
ON THE EXPRESSIVE POWER
OF INFINITE TEMPORAL DATABASES

Gabriel M. Kuper
IBM T.J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

and

Alex Tuzhilin
New York University

Leonard N. Stern School of Business
Information Systems Department

40 West 4th Street, Tisch Hall Rm. 621
New York, NY 10003

April 1992

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Working Paper Series

STERN IS-92-16

This paper also appears as IBM Technical Report RC17881.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-16

On the Expressive Power of Infinite Temporal
Databases

Gabriel M. Kuper* Alexander ~uzhilini

Abstract

We discuss different techniques for representing infinite temporal data. There are
two basic approaches: A procedural description, as used in production systems, and
represented, in this paper, by a version of Datalog. The second approach is a more
declarative method, using some form of temporal logic programming. We examine sev-
eral versions of each approach, and compare their expressive power, i.e., what temporal
data each formalism can capture.

1 Introduction

There has been a substantial amount of research done recently on studying finite temporal

databases. A few representative examples of this work are [Ari86, CW83, CC87, Gad88,

NA88, Sno87, Tan86I1. Most research in this area has assumed that all the temporal data

is stored explicitly in the database. However, there have been some studies that try to

extend finite temporal databases to support infinite time horizons [CI88, MT89, Ir(SW90,

TK91, BNW911 and to support infinite sequences of database states [Via87, GT861. Since it

is impossible to store infinitely many tuples in a database, there is clearly a nccd for some

finite "encoding" of these tuples so that they can be actually stored in the database.

There are several reasons why the study of infinite temporal databases is important.

First, it is often difficult to set an a priori time limit on the time period over which a

temporal database is defined [I<SW90]. Secondly, the data in the sequence may not be

*IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY. 10598; e-mail:
kuper@watson.ibrn.com

tNew York University, Stern School of Business, Information Systems Department, 40 West 4th Street,
Rm. 621, New York, NY 10003; e-mail: atuzhilin@stern.nyu.edu

'This list is not exhaustive; for an overview of the area of time and databases see [SnoSO] and [TCG+].

Center for Digital Economy Research
Stem School of Business
Working Paper IS-92-16

materialized yet, i.e. the data might be stored not in an explicit form but in the form of

constraints [IiKRSO, KSWSO], as can be the case with future data in temporal databases

[TK89]. Various mechanisms for materializing the data, such as production systems [BF1<86],

temporal logic programs [AM89, Bau89, Gab89, BFG+89, TuzSl], linear repeating points

[KSWSO], handle both finite and infinite data. A third reason for studying infinite temporal

databases is that they lead to more compact and tractable representations than provided by

existing methods for finite sequences.

An important issue in studying infinite temporal databases is how to describe them in

finite terms. There have been several methods presented in the literature for describing in-

finite temporal databases. For example, [I<TS9] proposes the use of production systems aild

recurrence equations, [TIi91] considers Predicate Transition Networks in addition to produc-

tion systems and recurrence equations. Other proposals are linear repeating points [I<SbV90],

temporal logic programming [BNW91], and logic programming with explicit references to

time [CI88].

Among the various formalisms for defining infinite temporal databases, we are especially

interested in temporal logic programming and in production systems. On one hand, temporal

logic programming provides a declarative method to defining the semantics of infinite (and

finite) temporal databases [Bau89]. On the other hand, production systems represent a

practical knowledge representation method that has recently became widely used for the

specification of active databases (for example,see [dMS88, MD89, WFSO, SJGPSO, GJ911).

They can also be used for defining infinite temporal databases assuming that each recognize-

act cycle generates a new state of a temporal database. We thus have two approaches, a

declarative and a procedural method for defining infinite temporal databases. The purpose

of this paper is to study the relationship between them.

One of the most important measures for comparing the two approaches is their expres-

sive power, i.e., what temporal databases can they represent. We ask whether or not there is

an infinite temporal database generated by one of these methods that cannot be generated

by the other method. Some problems of this nature were addressed in [KT89, TI<91] where

expressive powers of production systems, recurrence equations and Predicate Transition Net-

works were compared. Also, [BNW91] compared expressive powers of linear repeating points,

Templog, and the formalism of Chomicki and Imielinski.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-16

A key idea in our approach is that Datalog (with negation) can be viewed as an appro-

priate mathematical abstraction of some aspects of production systems [dMS88]. In order to

do this, we look at a Datalog program as specifying a sequence of states, namely the sequelice

we obtain by applying all the rules in the program in parallel at each step. This contrasts

with the more usual interpretation of Datalog, where we are only interested in the fixpoint

of the rules.

Of course, production systems also allow deletion of facts, whereas Datalog does not.

However, [AV89] has recently proposed a language called "doubly negated" Datalog, i.e.,

Datalog'" in which negations are allowed both in the body and in the head of a rule. In this

language, a negation in the head corresponds to a deletion of a fact.

This is the general problem we are interested in: What is the relation between declarative

temporal logic programming languages and doubly negated Datalog. In this paper, as an

initial approach to this problem, we study the relative expressive power of negated Datalog

and the temporal programming language Templog [AM89, BauS91.

The rest of the paper is organized as follows. In Section 2, we overview the language

Templog and define a new meaning of Datalog and Datalog' programs. In Section 3, we

define the concepts of bounded and unbounded simulations of one program by another and

of relative expressive powers of different formalisms. We compare expressive powers of Dat-

alog and Templog formalisms for unbounded simulations in Section 4 and for the bounded

simulations in Section 5.

2 Preliminaries

2.1 Overview of Ternplog

The temporal logic programming language Templog is described in [AMS9]. To make the

paper self-contained, we review the key points in this section.

Templog is based on a clausal subset of first-order temporal logic with a discrete lin-

ear model of time extending infinitely into the future but not into the past. The temporal

operators used in Templog are next o, necessity (always) o, and possibility (eventually, sorne-

t imes) o.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-16

The syntax of Templog is defined as follows [Bau89], where A denotes an atom, and N

a next -a tom (i s . , an atom preceded by a finite number of 0's).

Body: B ::= E ~ A ~ B ~ B ~ ~ o B l o B

where E denotes the empty body

Initial clause: I C ::= N t Blo N c- B

Permanent clause: PC ::= o (N t- B)

Program clause: C ::= ICIPC

Example 1 The following example is the modification of the "backup" example from [AM89].

Assume that we maintain various computer systems on a weekly basis. But before maintain-

ing them, we do backups. Let predicate rnaintenance(x) specify that the system z should

be maintained (at some time), and backup(x) specify that the system x should be backed up

(also at some time). Then the Templog program

says that the maintenance is performed on the weekly basis and that a system is backed up

before it is maintained.

The semantics of a Templog program P is defined in terms of its least temporal Herbrand

model [Bau89]. The temporal Herbrand base of P is the set of all the ground next-atoms

(i.e. ground atoms preceded by a finite number of the next operators o) constructed from

the predicates of the program P and the ground terms of the Herbrand universe. A temporal

Herbrand model of P is a subset of the temporal Herbrand base that makes all the formulas

in P true at all moments of time.

An alternative way of defining the semantics of a Templog program is in terms of the

fixpoint of the mapping Tp [Bau89]. TO do this, let a strictly ground instance (SGI) of

a clause C be a clause obtained from C by replacing its o and CI operators by arbitrasy

next-atoms and by replacing variables in C by arbitrary constants (thus making the clause

ground). Then

Tp(I) = {N I N C- Nl , . . . , N, is an SGI of a clause in P and {Nl,. . . ,N,) E I)

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-16

Baudinet [Bau89] shows that the fispoint semantics coincides with the least temporal Her-

brand model semantics.

In order to bring Templog to the database domain, we make a few additional assump-

tions. First of all, we assume that Templog has no function symbols. Secondly, we separate

facts from rules. This is similar to the way that facts (EDB predicates) are separated from

rules (that compute IDB predicates) in Datalog programs. Our third assumption states that

all the facts are specified only at the initial moment of time. This assumption is needed in

order to bring Templog closer to Datalog and to production systems, since in these la,nguages

all the facts are specified at the initial stage of the computation. Finally, we do not allow

Templog programs to contain initial clauses, i.e., a Templog program is divided into facts

that are true at time 0 and rules that hold at all the moments of time. If no confusion arises,

we will also omit the necessity operator n in front of permanent rules implicitly assuming

that it is there.

These assumptions imply that the only facts allowed in Templog clauses have the form

p t-, where p are grouiid atoms. These facts form the temporal EDB predicates.

There are two types of monotonicity that can be applicable to Templog programs: they

can be monotone in the EDB predicates, or monotone in tirne. Formally,

Definition 2.1 A program P is monotone in the EDB predicates if E B B 1 C E D B z implies

that the least model of P applied to EDB1 is contained in the least model of P applied to

EDB2.

Definition 2.2 A program P is temporally monotone if the least model of P at time k is

contained in the least model of P at time k + 1, for all EDB instances.

It is easy to see that every Templog program is monotone in EDB predicates. On the

other hand, not all Templog programs are temporally monotone. For esample, consider the

program consisting of the single fact p t-. Predicate p is clearly true at time 0 but not at

tirne 1.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-16

2.2 Semantics of Datalog and Datalog' Programs

Let P be a Datalog program and let E be a set of EDB predicates. Consider the sequence of

database states Do, Dl, . . . , D,, . . . , where D;+l = EVAL(D;) and Do = E. The mapping

EVAL computes new facts from the facts in D; by applying all the Datalog rules in P

simultaneously2.

Traditionally, the meaning of Datalog program is associated with the least fixpoint of

the mapping EVAL, i.e., with the first value D; in the sequence above for which D; =

Di+l [U1188]. Similarly, the meaning of a Datalog' program under inflationary semantics

[AV88b, KP881, is defined as the fixpoint of the mapping

As we explained above, we shall be interested in the sequence Do, Dl , . . . , D,, . . ., rather

than just its fixpoint in this paper. Furthermore, this sequeilce will be obtained with equa-

tion (1) for Datalog' programs.

Sirnulat ions

So far, we have described two general approaches to defining semantics of infinite tempo-

ral databases, as fixpoints of Ternplog programs, and as sequences of states generated by

Datalog. The next question we address is how to compare their expressive power.

Consider a Datalog program PD. We could define a Templog program PT by replacing

each rule CY +- /? in PD by the rule o a +- /3 and adding the rule o p t- p for each predicate

p in Po. It follows immediately that the trajectory of database states generated by PD is

equal to the trajectory corresponding to the least model of PT, for all values of the EDB

predicates.

This motivates the concept of exact simulation of one program by another. Let P be

a program (either some variant of Datalog or Templog) and let E be the initial values of

the EDB predicates, at time t = 0. Program P then generates the trajectory P(E) in the

manner described in Section 2. We use P;(E) to denote the i-th state in this trajectory.

Exact simulation is then defined as follows.

2For precise definition of EVAL see [U1188, p. 1151

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-16

Definition 3.1 Program P exactly simulates program P' if for any initial instance of EDB

predicates E, trajectories P(E) and P1(E) coincide.

"Exactly simulates" is, clearly, a commutative relationship, i.e. if P exactly siliiulates

PI then P' exactly simulates P. If two programs exactly simulate each other then they

are isomorphic in terms of trajectories they generate. The concept of exact simulation was

defined and studied in [I<T89, TI<91], but for our purposes it can be too restrictive. Consider

the following example.

Exarnple 2 Let P be the Templog program

~ (x , Y) c - P (x , Y)
4(x, Y) + o ~ (x , Y)
d x l z)C-q(x, 9) A q(y, 2)

with the EDB predicate p and the IDB predicates q and r . The Datalog program P'

(with two auxiliary predicates p' and p" that are not part of the trajectory) does not sirn~llate

P exactly. This is because only the second step in the trajectory of P' matches the initial

zero step in the trajectory of P.

However, Pi is "close enough" to P, in the sense that any trajectory generated by P

contains a subtrajectory generated by P'. Furthermore, this subtrajectory has the property

that any of its two consecutive steps are no more than two places apart in the trajectory of

P (steps 0 and 1 in P correspond to steps 0 and 2 in P', and all other adjacent steps in P

are also adjacent in PI).

This motivates the following definitions.

Definition 3.2 Program P unboundedly simulates program P' if for any initial instance of

EDB predicates E, the trajectory P i (E) forms a subtrajectory of P (E) .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-16

In Example 2, program P' unboundedly simulates program P. In this case, however, we

can make a stronger statement about the relationship between the two programs. We first

need some preliminary definitions.

We say that a trajectory T R is n-congruent to a trajectory TR' if T R is a subsequence

of TR' and for all steps i , TR; and TR;+l are never more than n steps apart in TR'. This

means that any two subsequent steps in T R cannot be arbitrarily far away in TR'.

Definition 3.3 Program P boundedly simulates program P' if there is a number n such

that for any initial instance of EDB predicates E , the trajectory P t (E) is n-congruent to the

trajectory P (E) .

The program P' in Example 2 is an example of a program that boundedly simula,t,es the

program P. Furthermore, the value of constant n in Definition 3.3 in this case is iz = 2.

If program P boundedly simulates program P' then P simulates P' unboundedly. Also,

if program P simulates program P' exactly then P simulates P' boundedly. Exact simulation

is the strongest type of simulation, while unbounded simulation is the weakest, with bounded

simulation in between.

We can now formally define our goal of comparing the expressive power of two different

formalisms. Let F and F be two formalisms (variants of Datalog or Templog).

Definition 3.4 We say that F has at least the same expressive power as F' (denoted as

.F C') if any program P' from F' can be simulated with some program P from 3 . If 3 '

has strictly more expressive power than F we denote it as .F C F'.

There are three different types of simulation, and therefore three different ways to

compare the expressive power of the languages. In Section 4 we look at unbounded simulation

and in Section 5 we loolc at bounded simulation. Exact simulation is too restrictive to be of

much interest, and so we do not discuss it further.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-16

4 Expressive Power of Datalog and Templog for Un-
bounded Simulations

Throughout this section we will use the term "simulation" to refer to unbounded simulation.

To begin, we show that Templog is strictly more expressive than Datalog.

Proposition 4.1 Datalog C Templog

Proof: The inclusion follows from our description in Section 3 of how a Datalog program can

be simulated with a Templog program. The fact that the inclusion is proper follo~vs from

the fact that any Datalog trajectory is temporally monotone, whereas there are Templog

programs that are not. I

Since Inflationary Datalog' is temporally monotone, it follows by the same arguli~ent

that there are Templog programs that cannot be simulated even by Inflatioiiary Datalog'.

These results follow from the fact that Templog, like doubly negated Datalog, allows

"deletion", i.e., it allows facts to be true at some point of time, and false later. Since, for the

purposes of this paper, we are focusing our attention on Datalog (with negation), we shall

look at Ternplog programs that are restricted to be temporally monotone. We can do this

by considering only Templog programs that contain the rule o p t- p, for every predicate in

the program. We call this restriction of Teinplog M o ~ z o t o n e Templog, or MTemplog.

Definition 4.2 A A4Templog program P is a Templog program with the property tha t , for

each predicate p in P , P contains the rule

We shall now show that Datalog is properly contained even in the restricted version of

Templog.

Theorein 4.3

Datalog C A4Templog

9

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-16

Proof: The containment follows immediately from the fact that the simulation in Section 3

describes a monotone Templog program. To show that the containment is proper, consider

the following MTemplog program P, with EDB p, and IDB q, r and s.

The tra<jectory described by P is as follows3

Assume that P' is a Datalog program that simulates P . Consider the computation of P'

on some fixed nonempty EDB E . By the definition of unbounded simulation, there liiust be

time
0
1
2

some point 1 in the ~omputa~tion that corresponds to the result of P at time 2. This rneans

that in Pf(E), r = s = TC(p).

q r s

TC(p) 0 0
TC(p) TC(p) 0
TC(p> TC(p) TC(p)

Since transitive closure cannot be expressed in first-order logic [AU79] and since bounded

queries can be expressed in first-order terms [Cos89], this means that transitive closure is

unbounded. Therefore, there must be some EDB E' for which the computation of q = TC(p)

takes m > 1 steps. By renaming of the elements of p, we may assume that E and E' have

no elements in common, and therefore if we merge the contents of p in E and El, we get a

new EDB El' for which (a) the computation of q = TC(p) takes rn > I steps, and (b) E" is

a superset of the value of p in E .

However, a simple induction shows for all i, P;'(E) is monotone in E, and tlierefore,

whenever i 2 1, the value of s in P;(E1') is nonempty.

On the other hand, because P' simulates P, there must be some i for which P(E1') =

P;'(E1'). Since the value of q at this point is equal to TC(p), it follows that i 2 m > I . But

the value of s at this point must be empty, a contradiction. II

The next question we want to address is the relationship between Datalog'and MTem-

plog. This is a much harder problem, whose difficulty comes from the fact that a Datalog'

3TC(p) is the transitive closure of p.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-16

program generates a trajectory of its states in one forward movement in time, whereas (in-

tuitively) a MTemplog program generates a trajectory as a result of multiple forward and

backward movements. This would happen if, for example, a MTe~nplog program contained

clauses of the form o p t- q and q t- op. Therefore, the challenge is to simulate multiple

forward and backward movements of an MTemplog program with a single forward movement

of a Datalog' program.

In this paper, we prove a partial result in this direction: We show that Datalog' with

counters is strictly more expressive than MTemplog. Following Chomicki [CISS], we consider

a 2-sorted first order logic, the domain of the second sort consisting of natural numbers with

the total order imposed on them and with the successor function defined for that sort. At

most one parameter in a predicate call belong to this sort. Datalog' programs defined over

this logic will be called Datalogy programs with counters. We start the proof of tlie result

with a technical lemma.

Let P be a Datalog, Datalog', or MTemplog program. Note that in all the three cases,

program P is temporally monotone. Therefore, for each choice of EDB predicates E, there

is some time t for which Pt(E) = Pt+l (E) . The mapping from E to Pt(E) , denoted by F (P)

(for fixpoint), is the standard definition of the meaning of a Datalog or Datalog' program.

Note, however, that the definition above enables us to talk about the fixpoint of a MTemplog

program, which we will call the IDB fixpoint to distinguish it from the fixpoint defined in

Section 2.1.

There is in fact a simple relation between the fixpoint of Datalog and MTemplog pro-

grams. Let P be a MTemplog program, and let P' be the Datalog program obtained from P

by deleting all the temporal operators from P. It is easy to see that tlie two programs have

the same fixpoint, i.e.,

Using this lemma, we can show:

Theorem 4.5 For any MTemplog program P there exists a Datalog-' program with counters

that unboundedly simulates P .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-16

Proof. As shown by Baudinet [Bau89], Templog is equivalent to its fragment TL1 that allows

only the next temporal operator in its rules (except the case when the necessity operator

makes a rule permanent). We can therefore, without loss of generality, restrict our attention

to TL1 programs that have atoms optionally preceded by at most one next operator. Let P

be a TL1 program. We construct a program P"' in Datalog' with counters that silnulates

P.

The first step is to construct an intermediate Datalog' program P'. P' is obtained

from P by replacing each Templog rule q t p in P with the Datalog' rule q' t p'. This

rule is obtained from the rule q t- p by replacing each atom A(xl,. . . , x,) in P by the

two-sorted predicate A1(xl, . . . , x,, t) and by replacing each next-atom o A(xl, . . . , x,) by

A1(sl,. . . , x,, t + 1). In these predicates t is a variable over the separate sort "time".

We next construct the program PI' by adding rules to P' to detect the IDB fixpoint

of P'. The idea here is that PI' detects the IDB fixpoint of program P' and computes the

values of all of its predicates A:(xl,. . . , x,,t) for the finite set of values t before the IDB

fixpoint of P' is reached.

We now describe the construction of PI'. As an initial step, replace prograin P with tlie

program P* obtained from P by removing all the temporal operators from its rules as was

done in Lemma 4.4. Then P* is a Datalog program with fixpoint {AT, A;, . . . ,A;), where

Af is an IDB predicate in P*. By Lemma 4.4, this fixpoint is equal to the IDB fixpoint of

P.

We next construct P" from PI and P* as follows. First, compute the fixpoint of P"

and detect when this computation has terminated using tlie technique from [AVSSa]. For

each predicate A; in P*, maintain the predicate previous-unless-lust; that trails A; by

one step and is equal to A; until the time the fixpoint of P" is reached. At that time,

previous-unless-last; differs from A;. The difference between the two predicates at the last

moment is the point when the fixpoint of P* has been reached.

After the fixpoint of P* is computed, start execution of P' (its execution can be held off

until the fixpoint of P* is reached with a "trigger" that becomes true at that time). At each

computation step of P' check if there exists t such that tlie predicates A: at that Lillie are

equal to predicates Af, i.e., for all i taken over the IDB predicates of P and for all X I , . . . , x,,

A:(xl,. . . , x,, t) * Af(x1,. . . , x,). If such t exists, then it means that the IDB fixpoint of P'

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-16

is reached. Set a flag FP to be true at that time. The rules that implement all the actions

described above form the program P".

Finally, the program P"' that simulates P is constructed from P" by introducing an

additional predicate C(t) and adding the following rules:

for each IDB predicate Ai in P". The reason that P"' unboundedly simulates progra,nl P is

that the trajectories of P and P"' coincide from the first time point when C(0) is true. I

We next show that the converse is false: There are Datalog' programs (even witl~out

counters) that cannot be simulated in Templog.

Theorem 4.6 There are Datalog' programs that cannot be simulated in MTemplog.

Proof: This theorem follows from Lemma 4.4 and from the fact that inflationary Datalog'

queries have the expressive power of fixpoints [AVSSb, KPSS], and, therefore are more expres-

sive than Datalog queries. We are interested in trajectories, rather than fixpoints. However,

if there is a Datalog' program whose fixpoilit cannot be computed by a Templog program,

then clearly its trajectory cannot be simulated either. I

Corollary 4.7 MTemplog c Datalog' (with counters)

Proof: The inclusion follows from Theorem 4.5, and the proper inclusion from Theorem 4.6.

I

We proved the result for Datalog' programs with counters. The question whether

MTemplog programs can be unboundedly simulated by Datalog' programs without counters

is still open.

This completes our results on unbounded simulation. We showed that Datalog' aiid

Templog programs are incomparable under unbounded simulations. We also showed that

Datalog programs are strictly less expressive than MTemplog programs aiid that MTernplog

programs are strictly less expressive than Datalog' programs with counters.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-16

5 Expressive Power of Datalog and Templog for Bounded
Simulations

We now turn our attention to bounded simulation. Since bounded simulation implies u11-

bounded simulation, this means that the negative results from Section 4 carry over to

bounded simulations. In particular, Datalog' and Templog classes of programs are incom-

parable for the bounded simulations as well. Furthermore, Theorem 4.3 still holds.

In contrast to the unbounded case, we show that there are MTemplog programs t1-ra.t

cannot be boundedly simulated by any Datalog' program.

We use the notion of a bounded Datalog program.* A query q on a Datalog' program

P is bounded [Cost391 if there is a constant bound oil the number of iterations it takes to

compute the fixpoint of q , and this bound is independent of the EDB predicates in P. A

query q on a Datalog (or Datalog') program P is first-order expressible if tliere is a first-order

formula defined on EDB predicates of P that computes the same answer as the fixpoint of

q for all the values of the EDB predicates of P.

We first need two preliminary lemmas. The first extends the result due to Cosmadakis

[Cost391 that every bounded Datalog query is first-order expressible to Datalog' queries. The

proof uses a similar argument to [Cos89].

Lemma 5.1 Every bounded Datalog' query is first-order expressible.

The second lemma is due to Ajtai and Gurevich [AG89]

Lemma 5.2 [Ajtai & Gurevich] Every first-order expressible L2atalog query is bounded,

We can now show:

Theorem 5.3 There is an AdTernplog program that cannot be boundedly simulated with any

Datalog' program.

Proof: Consider the following Templog program P (together with the monotonicity rules

required by the definition of MTemplog):

4This has no relation with bounded simulation.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-16

Assume that P' is a Datalog' program that boundedly simulates P. The definition of

bounded simulation implies that the predicate r , considered as a Datalog' query, is bounded.

Lemma 5.1 then implies that r is first-order expressible. As a Datalog' query, r coinputes

the transitive closure of q. Since q, as a Datalog query, is unbounded, q is not first-order

expressible (Lemma 5.2) and hence neither is r , a contradiction. I

The intuitive reason why Theorem 5.3 holds is because the trajectory of a MTemplog

program is obtained by moving forward and backward in time, and there is no a priori bound

on the number of times we must do this to reach the fixpoint. Theorem 5.3 says that there

is no way to sirnulate this in a bounded number of steps by a Datalog' program.

6 Conclusions and Future Work

We have compared the expressive power of two families of languages, those based on Tem-

plog and on Datalog in terms of trajectories these formalisms can generate. For unbounded

simulations, we showed that Datalog' and Templog programs are incomparable, that Dat-

alog programs are strictly less expressive than MTemplog programs, and that MTemplog

programs are strictly less expressive than Dat alog' programs with counters.

For bounded simulations, Datalog programs can be simulated with MTernplog programs,

but some MTemplog programs cannot be boundedly simulated with Datalog' programs.

The question whether MTemplog programs can be unboundedly simulated in Datalog' re-

mains open. Future work includes extending our results to languages with deletion, such as

Datalog1* and full Templog.

References

[AG89] M. Ajtai and Y. Gurevich. Datalog vs. first-order logic. In FOCS, 1989.

[AM891 M. Abadi and 2. Manna. Temporal logic programming. Journal of Symbolic

Computation, 8:277-295, 1989.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-16

[Ari86] G. Ariav. A temporally oriented data model. TODS, 11 (4):499-527, 1986.

[AU79] A. V. Aho and J. D. Ullman. Universality of data retrieval languages. In Pro-

ceedings of 6th ACM Symposium on Principles of Programming Languages, pages

110-120, 1979.

[AV88a] S. Abiteboul and V. Vianu. Datalog extensions for database queries and updates.

Technical Report 900, I.N.R.I. A., 1988.

[AV88b] S. Abiteboul and V. Vianu. Procedural and declarative databa,se update la,n-

guages. In Proceedings of PODS Symposiunz, pages 240-250, 1988.

[AV89] S. Abiteboul and V. Vianu. F'ixpoint extensions of first-order logic and Datalog-

like languages. In IEEEl Symposium on Logic in Computer Science, 1989.

[Bau89] M. Baudinet. Temporal logic programming is complete and expressive. In Symp.

on Principles of P?-ogramming Languages, pages 267-280, 1989.

[13F'G+89] H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens. METATER4: A

framework for programming in temporal logic. In Stepwise Refinement of Dis-

tributed Systems, pages 94-129. Springer-Verlag, 1989. LNCS 430.

[BFK86] L. Brownston, R. Farrell, and E. I<ant. Programming Expert Systems in OPS5:

an Introduction to Rule-Based Programming. Addison-Wesley, 198G.

[BNVVgl] M. Baudinet, M. Niezette, and P. Wolper. On the representation of infinite

temporal data and queries. In Proceedings of PODS Symposium, pages 280-290,

1991.

[CC87] J. Clifford and A. Croker. The historical data model (HRDM) and algebra based

on lifespans. In Proceedings of the International Conference on Data Engineering,

1987. IEEE Computer Society.

[CI88] J. Chomicki and T. Imielinski. Temporal deductive databases and infinite objects.

In Proceedings of PODS Symposium, pages 61-73, 1988.

[Cost391 S. S. Cosmadakis. On the first-order expressibility of recursive queries. 111 Pro-

ceedings of PODS Symposium, pages 31 1-323, 1989.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-16

J. Clifford and D. S. Warren. Formal semantics for time in databases. TODS,

8(2):214-254, 1983.

C. de Maindreville and E. Simon. Modelling non deterministic queries and updates

in deductive databases. In International Conference on Very Large Databases,

pages 395-406, 1988.

D. Gabbay. The declarative past and imperative future: Executable temporal

logic for interactive systems. In B. Banieqbal, H. Barringer, and A. Pnueli, editors,

Proceedings of Colloquium on Temporal Logic in Specification, pages 402-450.

Springer-Verlag, 1989. LNCS 398.

S. K. Gadia. A holnogeneous relational model and query languages for tempora,l

databases. TODS, 13(4):418-448, 1988.

N. H. Gehani and H. V. Jagadish. Ode as an active database: Constraints and

triggers. In International Conference on Very Large Databases, 1991.

S. Ginsburg and I<. Tanaka. Computation-tuple sequences and object histories.

TODS, 11(2):186-212, 1986.

P. C. Kanellakis, G. M. Kuper, and P. 2. Revesz. Constraint query la,liguages. In

Proceedings of PODS Symposium, pages 299-313, 1990.

P. G. Molaitis and C. H. Papadimitriou. Why not negation by fixpoint? In

Proceedings of PODS Symposium, pages 231-239, 1988.

F. Ilabanza, J.-M. Stevenne, and P. Wolper. Handling infinite temporal data. In

Proceedings of PODS Symposium, pages 392-403, 1990.

Z. M. Kedem and A. Tuzhilin. Relational database behavior: Utilizing relational

discrete event systems and models. In Proceedings of PODS Symposium, 1989.

D. McCarthy and U. Dayal. The architecture of an active, object-oriented

database system. In Proceedings of ACM SIGAlOD Conference, 1989.

S. B. Navathe and R. Ahmed. TSQL - a language interface for history databases.

In C. Rolland, F. Bodart, and M. Leonard, editors, Temporal Aspects in Infor-

mation Systems, pages 109-122. North-Holland, 1988.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-92-16

[SJGPSO] M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos. On rules, procedures,

cashing and views in database systems. In Proceedings of AC&I SIGMOD Con-

ference, pages 281 - 290, 1990.

[Sno87] R. Snodgrass. The temporal query language TQuel. TODS, 12(2) :247-298, 1987.

[Sno9O] R. Snodgrass. Temporal databases: Status and research directions. ACAd SIG-

MOD Record, 19(4):83-89, December 1990.

[Tan861 A. U. Tansel. Adding time dimension to relational model and extending relational

algebra. In formation Systems, 11:343-355, 1986.

[TCG+] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass. Temporal

Databases. Benjainin/Cummings. Forthcolning.

[TK89] A. S. Tuzhilin and 2. M. Kedem. Querying and controlling the future behavior of

complex objects. In Proceedings oflnternational Conference on Data Engineering,

February 1989.

[TK91] A. Tuzhilin and 2. M. Kedem. Modeling dynamics of databases with relational

discrete event systerns and models. Working Paper IS-91-5, Stern School of Busi-

ness, NYU, 1991.

[Tuz91] A. Tuzhilin. Temporal logic as a simulation language. In Proceedings of tlze

International Conference on Art.ificia1 Intelligence and Simulation, New Orleans,

Louisiana, April 1991.

[U1188] J. Ullman. Principles of Database and Knowledge-Base Systems, volume I. Com-

puter Science Press, 1988.

[Via871 V. Vianu. Dynamic functional dependencies and database aging. JACrl4,

34(1):28-59, 1987.

[WF90] J . Widom and S. J . Finkelstein. Set-oriented production rules in relational

database systerns. In Proceedings of ACA4 SIGMOD Conference, pages 259 -

270, 1990.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-16

