 

being de~eloped('~,*~). Standardization can lead to reduced 

development time as well as an improved software quality. 

Automation addresses tedious or routine manual tasks such as 

verification, validation and consistency checking in early 

development phases, or error checking in code. This not only 

reduces the labor required for manually performing these tasks, 

it also ensures that these tasks are satisfactorily and uniformly 

performed. It also supports an increase in the quality of 

delivered software. 

Thus, standardization and automation can contribute significantly 

towards development productivity by impacting the efficiency and 

effectiveness of software creation. Efficiency increases 

productivity directly by increasing software output per unit 

effort input by software developers when a CASE methodology is 

used to develop software. Effectiveness impacts productivity 

indirectly by ensuring that CASE-developed software accomplishes 

the business goals of the organization and therefore the software 

output is relevant and has maximal value. The efficiency and 

effectiveness dimensions of CASE development are described in 

Table 2 below. 
............................... 

INSERT TABLE 2 ABOUT HERE 
............................... 

A natural question would be the verification of the promised 

productivity benefits of CASE. Although reports on CASE claim a 

myriad of benefits ranging from 300% productivity increases to 

'zero-maintenancet program code, only a few studies report 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-92-03 



rigorously substantiated productivity benef itse6p33*45). ~ o s t  
studies report on successful (or confessional) implementations of 

CASE methods or on surveys compiling usage proportions and 

profiles of CASE tools("* 307 31) . Banker and ~ a u f  have 

presented some of the first empirical results to substantiate 

large productivity gains from using CASE development techniques, 

especially the leverage created when a firm implements a software 

reusability strategy. 

This paper examines how management reporting needs to be recast 

to support the goal of controlling software productivity as much 

as possible with the tools available in the new environment of 

CASE. It develops a new vision for the management of the 

software development life cycle in the presence of integrated 

CASE technologies via automated software metrics and measures. 

We will make the case that tracking the life cycle trajectory of 

software projects, made possible by automated analysis of the 

software development process, will help management to control 

productivity in a way that was not possible before CASE. 

2. CONTROLLING CASE DEVELOPMENT PRODUCTIVITY 

2.1. A New Vocabulary for Tracking Software Development 
Performance 

We propose a framework to measure, control and influence software 

development performance that builds upon the distinguishing 

characteristics of CASE environments. We find that existing 

approaches to the estimation of software development productivity 

and the measurement of subsequent development performance only 

provide single point measures -- when a project begins or when it 
has reached completion. Such static measures for estimation and 

efficiency analysis do not provide sufficiently detailed or 

relevant information for proactively managing the software 

development process. By contrast, dynamic measures for software 

development performance can help management to monitor and 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-92-03 



control performance through the entire software development life 

cycle. We refer to this concept of dynamically measuring and 

estimating performance in each phase of the development life 

cycle as I f t r ack inq  t h e  l i f e  cycle t r a j e c t o r y f f  of a software 

project. The life cycle trajectory approach monitors performance 

parameters of interest in each life cycle phase and visually 

depicts the progress of the project along the measured 

performance dimensions. 

Static, single-point software development metrics are snapshots 

of the results of software development production performance. 

Dynamic metrics capture the development process on video tape, 

enabling management to play the action back at will as it occurs, 

to better understand it, and then to control and improve overall 

project performance. ~oehm(') has equated the problem of 

accurately estimating development costs for a software project 

with the problem an author has in estimating the number of pages 

a book will have when the plot has just been sketched out. 

Static metrics would only support the comparison of the initial 

estimate of the length with what the author subsequently writes. 

But, dynamic metrics are meant to describe the process of 

producing the book, as the author adjusts the plot, resolves 

problems in the relationships among the characters, or deals with 

a crucial mental block which hampers the writing. Figure 1 

contrasts the richness of the information provided from dynamic 

versus static measures. 

INSERT FIGURE 1 ABOUT HERE 

The figure depicts the trajectories of labor consumed by two 

software projects, A and B. Initially, both are estimated to 

consume approximately the same level of resources during the life 
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cycle. Suppose, however, that management's estimates are 

inaccurate, to an equal extent for both projects. In this 

situation, we would observe two similar cost estimates and also 

two similar variances between the estimated and actual costs. 

Such static metrics might suggest that management take the same 

kind of action to improve "similarn projects in the future. But 

note that the labor consumption trajectory suggests that the 

software development processes occuring in each project were 

quite different. Let us assume that the area under the phased 

labor consumption curves and the size of the resulting software 

are the same for both projects. Project B required relatively 

more effort during technical analysis and functional design, 

while project A consumed more labor during the construction 

phase. 

Similar sketches for the life cycle trajectory could be made for 

other performance measures such as productivity, defects, the 

development team's expertise profile, and so on. In CASE 

environments, tracking the life cycle trajectory of 'software 

reusef is another dimension which offers a diagnostic performance 

sketch. The point is that utilizing such full trajectory 

information makes it more likely that managers will ask the right 

questions. For example: Were the functional design problems 

experienced due to the qualities of the resulting application or 

the analysis and design staff? Was the skill mix or experience 

level of the staff of Project B unsuited to the development 

requirements of the project? Managers can ask more general 

questions as well. For example: How much reuse occurs in 

software development, and what is the extent of its leverage on 

productivity? Does the skill mix or the experience level of the 

staff assigned to a project influence the trajectory of its-labor 

consumption or productivity? 

However, such life cycle trajectory metrics only become feasible 

in the CASE environment because the phase activities and phase 
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boundaries are better defined and more rigidly enforced than in 

the pre-CASE era. In keeping with the automated character of 
CASE development, measurement mechanisms can also be built into 

the CASE toolset enabling management to carry out continuous, low 

cost monitoring. 

2.2. Automating Life Cycle Trajectory Measurement 

In effect, we are advocating the collection of finer and more 

"perfect information" in the context of software development cost 

control, but only to the extent that it is relevant. The 

collection of more information in a decision setting only can be 

justified after a careful consideration of the costs and benefits 

of that information. Traditional software development 

environments were unable to support the delivery of such 

information as the life cycle progressed without forcing a 

project manager to incur unacceptably high costs. But CASE 

changes this cost-benefit relationship. 

The Benefits Of Measurement: The value of information 

describing the software development life cycle to the project 

manager are a function of the actions that can be taken based on 

the information, and the consequences that the actions can 

produce(14). First, measures that are collected should be able to 

resolve decision options. Dynamic life cycle metrics enable 

actions that influence subsequent software development activities 

in a manner illustrated in the previous section. Second, there 

is not much value in collecting measures with accurate up-to-the- 

minute detail if the software operations cannot (or need not) be 

controlled to that level of fineness. This is likely to be the 

case in the early phases of development, when order of magnitude 

estimates of labor may suffice. Figure 2 depicts the high - 

variability and unpredictability of project costs when 

estimations are made in the earlier phases. 
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, 
INSERT FIGURE 2 ABOUT HERE 

Efficient control measures in these phases could be rough, first 

approximations because they cannot resolve very finely the 

management actions vis a vis cost control. In the later phases, 

more accurate, refined measures of the costs and cost drivers 

will better support decision making for cost control. 

The Costs Of Measurement: The other issue in committing to 

trajectory measures is an acceptable cost to implement them. 

Considerations regarding the decision value of the information 

affect the nature and design of suitable metrics. Clearly, the 

cost of measuring should not exceed its decision value, or else 

it will reduce management's motivation to measure. Johnson and 

~aplan(~~) suggest that the reduction in the costs of information 

collection and processing no longer justifies highly aggregated, 

low-detail process information. They comment: 

n . . .  t h a t  managers [were] not inclined t o  compile 
[disaggregated and] accurate data r e f l e c t s  t h e i r  judgment on 
the  c o s t s  and b e n e f i t s  and f e a s i b i l i t y  o f  such information, 
no t  a l o s t  sense o f  what information i s  relevant t o  
[operational] management decisions" (pp. 1 4 4 )  

This suggests that managers might have been convinced of the 

value of measuring across the life cycle, but the cost of such 

measurement would have deterred them. The cost of collecting 

data and providing prompt reports for each life cycle phase of 

software development was too high in the manual programming era 

to permit the real time trajectory tracking we are now 

advocating. 

But, today's CASE development environments make it possible to 

automate the measurement and collection of software life cycle 

trajectory metrics. The reduced cost of automated measures no 
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longer requires managers to contend with irrelevant, aggregate 
measures on complex and critical software development processes. 

The challenge, therefore, is to develop dynamic life cycle 

performance measures for software development which will be 

amenable to automation and repeated collection at a minimal cost. 

Only automated measures and metrics for tracking the l i f e  cycle  

t r a j e c t o r i e s  of CASE projects provide ongoing control information 

such that their decision value outweighs the costs. 

In fact, product development in this area is underway for a 

number of CASE development environments, including Texas 

Instrumentts IEF~'), Andersen Consultingts ~oundation~~), and Seer 

Technologies' High Productivity Systems CASE tools(4). These 

firms are undertaking the construction of automated metrics 

facilities at a one time-cost, to defray the cost of repetitive 

measurements to be made in the future. 

2.3, Control Framework For Life Cycle Trajectory Measures 

Software development productivity is defined as the ratio of the 

size of software output to the costs required to produce it. 

SOFTWARE SIZE OUTPUT 
PRoDUmVrTY= Drn'LOPMENT EFFORT INPUT 

Since the size of software output from the development process is 

an external specification as defined by the project description, 

it is not regarded as controllable. Thus most approaches to 

controlling productivity focus on ways and methods to control the 

cost of inputs into the development process, that is, development 

effort in the software context. 

Effective cost control systems should deliver three basic 

capabilities to software development management(41): 

[I] Measurement -- The ability to unambiguously and consistently 
measure costs associated with identifiable units of work, 
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[2] ~stimation -- The ability to accurately estimate and 
forecast cost measures. 

[3] Variance ~nalvsis -- The ability to isolate variances 
between estimated and actual cost measures, enabling 
corrective measures to be taken to reduce the discovered 
variances. 

We next examine these components more closely, as each relates to 

our proposal for life cycle trajectory metrics. 

Measuring the costs associated with the work of software 

development should take into account all inputs into the software 

production process. Costs arise from a number of sources, such 

as development labor, hardware resources, business transactions, 

and so on. However, development labor is by far the largest, 

most significant and most variable cost componentG1). Therefore, 

the measure for the cost of development usually considers only 

labor inputs and is in terms of the number of person-days or 

person-months logged on the software project by the development 

team over the entire life span of the project. 

The second requirement, the ability to accurately estimate costs, 

is required because managers gauge how well an activity is being 

performed by comparing actuals against estimated performance. 

Whatever its sophistication, a specific software development 

performance measurement system cannot be effective in controlling 

the process unless it incorporates a set of standards which 

managers can agree upon and use as anchors on which to base their 

performance expectations. The limited ability of software 

managers to estimate the time required and costs of development 

has long been a major shortcoming, and was first brought to the 

attention of the systems development community by Brooks, in his 

essay The Mythical Man ~on th ( '@.  Even experts tend to 

underestimate software project development times, and in spite of 

this awareness projects continue to be behind schedule and 

budget. Sometimes irrational political perspectives have been 
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found to influence the cost estimation process and meaningful 

managerial actions for improving estimation can be impliedG8). 

Advances in more formal approaches to measuring software size 

have centered on empirical models that predict development time 

based on historical relationships between software size and 

development labor. Models, such as COCOMO, ESTIMACS and SLIM, 

exemplify these formal approaches(26). 

The third requirement; the ability to isolate variances between 

estimated and actual cost measures is a diagnostic capability 

which answers an important question: "What is the cause for the 

difference between estimates and actuals?" Providing a 

satisfactory answer requires an understanding of cost drivers -- 
those development attributes that impact and mediate the 

conversion of development labor into software product. In 

software development, as in most production processes, the size 

of the software output is the most important cost driver. But 

attributes of the development process have also been found to 

impact development l a b ~ r ~ ~ ~ ~ ) .  These attributes can be classified 

into program attributes (e.g., reliability requirements), 

environment attributes (e.g., main memory constraints), personnel 

attributes (e.g., average experience of project team), and 

project attributes (e.g., type of development tool used). 

DEVELOPMENT-EFFORT- INPUT = f ( S0E'l.W-E-SIZE-OUTPUT, OTHER-COST-DRIVERS) 

In software development, the impact of project development 

attributes on the labor effort required for delivering the system 

is not a simple relationship. The impact depends on both the 

life cycle phase of the software project as well as the value of 

other  attribute^(^.""). Once managers are able to diagnose the 

causes for the deviation in performance, they should be able to 

understand what actions are appropriate or necessary to influence 

the factors causing the deviation. This ability to influence 
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cost drivers, like isolating the causes of variances, is again 

dependent on an understanding of the nature and effect of the 

cost drivers. For example, applications with the project 

attribute high reliability have been found to be adversely 

affected in terms of development time in the functional design 

phase, but to a lesser extent than in the coding phase. 

Similarly, if the personnel attribute for a project is high 

experience for the development team, reliability considerations 

would not impact development time as much as if the attribute 

were low experience. 

So, we see that the cost drivers are phase-dependent and also may 
exhibit joint effects. This is summarised in the expression 

below. 

DEVELOPMENT-EFFORT- INPUT, = fp (SOFTWARE-SIZE-OUTPUTP, OTXER-COST-DRIVERS,) 

This considerably complicates the isolation and correction of 

variances, and meanwhile places a premium on obtaining better and 

more detailed diagnostic information akin to that advocated in 

our life cycle trajectory measurement proposal. 

3. LIFE CYCLE TRAJECTORY APPROACHES FOR CASE PRODUCTIVITY 

In order to implement a dynamic productivity control system 

incorporating trajectory measures, we need to identify sound 

bases for designing metrics which measure DEVELOPMENT-LABOR- 

INPUT, SOFTWARE-SIZE-OUTPUT and OTHER-CASE-COST-DRIVERS in each 

development phase. 

3.1 Identifying Measures 

DEVELOPMENT-EFFORT-INPUT: These measures for each life 

cycle phase can be obtained from existing measurement approaches. 

Existing labor tracking systems generally account for labor hours 

over the entire life cycle. These labor hours can be summed at 
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the end of each phase. Linking labor tracking systems to 

automated software development performance analysis facilities 

with the proposed trajectory metrics would also help to motivate 

measurement. 

0 CASE-COST-DRIVERS: Phase measures for the CASE-COST-DRIVERS 

require a more substantive change in existing approaches. The 

prerequisite for establishing measures for cost drivers is the 

identification of relevant cost drivers: those attributes that 

significantly affect labor input costs in the different phases. 

In a CASE development environment, only some factors will impact 

the software development process enough to make a significant 

difference in the input labor hours. Thus, the set of relevant 

software cost drivers identified in prior research needs to be 

revised, based on what can be learned from new research on CASE 

development performance. Although more exhaustive, empirical 

verification is still needed, some preliminary evidence exists to 

suggest that in CASE environments DEVELOPMENT-TEAM-EXPERIENCE and 

NEW-OBJECT-PERCENT impact development labor significantlyQ. 

DEVELOPMENT-TEAM-EXPERIENCE can generally be measured with 

subjective rating methods for each phase. 

A bigger challenge is to develop l i f e  cycle trajectory metrics 

for NEW-OBJECT-PERCENT and SOFTWARE-SIZE-OUTPUT from each phase. 

NEW-OBJECT-PERCENT refers to the use of existing software in 

order to build an application. Reused software adds to the size 

and functionality of the delivered software product without 

requiring a proportionate amount of development labor. This 

justifies its inclusion as an important cost driver for 

DEVELOPMENT-EFFORT-INPUT. NEW-OBJECT-PERCENT is measured in 

terms of the proportion of reused code in the total SOFTWARE- 

SIZE-OUTPUT. 

NEW- OB JECT- PERCENT = TOTAL SOFTWARE-SIZE-OUTPUT 
UNIQUE SOFTWARE-SIZE-OUTPUT 
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Since NEW-OBJECT-PERCENT is expressed in terms of a proportion of 

SOFTWARE-SIZE-OUTPUT, both drivers can be measured by the same 

units of work output. Thus, measures for both SOFTWARE-SIZE- 

OUTPUT and NEW-OBJECT-PERCENT are dependent on identifying work 

output measures from the development process. This requires 

identification of measurable units of work at the end of each of 

the life cycle phases. 

Identifying measurable units of work from phases was not easy 

until the advent of CASE development tools. In traditional 

development environments each life cycle phase did not have a 

unit of delivered work which could be measured with any degree of 

accuracy. For example, the work done in the business analysis 

phase was partly represented by diagrams on paper and partly in 

the analyst's mind. Similarly, a considerable portion of the 

work completed in the functional design phase went undocumented 

because of verbal communications between the analyst and the 

programmer, unwritten contracts, and so on(15* 37* 43). 

3.2. An Illustration Of Trajectory Metrics: CASE Repository 

Objects 

CASE technologies make it possible to capture outputs from each 

life cycle phase. The discipline of CASE development produces 

well specified, rigorously defined outputs from each life cycle 

phase. These outputs can form the basis for unambiguous work 

unit measures. 

In keeping with the standardization and reusability aspects of 

CASE environments, measures for monitoring phase outputs should 

utilize relevant parameters of the pre-fabricated components that 

form the basis of the ffmodular approach." In related work, we 

explored the possibility of monitoring the use and nature of 

these pre-fabricated components themselves, which have been 
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called 110bjectsu02). The results indicated that because objects 

act as building blocks to construct the functionality of the 

software in repository-based CASE environments, they can be used 

to represent the outputs of development in efficiency metrics. 

Objects represent specific, well-defined functions in handy, 

ready-to-use chunks of code. An object need only be written 

once, and all subsequent applications that need to deliver the 

same functionality could merely reuse existing objects. In 

addition, the definitions and code content of objects in CASE 

environments are frequently stored in a centralized repository. 

Examples of objects that are often utilized in repository-based 

CASE environments are: RULES, SCREEN DEFINITIONS, USER REPORTS, 

and so on. The complexity of the objects written afresh by a 

programmer, the level of reuse of existing objects by a 

programming team, and the total number of objects of all types 

used to build an application provide a natural avenue along which 

the design of trajectory metrics can proceed. 

In integrated CASE environments (ICASE), i.e., those which 

automate development in all the life cyce phases), application 

development is a process of successive refinement of objects as 

development progresses from the earlier life cycle phases of 

business analysis and design to the later phases of testing and 

implementation. For additional details on an integrated CASE 

environment (ICE) that has some of these features, see (4). The 

objects created at the business analysis phase are abstract, 

higher level representations of functionalities required by the 

application. Each subsequent lower level object of the later 

phases goes one step further in instantiating the functionality 

of the previous phases's object, until finally the code is 

written in the construction phase. 

Objects created in earlier phases lay out a road map for 

subsequent refinement that may occur, or the development of 
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additional objects in later phases. Thus, a study of the 

deliverables at the end of each life cycle phase of CASE 

development would enable the specification of outputs at each 

stage. Table 3 illustrates this perspective by identifying 

objects that would be useful to gauge output phase-by-phase. The 

examples draw on experience we gained in a field study of CASE at 

the First Boston Corporation and Seer Technologies. The object 

names are used as illustrations of generic outputs that can be 

identified from the different life cycle phases. 

............................... 
INSERT TABLE 3 ABOUT HERE 

The Business Analysis phase defines the scope and functions of 

the system in terms of user requirements, The output of business 

analysis in CASE environments is a model of the processes and the 

data involved in the business system. The approach is based on 

the concepts of the Entity-Relationship (E/R) model developed by 

Chen. This phase often uses tools such as an entity-relationship 

diagrammer or a process hierarchy diagrammer , and typically 
outputs objects such as ENTITIES, PROCESSES and RELATIONSHIPS 

(between ENTITIES and PROCESSES). These are objects defined 

according to the E/R model, and their total number and complexity 

as they exist in the repository at the end of this phase can be 

used to measure the work output from the business analysis phase. 

Similarly, the Functional Design phase translates business 

requirements to the specific needs of the application's users, 

including features, functions, interfaces, and so on. It uses 

tools such as a report painter or a window generator, and 

typically outputs objects such as RUIiES, WINDOWS, VIEWS, and 

RELATIONSHIPS (between RULES, WINDOWS, VIEWS, and so on). The 

Technical Design phase further refines the functional 

specification of objects by including: the data structures; data 
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flows; and files referenced, input or output. Examples of 

objects produced in this phase are FIELDS, FILES, RULES details, 

and so on. Software Construction involves adding details to the 

software for compiling at the source level. Actual code is 

generated only during the application's run-time. Reusable 

objects need merely retrieve software construction details from 

the repository while objects that have to be written from scratch 

will require much more labor. Thus, the NEW-OBJECT-PERCENT will 

affect DEVELOPMENT-EFFORT-INPUT very significantly in this phase. 

(We are currently studying what the relevant object outputs will 

be for the Testing/Implementation and Maintenance/Enhancement 

phases. ) 

To sum up our argument, repository-based objects can act as 

distinct and identifiable units of work from each life cycle 

phase of CASE development. The total number, complexity or size, 

and origin (reused versus written from scratch) of objects can be 

used to measure SOFTWARE-SIZE-OUTPUT from each phase. As 

explained earlier, the NEW-OBJECT-PERCENT cost driver, dependent 

on the same unit of work as SOFTWARE-SIZE-OUTPUT, can also be 

distinctly measured USING object-based metrics for each phase. 

 his equips us with productivity metrics to track the life cycle 
trajectory of CASE developed projects. 

3.3. Implementing Object-Based Trajectory Metrics 

In an exploratory study conducted earlierc6) we empirically tested 

the proposal for object-based trajectory metrics for the 

construction phase of the CASE life cycle. Data were obtained on 

software projects developed and produced with a multi-million 

dollar ICASE tool built by a large investment bank in New York 

city. The objective of the study was to evaluate the performance 

of an object-based metric for the 'Software Constructiong phase, 

Performance of the metric was judged on the basis of its ability 

to: 
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(i) measure the cost driver SOFTWARE-SIZE-OUTPUT, and 

(ii) estimate the DEVELOPMENT-LABOR-INPUT for project delivery. 

Each project was manually counted for the number of construction 

phase objects in the final delivered software. The sum of the 

instances of all object types used for application development in 

the construction phase was defined as the first object-based 

metric for this phase. We called this metric OBJECT-COUNTS. A 

second metric was defined as the effort-weighted sum of the 

instances of all object types used in the construction phase. 

The weighting with effort accounts for different amounts of labor 

required to develop each object type for inclusion in the code 

for the software project. This metric was called OBJECT-POINTS. 

OBJECT COUNTSconstructlonPhase = OBJECT- I N S T W C E S ,  
t 

OBJECT- POINTSCO,,,,,,,ionPhase = OBJECT-EFFORT- WEIGHTt * OBJECT- I N S T W C E S ,  
t 

where 

t - - object t y p e s  used  t o  create 

a p p l i c a t i o n  i n  the S o f t w a r e  

C o n s t r u c t i o n  phase; 

OBJECT- INSTANCES, - - t o t a l  number o f  instances o f  object 

t ype  t i n  an a p p l i c a t i o n ;  

OBJECT-EFFORT-WEIGHT, - - average deve lopment  e f f o r t  

a s s o c i a t e d  w i t h  the construction o f  

object t y p e  t;  

Table 4 presents correlations between the two object-based 

metrics defined above and FUNCTION-POINTS. FUNCTION-POINTS is a 

metric for the size or functionality of the output delivered by a 

software project to the end user(3). We utilize it as a metric 
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for SOFTWARE-SIZE-OUTPUT. Its ability to estimate DEVELOPMENT- 

EFFORT-INPUT has also been investigated and implemented. The 

FUNCTION-POINT procedure requires counting the occurrence of five 

function types (Inputs, Outputs, Logical Files, External 

Interfaces and Queries; for details of the FUNCTION-POINTS 

procedure, see (15). These units of software work output refer 

to the aggregate product delivered; they are not geared towards 

identifying the output in each phase. Thus, as currently 

defined, FUNCTION-POINTS cannot be used to implement the l i f e  

c y c l e  t r a j e c t o r y  measurement approach to controlling 

productivity. 

In the exploratory study, we viewed obtaining high correlations 

between FUNCTION-POINTS metric and the object-based metrics being 

tested as indicators of the validity of the new metrics. Such 

convergent  v a l i d i t y  with the well-established and well-validated 

FUNCTION-POINTS metric provides preliminary evidence that the 

object-based metrics are measures of the same construct that 

FUNCTION-POINTS purports to measure, i.e., the size and 

functionality of delivered software as given by SOFTWARE-SIZE- 

OUTPUTcmmtimfi,,. As Table 4 indicates, the OBJECT-COUNT and 

OBJECT-POINT metrics were highly correlated with FUNCTION-POINTS. 

OBJECT-COUNTS had a correlation of 0.89 and OBJECT-POINTS had a 

correlation of 0.86 with FUNCTION-POINTS. 

The estimation capability of the object-based metrics was 

assessed by evaluating their performance in an estimation model 

to accurately predict the DEVELOPMENT-EFFORT-INPUT that will be 

consumed for developing a project in the construction phase. Two 

separate regression models were estimated to predict development 

effort (the dependent variable) in terms of the output metrics, 

FUNCTION-POINTS, OBJECT-COUNTS and OBJECT-POINTS (one of these 

occured as the independent variable in each model). Results of 

the regression indicate the extent to which the object-based 
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metric is able to explain the variance in DEVELOPMENT-EFFORT- 

INPUT. The results shown in Table 4 reveal an R~ comparable to 

the FUNCTION-POINTS metric ( 0.70 and 0.73 for OBJECT-COUNTS and 

OBJECT-POINTS respectively, compared to 0.75 for FUNCTION- 

POINTS) . 

The above research results suggest the viability of the object- 

based metrics. The two metrics tested, OBJECT-COUNTS and OBJECT- 

POINTS, performed well as measures for SOFTWARE-SIZE-OUTPUT from 

the Software Construction phase. They also successfully 

predicted the total DEVELOPMENT-EFFORT-INPUT required for 

delivering the completed projects. It remains to test their 

predictive capability for DEVELOPMENT-EFFORT-INPUT in the 

Software Construction phase alone. Research is also under way to 

further define and test object-based metrics for the remaining 

phases of the CASE life cycle. This is required before the life 

cycle trajectory measurement approach can be more fully 

implemented. 

4 .  CONCLUSION 

In view of the large costs of software, systems for controlling 

software development should be designed to more closely support 

the operations and the strategy of the organization. The 

technology necessary to implement the approach to software 

development monitoring and control that we advocate is different 

from what exists in manual software development shops currently. 

But today, CASE makes implementing our vision of software 

development tracking increasingly possible. 

4.1. Research Contribution 

The paper has described a conceptual framework for the 

development of managerially relevant procedures to enhance 

software control with life cycle trajectory metrics. We also 

suggested that automating software control is appropriate and 
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feasible in CASE environments, and that this changes the basic 

cost-benefit relationship that exists for software project 

performance tracking. The low cost of measurement made possible 

through automated analysis and the availability of repository- 

based objects as distinct, identifiable units of development work 

from each life cycle phase combine to make integrated CASE 

environments an ideal testbed for research. 

Our approach to implementing dynamic control measures forms the 

first step in a broader attack on CASE project planning and 

project management methods. Control of software development 

activities in each phase will support project management 

activities from the earliest phases of the software life cycle. 

Tasks such as scheduling, identifying staff requirements, and 

performing resource planning can be performed on a phase-by-phase 

basis rather than a project-by-project basis. Moreover, these 

plans can be revised dynamically as the actual development 

performance of a phase becomes known. Such an approach will 

allow more powerful project planning which can more readily adapt 

to unanticipated changes in performance or parameters. 

4.2. Research Agenda 

Our proposals for dynamic trajectory measures open up several new 

lines research inquiry for the future. 

[I] Empirical evidence to identify relevant cost drivers for 
CASE development environments would provide valuable 
insights into the nature of the cost drivers and the metrics 
required to track them. 

[2] Research to validate and specify object outputs as measures 
of work from each of the different phases is needed to 
provide a rigorous, empirical basis for justifying the 
implementation of our cost control framework for CASE 
development. 

[3] Another important extension within our productivity control 
framework would be to study and compare the estimation 
accuracy and ease of existing and proposed measurement 
approaches. Our work on OBJECT-POINTS represented an initial 
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a step in this direction. 

We are now involved in investigating the estimation performance 

of object-based trajectory metrics for phases other than Software 

construction. This should result in an integrated cost 

accounting system for CASE performance tracking which makes use 

of the features of this development environment. This opens up 

the opportunity for software production to be integrated with 

strategy formulation to enable a firm to minimize its strategic 

software costs. 
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Figure 1. Labor Consumption Trajectories for Two Software 
Development Projects of Similar Size 

Labor Consumed 
-- Additional Labor 

,. Consumed by Project A 
in FD and TD Phases 

-- Additional Labor 
Consumed by Project B 

The Labor in SC Phase only 
Consumption -- Labor Consumed by Both 

Software 
Development 

> Life Cycle 
S P B A FD TD SC TI ME Phases 

Assumptions: Project size in function points and total labor equal 
for A and B. 

KEY: SP -- Strategic Planning 
BA -- Business Analysis 
FD -- Functional Design 
TD -- Technical Design 
SC -- Software Construction 
TI -- Testing and Implementation 
ME -- Maintenance and Enhancement 
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Figure 2. Successive Predictability and Accuracy of Costs 

Variability of 
Cost Measures 
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m y :  SP -- Strategic Planning 
BA -- Business Analysis 
FD -- Functional Design 
TD -- Technical Design 
SC -- Software Construction 
TI -- Testing and Implementation 
ME -- Maintenance and Enhancement 
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Table 1: Factors Responsible For Inefficient Software 
Development 

Customized application development practices which redevelop from 
scratch the fundamental procedures and processes that are common across 
applications or business units in an organization. 

Outdated and error-prone development methodologies that postpone effort 
to the back end of software development life cycle when the software is 
coded and implemented; this results in significant additional hidden costs 
of maintenance. 

Increased complexity, size and scope of the functionality to be 
incorporated into software for meeting user needs in the competitive 
environment of a firm's business. 

The labor-intensive nature of software development, which renders 
software quality and productivity very vulnerable to the skills of the 
personnel used for development. 

A growth rate in user needs for IT applications that exceeds the growth 
rate of the supply of experienced and well-trained development staff. 
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Table 2. CASE Technology: Cost Impacts of Improved Efficiency and 
Effectiveness 
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MAJOR SOURCES 
OF CASE 
BENEFITS rE 
Productivity 
Gains 

Speed of 
Development 

Accuracy of 
Development 

Methodological 
Consistency 
of Development 

Traceability of 
development 
operations 

Higher 
Functionality 
of Software 
Product 

Less onerous 
technical 
personnel 
training 
requirements 

Makes the 
maintenance 
phase 
manageable 

COST IMPACTS 

EFFICIENCY DIMENSION 

Reuse supports creation of 
larger amount of software 
for given level of labor 

Has potential to help 

EFFECTIVENESS DIMENSION 

Products of CASE development 
create a reusable software 
infrastructure for the firm, 
further lowering costs. 

Allows for flexible, timely 
reduce existing backlog I response to rapid changes 
of software projects 

Reduces debugging and 
maintenance costs by 
lowering error rates 

Provides management with 
new leverage to manage 
development labor 
efficiency across projects 

Enables efficient tracking 
and coordination of project 
activities documented 
on the computer 

Brings creation of very 
complex software within the 
bounds of routine project 
development practices 

Has potential to combat 
labor shortages, by 
reducing the knowledge- 
intensiveness of software 
development 

Maintenance costs are 
lowered by ensuring that 
code is highly modularized 
and well-documented with 
facilities of the CASE 
development environment 

in business goals 

Supports optimizing the 
functionality of software to 
meet business/user needs 

Permits management to make 
"optimizing" decisions about 
software labor deployment: 
software projects need labor 
with similar toolsets 

Enables continuous checking 
and feedback of project 
correspondence with initial 
business specifications 

Supports development of 
visionary projects w/ "blue 
sky" functionality, and also 
encourages innovative IT uses 

Ensures that delivered 
software is not a function of 
new programming team's 
preferences, but dependent on 
a more fundamental business 
analysis 

More careful monitoring of 
maintenance phase costs can 
help management to identify 
the optimal time to stop 
maintaining and rebuild from 
scratch to lower overall cost 



Table 3. Possible Object Metrics for the CASE Life Cycle 
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LIFE 
CYCLE 
PHASE 

Bus ines s  
A n a l y s i s  

Func- 
t i o n a l  

Tech- 
n i c h a l  

Design 

Sof tware  
Construc- 
t i o n  

~ e s t i n g /  
Implemen- 
t a t i o n  

Mainte- 
nance/ 

Enhance- 
ment 

POSSIBLE 
OBJECT 
METRICS 

E n t i t i e s ,  
Processes ,  
Re la t ion-  

s h i p s  

Rules , 
Windows, 
V i e w s  
Re la t ion-  

s h i p s  

F i e l d s ,  
F i l e s ,  
Rules 
( d e t a i l s )  

Objec ts  
b u i l t ,  

Ob jec t s  
reused  

Number of 
p l a t fo rms ,  

Number of  
o b j e c t s  

Number of  
r e v i s i o n s  
made t o  
o b j e c t s  

1 

ILLUSTRATIVE OBJECT HIERARCHY AM) COMMENTS 

APPLICATION 

Business  E n t i t y  #1 

I 
Business  Process  #1 

Rela t ionsh ip  

set B 

Re la t i onsh ip  

F i l e s  Referenced Rule Content  

Above h i e r a r c h y  must be  "naviga ted"  whi le  
query ing  f o r  o b j e c t s  i n s t a n t i a t e d  w i th  code and 
compris ing f u l l  f u n c t i o n a l i t y .  Also must query 
w i t h i n  and a c r o s s  p r o j e c t  h i e r a r c h i e s  t o  i d e n t i f y  
occur rence  of reused  o b j e c t s .  

Cur ren t ly  under  i n v e s t i g a t i o n .  

Cur ren t ly  under  i n v e s t i g a t i o n .  



Table 4: PERFORMANCE OF OBJECT BASED, CONSTRUCTION PHASE METRICS 
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VALUE OF 
R-SQUARED 

0.70 

0.73 

0 .75 

METRIC 

OB JECT-COUNTS 

OBJECT-POINTS 

FUNCTION-POINTS 

CORRELATION WITH 
FUNCTION-POINTS 

0.89 

0 .86 

- 
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