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On the Expressive Power of Infinite Temporal 
Databases 

Gabriel M. Kuper* Alexander ~uzhilini 

Abstract 

We discuss different techniques for representing infinite temporal data. There are 
two basic approaches: A procedural description, as used in production systems, and 
represented, in this paper, by a version of Datalog. The second approach is a more 
declarative method, using some form of temporal logic programming. We examine sev- 
eral versions of each approach, and compare their expressive power, i.e., what temporal 
data each formalism can capture. 

1 Introduction 

There has been a substantial amount of research done recently on studying finite temporal 

databases. A few representative examples of this work are [Ari86, CW83, CC87, Gad88, 

NA88, Sno87, Tan86I1. Most research in this area has assumed that all the temporal data 

is stored explicitly in the database. However, there have been some studies that try to 

extend finite temporal databases to support infinite time horizons [CI88, MT89, Ir(SW90, 

TK91, BNW911 and to support infinite sequences of database states [Via87, GT861. Since it 

is impossible to store infinitely many tuples in a database, there is clearly a nccd for some 

finite "encoding" of these tuples so that they can be actually stored in the database. 

There are several reasons why the study of infinite temporal databases is important. 

First, it is often difficult to set an a priori time limit on the time period over which a 

temporal database is defined [I<SW90]. Secondly, the data in the sequence may not be 

*IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY. 10598; e-mail: 
kuper@watson.ibrn.com 

tNew York University, Stern School of Business, Information Systems Department, 40 West 4th Street, 
Rm. 621, New York, NY 10003; e-mail: atuzhilin@stern.nyu.edu 

'This list is not exhaustive; for an overview of the area of time and databases see [SnoSO] and [TCG+]. 
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materialized yet, i.e. the data might be stored not in an explicit form but in the form of 

constraints [IiKRSO, KSWSO], as can be the case with future data in temporal databases 

[TK89]. Various mechanisms for materializing the data, such as production systems [BF1<86], 

temporal logic programs [AM89, Bau89, Gab89, BFG+89, TuzSl], linear repeating points 

[KSWSO], handle both finite and infinite data. A third reason for studying infinite temporal 

databases is that they lead to more compact and tractable representations than provided by 

existing methods for finite sequences. 

An important issue in studying infinite temporal databases is how to describe them in 

finite terms. There have been several methods presented in the literature for describing in- 

finite temporal databases. For example, [I<TS9] proposes the use of production systems aild 

recurrence equations, [TIi91] considers Predicate Transition Networks in addition to produc- 

tion systems and recurrence equations. Other proposals are linear repeating points [I<SbV90], 

temporal logic programming [BNW91], and logic programming with explicit references to 

time [CI88]. 

Among the various formalisms for defining infinite temporal databases, we are especially 

interested in temporal logic programming and in production systems. On one hand, temporal 

logic programming provides a declarative method to defining the semantics of infinite (and 

finite) temporal databases [Bau89]. On the other hand, production systems represent a 

practical knowledge representation method that has recently became widely used for the 

specification of active databases (for example,see [dMS88, MD89, WFSO, SJGPSO, GJ911). 

They can also be used for defining infinite temporal databases assuming that each recognize- 

act cycle generates a new state of a temporal database. We thus have two approaches, a 

declarative and a procedural method for defining infinite temporal databases. The purpose 

of this paper is to study the relationship between them. 

One of the most important measures for comparing the two approaches is their expres- 

sive power, i.e., what temporal databases can they represent. We ask whether or not there is 

an infinite temporal database generated by one of these methods that cannot be generated 

by the other method. Some problems of this nature were addressed in [KT89, TI<91] where 

expressive powers of production systems, recurrence equations and Predicate Transition Net- 

works were compared. Also, [BNW91] compared expressive powers of linear repeating points, 

Templog, and the formalism of Chomicki and Imielinski. 
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A key idea in our approach is that Datalog (with negation) can be viewed as an appro- 

priate mathematical abstraction of some aspects of production systems [dMS88]. In order to 

do this, we look at a Datalog program as specifying a sequence of states, namely the sequelice 

we obtain by applying all the rules in the program in parallel at each step. This contrasts 

with the more usual interpretation of Datalog, where we are only interested in the fixpoint 

of the rules. 

Of course, production systems also allow deletion of facts, whereas Datalog does not. 

However, [AV89] has recently proposed a language called "doubly negated" Datalog, i.e., 

Datalog'" in which negations are allowed both in the body and in the head of a rule. In this 

language, a negation in the head corresponds to a deletion of a fact. 

This is the general problem we are interested in: What is the relation between declarative 

temporal logic programming languages and doubly negated Datalog. In this paper, as an 

initial approach to this problem, we study the relative expressive power of negated Datalog 

and the temporal programming language Templog [AM89, BauS91. 

The rest of the paper is organized as follows. In Section 2, we overview the language 

Templog and define a new meaning of Datalog and Datalog' programs. In Section 3, we 

define the concepts of bounded and unbounded simulations of one program by another and 

of relative expressive powers of different formalisms. We compare expressive powers of Dat- 

alog and Templog formalisms for unbounded simulations in Section 4 and for the bounded 

simulations in Section 5. 

2 Preliminaries 

2.1 Overview of Ternplog 

The temporal logic programming language Templog is described in [AMS9]. To make the 

paper self-contained, we review the key points in this section. 

Templog is based on a clausal subset of first-order temporal logic with a discrete lin- 

ear model of time extending infinitely into the future but not into the past. The temporal 

operators used in Templog are next o, necessity (always) o, and possibility (eventually, sorne- 

t imes) o. 
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The syntax of Templog is defined as follows [Bau89], where A denotes an atom, and N 

a next -a tom ( i s . ,  an atom preceded by a finite number of 0's). 

Body: B ::= E ~ A ~ B ~ B ~ ~  o B l o B  

where E denotes the empty body 

Initial clause: I C  ::= N t Blo N c- B 

Permanent clause: PC ::= o ( N  t- B) 

Program clause: C ::= ICIPC 

Example 1 The following example is the modification of the "backup" example from [AM89]. 

Assume that we maintain various computer systems on a weekly basis. But before maintain- 

ing them, we do backups. Let predicate rnaintenance(x) specify that the system z should 

be maintained (at some time), and backup(x) specify that the system x should be backed up 

(also at  some time). Then the Templog program 

says that the maintenance is performed on the weekly basis and that a system is backed up 

before it is maintained. 

The semantics of a Templog program P is defined in terms of its least temporal Herbrand 

model [Bau89]. The temporal Herbrand base of P is the set of all the ground next-atoms 

(i.e. ground atoms preceded by a finite number of the next operators o)  constructed from 

the predicates of the program P and the ground terms of the Herbrand universe. A temporal 

Herbrand model of P is a subset of the temporal Herbrand base that makes all the formulas 

in P true at all moments of time. 

An alternative way of defining the semantics of a Templog program is in terms of the 

fixpoint of the mapping Tp [Bau89]. TO do this, let a strictly ground instance (SGI) of 

a clause C be a clause obtained from C by replacing its o and CI operators by arbitrasy 

next-atoms and by replacing variables in C by arbitrary constants (thus making the clause 

ground). Then 

Tp(I) = {N I N C- Nl , .  . . , N, is an SGI of a clause in P and {Nl,. . . ,N,) E I )  
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Baudinet [Bau89] shows that the fispoint semantics coincides with the least temporal Her- 

brand model semantics. 

In order to bring Templog to the database domain, we make a few additional assump- 

tions. First of all, we assume that Templog has no function symbols. Secondly, we separate 

facts from rules. This is similar to the way that facts (EDB predicates) are separated from 

rules (that compute IDB predicates) in Datalog programs. Our third assumption states that 

all the facts are specified only at the initial moment of time. This assumption is needed in 

order to bring Templog closer to Datalog and to production systems, since in these la,nguages 

all the facts are specified at the initial stage of the computation. Finally, we do not allow 

Templog programs to contain initial clauses, i.e., a Templog program is divided into facts 

that are true at time 0 and rules that hold at all the moments of time. If no confusion arises, 

we will also omit the necessity operator n in front of permanent rules implicitly assuming 

that it is there. 

These assumptions imply that the only facts allowed in Templog clauses have the form 

p t-, where p are grouiid atoms. These facts form the temporal EDB predicates. 

There are two types of monotonicity that can be applicable to Templog programs: they 

can be monotone in the EDB predicates, or monotone in tirne. Formally, 

Definition 2.1 A program P is monotone in the EDB predicates if E B B 1  C E D B z  implies 

that the least model of P applied to EDB1 is contained in the least model of P applied to 

EDB2.  

Definition 2.2 A program P is temporally monotone if the least model of P at time k is 

contained in the least model of P at time k + 1,  for all EDB instances. 

It is easy to see that every Templog program is monotone in EDB predicates. On the 

other hand, not all Templog programs are temporally monotone. For esample, consider the 

program consisting of the single fact p t-. Predicate p is clearly true at time 0 but not at 

tirne 1. 
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2.2 Semantics of Datalog and Datalog' Programs 

Let P be a Datalog program and let E be a set of EDB predicates. Consider the sequence of 

database states Do, Dl, . . . , D,, . . . , where D;+l = EVAL(D;) and Do = E.  The mapping 

EVAL computes new facts from the facts in D; by applying all the Datalog rules in P 

simultaneously2. 

Traditionally, the meaning of Datalog program is associated with the least fixpoint of 

the mapping EVAL, i.e., with the first value D; in the sequence above for which D; = 

Di+l [U1188]. Similarly, the meaning of a Datalog' program under inflationary semantics 

[AV88b, KP881, is defined as the fixpoint of the mapping 

As we explained above, we shall be interested in the sequence Do, Dl , .  . . , D,, . . ., rather 

than just its fixpoint in this paper. Furthermore, this sequeilce will be obtained with equa- 

tion (1) for Datalog' programs. 

Sirnulat ions 

So far, we have described two general approaches to defining semantics of infinite tempo- 

ral databases, as fixpoints of Ternplog programs, and as sequences of states generated by 

Datalog. The next question we address is how to compare their expressive power. 

Consider a Datalog program PD. We could define a Templog program PT by replacing 

each rule CY +- /? in PD by the rule o a +- /3 and adding the rule o p t- p for each predicate 

p in Po. It follows immediately that the trajectory of database states generated by PD is 

equal to the trajectory corresponding to the least model of PT, for all values of the EDB 

predicates. 

This motivates the concept of exact simulation of one program by another. Let P be 

a program (either some variant of Datalog or Templog) and let E be the initial values of 

the EDB predicates, at time t = 0. Program P then generates the trajectory P(E) in the 

manner described in Section 2. We use P;(E) to denote the i-th state in this trajectory. 

Exact simulation is then defined as follows. 

2For precise definition of EVAL see [U1188, p. 1151 
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Definition 3.1 Program P exactly simulates program P' if for any initial instance of EDB 

predicates E, trajectories P(E) and P1(E) coincide. 

"Exactly simulates" is, clearly, a commutative relationship, i.e. if P exactly siliiulates 

PI then P' exactly simulates P. If two programs exactly simulate each other then they 

are isomorphic in terms of trajectories they generate. The concept of exact simulation was 

defined and studied in [I<T89, TI<91], but for our purposes it can be too restrictive. Consider 

the following example. 

Exarnple 2 Let P be the Templog program 

~ ( x , Y ) c - P ( x , Y )  
4(x, Y ) + o ~ ( x ,  Y)  
d x l  z)C-q(x, 9) A q(y, 2) 

with the EDB predicate p and the IDB predicates q and r .  The Datalog program P' 

(with two auxiliary predicates p' and p" that are not part of the trajectory) does not sirn~llate 

P exactly. This is because only the second step in the trajectory of P' matches the initial 

zero step in the trajectory of P. 

However, Pi is "close enough" to P, in the sense that any trajectory generated by P 

contains a subtrajectory generated by P'. Furthermore, this subtrajectory has the property 

that any of its two consecutive steps are no more than two places apart in the trajectory of 

P (steps 0 and 1 in P correspond to steps 0 and 2 in P', and all other adjacent steps in P 

are also adjacent in PI). 

This motivates the following definitions. 

Definition 3.2 Program P unboundedly simulates program P' if for any initial instance of 

EDB predicates E, the trajectory P i (E )  forms a subtrajectory of P ( E ) .  
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In Example 2, program P' unboundedly simulates program P. In this case, however, we 

can make a stronger statement about the relationship between the two programs. We first 

need some preliminary definitions. 

We say that  a trajectory T R  is n-congruent to a trajectory TR' if T R  is a subsequence 

of TR' and for all steps i ,  TR; and TR;+l are never more than n steps apart in TR'. This 

means that any two subsequent steps in T R  cannot be arbitrarily far away in TR'. 

Definition 3.3 Program P boundedly simulates program P' if there is a number n such 

that for any initial instance of EDB predicates E ,  the trajectory P t ( E )  is n-congruent to the 

trajectory P (E) .  

The program P' in Example 2 is an example of a program that boundedly simula,t,es the 

program P. Furthermore, the value of constant n in Definition 3.3 in this case is iz = 2. 

If program P boundedly simulates program P' then P simulates P' unboundedly. Also, 

if program P simulates program P' exactly then P simulates P' boundedly. Exact simulation 

is the strongest type of simulation, while unbounded simulation is the weakest, with bounded 

simulation in between. 

We can now formally define our goal of comparing the expressive power of two different 

formalisms. Let F and F be two formalisms (variants of Datalog or Templog). 

Definition 3.4 We say that F has at least the same expressive power as F' (denoted as 

.F C') if any program P' from F' can be simulated with some program P from 3 .  If 3 '  

has strictly more expressive power than F we denote it as .F C F'. 

There are three different types of simulation, and therefore three different ways to 

compare the expressive power of the languages. In Section 4 we look at  unbounded simulation 

and in Section 5 we loolc at  bounded simulation. Exact simulation is too restrictive to be of 

much interest, and so we do not discuss it further. 
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4 Expressive Power of Datalog and Templog for Un- 
bounded Simulations 

Throughout this section we will use the term "simulation" to refer to unbounded simulation. 

To begin, we show that Templog is strictly more expressive than Datalog. 

Proposition 4.1 Datalog C Templog 

Proof: The inclusion follows from our description in Section 3 of how a Datalog program can 

be simulated with a Templog program. The fact that the inclusion is proper follo~vs from 

the fact that any Datalog trajectory is temporally monotone, whereas there are Templog 

programs that are not. I 

Since Inflationary Datalog' is temporally monotone, it follows by the same arguli~ent 

that there are Templog programs that cannot be simulated even by Inflatioiiary Datalog'. 

These results follow from the fact that Templog, like doubly negated Datalog, allows 

"deletion", i.e., it allows facts to be true at  some point of time, and false later. Since, for the 

purposes of this paper, we are focusing our attention on Datalog (with negation), we shall 

look at Ternplog programs that are restricted to be temporally monotone. We can do this 

by considering only Templog programs that contain the rule o p t- p, for every predicate in 

the program. We call this restriction of Teinplog M o ~ z o t o n e  Templog, or MTemplog. 

Definition 4.2 A A4Templog program P is a Templog program with the  property tha t ,  for  

each predicate p in P ,  P contains the  rule 

We shall now show that Datalog is properly contained even in the restricted version of 

Templog. 

Theorein 4.3 

Datalog C A4Templog 

9 
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Proof: The containment follows immediately from the fact that the simulation in Section 3 

describes a monotone Templog program. To show that the containment is proper, consider 

the following MTemplog program P, with EDB p, and IDB q, r and s. 

The tra<jectory described by P is as follows3 

Assume that P' is a Datalog program that simulates P .  Consider the computation of P' 

on some fixed nonempty EDB E .  By the definition of unbounded simulation, there liiust be 

time 
0 
1 
2 

some point 1 in the ~omputa~tion that corresponds to the result of P at time 2. This rneans 

that in Pf(E),  r = s = TC(p). 

q r s 

TC(p) 0 0 
TC(p) TC(p) 0 
TC(p> TC(p) TC(p) 

Since transitive closure cannot be expressed in first-order logic [AU79] and since bounded 

queries can be expressed in first-order terms [Cos89], this means that transitive closure is 

unbounded. Therefore, there must be some EDB E' for which the computation of q = TC(p)  

takes m > 1 steps. By renaming of the elements of p, we may assume that E and E' have 

no elements in common, and therefore if we merge the contents of p in E and El, we get a 

new EDB El' for which (a) the computation of q = TC(p) takes rn > I steps, and (b) E" is 

a superset of the value of p in E .  

However, a simple induction shows for all i, P;'(E) is monotone in E, and tlierefore, 

whenever i 2 1, the value of s in P;(E1') is nonempty. 

On the other hand, because P' simulates P, there must be some i for which P(E1') = 

P;'(E1'). Since the value of q at this point is equal to TC(p), it follows that i 2 m > I .  But 

the value of s at this point must be empty, a contradiction. II 

The next question we want to address is the relationship between Datalog'and MTem- 

plog. This is a much harder problem, whose difficulty comes from the fact that a Datalog' 

3TC(p) is the transitive closure of p. 
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program generates a trajectory of its states in one forward movement in time, whereas (in- 

tuitively) a MTemplog program generates a trajectory as a result of multiple forward and 

backward movements. This would happen if, for example, a MTe~nplog program contained 

clauses of the form o p  t- q and q t- op.  Therefore, the challenge is to simulate multiple 

forward and backward movements of an MTemplog program with a single forward movement 

of a Datalog' program. 

In this paper, we prove a partial result in this direction: We show that Datalog' with 

counters is strictly more expressive than MTemplog. Following Chomicki [CISS], we consider 

a 2-sorted first order logic, the domain of the second sort consisting of natural numbers with 

the total order imposed on them and with the successor function defined for that sort. At 

most one parameter in a predicate call belong to this sort. Datalog' programs defined over 

this logic will be called Datalogy programs with counters. We start the proof of tlie result 

with a technical lemma. 

Let P be a Datalog, Datalog', or MTemplog program. Note that in all the three cases, 

program P is temporally monotone. Therefore, for each choice of EDB predicates E, there 

is some time t for which Pt(E) = Pt+l ( E ) .  The mapping from E to Pt(E) ,  denoted by F ( P )  

(for fixpoint), is the standard definition of the meaning of a Datalog or Datalog' program. 

Note, however, that the definition above enables us to talk about the fixpoint of a MTemplog 

program, which we will call the IDB fixpoint to distinguish it from the fixpoint defined in 

Section 2.1. 

There is in fact a simple relation between the fixpoint of Datalog and MTemplog pro- 

grams. Let P be a MTemplog program, and let P' be the Datalog program obtained from P 

by deleting all the temporal operators from P. It is easy to see that tlie two programs have 

the same fixpoint, i.e., 

Using this lemma, we can show: 

Theorem 4.5 For any MTemplog program P there exists a Datalog-' program with counters 

that unboundedly simulates P .  
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Proof. As shown by Baudinet [Bau89], Templog is equivalent to its fragment TL1 that allows 

only the next temporal operator in its rules (except the case when the necessity operator 

makes a rule permanent). We can therefore, without loss of generality, restrict our attention 

to TL1 programs that have atoms optionally preceded by at most one next operator. Let P 

be a TL1 program. We construct a program P"' in Datalog' with counters that silnulates 

P. 

The first step is to construct an intermediate Datalog' program P'. P' is obtained 

from P by replacing each Templog rule q t p in P with the Datalog' rule q' t p'. This 

rule is obtained from the rule q t- p by replacing each atom A(xl,.  . . , x,) in P by the 

two-sorted predicate A1(xl, . . . , x,, t) and by replacing each next-atom o A(xl, . . . , x,) by 

A1(sl,. . . , x,, t + 1). In these predicates t is a variable over the separate sort "time". 

We next construct the program PI' by adding rules to  P' to detect the IDB fixpoint 

of P'. The idea here is that PI' detects the IDB fixpoint of program P' and computes the 

values of all of its predicates A:(xl,. . . , x,,t) for the finite set of values t before the IDB 

fixpoint of P' is reached. 

We now describe the construction of PI'. As an initial step, replace prograin P with tlie 

program P* obtained from P by removing all the temporal operators from its rules as was 

done in Lemma 4.4. Then P* is a Datalog program with fixpoint {AT, A;, . . . ,A;), where 

Af is an IDB predicate in P*. By Lemma 4.4, this fixpoint is equal to the IDB fixpoint of 

P. 

We next construct P" from PI and P* as follows. First, compute the fixpoint of P" 

and detect when this computation has terminated using tlie technique from [AVSSa]. For 

each predicate A; in P*, maintain the predicate previous-unless-lust; that trails A; by 

one step and is equal to A; until the time the fixpoint of P" is reached. At that time, 

previous-unless-last; differs from A;. The difference between the two predicates at the last 

moment is the point when the fixpoint of P* has been reached. 

After the fixpoint of P* is computed, start execution of P' (its execution can be held off 

until the fixpoint of P* is reached with a "trigger" that becomes true at  that time). At each 

computation step of P' check if there exists t such that tlie predicates A: at that Lillie are 

equal to predicates Af, i.e., for all i taken over the IDB predicates of P and for all X I , .  . . , x,, 

A:(xl,. . . , x,, t )  * Af(x1,. . . , x,). If such t exists, then it means that the IDB fixpoint of P' 
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is reached. Set a flag FP to be true at that time. The rules that implement all the actions 

described above form the program P". 

Finally, the program P"' that simulates P is constructed from P" by introducing an 

additional predicate C(t) and adding the following rules: 

for each IDB predicate Ai in P". The reason that P"' unboundedly simulates progra,nl P is 

that the trajectories of P and P"' coincide from the first time point when C(0) is true. I 

We next show that the converse is false: There are Datalog' programs (even witl~out 

counters) that cannot be simulated in Templog. 

Theorem 4.6 There are Datalog' programs that cannot be simulated in MTemplog. 

Proof: This theorem follows from Lemma 4.4 and from the fact that inflationary Datalog' 

queries have the expressive power of fixpoints [AVSSb, KPSS], and, therefore are more expres- 

sive than Datalog queries. We are interested in trajectories, rather than fixpoints. However, 

if there is a Datalog' program whose fixpoilit cannot be computed by a Templog program, 

then clearly its trajectory cannot be simulated either. I 

Corollary 4.7 MTemplog c Datalog' (with counters) 

Proof: The inclusion follows from Theorem 4.5, and the proper inclusion from Theorem 4.6. 

I 

We proved the result for Datalog' programs with counters. The question whether 

MTemplog programs can be unboundedly simulated by Datalog' programs without counters 

is still open. 

This completes our results on unbounded simulation. We showed that Datalog' aiid 

Templog programs are incomparable under unbounded simulations. We also showed that 

Datalog programs are strictly less expressive than MTemplog programs aiid that MTernplog 

programs are strictly less expressive than Datalog' programs with counters. 
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5 Expressive Power of Datalog and Templog for Bounded 
Simulations 

We now turn our attention to bounded simulation. Since bounded simulation implies u11- 

bounded simulation, this means that the negative results from Section 4 carry over to 

bounded simulations. In particular, Datalog' and Templog classes of programs are incom- 

parable for the bounded simulations as well. Furthermore, Theorem 4.3 still holds. 

In contrast to the unbounded case, we show that there are MTemplog programs t1-ra.t 

cannot be boundedly simulated by any Datalog' program. 

We use the notion of a bounded Datalog program.* A query q on a Datalog' program 

P is bounded [Cost391 if there is a constant bound oil the number of iterations it takes to 

compute the fixpoint of q ,  and this bound is independent of the EDB predicates in P. A 

query q on a Datalog (or Datalog') program P is first-order expressible if tliere is a first-order 

formula defined on EDB predicates of P that computes the same answer as the fixpoint of 

q for all the values of the EDB predicates of P. 

We first need two preliminary lemmas. The first extends the result due to Cosmadakis 

[Cost391 that every bounded Datalog query is first-order expressible to Datalog' queries. The 

proof uses a similar argument to [Cos89]. 

Lemma 5.1 Every bounded Datalog' query is first-order expressible. 

The second lemma is due to Ajtai and Gurevich [AG89] 

Lemma 5.2 [Ajtai & Gurevich] Every first-order expressible L2atalog query is bounded, 

We can now show: 

Theorem 5.3 There is an AdTernplog program that cannot be boundedly simulated with any 

Datalog' program. 

Proof: Consider the following Templog program P (together with the monotonicity rules 

required by the definition of MTemplog): 

4This has no relation with bounded simulation. 
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Assume that P' is a Datalog' program that boundedly simulates P. The definition of 

bounded simulation implies that the predicate r ,  considered as a Datalog' query, is bounded. 

Lemma 5.1 then implies that r is first-order expressible. As a Datalog' query, r coinputes 

the transitive closure of q. Since q, as a Datalog query, is unbounded, q is not first-order 

expressible (Lemma 5.2) and hence neither is r ,  a contradiction. I 

The intuitive reason why Theorem 5.3 holds is because the trajectory of a MTemplog 

program is obtained by moving forward and backward in time, and there is no a priori bound 

on the number of times we must do this to reach the fixpoint. Theorem 5.3 says that there 

is no way to sirnulate this in a bounded number of steps by a Datalog' program. 

6 Conclusions and Future Work 

We have compared the expressive power of two families of languages, those based on Tem- 

plog and on Datalog in terms of trajectories these formalisms can generate. For unbounded 

simulations, we showed that Datalog' and Templog programs are incomparable, that Dat- 

alog programs are strictly less expressive than MTemplog programs, and that MTemplog 

programs are strictly less expressive than Dat alog' programs with counters. 

For bounded simulations, Datalog programs can be simulated with MTernplog programs, 

but some MTemplog programs cannot be boundedly simulated with Datalog' programs. 

The question whether MTemplog programs can be unboundedly simulated in Datalog' re- 

mains open. Future work includes extending our results to languages with deletion, such as 

Datalog1* and full Templog. 
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