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An Intuitive Interpretation of the 
Theory of Evidence in the Context 

of Bibliographical Indexing 

Models of bibliographical Indexing concern the construction of effective key- 
word t axonomies and the represent ation of relevance between document s and 
keywords. The theory of evidence concerns the elicitation and manipulation of 
degrees of belief rendered by multiple sources of evidence to a common set of 
propositions. The paper presents a formal framework in which adaptive tax- 
onomies and probabilistic indexing are induced dynamically by the relevance 
opinions of the library's patrons. Different measures of relevance and mech- 
anisms for combining them are presented and shown to be isomorphic to the 
belief functions and combination rules of the theory of evidence. The paper 
thus has two objectives: (i) to treat formally slippery concepts like probabilis- 
tic indexing and average relevance, and (ii) to provide an intuitive justification 
to the Dempster Shafer theory of evidence, using bibliographical indexing as a 
canonical example. 

Keywords: Probabilistic indexing, measures of relevance, Dempster Shafer 
theory of evidence, evidential reasoning. 
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1 Introduction 

Consider a finite and exhaustive set of n mutually-exclusive propositions and a body of evi- 
dence that supports some subsets of propositions and discounts others. Many theories were 
put forward to describe how one should represent and update one's degrees of belief in such 
propositions when new or additional evidence is brought to bear. The classical approach 
is to cast degrees of belief as probabilities - non-negative numbers that sum up to unity 
(over the mutually-exclusive propositions) and obey the axioms of subjective probability - 
and use Bayesian inference rules to revise them. One problem with this approach is that it 
doesn't offer a clear way to model the various degrees of "uncommitted beliefs," or "second 
order uncertainties," that characterizes most realistic reasoning problems. For example, 
consider the extreme case of "insufficient reason," in which one knows absolutely nothing 
about the n propositions. In the face of this total ignorance, the common Bayes-LaPlace 
solution (as well as the unconstrained maximum entropy solution) is to assign a degree of 
belief of 1 / n  to each of the propositions under consideration. 

Over the years, many students of belief revision theories have objected to this crude quan- 
tification of insufficient reason. Why, the argument goes, should ignorance be translated 
to the strong statement that every proposition (or state of nature) is equally likely? This 
criticism has led to several quasi-probabilistic models that at tempt to capture the elusive 
notion of uncommitted belief explicitly. Perhaps the best known model in this category 
is the so-called "theory of evidence," originated by Dempster's 1967 work on upper and 
lower probabilities [3],[4]. Dempster7s ideas, which were based on a frequentist view of 
probability, were refined and extended by Shafer [13], resulting in an elaborate theory for 
representing and revising subjective beliefs as well as chance likelihoods. 

When the work of Dempster and Shafer was "discovered" by the artificial intelligence com- 
munity, it immediately stirred a considerable interest among researchers and practitioners 
of expert systems - an area in which normative models of belief formation play a key role. In 
particular, the model holds promise for supporting rule-based inference under uncertainty, 
an aspect of expert systems that was traditionally dominated by ad-hoc belief revision cal- 
culi whose relationship to probability theory was quite murky. In contrast, the Dempster 
Shafer model rests on a solid and defensible mathematical foundation. Yet the probabilistic 
roots of the model remain controversial: whereas Shafer argues that the theory of evidence 
is a natural extension of probability theory [14], critiques of the theory, like Lindley, view it 
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as a reformulated version of a specialized, albeit interesting, case of classical probabilistic 
reasoning [8]. The debate is not helped by the theory's nomenclature, which is expansive 
and somewhat obscure. 

Several authors have tried to give plausible interpretations of the theory of evidence, using 
familiar metaphors. For example, Zadeh illustrated how the Dempster Shafer model can be 
used to support fuzzy queries about interval-valued, rather than point-valued, attributes, 
in a relational database [18], In a similar vein, this paper attempts to justify the underlying 
rationale of the theory of evidence in the way of analogy, using a familiar bibliographical 
indexing metaphor. Therefore, it should be emphasized that the paper is not intended to 
propose a new Dempster Shafer approach to document storage and retrieval, as was done 
for example by Tong and Shapiro [15] and by Biswas et a1 [2], among others. The present 
paper deviates from this line of research in two ways. First, it concerns not retrieval, but 
classification, of information. Second, the paper's style is axiomatic, not prescriptive: our 
chief objective is to present a canonical example which supports the internal, rather than 
external, validity of the Dempster Shafer model. 

Previous work: The research reported here is relevant to two lines of previous research: 
(i) efforts to interpret the theory of evidence on logical or probabilistic grounds; and (ii) 
efEorts to apply the theory to hypotheses spaces that have specific structures. To the best 
of our knowledge, Gordon and Shortliffe were the first to recognize the potential utility of 
the theory of evidence to artificial intelligence applications [5]. In particular, they showed 
how a Dempster Shafer belief calculus can be used to represent and combine the degrees 
of belief that clinical symptoms (pieces of evidence) render to classes of bacterial organ- 
isms (disjunctions of hypotheses), whose set relationships forms a hierarchy. However the 
degrees of belief that their approach generated did not conform to a standard probabilis- 
tic interpretation. The problem was taken up by Yen, who built an expert system shell 
called GERTIS in which uncertainty was managed by an extended Dempster Shafer cal- 
culus whose degrees of belief yielded to a probabilistic interpretation [17]. Yen also made 
the critical observation that the theory of evidence is based on mappings from an evidence 
space to an hypotheses space, and that these mappings can be viewed as a collection of 
conditional probabilities whose values are either zeroes or ones. He then proceeded to 
propose combination formulae that can handle "regular" probabilities a s  well. 

Gordon and Shortliffe and Yen were motivated by a practical objective - trying to build 
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a credible belief calculus for clinical reasoning in a hierarchical hypotheses space. Coming 
from a totally different direction, Hummel and Landy analyzed the probabilistic foundation 
of the theory of evidence in general, without making any assumptions on the underlying 
domain or the logical structure of the hypotheses [6] .  In contrast to other researchers 
who attempted to interpret high-level constructs of the theory of evidence directly (e.g. 
Baron [I], Kyburg [7], and Schocken and Kleindorfer [12]), Hummel and Landy took a more 
fundamental viewpoint that showed how the theory's belief functions were implicitly linked 
to a hypothetical space of boolean expert opinions. They described a logical mechanism for 
pooling opinions in that boolean space, and showed that the mechanism was isomorphic 
to Dempster7s rule. Concluding that Dempster's rule was limited to tracking only boolean 
opinions, Hummel and Landy proposed alternative combination formulae that are sensitive 
to probabilistic opinions as well. 

Hummel and Landy's probabilistic interpretation of the theory of evidence is complete and 
satisfying. However, their abstract mathematical analysis made no use of canonical exam- 
ples, and it is therefore difficult to map their approach on real-life problems like clinical 
diagnosis or rule-based inference. One objective of the present paper is to "operationalize" 
Hummel and Landy's insights in the context of a practical example - bibliographical index- 
ing - and demonstrate that their boolean spaces are useful not only on normative grounds, 
but also in modeling practical reasoning problems that are characterized by several "layers" 
of inference. 

The plan of the paper is as follows. $2 gives a brief overview of the theory of evidence, 
including definitions and illustrations of the frame of discernment, mass, belief, and plausi- 
bility functions, and Dempster7s rule. This sets the stage for $3 and $4, which present the 
bibliographical model around which the paper evolves. $3 describes the keyword taxonomy 
and relates it to the frame of discernment, and $4 discusses various measures of relevance 
that are then shown to be equivalent to Shafer7s mass, belief, and plausibility functions. 55 
illustrates a plausible pooling mechanism for combining multiple relevance opinions elicited 
from distinct groups of library patrons. $6 is a discussion section. 
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Overview of the Theory of Evidence 

The theory of evidence concerns the representation and manipulation of degrees of belief 
rendered by different sources of evidence to a common set of propositions, denoted 19 and 
called the frame of discernment. In contrast to a standard Bayesian design, in which degrees 
of belief are normally assigned to elements of 8, the theory of evidence assigns degrees of 
belief to subsets of propositions, i.e. to members of the power set 2'. In this paper subsets 
of propositions are referred to as "possibilities." 

The theory of evidence offers several complementary ways to express degrees of belief in 
possibilities. In particular, the theory defines several mappings from 2' to [O,1]  among 
which we focus in this paper on what is termed mass, belief, and plausibility, functions. 
The three mappings are mathematically equivalent in the sense that knowledge of any 
one of them (for every possibility) can be used to compute the other two. Therefore, the 
three mappings can be viewed as alternative means to keep score of the same primitive set 
of degrees of belief. When several sources of evidence lend credence to a common set of 
possibilities (the evidential support may be expressed in any one of the three mappings), the 
overall belief in the possibilities can be computed through Dempster 's rule. The remainder 
of this section reviews the main constructs of this model as they unfold in a the context of 
a simple example. Throughout this exposition, our goal is to emphasizes clarity and play 
down complex notation. For a complete and formal treatment of the theory the reader is 
referred to Chapter 2 of Shafer7s monograph on the "Mathematical Theory of Evidence" 

1131 

The Frame of Discernment: Let 0 = {q l , .  . . , qn), be an exhaustive set of mutually ex- 
clusive propositions (or hypotheses, or simply labels). The power-set which enumerates 
all the subsets of 8 is denoted 2'. For example, consider the simple frame of discernment 
8 = {up, same, down}, representing three alternative directions of tomorrow's stock mar- 
ket. The power set is 2' = {{up), {same), {down), {up, same), {up, down), {same, up), 
{up, same, down}, 0). Each of these subsets represents a possibility, which is essentially 
a disjunction of propositions. Thus, the statement "the truth lies in {up, same)" implies 
one's belief that tomorrow's market will either remain the same, or will go up (which is the 
same as saying "the market will not go down"). Although the number of possibilities in 2' 
grows exponentially with the cardinality of 0, the semantics of the frame of discernment will 
usually render most of these possibilities nonsensical. Such possibilities can be effectively 
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eliminated from the model by setting the belief in them to zero. 

Mass Functions: An assignment of degrees of belief to possibilities m : 2* -+ [O, 11 with 
the properties: 

is called a mass function. As a rule, the so-called uncommitted belief - the mass which is 
left over after all the proper subsets of 8 have been assigned degrees of belief - is assigned 
to 8. Operationally, then, after all the non-zero degrees of belief have been elicited from the 
expert or the source of evidence that provides m(-), the mass m(0) is set to 1 - xtze m(x). 
To illustrate, consider a bullish expert (expert no. 1) who distributes his belief among the 
various stock market directions as follows: ml({up, same)) = 0.6 and ml({down}) = 0.1. 
The complete mass function of the expert is: 

ml({up, same}) = 0.6 
ml({down}) = 0.1 

m1(8) = 0.3 
ml(A) = 0 for all other proper subsets of 0 

The "uncommitted belief" displayed by the expert is set by convention to ml (0) = 1 - 0.6 - 
0.1 = 0.3. The rationale for assigning the uncommitted belief to 8 is as follows. If an expert 
knows absolutely nothing about the stock market, we can represent his or her ignorance 
by the belief function m({up, same, down})=l and m(-) = 0 elsewhere, implying the (not 
very useful) conviction that the market will either go up, down, or stay the same. Other 
experts might display smaller levels of m(O), representing more educated guesses about 
the market's direction. Hence, unlike a standard probabilistic design, in which the notion 
of uncommitted belief is not well-defined, the theory of evidence offers explicit means to 
quantify and manipulate uncommitted beliefs2. 

2Uncommitted beliefs or "second-order uncertainties" can also be expressed with standard probabilistic 
or statistical tools (e.g. Baron [I]), but there is no simple way to do it. The theory of evidence is unique 
in that it treats the notion of uncommitted belief at the axiomatic level. 
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It's important to observe that the mass function represents indivisible, or atomic, de- 
grees of belief. For example, the magnitudes of m({up, same)), m({up)), and m({same)) 
are unrelated, and a belief assignment, say, m({up,same)) = 0.9, m({up}) = 0, and 
m((same)) = 0 is not inconsistent with the theory. This particular function represents an 
expert who strongly believes that the market will not go down, although he is not willing 
to say anything specific beyond this prediction. 

The Core: The core of a mass function m is the set of possibilities X E 2' for which 
m(X) > 0. For example, the core induced by (3) is Cl = {{up, same), {down), 0). In 
other words, the core of a mass function is the subset of all likely possibilities, in the view 
of one particular expert. Suppose now that we have access to a second expert (expert no. 
2), whose belief in the market direction is captured by the following mass: 

 SUP)) = 0.8 
m2(0) = 0.2 
mz(A) = 0 for all other proper subsets of 0 

With the core C2 = ({up), 0). IS there a credible way to combine the two expert opinions 
(3)-(4) and generate a global prediction concerning the direction of tomorrow's stock mar- 
ket? As a first approximation, one can focus on the set of possibilities which both experts 
agree are likely. In particular, if expert 1 thinks that X is likely and expert 2 thinks that Y 
is likely, then both experts agree that X n Y  is likely (recall that a possibility is a disjunction 
of propositions). This leads to the following definition of a LLpooled core": Let ml, m2 --+ 2' 
be two mass functions with cores Cl and C2. The pooled core C = C1 $ C2 is defined as 
follows: 

For example, the pooled core of (3) and (4) is C = {{up}, {up,same),{down), 0). In 
general, then, the pooled core can be viewed as a first approximation of the degree of 
consensus or disagreement between two expert opinions. If C1 $ C2 = Cl = C2, we have 
a consensus regarding which possibilities are likely; If Cl $ C2 = 0, the experts agree 
on nothing; If Cl $ C2 is not empty, we have an overlap of some opinions. Of course 
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the problem with such boolean observations is that they merely identify areas of mutual 
agreement (or lack thereof) between two experts. In order to compute the intensity of such 
agreements, a more sensitive pooling mechanism is called for. Dempster's rule provides one 
such mechanism. 

Dempster's Rule: The most fundamental (and debateable) pillar of the theory of evi- 
dence is the convention that once degrees of belief are cast in terms of mass functions, 
Dempster's rule provides a proper mechanism to combine them. Let ml and ma be two 
mass functions defined over the same frame of discernment: ml, m2 : 2@ 4 [O, 11, with cores 
Cl = {A1,. . . ,A,) and C2 = {B1,. . . , B,), respectively. Dempster's rule computes the 
pooled mass function m = ml $ m2 : 2' -+ [O, 11 as follows: 

The rationale behind (6-8) can be explicated through an intersection table [13]. In the 
two-experts stock market example, the table has the following form: 
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m1(8) = 0.3 

m(up) = 0.24 

m(0) = 0.06 

m2(up) = 0.8 

m2(0) = 0.2 

ml(up, same) = 0.6 

m(up) = 0.48 

m(up, same) = 0.12 

ml(down) = 0.1 

m(0) = 0.08 

m(down) = 0.02 



The top margin of the table records the mass function of the first expert excluding its 
zero elements, i.e. the set of values ml(Al), . . . , ml(A,). The left margin of the table 
records the mass function of the second expert excluding its zero elements, i.e. the set of 
values m2(B1), . . . , m2(B,). (The curly brackets are dropped for the sake of brevity, e.g. 
m(up, same) stands for m({up,same)), etc.). Inside the table, the (i, j)'th cell records the 
pooled mass ml $ m2(A; n Bj), which is taken to be the product m(A;) . m(Bj). Using 
these entries and following (6-7) one obtains: 

And, after multiplying by one obtains: 

m(up) = 0.78 
m(up, same) = 0.13 

m(down) = 0.02 
m(0) = 0.07 
m(0) sf o 

Since the m(-)'s sum up to unity and m(0) = 0, the mapping m = ml $ m2 that emerges 
from Dempster's rule is also a mass function. We now turn to give a preliminary inter- 
pretation of this pooling mechanism in light of the above example. In essence, the rule 
computes a measure of agreement among two experts who express independent opinions 
about the likelihoods of various possibilities drawn from a common set of propositions. 
The rule is conservative in the sense that it focuses only on those possibilities which both 
experts agree are likely. The magnitude of the pooled agreement is computed through the 
product of the two individual masses, which can be interpreted as the joint probability 
that both experts agree on the possibility under consideration. This explains the product 
operator in (6). Now, because the experts express their opinions over 2' rather than over 
8, a joint agreement on any one possibility can occur in more than one way, i.e. whenever 
the experts agree that a superset of that possibility is likely. This explains the summation 
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operator in (6). Finally, when a pairing of two expert opinions results in a null possibility 
(empty set), the multiplication of their individual masses may still be positive. This is 
an anomaly, since the definition of a mass function (1) requires that the mass of the null 
possibility be zero. This explains the role of (7-8), in which (i) the pooled masses rendered 
to null possibilities is summed into k, and (ii) k is eliminated from the total mass and the 
remaining mass is divided by 1 - k to ensure that it will sum up to unity. 

Belief Functions: Building on the elementary notion of a mass function m : 2' -4 [O, 11, 
the function Be1 : 2* -+ [0,1], denoted a belief function, is defined as follows: 

Whereas m(A) measures the belief rendered to A (a subset of propositions) directly, Bel(A) 
measures the total belief rendered to A and to all its subsets (each being a more specific 
proposition). For example, the belief function implied by the mass function (10) is as 
follows: 

Bel(up) - - 

Bel(same) - - 
Bel(down) - - 
Bel(up, same) - - 
Bel(up, down) - - 
Bel(same, down) = 
Bel(up, same, down) = 
Bel(0) - - 

Note that (1-2) and (11) imply that Bel(0) = 0 and Bel(0) = 1 always. In general, the 
Be1 function is completely determined by the mass function m, and, likewise, m can be 
recovered from Bel's definition ([13], p. 39). Since the two functions are mathematically 
equivalent, the question of whether to use m or Be1 to elicit and manipulate degrees of 
belief depends on cognitive and on efficiency considerations. The theoretical "need" for a 
separate Be1 function can be motivated on logical as well as on probabilistic grounds. The 
logical argument is based on the observation that if X and A are taken to be disjunctions 
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of propositions, the set-theoretic statement X C A is equivalent to the "rule" X --i A. 
Therefore, the sum of all the degrees of belief in propositions X that imply A can be 
viewed as a measure of total support in A. The probabilistic argument for keeping track 
of m(A) as well as Bel(A) is that the former can be interpreted as the probability that the 
truth lies in A and the latter as the probability that the truth lies in a subset of A. 

Whereas Bel(A) measures the total degree of belief rendered to a possibility A, the plausi- 
bility function, denoted Pl(A), measures the masimal degree of belief that A can possibly 
attain under a given mass function m. Specifically: 

In words, Pl(A) records the total mass allocated to all the possibilities with which A 
intersects. Since a possibility is a disjunction of propositions, the mass m rendered to it 
can "float" freely to any one of its subsets. In the extreme case, a single subset of the 
possibility may inherit its entire mass. Hence, Pl(A) is the upper bound of Bel(A). 

To do justice to the theory of evidence, it should be noted that the derivation of Be1 and 
PI from m is only one way to define these functions. Shafer provided direct definitions 
of Bel, PI, and several other related functions, as well as mappings from one function to 
another. He has also emphasized the key role that subaditivity plays in the theory, a point 
which we now turn to illustrate. Denoting the complement set 6 \ A by A, (11) and (13) 
imply two import ant properties, as follows: 

If a certain Belb were a Bayesian representation of degrees of belief, the additvity axiom 
of Bayesian inference (A n B = Q) --i Bel(A U B) = Bel(A) $- Bel(B)) would imply that 
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However, (14) and (15) imply that in the general case Bel(A) 5 1 - ~ e l ( x ) ,  leading to the 
famous subaditivity property of the theory of evidence: 

One implication of subaditivity is that the belief that one holds in a possibility does not 
automatically imply one's disbelief in the negation of that possibility. For example, a 
physician's belief that a patient suffers from a certain disease should not necessarily rule out 
the possibilities of other diseases, especially if the physician is not sure about his prognosis. 
In particular, the difference 1 - Bel(A) - Bel(2) is called the uncommitted belief w.r.t. to 
A. If Be1 were a Bayesian representation of degrees of belief, the uncommitted belief would 
be 0 by definition. This is best illustrated in the "state of insufficient reason," in which one 
knows absolutely nothing about a set of n propositions 0. Whereas the common solution 
is to set Bel(q) = l ln  for all q E 0, the theory of evidence would set Bek(6) = 1 and 
Bel(A) = 0 for all the other proper subsets of 0. This is the case when the uncommitted 
belief is at maximum. 

The interpretation of Be1 and PI as lower and upper-probabilities has led many to view 
the theory of evidence as a novel calculus for eliciting and manipulating interval-valued, 
rather than point-valued, degrees of beliefs. Indeed, the theory of evidence provides means 
to express the belief in every hypothesis A through the interval [Bel(A), Pl(A)], which 
may be updated as new evidence about A is brought to bear. Note that the width of 
the interval, Pl(A) - Bel(A), is by definition 1 - Bel(A) - ~ e l ( z ) ,  or the uncommitted 
belief w.r.t. A. If the uncommitted beliefs induced by a certain mass function rn were 0 
for all the hypotheses under consideration, the intervals would degenerate to point beliefs 
and Be1 would be a standard probability function. Yet in the more general case in which 
the mass reflects some second-order uncertainty or ambiguity about the hypotheses under 
consideration, the degree of belief in possibilities A drawn from 0 will be allowed to "float" 
between Bel(A) and PI(A). One benefit of such a model is that it is more robust and less 
prone to human errors in assessing subjective probabilities. 

The purpose of this section was to present the key features of the Dempster Shafer theory 
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of evidence and to illustrate the theory's power in modeling aspects of evidential reasoning 
that seem to defy simplistic Bayesian solutions. We also sought to demonstrate that with 
the theory's alternative axiomatic system, specialized mappings, and controversial com- 
bination rules, this power does not come free: "It is appropriate to examine the formal 
relations between various Bayesian and non-Bayesian approaches to what has become to 
be called evidence theory, in order to explore the question of whether the new techniques 
are really more powerful than the old, and the question of whether, if they are, this incre- 
ment of power is bought at too high a price (Kyburg [7])." It is in that spirit that we now 
turn to explore the theory's implicit foundations in an attempt to understand whether it 
truly extends classical Bayesian inference, or merely reformulates it. This question will be 
explored in the context of a canonical example, taken from the domain of bibliographical 
databases. 

3 The Taxonomy 

Let D be a set of documents about a certain subject and let S be a structured set of 
keywords, or a taxonomy, designed to facilitate rapid access to the documents in D. The 
act of indexing or classification amounts to assigning each document d E D a subset of 
keywords Sd C S, denoted "the index of d," which is supposed to serve as a pointer to the 
document's contents. We distinguish between two types of taxonomies: static and adaptive. 
A static taxonomy consists of a fixed and unmodifyable set of classes, like the Dewey decimal 
system or the Library of Congress index. An adaptive taxonomy is a dynamic data structure 
that evolves from the classification process it self. 

A Static Taxonomy: A static taxonomy is a fixed set of classes, or categories, de- 
signed to organize documents in a particular subject of interest. For example, consider 
an unordered collection of documents about major artists and the movements to which 
they belonged. Suppose that a domain expert (e.g. an art scholar) proposes to orga- 
nize the documents according to the following classes: S = { ~ r t ,  Braque, Cubism, Dada, 
Impressionist, Janco, Modern, ~ i c a s s o ) .  Suppose further that the expert also indicates 
the taxonomical relationship of the classes. Specifically, if we let H(x, y)  code the assertion 
"y is a direct sub-class of x", the expert might specify a relation like 
H = {(art,modern), ( a r t ,  impressionists), (modern, cubism), (cubism, ~ r a q u e ) ,  
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(cubism, picasso), ( ~ a d a ,  Picasso), (Dada, ~anco)) .  The resulting taxonomy is depicted 
in figure 1. 

art 

. . . modern . . . impressionist . . . 

. . Cubism . . . Dada . . . 

. . . Braque . . . Picasso . . + Janco . . . 

Figure 1: An excerpt from an art-related taxonomy designed to classify docu- 
ments on major artists and artistic movements. 

Formally, then, a taxonomy is a pair S =< S, H >. S is a set of classes, and H is an 
acyclic relation on S x S with two restrictions: (a) there exist one r E S for which there 
exist no other x E S with H (x, r), and (b) there exist one or more k's E S for which there 
exist no x E S with H(k,x). In what follows, r is called the root of the taxonomy (e.g. 
a r t ) ,  and the k's are called terminal classes. The union of the terminal classes, denoted 
I<, is thus K = {k E SI-13x(x E S and H(k,x)). 

As figure 1 illustrates, it's convenient to view the taxonomy as an acyclical directed network. 
The nodes of the network are the classes, and a directed edge (x, y) represents the relation 
H(x, y). Looking LLdown" the taxonomy, each non-terminal class may be broken into one 
or more specific classes, all the way down to the network's boundary, where terminal nodes 
represent terminal classes. Looking "up" the taxonomy, each class can be generalized into 
one or more other classes, with the exception of the root class, that can't be generalized 
any further. To complete the construction of a taxonomy S =< S, H >, we characterize 
each class c E S by two sets of classes which are defined recursively, as follows: 
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Sl(c) = {c) U {X E SIH(c,x) or (H(c, y)  a n d  x E Sl (y) )  

ST(c) = {c) U {x E SIH(x,c) or (H(y, c) a n d  x E ST(y)) 

For example, Sl (cubism) = {Cubism, Braque, ~ i c a s s o )  and ST (cubism) = {Cubism, Modern, 
~ r t ) .  Hence, if we view the taxonomy as a family tree, the sets Sl(x) and ST(x) contain 
the descendants and ancestors of x, respectively. Unlike a common family tree, though, 
each class in the taxonomy can have as many parents as we desire. Also note in passing 
that definition (18) implies that (i) Sl(root) = S, i.e. the root library contains all the other 
classes; and (ii) Sl(k) = {k) for all k E K ,  i.e. the terminal classes are all singletons. In 
what follows, we'll sometimes refer to the set Sl(x) as "the library rooted in x". 

Suppose now that we are asked to index an art-related document on the taxonomy depicted 
in figure 1. We'll do this in a top-down depth-first fashion, as follows. Beginning at the first 
level under the root and proceeding left to right, we first test if the document is relevant to 
modern art. If the answer is 'yes,' we step down one level and test if it's relevant to Braque. 
If the answer is 'yes,' we index the document on Braque. If the answer is either 'no7 or 
'unsure,' we test if it's relevant to Picasso. If the answer is either 'no' or 'unsure,' and 
assuming that Picasso is the last class below Cubism, we backtrack one level and index the 
document on Cubism. If the document is deemed irrelevant to all the classes thus visited, 
we backtrack all the way to the root of the taxonomy and index it on a r t .  This would 
reflect the notion that even though the document is art-related, the existing taxonomy fails 
to discern the exact category to which it belongs. 

We see that the notion of "relevance" that emerges from this classification process is defined 
over subsets of classes, not over individual  keywords: if we index a document on, say, Cubism, 
it implies that the document belongs to the library S1(Cubism), i.e. to the collection of 
documents about Cubism, Braque, or P i  cass o. This definition of relevance is convenient 
because it allows us to be as specific as we wish in our relevance statements. If we're sure 
that a document is relevant to a certain class, we index it on that class. If we're not sure, 
we can step back and index the document on a library that contains that class. We can do 
this all the way up to the top of the taxonomy, at which point the indexing decision root 
would express the opinion that the document belongs somewhere in the library, without 
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specifying exactly where. This simplistic model has several caveats, most of which are 
resolved by the move from static taxonomies to adaptive taxonomies. 

An adaptive Taxonomy: An adaptive taxonomy consists of a fixed set of keywords, 
denoted K ,  and an "open-ended" set of classes, each class being a different grouping of 
keywords. As before, the act of indexing amounts to assigning each document d E D to 
a subset of classes Sd. Unlike the static case, though, the indexes are not drawn from a 
predefined set of classes. Rather, the index Sd may be any desired subset of lexical keywords. 
Hence, a document titled "A letter from Braque to Janco " may well be indexed on the class 
{ ~ r a ~ u e ,  ~ a n c o ) ,  something that would have been impossible in a static taxonomy that 
doesn't contain such a predefined category. 

In the extreme case, an adaptive taxonomy is simply the union of all the indexes of the 
documents in the library, i.e. S = UdEDSd. Hence, the taxonomy is a flexible data structure 
that evolves dynamically from the classification process itself. When a new document is 
deemed relevant to a subset of keywords that don't make up an exiting category, we simply 
announce this subset a new class and add it to the taxonomy. The only restriction that we 
place on the taxonomy is that it will contain at least all the elements in K (as singletons, or 
classes that are made up of single keywords), as well as IX' itself. Thus, we begin with the 
initial taxonomy S = {{kl), . . . {k,)), K ) ,  and we add more classes to it as we go along. 

Figure 2 depicts two adaptive taxonomies that evolved from two different hypothetical 
classification processes. The key difference between the two taxonomies is that the one on 
the right is a tree. Using the notation 1x1 to represent the cardinality of a set X, we can 
characterize each class C E S by the set L(C) = {X E SllXl = ICI). A taxonomy S is 
said to be a tree taxonomy if and only if for every class C E S, L(C) contains only disjoint 
sets. 
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abcd abcd (1) 

abc / /  (2)  

Figure 2: A network taxonomy (left) and a tree taxonomy (right). The numbers 
in parentheses record indexing decisions, as explained later in the paper. 

Relationship to the Theory of Evidence: The linchpin that connects the taxonomical 
model expounded here and the theory of evidence described in 52 is the treatment of the 
keywords lexicon K as the frame of discernment and the observation that 2" enumerates 
all the possible ways to group together, or categorize, keywords into classes. With that in 
mind, it is easy to see that any static taxonomy is conceptually a "frozen" and "named" 
version of some adaptive taxonomy, and that any adaptive taxonomy, in turn, is a subset 
of the lexical power set 2". This relationship is illustrated in figure 3. 

Figure 3-a depicts the power set (excluding 0) of the simple lexicon { a ,  b, c ) .  Clearly, with 
only a few dozens key words, the set of all possible classes becomes prohibitively large. Note 
however that once the semantics of the lexicon I( is taken into consideration, many if not 
most of the classes in 2" become arbitrary grouping of keywords that can be excluded from 
the taxonomy for all practical purposes. If we choose to focus on tree taxonomies only, the 
power set can be restricted further by disregarding all its non-hierarchical subsets. Figure 
3-b depicts a specific adaptive taxonomy that emerged from a hypothetical classification 
process. Finally, figure 3-c depicts a "frozen" version of that taxonomy, after its classes 
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were given unique identifiers. 

abc 

Figure 3: The evolution of a taxonomy from a lexical power set 

For simplicity's sake, the identifier of a class is taken here to be the concatenation of the 
names of its members. For example, {a, b) is named ab, {a) is named a, etc. If a certain 
class "makes sense" on semantic grounds, it can be given an alias name that reflects its 
contents. For example, the class ab = {a, b) can be named Cubism, the class abc={a, b, c) 
can be named a r t ,  etc. It turns out that this naming scheme presents a subtle theoretical 
problem. In the logical context of the theory of evidence, the subset {a, b) is interpreted 
as the disjunction of a and b. Thus, to say that a document is relevant to {a, b) is to 
say that the document is relevant to either a or to b. In the bibliographical context of a 
taxonomy, however, subsets of keywords have meaningful names, like Cubism and Dada, 
just like the elementary keywords that make up their contents. Hence, a cataloger may 
well wish to index a title like "Cubist Landscapes" directly on the class Cubism. However, 
the present model will interpret this indexing decision as "the document is relevant either 
to Picasso, to Braque, or to Cubism at large." Although such an interpretation would 
not be erroneous, it would clearly entail loss of concrete information about the document's 
direct relevance to Cubism. Also, this will lead to a situation in which the set of documents 
relevant to any one class would be larger o r  equal than the union of the sets of documents 
relevant to all of its children. 
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The problem may be resolved by augmenting the taxonomy with a new set of what might 
be called "net classes7'. For each non-terminal class c E S we add (i) a new class named 
net-c to S ,  and (ii) a new tuple H(c, net-c) to H .  The new class net-c, which is a direct 
descendant of c (for every non-terminal class), can now serve as the index of the documents 
that are relevant to c directly. With this modification, c becomes a mere tag, or a pointer, 
and the statement "the document is relevant to the class c" is equivalent to saying "the 
document is relevant to the library rooted in c", and we are back in the familiar disjunctive 
stance of a Shaferian frame of discernment. 

4 Relevance Functions 

Having described the taxonomy that provides the skeleton of the classification process, 
we now turn to discuss in detail the classification process itself. In general, a document 
should be classified in a certain class if the users of the document perceive it relevant to 
that class. In its most primitive form, then, relevance is a boolean and subjective relation, 
indicating categorically that a document d is relevant to a class c in the view of a certain 
user. However, due to the fact that bibliographical classes don't have crisp boundaries, 
and due to the multitude of relevance opinions expressed by different library patrons, a 
more reasonable question is not whether d belongs to c, but rather what is the intensity 
of this relation. In other words, we seek to represent relevance in terms of a mapping 
r : S x D -+ [O, 11, rather than in terms of a characteristic function r : S x D -+ (0,l). 

There have been many efforts to give bibliographical relevance a probabilistic interpret ation, 
the defining article being Maron and Kuhns [lo]. One of the fundamental problems in 
this area has been the proper definition of the space from which probabilistic statements 
are drawn: "The notion of probability of relevance can be interpreted in two different 
perspectives: of the documents, as the proportion of searchers of a given type who would 
judge that document relevant, and of the patron himself, as the proportion of document 
of a given type which he would judge relevant (Maron, [9])." Indeed, if we view the 
relevance measure r(c, d) as a degree of class membership, we can attempt to interpret it as 
a probability, i.e. a non-negative and additive set function which ranges on the interval [ O , 1 ]  
and obeys the axioms of probability. If such a probabilistic interpretation is undertaken, 
the frequentist meaning of an expression like r(c,d) = 0.9 would depend on our choice 
of a sample space. If the sample space is taken to be all the documents in the library, 
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r(c, d) = 0.9 might mean that if a document is pooled at random from the class c, the 
probability that the document is relevant to d is 0.9. If, alternatively, we take the sample 
space to be a set of library patrons, r(c, d) = 0.9 might mean that 90% of the users of d 
perceive it relevant to c. It turns out that the theory of evidence is consistent with the 
latter interpret ation. 

Formally, let d E D be a document, S a taxonomy, and U = {ul,..  . , u,) a set of library 
patrons who act as catalogers. Suppose that each cataloger ui is given (1) the taxonomy 
S ,  (ii) a copy of the same document d, and (iii) a directive to select a class c E S where d 
should be classified. We record the individual indexing decision of the catalogers through 
the following functions: 

1 if ui classified d in c 
0 otherwise 

If a cataloger is unsure about the proper classification of a document, we assign the doc- 
ument by default to the root class, This convention makes sense because the root class 
represents the entire library, and is therefore the natural place to store documents whose 
specific class membership is undiscernible. After all n catalogers have made their classifi- 
cation decisions regarding d, we compute for each class c in the taxonomy three "relevance 
counters," as follows: 
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In words, r(c) counts the number of catalogers who classified the document d in c (Since the 
document d is fixed in the following analysis, we'll sometimes eliminate it from the function 
notations to avoid clutter.) Rl(c) counts the catalogers who classified the document in 
the library rooted in c, whereas Ry(c) counts the catalogers who classified the document 
in libraries that contain c. To illustrate, suppose we ask ten catalogers to classify the 
same document on the tree taxonomy depicted on the right of figure 2. The numbers in 
parentheses give the results of one such hypothetical classification process, recording the 
number of catalogers who indexed the document in each class. Focusing for example on the 
class ab, we get r(ab) = 4, Rl(ab) = 6, and Rt(ab) = 7. We see that the (21-23) counters 
are merely different means to keep track of the same set of individual indexing decisions 
made by a group of n catalogers. 

Relationship to the Theory of Evidence: If the keyword lexicon is taken to be the 
frame of discernment, it can be easily shown that the relevance counters (21-23) are pro- 
portional to the mappings that represent degrees of belief in the theory of evidence. Specif- 
ically, dividing each counter by n - the number of catalogers - yields the mass, belief, and 
plausibility, functions defined in (2) ,(1 I), and (13), respectively: 

Hence, the only difference between the standard constructs of the theory of evidence and 
the classification scenario expounded here is the proportionality constant i. Operationally 
speaking, this constant is of little interest, as it only serves to translate counting functions 
to fraction functions (defined over a space of catalogers). One key difference, though, is the 
v;(.) functions (20) that keep track of individual indexing decisions. In the classification 
model, this function is the foundation on which everything else rests; In the theory of 
evidence, that function is implicit. 
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5 Probabilistic Indexing 

So far, we assumed that (i) relevance is a two-place function r(c, d) between a document d 
and a class c, and that (ii) all the library patrons from whom r(c, d) was elicited expressed 
their relevance opinions in the context of a uniform information need. In this section we 
retract both assumptions. Specifically, we argue that relevance, in its most elementary 
form, is a three-place relation r(c, d, q) in which q is the information need, or the context, in 
which d is perceived relevant to c. With that in mind, r(c, d) can be viewed as a measure of 
average relevance that runs over all the possible information needs in the context of which 
the document might be used. We now turn to describe a pooling mechanism that estimates 
such an average. 

Let Q be a group of n, patrons, each with the same information need q, and let R be a 
group of n, patrons, each with the same information need r. Suppose we ask each one of 
the n, + n, patrons to classify the same document d on a common keywords lexicon K. 
Since the patrons are not confined to a static taxonomy, it's entirely possible that the two 
groups will yield two different adaptive taxonomies. Figure 4 depicts examples of two such 
taxonomies, as well as the pooled taxonomy that emerges from combining them. The figure 
raises two immediate questions: (i) how to construct the pooled taxonomy Sq, from the 
individual taxonomies Sq and ST; and (ii) how to compute the average index m(c, d) from 
the individual indexes m(c, d, q) and m(c, d, r). The remainder of this section addresses 
these questions. 

To construct S,,, begin by setting it to the empty set. Next, apply the following admission 
test to each class x E Sq U S,: if at least one patron in both groups has classified the 
document in a library that contains x ,  include x to S,,. Otherwise, exclude it. In the 
above example, this procedure will yield the pooled taxonomy depicted on the right of 
figure 4. 'I'he computation of the average relevance m(c, d) for every class in the pooled 
taxonomy is based on two conceptual steps. First, recalling how the functions m(c, d, q) 
and m(c, d, r )  are derived from individual indexing decisions, one can "step back" and 
construct the groups of patrons that yielded these functions. For example, the m(c, d, q) 
function depicted in figure 4 is consistent with a group of 4 patrons in which two members 
classifed the document on the class ab, one member classified it on a, and one member on 
b. Denoting this group Q, one can use the same rationale to construct the group R whose 
indexing decisions are consistent with the function m(c, d, r). The resulting decisions are 
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abc abc abc 

The Q taxonomy The R taxonomy The QR taxonomy 
with m(c,d,q) values with m(c,d,r) values with m(c,d) values 

Figure 4: The result of combining two taxonomies and pooling their respective 
indexes. The m(c, d, x) values record the fraction of patrons in group X who 
classified the document d on the class c, i.e. r(c, d, x) divided by n,. For 
example, in group Q one quarter of the patrons classified d in a, one quarter in 
b, and one half in ab. 

tabulated in the left hand side of figure 5 .  The columns of each table represent the common 
lexicon which in this example is Ii' = ( a ,  b, c). The ith tuple in each table represents the 
indexing decision elicited from the ith patron in the respective group as a binary vector in 
which 1 in the j th  column codes the fact that the patron has classifed the document on 
the j th  keyword and 0 otherwise. 

Ha,ng constructed all the individual indexing decisions of the two groups Q and R, one 
can choose a variety of different pooling mechanisms to compute the index induced by the 
combined pool of patrons. The pooling mechanism depicted in figure 5 is a special case of 
a combination scheme described by Hummel and Landy in [6], who called it "a consensus 
opinion by the element of the product set of experts formed by the committees of two." 
Specifically, the QR table is made up of n, . n, tuples, one for each unique pair of patrons 
drawn from Q and from R. The combined index associated with the pair (qi, r j )  is defined 
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to be the binary conjunction of the individual indexing decisions of q; and rj. For example, 
the pooled tuple (ql, rl) = (0,1,O) is the conjunction of the individual tuples ql = (1,1,0) 
and qz = (0, 1, 1). 

R A B C  
7 - 1 0 1 1  
7 - 2 1 1 0  
r 3 0 1 0  

Figure 5: An example of using the cartesian consensus operator to pool the 
indexing decisions implied by figure 4. 

The pooling operation can now be completed by treating QR as a new group of patrons 
and computing the new m function that it induces: 

In words, for each class c E S,,, ml(c) is the fraction of the (paired) patrons who classifed 
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the document on that class. Next, the fraction of the patrons who agreed on nothing - 
m(O,O, 0) - is distributed evenly among the fractions of patrons who agreed on something, 
yielding a new mass that sums up to unity. This function is now taken to be the "average 
index" of the document d. The reader is asked to withhold judgement about the external 
validity of this method until the discussion section. 

Relationship to the Theory of Evidence: The theory of evidence concerns the assign- 
ment and manipulation of degrees of belief rendered to subsets of propositions in light of a 
certain piece of evidence which, surprisingly, is rather implicit in the theory's notation. That 
is to say, m(X) and BeE(X) are meant to be short-hands of m(Xle) and Bel(Xle), e being a 
fixed piece of evidence that helps discern the likelihood of various subsets X 8. When two 
pieces of evidence el and e2 render evidence to a common frame of discernment, the nota- 
tion mi(X) and Bel;(X), i = 1'2 is used as a short-hand of m(X1e;) and Bel(Xlei), i = 1,2 .  
The combined impact of the body of evidence {el, e2} is computed through Dempster's rule 
(6-8), which yields a new function m(Xl {el, e2}) = m(Xlel) $ m(Xlel) (or the equivalent 
Bel(X1 {el, e2)) = Bel(Xle1) $ Bel(Xle1)). 

In our indexing model, the relevance of a document to a class is viewed as a single point 
summary of the relevance opinions of many library patrons. The patrons approach the 
library with different information needs (or queries) in mind, each corresponding to a piece 
of evidence that highlights one facet of the complex relation that we call "relevance." 
The model computes this composite relevance by fusing the individual relevance opinions 
through the cartesian consensus rule illustrated in figure 5 .  As Hummel and Landy have 
shown, this pooling operation corresponds exactly to Dempster's rule (6-8). In other words, 
had we applied (6-8) to the functions m(c, d, q )  and m(c, dl r )  from figure 4, we would obtain 
the m(c, d) function in (27). This is not a coincidence, but rather a corollary of Dempster's 
original approach of inducing "lower" and LLupper" probabilities from multivalued mappings 
and combining them through his combination formulae. 

6 Discussion 

This section summarizes the relevance of our research to bibliographical models and to the 
theory of evidence. 
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Bibliographical Models: Although our indexing model was not intended to serve as 
the basis of a working application, it's instructive to envision how versions of the model 
could be used to augment document storage and retrieval systems. In essence, the indexing 
methods that we described can be implemented in two different ways. If the library is to 
be indexed "once" by a group of professional catalogers (other than by its ordinary users), 
the model can be used to record the individual indexing decisions of the catalogers and 
to transform them into a composite probabilistic index. Alternatively, we can envision 
a learning scenario in which indexes are continuously revised to reflect the actual use of 
the library's documents. Such a dynamic indexing model would require an information 
system that keeps track of (i) how many patrons sought each document, (ii) the patron's 
opinions regarding the relevance of the document to various classes encountered in the 
search process, and (iii) the information need, or query, that launched the patron's search 
process. Relevance opinions can be elicited by probing the patrons randomly, building a 
cumulative database of individual indexing decisions. Information needs can be detected 
either explicitly, by asking direct questions, or implicitly, by analyzing the language that 
the patron uses to describe his or her query [2j. 

The notion of relevance between a document and a class is closely related to the notion of rel- 
evance between an information need and a class, as both documents and information needs 
can be characterized by subsets of keywords [16]. Therefore, one area of future research is to 
extend the indexing model described in this paper to a browsing model that helps searchers 
pursue the most promising class of documents, given a (possibly fuzzy) information need. 
Such a model will maintain a vector of the form Sg = ((el, r;), (c2, r2), . . . , (c,, r,)) , where 
q is the information need, the c;'s are all the classes in the taxonomy, and the r;'s are 
dynamic measures of relevance of the patron's information need to the ith class. As the 
patron browses the library, he or she rnay be asked to provide relevance feedback concerning 
the classes that were vistaed thus far; This feedback can then be used to update the vector 
S,, which serves as the road map that guides the search direction. 

Depending on the parlance that is chosen to represent relevance, the r;'s in Sg can be either 
point masses, point beliefs, or belief intervals. For example, if we take r; to stand for the 
belief function BeZ(c;), we can interpret this number as the likelihood that the information 
need q can be satisfied somewhere in the library rooted in c;. Together with the topology of 
the taxonomy (the relation H that defines the structure of the c;'s), this information can be 
effectively used to guide bibliographical searches and fine tune browsing techniques. Some 
of these ideas were already implemented in an experimental browsing system designed by 
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Pyun Ell]. 

The Theory of Evidence: Recent criticism of the theory of evidence has centered 
around the argument that "Anything that can be done with belief functions can better 
be done with probability (Lindley [8], p. 38)." We believe that this argument, although 
correct, misses the point. To use a crude but useful analogy, it will be unreasonable to 
write off a programming language like Pascal simply because every Pascal program can be 
rewritten in machine language. Just like high-level languages feature complex structures for 
dealing with generic programming tasks, the theory of evidence provides non-element ary 
functions and operators that lend themselves nicely to certain inferential problems. This 
paper has illustrated how one such example - bibliographical indexing - maps very well on 
the various constructs of the theory of evidence. The details of this "mapping" are listed 
in table 6. 

indexing model Dempster-Shafer model 

keyword lexicon ( K )  
set of classes ( S )  
index of a document ( S d )  
group of patrons ( U )  
individual indexing decisions (vi7s) 

Table 1: A summary relationship between the indexing model and the theory of evidence 

frame of discernment (8 )  
subset of 2' 
core (C) 
implicit 
implicit - 

relevance counter (r) 
tot al-relevance counter (R!) 
maximal-relevance counter (RT)  
information need (q) 
average relevance operator 
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mass function (m) 
belief function (Bel) 
plausibility function (PI)  
body of evidence ( e )  
Dempster's rule 



Viewed as a canonical example, the bibliographical model that we described serves to justify 
the logical backdrop and the key constructs of the theory of evidence. Yet the example 
also exposes the theory's shortcomings, and, in particular, those of Dempster's rule. These 
limitations manifest themselves quite clearly in the cartesian consensus operator depicted 
in figure 5 .  Since the operator is limited to tracking boolean opinions only, it amounts to a 
conservative pooling mechanism that is insensitive to dissenting views of individual experts. 
That is to say, in order for an expert opinion to "survive" the pooling operation, at least 
one more expert must concur with it. Furthermore, the operator does not offer means to 
assign different weights to different experts, as would be desirable in many applications and 
as indeed is done in most pooling mechanisms. Now, both limitations can be easily fixed by 
using an "improved" version of the cartesian consensus operator. However, our intention 
here is to interpret the Dempster Shafer theory, not to modify or extend it. With that in 
mind, we wish to underscore the fact that any criticism of the cartesian consensus operator 
must be interpreted as a criticism of the logical assumptions that underlie Dempster7s rule, 
as the operator and the rule are completely isomorphic. 

We conclude that the theory of evidence provides an attractive framework for building 
models of documents storage and retrieval, and that these models, in turn, serve to high- 
light the theory's internal validity. Dempster's rule remains a controversial operator for 
combining beliefs, and modified versions of it may be used to parameterize the theory 
and make it more plausible in certain applications. Whichever form the theory will take, 
though, a dual analysis that focuses on an hypotheses space, on the one hand, and on an 
experts space, on the other, holds the key for understanding the probabilistic roots of the 
theory. 
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