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A Comparative Analysis of the Empirical Validity 

of Two Rule Based Belief Languages 

Rule based expert systems deal with inexact reasoning through a 
variety of quasi-probabilistic methods, including the widely used 
certainty factors (CF) and subjective Bayesian (SB) models, ver- 
sions of which are implemented in many commercial expert sys- 
tem shells. Previous research established that under certain in- 
dependence assumptions, SB and CF are ordinally compatible: 
wlien used to compute the beliefs in several hypotheses of inter- 
est under the same set of circumstances, the hypothesis that will 
attain the highest posterior probability will also attain the highest 
certainty factor, etc. This is very relevant to the expert systems 
field, where most inference engines and explanation facilities are 
designed to utilize the relative scales of posterior beliefs, making 
little or no use of their absolute magnitudes. The objective of 
this research is to explore empirically whether the compatibility 
of SB and CF extends to the field, where subjective degrees of 
belief and different elicitation procedures might bias the mathe- 
matical kinship of the two belief languages. In particular, we seek 
to Itnow (i) whether this bias is random or systematic; and (ii) 
what the bias reveals about SB and CF as two alternative means 
to elicit and revise beliefs in a rule based system. 

Key words: Belief revision, inexact reasoning, certainty factors, uncertainty 
in artificial intelligence. 
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1 Introduction 

Many inference problems that occur in science and industry share a common 
logical structure: given a set of observed pieces of evidence, a domain ex- 
pert is called upon to identify the one or more prospective hypotheses that 
provide the best explanation to the evidence at hand. For example, the evi- 
dence may be medical symptoms, mechanical malfunctions, or financial indi- 
cators, and the hypotheses may be diseases, machine disorders, or economic 
trends, respectively. In some cases, the expert's inference rationale can be 
described through a structured collection of I F  evidence THEN conclus ion  
rules, with several layers of propositions separating the immediate evidence 
from the prospective hypotheses. However, in many inference problems the 
relationship between evidence and hypotheses is non-categorical, forcing the 
expert to rely on a variety of causal, diagnostic, or simply correlated, reason- 
ing chains which are inherently inexact. One way to model this uncertainty 
is to parameterize non-categorical rules by numeric degrees of belief which, 
broadly speaking, provide a measure of the degree to  which the evidence sup- 
ports the hypothesis. The basic argument, which goes back to Leibnitz, circa 
1705 [5], is as follows: if we can elicit, represent, and manipulate, inference 
rules and degrees of belief in a credible way, we may be able to build an 
autonomous inference system that simulates, if not improves, the inferential 
ability of human experts. 

Rule based expert systems - the contemporary realizations of Leibnitz am- 
bitious program - consist of three parts: a rule base, an inference engine, 
and a belief calculus. The rule base is a collection of rules, representing 
textbook knowledge as well as subjective human judgement. The inference 
engine is a computer program that traverses the rules, pursuing reasoning 
chains from one set of propositions to another. As a side effect of this pro- 
cess, the inference engine uses a belief calculus to compute the degrees of 
belief in various propositions of interest. These numbers are used internally, 
to guide the inference engine to promising directions, and externally, to ex- 
plain the system's reasoning to the people who consult it. Depending on the 
specific expert system shell that one uses, the belief calculus can be based 
on probability theory [16], subjective Bayesian inference [9], certainty factors 
[21], fuzzy sets [24], or the Dempster-Shafer theory of evidence [19]. The 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-92-24 



literature offers numerous articles about any one of these methods, and the 
above references point to one representative article in each category. 

This multitude of %belief languages' was created during the last decade be- 
cause of the realization that classical probabilistic methods are not well suited 
to support rule based inference under uncertainty. First, standard probabilis- 
tic algorithms require tremendous amounts of data, and their computational 
complexity is forbidding for most practical applications, two points which 
are illustrated in an appendix to this paper. Second, human experts are not 
Bayesian automatons; in fact, many studies indicate precisely the opposite: 
when left to its own devices, human judgement under uncertainty violates 
the axioms of probability theory in a predictable and systematic fashion [23]. 
Why, then, some argue, should we try to simulate the successful judgement 
of non-Bayesian experts with Bayesian techniques? 

The search for intuitive and simple belief revision methods has led to the 
development of several heuristic belief languages, including the widely used 
certainty factors language (CF), and the subjective Bayesian language (SB). 
These languages are quite different on normative and cognitive grounds, and 
their validity in the context of rule based inference is still an open research 
question. We distinguish between two types of validity. Descriptive validity 
concerns the proximity of the system's outputs to the human judgement 
that it attempts to simulate. External validity concerns the proximity of the 
system's outputs to the actual state of the world. The paper describes a 
methodology and an experiment that compare the SB and CF models along 
these lines. 

The plan of the paper is as follows. $2 reviews the heuristic approach to 
belief revision in expert systems, focusing primarily on the SB and CF mod- 
els. 53 describes a general framework for comparing belief languages in terms 
of several independent validity criteria. Using this framework, $4 describes 
an experiment that pits the performance of SB and CF in a controlled ex- 
periment involving human subjects and a highly generic inference task. 55 
presents the results of the experiment, and $6 analyzes their implications. 
57 offers concluding remarks. The normative approach to belief revision in 
rule base systems is reviewed in a separate appendix that emphasizes the 
computational complexity that characterizes the general problem. 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-92-24 



Heuristic Belief Revision Models 

In this paper, 'rule bases' are viewed as inference networks in which nodes 
represent propositions and arcs represent rules. The specific topology of the 
networks are determined by the domain experts and knowledge engineers who 
construct them. Figure 1 depicts a simple network that is sufficiently rich to  
illustrate the general belief revision patterns that occur in rule base inference 
systems. The network consists of five propositions: two pieces of evidence 
(El and E2), one hypothesis (H) ,  and two sub-hypotheses (S1 and Sz). The 
directed arc that leads from proposition x to proposition y represents the rule 
I F  x THEN y, and the arc's label represents the degree of belief associated 
with that rule. 

For simplicity, we assume that the value of each proposition is either t r u e ,  
f a1 se, or unknown. Throughout the paper, uninst antiated propositions are 
denoted by upper-case characters like E, whereas lower-case characters like e 
and e denote the assertions E is known to be true and E is known to be false, 
respectively. With this notation, figure 1 entails eight prototypical bodies of 
evidence: {el), {G), {ez}, {G), {el, e2), {G, e2), {el, G ) ,  {F ,  GI, and 8 - 
the case of no evidence at all. 

d 
The degrees of belief that parameterize rules of the form E --+ H are di- 
rected, and different belief revision languages have different directionality. 
Some languages set d = beb(HIE), the predictive support that the piece of 
evidence E renders to the hypothesis H. Other languages set d = bel(EIH), 
the diagnostic impact of H on El or the likelihood of observing the evi- 
dence E given that N is true. This information is then used to compute the 
posterior belief in N ,  using a variety of 'forward' and 'backward' reasoning 
techniques. If the structure of the rule base is consistent with a set of simpli- 
fying assumptions about the joint distribution function which characterizes 
the evidence/hypot heses space, then there exist efficient belief update algo- 
rithms which are consistent with the axioms of probability theory, e.g. 1161 
and [7]. This normative approach to belief revision in rule based systems is 
described at  the end of the paper, in a separate appendix. 

Many practitioners, though, construct rule bases and elicit degrees of be- 
lief with little or no attention to the probabilistic backdrop of the problem. 
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Figure 1 

Furthermore, most expert system shells use h e u r i s t i c  belief calcuIi that are 
inspired not by probability theory, but by non-categorical logic. That is, the 
belief calculus is viewed as an extension of the inference engine, designed to 
compute degrees of belief on the fly, as a side effect of the standard reasoning 
process. As a result, the notion a joint distribution function, which is central 
in normative models, is either absent or implicit in heuristic models. 

Instead of carrying out global manipulations of a joint distribution function, 
heuristic belief calculi compute posterior beliefs in a local fashion, using 
a variety of s e q u e n t i a l  and parallel combination f~nct~ions ,  denoted here f s  

d 
and f,. Specifically, consider the rule E -i N, and suppose that a cer- 
tain body of evidence Q causes the system to change the belief in the rule's 
premise E to b e l ( E 1 Q ) .  In such a case, a sequen t ia l  c o m b i n a t i o n  f u n c t i o n  
is used to revise the rule's original degree of belief, an operation which we 

denote d' = f , (d ,  b e l ( E  I Q ) ) .  When two or more rules El 4 W and E2 5 H 
render support to the same proposition N, the posterior belief in H is up- 
dated through a pu?-allel c o m b i n a t i o n  j u n c t i o n ,  an operation which is denoted 
b e E ( h l E l ,  E 2 )  = f p ( d l ,  d 2 ) .  The exact definitions of f s  and f ,  vary from one 
shell to another, but their principle operation is the same: the posterior belief 
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in any proposition EFT is computed by applying f, and fp recursively to all 
the degrees of belief encountered along the reasoning chains that ultimately 
imply H .  

To illustrate, refer to figure 1, and suppose that a certain body of evidence, 
say E = {el, e2}, would cause the inference engine to infer sl and s2. As a side 
effect of this inference, the belief in sl will be updated (through the parallel 
combination function) to fp(dl , d2), and the belief in s2 will become d3. Now, 
S1 and S2 play a dual role in this rule base. Till now, they were treated as 
conclusions of rules. However, once we move forward in the reasoning chain, 
S1 and S2 become premises of higher level rules. Since the beliefs in these 
premises were just updated, the degrees of belief of the rules that emanate 
from them should also be updated. Hence, the original degrees of belief d4 
and d5 change to di = fs(d4, fp(dl, d2)) and to dk = fs(d5, d3). Finally, the 
parallel combination function is applied once again to revise the belief in H ,  
which becomes fp(dk, d:). 

The parallel combination function is typically assumed to be commutative 
and associative, and its extension to n rather than two degrees of belief 
is straightforward. The sequential combination function is assumed to be 
monotonically increasing in both of its arguments. Hence, it is sometimes 
referred to as an attenuation function, designed to update the rule's strength 
when the rule's premise becomes more or less certain. In order to  define a 
belief language, then, one must specify three things: (i) the mathematical 
domain of the degrees of belief (the d's); (ii) the sequential combination 
function f,; and (iii) the parallel combination function fp. Some shells offer 
fixed implementations of fs and f p ,  whereas other treat the belief calculus as 
an external parameter, supplied by the system's designer [17]. 

This paper focuses on the empirical validity of two widely used parallel com- 
bination rules - the formulae that support inference patterns like the one 
depicted in figure 2. Note that due to the locality of heuristic calculi, it 
doesn't matter if figure 2 represents a stand-alone network or a subset of 
a network with lower levels of inference. That is, if it is assumed that the 
degrees of belief dl , .  . . , d, were already attenuated by a sequential combina- 
tion function, it is no longer necessary to consider the lower level propositions 
that established the body of evidence El ,  . . . , En. Thanks to the local na- 
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Figure 2 

ture of heuristic calculi, one can assume that the evidential impact of these 
propositions on H was already absorbed through attenuation in the degrees 
of belief that support N directly. 

Referring to figure 2 as a common point of departure, the remainder of 
this section describes the parallel combination functions of the subjective 
Bayesian language and the certainty factors language. In both descriptions, 
bel(N1E) is used to denote the posterior belief in N in light of the body of 
evidence E = {El , .  . . , En) .  

2.1 The  Subjective Bayesian Language 

Many expert systems (most notably, Prospector, 191) employ a subjective 
Bayesian language (SB) whose parallel combination function is essentially 
a heuristic version of Bayes rule. In the SB language, the posterior belief 
beZ(H1E) is typically expressed through the likelihood ratio P(HE) /P(WE) ,  

d and the degrees of belief associated with rules of the form E, 4 H are ex- 
pressed through the conditional likelihood ratios d, = P(E, IH)/P(E,IW).  
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When the premise E; supports h, d; > 1. When E; supports 'jSI, d; < 1. 
When E; has no relevance to H, d; = 1. 

Before any evidence is taken into consideration, the posterior belief in W is 
initialized to  the prior belief P ( H ) / P ( ; ~ ~ ) ,  when such information is available 
in the knowledge base (when priors are not known most systems assume 
that all the hypotheses are equally likely a-priori). When new information is 
brought to bear, the posterior belief is updated through the rules that pertain 
to that information. For example, suppose that the rule base includes two 

rules of the form El 4 H and E2 3 H, with dl = P(E~IH) /P(E~IB)  
and dz = P ( E ~ ~ H ) / P ( E ~ / ~ ) .  If, at a certain point of time, the inference 
engine establishes the evidence El and EZ, the posterior belief in H is revised 
through the following parallel combination function: 

This is a special case of the likelihood ratio version of Bayes rule: 

Under the following 'ratio form conditional independence' assumption: 

Since (1) is commutative and associative with respect to El and E2, the SB 
parallel combination function for n > 2 rules is a straightforward extension 
of the binary case. 
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2.2 The Certainty Factors Language 

The Certainty Factors language (CF) was first formalized and implemented 
in the seminal MYCIN project [2]. It was subsequently implemented in 
many expert system shells, e.g. EMYCIN, MI,  and VP-Expert. In the CF 
terminology, which is reminiscent of Carnap's theory of confirmation (31, prior 
and posterior beliefs are expressed through certainty factors that vary from 

d 
-1 to 1. The degree of belief associated with the rule E; -4 H is called the 
conditional certainty factor CF(H1E;). This number also varies from -1 (E; 
confirms h with certainty) to 1 (E; confirms h with certainty). The case of 
E; being irrelevant to N is modeled through CF(HIEi) = 0. 

When two rules lend credence to H simultaneously with degrees of belief 
CF(HI El) and CF(HIE2), the belief in N in light of the body of evidence 
{El, E2) is updated by the following parallel combination function: 

CF(HIE1) + CF(HIE2) . (1 - CF(HIE1)) if both CF's  are positive 

{ - ( C F ( H E l )  + H E 2  ( I  - C F ( N E ) )  if both C F 7 s  are negative 

if the CF's  have mixed signs 

t 4) 

The parallel combination function (4) is commutative and associative, and 
it can be applied recursively to compute the posterior belief in H in light 
of any number n > 2 of rules. The expert systems literature offers several 
descriptive and normative justifications of this function, and the interested 
reader is referred to [2] for a collection of key papers on the subject. 

3 Comparative Analyses 

The mathematical relationship that links certainty factors to probabilities 
was studied extensively, e.g. [I], [12], [I l l ,  [13], and [18]. Most of these 
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analyses focused on the normative validity and implicit proximity of (1) and 
(4). Parallel combination formulae have captured a great deal of attention 
because they are widely used in many systems that carry out rule based 
inference under uncertainty. Furthermore, they entail alternative models of 
the classical Bayesian learning process, in which an agent (either a human 
or an automaton) revises his or her beliefs in certain propositions as new 
information is brought to bear 1101. 

The key finding that emerged from this line of research is that assumption 
(3), along with certain transformations that map CF's on probabilities, imply 
that the two parallel combination formulae (1) and (4) are isomorphic to each 
other. However, the analytic approach has been controversial because of its 
fundamental reliance on inter-scale mappings of questionable validity. In this 
research we sidestep the problem completely by investigating a weaker linking 
property, denoted ordinal compatibility: two belief languages are said to be 
ordinal ly  compatible if their respective calculi generate mono ton i c  scales of 
degrees of belief. 

For example, suppose that CF and SB were used to compute the posterior 
beliefs associated with the same set of hypotheses. The resulting two sets 
of numbers may not be identical, or even related to  each other in any close 
algebraic form, but they may still be perfectly calibrated in terms of order. 
That is, the hypothesis which attains the highest posterior probability may 
also attain the highest certainty factor, and so forth. This property has 
important practical implications on the joint validity of the two languages. To 
illustrate, consider a medical expert system that presents its final prognosis 
as a list of several diseases sorted by decreasing certainty factors. Suppose 
now that the CF language employed by the system were replaced by an 
SB language. If all other things were held equal, including the physician's 
simulated expertise and the patient's data, is it possible that the system 
would switch its prognosis from one disease to another? Such a result would 
indicate that at least one of the languages under consideration is inconsistent 
with either the expert, the actual state of the world, or both. 

The following thought experiment might help formalize our approach. Let 
E = {El , .  . . , &) and N = {fi,. . . ,Hm) be two exhaustive sets of pieces 
of evidence and hypotheses, respectively. Without loss of generality, suppose 
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that the body of evidence {El, E2) supports the hypothesis N;. We observe 
that the posterior belief in fi in light of {El, E2) can be derived, at least 
in theory, in three different and possibly inconsistent ways. First, the joint 
distribution function P(E1,.  . . ,En,  HI , .  . . , Hm) - the function that governs 
the occurrence frequency of tuples in the propositional space E x  H - could be 
used to  compute P(Hl I El, E2) (the exact derivation is given in the appendix). 
This number, which constitutes the actual posterior belief in Hl in light of 
{El, E2), is denoted hereafter S,. Alternatively, a human expert in the 
domain E x H may be asked to assess his or her subjective belief in HI 
in light of {El, E2), denoted hereafter Sh. Finally, a rule based system 
that simulates the reasoning of the very same expert could be fed with the 
fact base {El, E2). The system, which employs a certain belief language L, 
would go on to produce a machine generated posterior belief in HI, denoted 
hereafter SL. 

In order to proceed in the thought experiment, we now have to make a rather 
heroic assumption, as follows. We assume that the three numbers S,, Sh, and 
SL lie on the same interval scale of measurement 1221, and therefore, that they 
are comparable. Delaying a discussion of the validity of this assumption to 
the end of this section, we define three performance criteria, as follows: 

ISh - Sel : exper t ' s  e x t e r n a l  v a l i d i t y  
ISL - Sel : system's e x t e r n a l  v a l i d i t y  
ISL - Shl : system's d e s c r i p t i v e  v a l i d i t y  

Note that the expert's external validity is an intrinsic property of the expert. 
At the same time, the external and the descriptive validity of the s y s t e m  
depend on the belief language that the system employs. Till now, the thought 
experiment involved only one such language, denoted L. However, alternative 
languages may be considered, with the provision that all languages operate 
in the context of the same expert, the same system, and the same bodies of 
evidence throughout. By comparing the various posterior beliefs that these 
languages produce to S, and to Sh (which are fixed), one can make statements 
about the relative validity of the languages. Ideally, these statements should 
withstand the test of statistical significance. This is the crux of our approach. 

In view of the fact that S,, Sh, and SL represent, respectively, an objective 
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probability, a subjective measure of human belief, and, say, a certainty fac- 
tor, the assumption that these numbers are comparable is indeed disturbing, 
unless one is willing to base one's analysis on arbitrary inter-scale mappings. 
However, our ordinal perspective on the problem avoids the assumption by 
focusing not on the absolute magnitudes of these measures, but on the way 
they rank-order a fixed set of hypotheses in terms of support. To clarify, 
let z and y be two alternative 'methods' to  compute the posterior beliefs 
associated with a certain set of hypotheses, denoted S. In the experiment 
that is described below, S, and S, don't represent scaler measures, as they 
did in the thought experiment, but rather two alternative permutations of 
S, i.e. two different ways to order the same set of hypotheses in terms of 
support. Likewise, the term IS, - SyI does not represent a scaler distance, 
but the vectorial correlation of the two rankings S, and S,. This methodol- 
ogy, which can be used to analyze the comparative validity of any two belief 
languages, is discussed in detail in the next section. 

The Experiment 

In order to compare the empirical validity of SB and CF on a level ground, 
we constructed an experiment in which the two languages were supposed to 
deliver, at least in theory, compatible results. The context of the experi- 
ment was a data-driven credit rating task that required no formal financial 
knowledge. The subjects in the experiment were 28 undergraduate business 
school students, enrolled in an information systems course. The credit rating 
skills of the subjects were built and then simulated in four stages, as follows. 
The first part of the experiment consisted of training. During a period of six 
weeks, the subjects were given many examples of company profiles, on the 
one hand, and historical loan repayment and default records, on the other. 
The subjects were asked to study the data set and try to detect patterns 
that might be used to derive credit rules, although no specific instructions 
were given beyond these broad guidelines. In the second part of the exper- 
iment, the subjects were asked to predict the repay/default likelihoods of 
eight prototypical company profiles, based on what they've learned during 
training. In the third part of the experiment, the subjects' credit rating ra- 
tionale was elicited using both the SB language and the CF' language. In 
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the final stage of the experiment, the two languages were used to rank order 
the same company profiles that the subjects ranked before. The pair-wise 
similarities of these rankings were then used to test several hypotheses about 
subjects7 reliability, descriptive validity, and external validity. 

The task: Most credit rating models rely on a variety of financial ratios 
as well as industry, managerial, and other subjective criteria. However, in 
order to  minimize biases of partial or ill conceived domain knowledge, the 
experiment focused on cornpany attributes that,  ex ante, would appear to  
be completely neutral from a credit rating perspective. The subjects learned 
the predictive power of these attributes in an inductive way, using many 
examples that came from a controlled distribution. Hence, the credit rating 
problem was used only as an interesting context, designed to bring the data 
to life and inject a sense of competition among the subjects. At the beginning 
of the experiment, the subjects were told that the goal of the training stage 
was to  prepare them for a predictive credit analysis task that will take place 
toward the end of the semester. Next, we announced that the subjects whose 
predictions will come closest to  the actual solution will receive monetary 
awards of $50, $30, and $20, respectively. 

The chief objective of the training program was to endow the subjects with a 
certain degree of expertise in the narrow problem domain that we have con- 
structed. In order to achieve this goal, the subjects were exposed to many 
cornpany profiles that either succeeded or failed to repay previous loans. 
Each company profile, or 'case,' consisted of four binary attributes. El: 
whether the company is unionized or non-unionized; 4: whether it is 
p r i v a t e  or publ ic ;  &: whether it sells consumer or i n d u s t r i a l  products; 
and N: whether it repaid  or de fau l ted  on its previous loan. The E;'s 
were construed as pieces of evidence, and H was construed as an hypothesis, 
although neither this interpretation nor the attribute labels were given to 
the subjects. Instead, the subjects were presented with textual descriptions, 
e.g. "company 17, which is non-unionized, industrial-oriented, and private, 
defaulted on its loan" or "Company 11, which repaid its loan, was a union- 
ized and privately-held producer of consumer goods." Both the order of the 
companies and the order of the attributes within the company profiles were 
randomized, to avoid potential presentation biases. 
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With three binary pieces of evidence, the 'case base' consisted of varying 
repayldefault histories of eight prototypical company profiles. The distribu- 
tion of these profiles was structured in such a way that the actual posterior 
repay/default probability of each company could be  computed from the data. 
For example, to determine the posterior probability that a unionized, pub- 
lic, and consumer goods company will make good on its loan, we computed 
the the likelihood ratio P(h[el ,  q, e3)/P(hlel, G, e3) through Bayes rule, op- 
erating on the data-driven probabilities p(ell h), p(el lh) , p(Gl h), p(z lx) ,  
and p(e31h), *(e31h). This provided a 'gold standard' ranking of the eight 
companies against which other rankings could be compared. 

In order to facilitate these computations, and, at the same time, create an 
interesting inference task, the structure of the case base had to satisfy many 
simultaneous constraints. First, the distribution of the four attributes was 
made to be consistent with the assumption of ratio form conditional inde- 
pendence (3). Second, we wanted the three explaining attributes to have a 
large, medium, and small impact on the posterior distribution of the out- 
come attribute, in terms of conditional likelihood ratios. Third, we wanted 
the posterior repay probabilities of the eight companies to  be nicely spread 
apart, to allow for distinguishable differences. Fourth, the eight company 
profiles had to appear roughly the same time in the case base, so that indi- 
vidual profiles will not dominate or skew the distribution. Fifth, the number 
of repay and de f au l t  cases (viz, the prior probabilities) had to be roughly 
the same, to control for potential representativeness biases during the elici- 
tation procedure1. Finally, the total number of cases had to be kept within 
a reasonable range, to avoid cognitive strain from the subjects perspective. 

Training: Following several simulations and a pilot study, a case base of 
66 companies was constructed, satisfying all the above constraints, with the 
possible exception of the last one. Several steps were taken to make the 

'The representativeness bias [23] occurs when human experts overestimate the pre- 
dictive power of observed evidence, say a recommendation letter or a job interview, and 
underestimate the power of objective information, e.g. the base-rate probability that any 
person will succeed in a certain job. However, when the prior information is neutral, or, 
in our case, P(h)  = ~ ( h ) ,  representativeness is in fact a good heuristic, because the evi- 
dential data E is the only relevant information for updating the belief in either h or not - 
h.  In terms of formula (I) ,  this is the situation when P(HIE1 , E z )  - P ( E I I H )  . P(E21H) - 

P ( E I E ~  , ~ 2 )  ~ ( E i l i T )  P(E21H) ' 
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experimental task manageable and interesting. First, the case base was ran- 
domly divided into three data sets comprising of 16, 16, and 32 company 
profiles. The subjects were asked to analyze these data sets in three different 
spreadsheet modeling exercises that spanned a period of 6 weeks. In each 
exercise, the subjects were asked to  encode, sort, and process, the company 
data in any way they thought fit to detect useful credit rating rules. With 
each exercise, two weeks were given to hand in the following items: (i) a 
spreadsheet model of all the data accumulated thus far; (ii) an executive 
summary that proposes rules for identifying good and bad credit; and (iii) a 
data-driven justification of the proposed rules. The homeworks were scruti- 
nized for errors and task miscomprehension, but no feedback on the quality 
of the reports was given. For example, if a student wrote that 70% of the 
defaulting companies were private and unionized, and the actual figure was 
30%, the error was corrected, but no comment on the potential usefulness of 
such a rule was given. Needless to say, some subjects worked harder than oth- 
ers, a fact which was clearly reflected in their subsequent prediction ability, 
as we'll see shortly. 

The Questionnaire: After the subjects handed in their third and final ex- 
ercise, an in-class questionnaire was administered. In the first part of the 
questionnaire, English descriptions of the eight prototypical < El, Ez, E3 > 
company profiles were handed out, and the subjects were asked to rank them 
in terms of decreasing order of predicted ability to repay their debt. Next, 
the subjects were told that two computer based inference models will also be 
used to rank-order the same companies, and that the accuracy of these mod- 
els hinges on certain parameters that they have to specify. This set the stage 
for an elicitation procedure that focused on assessing the degrees of belief 

d associated with 6 rules of the form E; -+ H, i = 1,2,3.  Each subject under- 
went two elicitation 'treatments,' using both the SB and the CF languages. 
The order of the two treatments was randomized across the subjects. 

Bayesian Elicitation: The SB elicitation procedure involved three pairs 
of 'backward inference' questions. For example, in the case of El = t h e  
company i s  pr iva te /pub l ic ,  the subject was asked to answer the following 
two questions: "Assume that a certain company repaid its loan. Given 
what you've learned during training, what is your belief that the company is 
either public or private?" The subject was asked to answer this question 
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by placing an X marker on the following graphical scale: 

PUBLIC PRIVATE 
1 - - - - - 1 - - - - - 1 - - - - - 1 - - - - - ~ - - - - ~ ~ - - ~ - - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  I 

100 90 80 70 60 50 60 70 80 90 100 

The subject's answer was then used to determine the pair of subjective proba- 
bilities P(ellh) and P('i;~~lh).  Next, the same question was repeated under the 
alternative background assumption that the company has defaulted, leading 
to the pair of probabilities p(ellh) and ~ ( ~ j h ) .  Three such pairs of questions 
were asked, one for each piece of evidence El, Ez and E3. 

Cer ta in ty 'Fac to rs  Elicitation: The CF elicitation procedure consisted of 
'forward inference' questions. For example, in the case of E = t h e  company 
i s  pr iva te /pub l ic ,  the question was "Assume that a certain company is 
private.  Given what you've learned during training, what is your belief that 
the company will either repay  or default?" 

REPAY DEFAULT 
1-----1-----1-----1-----1-----1----------1-----~-----1----- I 

100 90 80 70 60 50 60 70 80 90 100 

The subject's answer was then used to determine the pair of certainty factors 
CF(hjel)  and C ~ ( h l e ~ ) .  Next, the same question was repeated under the 
alternative assumption that the company is pub l ic ,  leading to the pair of 
certainty factors C F ( ~ I : I )  and C F ( % I ~ ; ) .  Three such pairs of questions were 
asked, one for each piece of evidence El, E2 and Eli 

After the two elicitation procedures were completed, the subject's degrees of 
belief were plugged into their respective SB and CF belief calculi. Formula 
(1) was used to produce a ranking of the eight companies in terms of posterior 
probabilities, and formula (4) was used to produce a ranking of the same set 
of companies in terms of posterior certainty factors. This completed the 
data-gathering part of the experiment. 
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Results 

To recapitulate, each subject produced three rankings of the same set of 
eight companies: human ranking, SB-based ranking, and CF-based ranking. 
These rankings are denoted Sh, Sb, and S,, respectively. In addition, the 
actual ranking of the same companies, denoted S,, was available in terms 
of posterior repay probabilities computed from the data. Technically speak- 
ing, each of the four rankings was a permutation of the same set of eight 
company numbers. If all rankings were the same for a certain subject, the 
subject would be a perfect predictor, and the SB and CF languages would 
be equally capable of capturing his or her prediction rationale. In reality, 
the rankings exhibited various degrees of similarity across the subjects, and 
these similarities were used to test hypotheses about subject reliability and 
language validity. 

Specifically, the pair-wise similarities of the various rankings were estimated 
through the Spearman rank correlation coefficient, denoted hereafter R. This 
statistic varies from -1 (reversed rankings) to 1 (identical rankings) through 
0 (no correlation). With 8 items in each rankings, the critical value above 
which the two rankings are said to  be significantly correlated is lRI > 0.643 
( p  = 0.05, bi-directional test) [15]. The specific rankings and correlations 
that were studied in this experiment are depicted in figure 3 as nodes and 
arcs, respectively. In the figure and throughout the paper, R(x, y)  denotes 
the Spearman rank correlation coefficient between the rankings S, and S,. 

For each subject, R(h, e) was used to estimate the proximity of the subject's 
human ranking, Sh, to the actual ranking, S,. This coeficient provided a 
measure of the task expertise that the subject has gained during the pre- 
liminary training stage. If the subject learned the features of the data well 
and was capable of synthesizing his or her knowledge into accurate predic- 
tions, the subject's R(h, e) score was close to 1. R(h, e) scores less than 1 
but greater than 0.643 characterized subjects whose predictions where better 
than random, indicating varying degrees of gained expertise. Finally, low or 
negative R(h,  e) scores characterized subjects who failed the prediction task, 
either because of poor training or because they were unable to translate what 
they've learned into accurate predictions. To give a sense of the difficulty 
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SB Ranking 

Human Sh Se Actual 

CF Ranking 

Descriptive 
Validity 

Figure 3 

External 
Validity 

that the inference task posed to the subjects, note that the act of specifying 
a ranking (either by human or by machine) amounted to guessing the correct 
order of 8 entities. Therefore, the probability of getting a reliability score of 
1.0 by chance alone was 1/!8 = 0.000024. Hence, a reliability score greater 
than 0.9 ( to pick an arbitrary cutoff value) indicates that the subject became 
quite an expert in the limited context of this experiment. 

Of the 35 subjects who began training, 28 had positive R(h,e) scores, of 
which 24 were greater than 0.643, and 7 had negative R(h, e) scores. The 
latter 7 subjects were considered unreliable in the context of this study. 
Because the experiment was designed to simulate a certain degree of task ex- 
pertise, and because we svished to avoid analyzing rankings that were pulled 
out of a hat, the 7 unreliable subjects were subsequently eliminated from the 
experiment. 

For each of the remaining 28 subjects, the d e s c r i p t i v e  v a l i d i t y  of SB and 
CF were estimated through the coefficients R(b, h) and R(c, h ) ,  respectively. 
These coefficients measured the degree of agreement between the subject's 
human ranking and the subject's simulated SB and CF rankings. The ex- 
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t ernal  validity of SB and CF were estimated through the coefficients R(b, e) 
and R(c, e), which measured the degree of agreement between the subject's 
simulated SB and CF rankings and the actual ranking. The various coeffi- 
cients of all the subjects are listed in table 1, which is sorted in decreasing 
reliability scores, or gained expertise. 

With the exception of the last four subjects in table 1, all subjects had sig- 
nificant reliability scores, indicating a better than random ability to assign 
credit ratings consistent with the correct solution. For 10 out of the 28 
subjects, the SB and CF rankings were precisely the same, resulting in tied 
descriptive and external validity measures (subjects 4,6,8,10,13,14,17,20,26, 
and 27). For the remaining 18 subjects, the simulated rankings were in var- 
ious degrees of agreement. For example, consider subject 16, an 'average' 
performer with a reliability score of 0.82. For this subject, CF  performed 
better than SB in terms of external validity (0.98 > 0.93) as well as de- 
scriptive validity (0.77 > 0.62). For this subject, both SB and CF scored 
very high in terms of external validity, providing better predictions than the 
subject's human performance (0.93,0.98 > 0.82). This is an  example of a 
'bootstrapping effect' in which a simulated model of an expert outperforms 
the expert's own predictions, typically because the model is more robust and 
consistent than the human [a]. 
The most interesting pattern in table 1 was the relative performance of SB 
and CF as a function of the subject's human performance. In roughly the 
top two thirds of the table - subjects 1 to 17 - the CF language performed 
either as well as, or better than, the SB language in terms of both external 
and descriptive validity. Within the 11 subjects at the bottom of the ta- 
ble, no language dominated the other categorically. To test the statistical 
significance of this pattern across the entire subject population, we ran a 
series of Wilcoxon tests, as follows. For each subject, we say that language 
L1 dominates language L2 in terms of external validity if, for this particular 
subject, R(Ll,  e) > R(L2, e). Likewise, L1 is said to dominate L2 in terms 
of descriptive validity if R(L1, h) > R(L2, h). Finally, we say that language 
L outperformed the subject's own predictions if R(L, e) > R(h, e). To test 
if such significant language effects persisted in the subjects population, four 
bidirectional Wilcoxon signed-rank tests were applied to pairs of R columns 
from table 1, with the basis hypotheses of no significant differences between 
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sub j e c t  
r e l i a b i l i t y  

e x t e r n a l  
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I Hypothesis I Result I Z score / Sig. Level / 
I I I I I 

Table 2 

External validity 

Descriptive validity 

CF bootstrapping effect 

SB bootstrapping effect 

the R values in the compared columns. The results of the tests are given in 
table 2 and discussed in the next section. 

The Wilcoxon test is a powerful non-parametric means to detect differences 
in paired values that come from an unspecified distribution (in this case, the 
R values). Because it takes into account not only the signs of the differences 
but also their magnitudes, the Wilcoxon test is considerably more efficient 
than the Sign test whenever the difference magnitudes are available. For 
samples larger than n = 8, the Wilcoxon test statistic Z has an approxi- 
mate normal distribution, providing a test which is only slightly less efficient 
than the classical T test [20]. The test can be either directional or nondi- 
rectional, depending on the alternative hypothesis. In this study, no a-priori 
assumptions were made about the potential advantage of one language over 
the other. Therefore, all the tests were bidirectional. 

C F  dominates SB 

C F  dominates SB 

C F  dominates subject 

SB dominates subject 

A follow up investigation of table 1 focused on the last four subjects, who 
had non-significant reliability scores. Subjects 25 and 26 exhibited a strong 
bootstrapping effect. Subjects 27 and 28 had the peculiar combination of 
low reliability and external validity scores, on the one hand, and very high 
descriptive validity scores, on the other. The subject type that is consistent 
with these results is a student who, perhaps for lax training, didn't come 
close to the correct solution, yet was capable of expressing his or her poor 
prediction rationale very well via the elicitation procedures. This is tanta- 
mount to  a credit rating expert system that provides an excellent simulation 
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1.67 

1.97 

0.24 

0.05 

0.10 

0.05 

non-sig. 



of an incompetent human credit analyst. Three reruns of all the Wilcoxon 
tests without subjects 25 and 26, without subjects 27 and 28, and without 
subjects 25,26,27, and 28, yielded the same results as in table 2, with the only 
difference that in the latter two runs, the second hypothesis was significant 
at  the p = 0.05 level instead of 0.1. 

The overall validity of a belief language hinges on the individual validity of 
several components. In order to conduct a rigorous study of these compo- 
nents, i t  is necessary to isolate them from the rest of the language. This 
study focused on how SB and CF carry out parallel combination - a fun- 
damental belief revision pattern that comes to play whenever one caries out 
rule based inference under uncertainty. Our research methodology centered 
on the notion of ordinal compatibility. Specifically, if CF and SB were ordi- 
nally compatible under parallel combination, the posterior belief scales that 
the two languages generate (when applied to the same problem) would be 
perfectly correlated except for random noise, in which case the two languages 
would be indistinguishable in terms of validity. Yet the experiment indicated 
otherwise. In most cases, the SB and C F  rankings of the same subject were 
positively correlated, but not identical. The differences were statistically 
significant in one direction, favoring CF on SB in terms of three different 
validity criteria (see table 2). The remainder of this section explores several 
explanations to these results. 

Random differences: Let R,(c, h) and R,(b, h) be the descriptive validity 
scores of CF and SB for the i th subject, i = 1, . . . ,28. When two compat- 
ible models operate on subjective inputs elicited from human subjects, it 
should b e  expected that the outputs of the models will also be compatible, 
except for random noise. Specifically, if C F  and SB were ordinally com- 
patible, the rankings S, and Sb would be more or less the same, in which 
case R,(c, h) - R,(b, h) would be randomly distributed around zero. In ac- 
tuality, the Wilcoxon tests conducted in this experiment indicate that the 
random differences hypotheses should be rejected in favor of the alternative 
hypothesis that R(c, h) - R(b, h) was significantly positive across the subjects 
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population. This dominance was displayed in three different performance cri- 
teria: descriptive validity (p=0.05), external validity (p=O. 1 or pz0.05 - see 
end of $5)) and bootstrapping ability ( ~ ~ 0 . 0 5 ) .  Therefore, it appears that 
in this experiment, the superior performance of the CF language was not a 
random phenomenon, but rather a manifestation of a concrete advantage, 
yet to be identified. 

Subject's mindset: The SB and CF elicitation procedures are congruent 
with two opposite inference 'mindsets:' backward reasoning and forward rea- 
soning, respectively. In the SB language, one is asked to specify one's belief 
that a piece of evidence E will be observed, given that the background hy- 
pothesis H is true. In contrast, the CF language requires one to specify one's 
belief in H occurring, given that E is observed. During the training stage, 
the subjects were exposed to many examples of evidence and hypotheses, 
and were asked to identify and articulate patterns that might be useful for 
prediction purposes. However, the subjects were not instructed to adopt any 
one particular reasoning style, and were free to analyze the data in any way 
they thought fit. Therefore, the strong performance of the CF language may 
be attributed to the possible explanation that, during training, most subjects 
conditioned themselves to think about the features of the data in terms of 
forward reasoning, consistent with the CF parlance. 

In order to  test this hypothesis, we went back to the students homework 
(the written reports that they submitted during training), and coded their 
reasoning style into four categories: forward, backward, combination, and 
neither. 'Forward' reports included a majority of observations of the form 
"Companies that have this or that characteristic tend to repay (or default 
on) their loans." 'Backward' reports were dominated by observations of the 
form "Companies that repay (or default on) their loans tend to have this 
or that characteristic." 'Combination' reports involved a mixture of these 
formats, whereas 'neither' reports used a variety of ad-hoc scoring methods 
instead of rule based reasoning. 

The results of this analysis did not support the hypothesis of a pre-conditioned 
CF mindset. First, the number of subjects in the 'forward' and 'backward' 
groups was almost the same (12 and 11, respectively). Furthermore, a sub- 
sequent application of the Wilcoxon tests within the four groups of reasoning 
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styles yielded no significant mindset effects. For example, even within the 
group of subjects who conditioned themselves to think about the data set in 
terms of backward reasoning, the SB language did not perform better than 
the CF language. In conclusion, the reasoning style that the subjects adopted 
during training did not seem to influence the subsequent performance of the 
subject's belief models. This conclusion is qualified because the power of the 
Wilcoxon tests within each of the four mindset groups was low, due to  the 
small number of subjects in each group. 

Model Robustness: Even if SB and CF were compatible on mathematical 
grounds, they may still be different in terms of their capacity to handle 
inaccurate inputs, i.e. biased degrees of belief. First, the two belief languages 
use different elicitation procedures to obtain their inputs. Second, the two 
languages may be different in terms of robustness, or sensitivity to inaccurate 
inputs. A belief language is said to be robust if small perturbations in the 
degrees of belief that it operates on have little or no impact on the posterior 
beliefs that it generates. Robustness is a key property of belief languages, 
because it allows the human experts who specify the degrees of belief a certain 
margin of error that the language can tolerate without reversing the rankings 
of the hypotheses. 

In constructing the experiment, we have tried to control for potential biases 
at  the input stage by ensuring that the SB and the CF elicitation procedures 
would be on equal footing in terms of structure and contents. Although 
the direction of the elicitation was different, both procedures consisted of 
the same number of questions, and the questions themselves were designed 
to exert equal cognitive efforts from the subjects. Therefore, no procedure 
was predisposed to produce more biases than the other. However, as long 
as human experts are involved in specifying degrees of belief, the inputs 
that a n y  elicitation procedure passes to its respective calculus are bound to 
be error prone. This was alluded to by Fischhoff, as follows: "it would be 
inappropriate to think of a person's opinion about a set of events as existing 
within that person in a precise, fixed fashion, just waiting to be measured 
[lo] ." 

If we begin with the realistic assumption that subjective degrees of belief are 
bound to  be biased, then a belief calculus that uses as few human-supplied 
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inputs as possible will be more robust than other calculi, all other things are 
held equal. With this property in mind, an inspection of SB and CF suggests 
that the former is markedly less robust than the latter. This is based on the 
simple observation that formula (1) requires twice as many degrees of belief 
as formula (4) to achieve precisely the same computational goal. 

To illustrate, suppose the body of evidence at  hand were E = {el, e2}. The 
SB computation of bel(hlE), which makes use of (I), depends on four elicited 
degrees of belief: P(ell h), p(e l  l'jl) P(e2 1 h), and p(e2 IT). On the other hand, 
the C F  computation of bel(h1e) requires only two degrees of belief: if both 
CF(hlel)  and CF(hle2) are positive (negative), the first (second) line of (4) 
is invoked. Otherwise, the third line of (4) is invoked. In either case, only two 
degrees of belief are necessary, compared to SB's four. The result generalizes 
to any number of pieces of evidence: CF is twice as parsimonious as SB in 
terms of reliance on elicited degrees of belief. 

If SB is criticized for requiring too many inputs, one suggestion might be 
to elicit conditional likelihood ratios of the form  el h) / ~ ( e  lk) directly, in- 
stead of pairs of probabilities P(el h) and  elk), for each rule. However, 
conditional likelihood ratios are notoriously difficult to specify in a credible 
way. First, the expert is required to think about the relative likelihoods of 
observing e in light of the background hypotheses h and k simultaneously. 
Second, unlike probabilities, likelihood ratios are unbounded. Whether one 
uses verbal or graphical means to elicit them, it is very difficult to map sub- 
jective beliefs on a numeric ( -m,  m )  scale whose neutral point - the degree 
of belief associated with irrelevant evidence - is 1. 

As was mentioned earlier in the paper, previous analyses of CF and SB estab- 
lished that the two calculi are isomorphic to each other under certain inter- 
scale transformations and independence assumptions. This functional equiv- 
alence doesn't seem to sit well with the observation that SB requires twice as 
many degrees of belief as CF to achieve the same computation. However, a 
simple manipulation of (1) reconciles the dilemma. First, recall that SB oper- 
ates on diagnostic probabilities of the type P(E; IH), whereas CF operates on 
predictive certainty factors of the type CF(H1Ei). Now, whichever form this 
relationship might take, there is no doubt that CF(H1E;) is strongly related 
to P(HI E;), as both measure the belief in I_Z in light of a new piece of evidence 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-92-24 



E. Invoking Bayes rule, we note that P(E;IH) = P(HI E;) P ( E ) / P ( H ) .  If 
this transformation is applied to all the conditional probabilities P(E;IH) 
and P(E; IT) throughout (I) ,  the following combination rule emerges after a 
few algebraic steps: 

Both (1) and (5) compute exactly the same posterior belief, but the latter 
is half as dependent on elicited inputs as the former. This is because unlike 
P ( E i / H )  and P(E,Iz), which are unrelated, ~ (BIE , )  is the complement 
of P ( f f lE ) ,  so either probability can be used t o  determines the other. In 
conclusion, a predictive calculus like (5) has an advantage on a diagnostic 
calculus like (1) in terms of elicitation efficiency. It should be noted that from 
the technical viewpoint of this explanation, whether the predictive calculus 
is cast in terms of conditional probabilities or certainty factors is irrelevant, 
as long as both calculi rely on the same number of human-supplied inputs. 
Of course, either calculus may have other advantages or limitations in terms 
of validity that are unrelated to this particular observation. 

7 Conclusion 

The main finding of this research is as follows: in spite of the implicit assump- 
tion that  CF and SB are ordinally compatible, the CF language performed 
better than the SB language in a controlled experiment involving human 
subjects and subjective degrees of belief. Although we don't have a con- 
crete explanation to this superiority, we observe that the CF calculus is more 
parsimonious than the SB calculus, and thus less prone to biased degrees of 
belief. I t  is also possible that people find it easier to think and communicate 
about evidence and hypotheses in a forward reasoning style, consistent with 
the CF language, but this explanation was neither supported nor negated by 
the data. 

The empirical results that were reported in this paper must be qualified by 
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the limited scope of the research. First, among the three main features of SB 
and CF - elicitation procedure, parallel combination, and sequential com- 
bination - only the first two played a role in the experiment. Second, the 
evidence/hypotheses space was consistent with a ratio-form conditional inde- 
pendence assumption, so the two calculi operated under ideal circumstances. 
Third, the two languages were compared to each other not across a wide 
range of inference problems with different characteristics, but rather in the 
context of a single inference task. It should be emphasized, though, that this 
task was highly generic. That is, once the credit analysis scenario is stripped 
away from the task, what remains is a typical belief revision pattern that 
emerges in practically every setting that involves rule based inference under 
uncertainty. In other words, in spite of its specific appearance, the inference 
task that we used had a general structure that cuts across many different 
domains of application. 

The study of belief languages will not be complete until we learn how to 
deal with rule bases that violate the independence assumptions that underlie 
such calculi as SB, CF, and the Dempster Shafer model. This research can 
proceed in three complementary directions. First, we can seek knowledge 
engineering techniques to detect dependencies and then eliminate or minimize 
them by adding more structure to the knowledge base 141. Second, we can 
develop heuristic belief languages that deal with correlated evidence directly, 
although the general problem is essentially NP-hard [14]. Third, we can 
acknowledge that independence assumptions are rarely met in practice, and 
proceed to investigate the conditions under which some languages operate 
better than others when the assumptions are violated. 

Once again, we advocate the use of a modular research strategy - one that 
isolates the studied feature from the rest of the language. If one conducts 
a sensitivity analysis that investigates the robustness of CF and SB under 
various violations of independence assumptions, there is no need to compli- 
cate the study further with human subjects and subjective degrees of belief. 
Instead, what is called for is a laboratory setting in which CF and SB are 
applied to objective degrees of belief that are drawn from simulated distribu- 
tions whose independence (or lack thereof) is controlled and manipulated by 
the experimenter. This way, the ex-post performance of the languages can 
be attributed to one factor only - the extent to which the independence as- 
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sumptions were violated. The results of such simulations, combined with the 
results obtained from experiments with human subjects like the one reported 
here, can contribute to a fuller understanding of how to best utilize heuristic 
belief languages in the context of rule based inference under uncertainty. 

Amendix: Normative Belief Revision Models 

The objective of the paper was to study the empirical validity of two heuris- 
tic methods to revise beliefs in rule' based systems. This appendix provides 
a brief overview of the normative approach to belief revision, using the in- 
ference network in figure 1 as a common example. Most normative models 
view such networks from a causal perspective, in which different hypotheses 
(e.g. diseases) cause different sets of pieces of evidence (e.g. symptoms). 
The causal relationships, which might involve several layers of propositions 
(e.g. syndromes) are modeled through rules of the form H 5 E, where d is 
normally set to P(EIH)  - the probability of observing the piece of evidence 
E when H is known to obtain. In order to illustrate this model, we assume 
hereafter that the direction of the arrows in figure 1 is reversed, pointing 
downward throughout the network. 

Note that except for the hypotheses and pieces of evidence located at the 
network's boundaries, the bulk of the network's topology is made up of in- 
terim propositions, or sub-hypotheses, e.g. S1 and S2 in figure 1. These 
propositions play two different roles in the construction of inference net- 
works. Typically, they are used to represent proxy attributes, or named 
syndromes, that are part of the expert's terminology and inference rationale. 
In other cases they serve to reduce dependencies among corrclatcd pieces 
of evidence, a notorious problem that challenges the validity of all multi- 
attribute inference models. Specifically, in order to construct a credible rule 
base, the knowledge engineer must ensure that the rules that the expert pro- 
vides are as independent as possible in terms of their evidential impact on the 
hypotheses. If the evidence is correlated, the knowledge engineer can seek 
background propositions that explain out the correlation [4]. For example, 
it may be that El and E2 are not conditionally independent with respect to 
H ,  but are conditionally independent with respect to  S1. In the former case, 
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the inferential relationship between El, E2, and H cannot be described accu- 
rately by two independent rules. In the latter case, the relationship between 
El, E2, S1 and H can be captured using three rules, as depicted in figure 1, 
provided that S1 and S2 are also conditionally independent with respect to 
H. Said otherwise, the topology of the network in figure 1 implies several 
independence assumptions, as we'll see shortly. 

The remainder of this appendix illustrates a normative approach to com- 
puting the posterior belief in H in light of any body of evidence (fact base) 
{El, E2), subject to the network's topology in figure 1. Compared to heuris- 
tic calculi, the normative approach is unique in its strict reliance on the joint 
distribution function P(H, S1, S2, El ,  E2) - the mechanism that governs the 
joint occurrence of the five propositions that make up the network. In prin- 
ciple, one can invoke probability theory and show that the posterior belief 
P(WE1, E2) can be 'easily' obtained by conditioning and integrating P(.) in 
a certain way. The problem, of course, is that P ( - )  is typically unavailable 
for direct inspection, and that even if it were available, the proposed brute 
force computation would be exponentially inefficient. Pearl, who analyzed 
this problem in detail in [16], proposed a solution which is based on generat- 
ing P ( . )  in a piece meal fashion, using the 'chain rule' of probability theory. 
For example, the above 5-place function P(.) can be described in 5!=120 
equivalent ways, including the following expansion: 

The relationship between this expression and the inference network depicted 
in figure 1 is subtle. Let S(x) be the set of all propositions that cause x di- 
rectly, i.e. S(x)  = {y ly -+ z). If the network were a tree, then for all x, S(x)  
would contain at most one node. In figure 1, however, we have S(E1) = {S*), 
S(E2) = {SL1 S2), S(S1) = {H),  S(S2) = {H),  and S ( H )  = 0 (recall that 
the direction of the arcs is reversed, denoting a causal orientation). Ac- 
cording to Pearl, if an inference network is constructed properly, then for 
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each node x the set S(x)  'shields' x from any evidential influence emanat- 
ing from nodes that are outside S(x).  That is, for every set of propositions 
y1, . . . , yn $ S(x) , we have P ( x  1 S(x),  y 1, . . . , y,) = P ( x  I S (x))  . The topology 
of the network in figure 1 translates this constraint into four conditional inde- 
pendence assumptions regarding P(-), e.g. P(E11E2,Sl,S2,H) = P(EIIS1). 
When these assumptions are plugged into the right hand side of (6), the 
expression simplifies considerably into: 

It is useful for future purposes to divide both sides of the equation by the 
prior on N ,  P(H), yielding the expression 

In the general case, then, the joint probability of observing all the proposi- 
tions 'below' a certain hypothesis is given by the product of all the degrees of 
belief between the hypothesis and the propositions. Several researchers, most 
notably Pearl 1161 and Cooper [7], developed belief revision algorithms that 
can compute P(HIE1, E2) under these assumptions. For example, Cooper's 
technique is based on computing P(E1, Ezlh), and then applying Bayes rule 
to reverse the two sides of the conditioning bar2. First, P(E1, E2 I h) is derived 
by integrating the left hand side of (8) as follows: 

'Recall that upper case notation, e.g. H,  stands for the propositional variable whose 
name is H, whereas h and ';i;j stand for the constant propositions 'H is known to be true' 
and 'H is known to be false', respectively. 
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At that point, the method takes advantage of the assumptions that are im- 
plicit in the network's topology. In particular, each of the summands of (9) 
is expanded and computed using (8). After summing up these probabilities, 
P (E l ,  E2 1 h) is obtained. Following a similar procedure, P (E l ,  E2 IT) is also 
computed. Given that the prior probability of IT is know, its posterior prob- 
ability in light of any body of evidence {El, E2) can be computed through 
Bayes rule, as follows: 

To sum up, the computation of (10) boils down through (9) and (8) to many 
elementary manipulations of the degrees of belief that parameterize the rules 
in figure 1. The procedure is simple, general, and, most importantly, con- 
sistent with probability theory. At the same time, it can be applied only to 
relatively small inference problems. This is because the number of summands 
in (9) is 2", m being the number of internal nodes (sub-hypotheses) in the 
network. In fact, Cooper has shown that the problem of updating proba- 
bilities in a general network is NP-hard [6]. In the case of singly connected 
networks, however, there exists a belief revision algorithm whose run time is 
polynomial with the size of the network 1161. 

In addition to its inherent computational limitations, normative Bayesian 
techniques also require massive amounts of data, leading to  severe knowl- 
edge elicitation and storage problems. For example, consider the relation- 
ship between E2, Sl, and S2 in figure 1. In order to fully specify the proba- 
bilistic nature of this triplet, one must elicit four probabilities: P(e21sl, sz), 
P ( e 2 1 ~ ,  s2), P(e2/sl ,  s), and P(e21s ,  5) (the probabilities P(sISl, S2) can 
be derived from 1 - P(qIS1, S2)). In general, the evidential relationship 
between a single node and its n parent nodes requires the elicitation of 2" 
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conditional probabilities. These limitations, along with the fact that hu- 
man belief revision methods are often inconsistent with Bayesian inference, 
have led many to consider the use of heuristic, rather than normative, belief 
revision models in expert systems. 
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