
MEASURING THE DEVELOPMENT PERFORMANCE OF INTEGRATED
COMPUTER AIDED SOFTWARE ENGINEERING (I-CASE):

A SYNTHESIS OF FIELD STUDY RESULTS
FROM THE FlRST BOSTON CORPORATION

Rajiv D. Banker

Robert J. Kauffman

Department of Information, Operations, and Management Sciences

Leonard N. Stern School of Business, New York University

44 West 4th Street, New York, NY 10012

Center for Digital Economy Research
Stern School of Business
Working Paper IS-92-34

MEASURING THE DEVELOPMENT PERFORMANCE OF

INTEGRATED COMPUTER AIDED SOFTWARE ENGINEERING (I-CASE):

A SYNTHESIS OF FIELD STUDY RESULTS

FROM THE FIRST BOSTON CORPORATION

RAJW D. BANKER
Andersen Chair in Accounting and Information Systems

Carlson School of Management
University of Minnesota
Minneapolis, MN 55455

ROBERT J. KAUFFMAN
Associate Professor of Information Systems

Stern School of Business
New York University
44 West 4th Street

New York, NY 10012

INTRODUCTION

The First Boston Corporation, a large investment bank in New York City,

began to build its own integrated computer aided software engineering (I-CASE)

tool in 1986. This decision was made following a comprehensive survey of the

market for CASE tools available at that time. This resulted in a determination that

there would be no tools commercially available within the next few years that would:

(1) enable cost-effective expansion of the firm's current applications to support

the demand for increased financial market trades processing in a 24-hour

a day, global market;

(2) create high functionality, multi-tiered cooperative processing applications

that efficiently utilize the power and flexibility of --
* microcomputers and engineering workstations on the trading

platform;

Workinq Paper Series
STERN IS-92-34

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

* fault-tolerant minicomputers for intraday trades processing and a

link to the financial markets;
* mainframe computers for current account and firm securities

inventory management, and historical database queries to support

trading analytics; and,

(3) further control costs by paring down the overall level of developer expertise

that needed to be brought together to create the firm's applications.

Following in-house development of "High Productivity Systems" (HPS), an

I-CASE tool set that supports the development of reusable software, First Boston's

next step was to rebuild and roll out the core applications that formed its investment

banking software architecture,

A number of research questions were on our and management's agenda

when we began to examine software development using HPS at First Boston. These

included:

(1) To what extent did I-CASE support the software development process,

leading to improved productivity and higher quality applications?

(2) Did software reuse drive the results?

(3) Are the gains recognizable in small-scale experimental project

development?

(4) If so, can they also be replicated in large-scale application development?

This paper provides some insights to these questions by presenting the

results of two phases of a multi-year field study that was carried out at the First

Boston Corporation. The firft phase involved three exploratory I-CASE

development experiments in which we closely examined development performance.

The second phase involved data collection to support an empirical study of twenty

large-scale software developmentprojects representing the bank's I-CASE-built New

Trades Processing Architecture (NTPA).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

We first turn to a more in-depth discussion of the results of the three

experimental development projects. Thereafter, we will examine the results of the

development in the second phase of the project. We conclude with some ideas on

measurement and management approaches to improve the performance of I-CASE

development activities.

EVIDENCE FROM SMALL-SCALE EXPERIMENTAL PROJECTS
DEVELOPED USING I-CASE

A useful approach to measuring the potential productivity impacts of

automated software engineering techniques is to examine how the process of

development proceeds in an experimental setting. The reasons for this are

threefold:

(1) When a software project is developed as an experiment, the analyst has the

opportunity to carefully craft the specifications for the project. This ensures

that the developer will focus on developing the kind of system using the

tools that management wishes to understand better.

(2) Since the specifications of the product can be controlled and the developer's

work can be closely monitored, it is possible to get a more accurate

measurement of development productivity for an experimental project than

for a real one.

(3) Monitoring the developer also helps the analyst to understand the process

behind the product. This enables the analyst to go one step farther: to gain

an understanding of what factors drive the level of software development

productivity that is subsequently observed.

We applied this approach to estimate the productivity gains that First

Boston's HPS delivered for development of three small experimental applications:

(1) a retail industry information system that offers store, district and head office

query and data processing capabilities;

(2) an investment banking executive information system; and,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

(3) an investment banking trading workstation front-end.

Each was designed to exhibit a high level of user functionality and also

require at least two-tier (microcomputer and mainframe) cooperative or client-server

processing. Based on surveys of project managers in related work we conducted at

First Boston, we learned that developing a system with high functionality and

two-tier cooperative processing would require less than twice the effort when

compared to development using traditional means, even when project teams were

staffed with the most able developers. We were interested to see the extent to

which HPS affected development performance, even for a developer with relatively

little software engineering experience.

Experiment #1: A Retail Sales Tracking System

Application Description. The experimental development project was a sales

tracking system designed for broad use by large firms operating in multiple locations

in the retailing industry. The report and inquiry capabilities of the system were

meant to serve the needs of two levels of management: senior management at the

firm's head office and store managers in the field. The firm's computer architecture

was expected to consist of a large mainframe computer at the head office and

minicomputers at each of the stores. Management's interest in obtaining on-line,

real-time and batch reports based on intraday and historical sales necessitated

cooperative processing, because all data were uploaded to the firm's head office at

the end of each business day for long-term storage. The system's high functionality

was distinguished by the pull down menus and mousedriven input screens of the

friendly user interface.

Function Point Analysis. We performed a function point analysis to

determine the relative size of the application. Function points measure the

functionality of an application, as opposed to source lines of code (SLOC) (Albrecht

and Gaffney, 1983). This metric is increasingly accepted as a meaningful and

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

reliable measure upon which to base an estimate of development effort (Kemerer,

1990, Symons, 1988). We estimated the size of the application at about 373 function

points. Table 1 shows the breakdown by task of the function point total.

Task Description. The functional specifications for the experimental

development project were designed in cooperation with First Boston Corporation

staff members in advance of engaging the experimental developer. The project

consisted of six development tasks. Four of these were primary tasks, which were

presented in detail at the beginning of the development period. The final two tasks

were enhancements. The enhancements were only discussed with the developer

following successful completion of the first four tasks.

EXPERIMENT #1: SIZE IN 4

DEVELOPMENT TASKS FUNCTION POINTS

Primacy Tasks B
Task #1
Task #2
Task #3
Task #4

Enhancement Tasks

Task #5
Task #6

Overall Project

Tasks #1-#6 373

TABLE 1. FUNCTION POINTS BY DEVELOPMENT TASK, EXPERIMENT
#I -- RETAILING APPLICATION

Project Manager Perceptions of HPS Development Productivizy. There were

insufficient time or resources available during the study period to develop the

f

Center for Digital Economy Research
Stem School of Business
Working Paper IS-92-34

experimental system in parallel using traditional 3GL tools for comparison purposes.

Therefore, we sought to obtain development effort estimates from two

knowledgeable sources to support our conclusions about the productivity gains

associated with using HPS.

The first estimates were obtained in formal estimation sessions that we

moderated involving two teams of First Boston's project managers. The second

source was an external consulting firm to whom we gave detailed documentation on

the experimental application.

The two formal estimation sessions involved seven project managers overall.

They were requested to gauge how long the technical design, construction and

testing-implementation phases would take if the application were built:

(1) without HPS and using minimal 3GL development tools;

(2) using HPS to construct a two-tiered cooperative processing

application; or,

(3) using HPS to construct a three-tiered cooperative processing

application.

Project managers estimated that traditional development of the project

would take about ten weeks, even if the system were redefined to incorporate less

functionality. Two-tiered HPS development (similar to the experimental system that

was later developed), on the other hand, was estimated to require only six weeks

total. Increasing the requirements specifications to make the experimental

development project a three-tiered system was estimated to take approximately eight

weeks.

When project managers were asked to estimate the effort required using

traditional methods to provide the minimal functionality of the experimental

development project in a single-tiered environment, they reported at least four

months would be required. When they considered what would be involved in

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

duplicating the full functionality provided by HPS development using traditional

methods across the micro, mini and mainframe computer environments, that

estimate rose to two years of development effort. This estimate parallels what we

learned from project managers in another set of structured interviews conducted at

First Boston.

For a second independent and unbiased opinion, we provided the functional

specifications for the experimental development project to an external consulting

firm. They had no knowledge of any other aspects of this project. Their estimates

indicated that duplicating the system with minimal functionality in a 3GL

development environment would have taken at least two years, while use of

commercially available 4GL productivity tools would have required about eight

months. These estimates are summarized in Table 2.

Experimental Setting and Subject. HPS Version 2.61 was used for the

duration of this experimental development project. During this time, the developer

worked in a technically stable development environment. The subject of the

experimental application was a First Boston employee with an average knowledge

of HPS, based on a little more than six months of experience, and somewhat greater

than average programming ability. This person participated in the project on a

full-time basis, with the exception of one brief interruption.

Experimental Results. This project was actually completed in six weeks,

matching the average of the two estimates provided by First Boston's project

managers. Table 3 reports actual productivity levels in function points per person

month for each experimental task. The developer observed that HPS Version 2.61

development involving an IBM S/88 minicomputer benefitted the least from HPS;

apparently there were few facilities in place at that time to support minicomputer

software development. The developer also observed that development time for on-

line, real-time screens was greatly reduced due to the implementation of a new

screen painting facility.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

PROJECT MANAGER High Functionality, High Functionality,
PRODUCTIVITY Single-tiered Cooperative
ESTIMATION Comparison: Processing
CATEGORIES HPS to Comparison:

Traditional HPS to Traditional

Overall Life Cycle
Productivity 30% gain 100% gain

Average of Productivity
for Selected Subtasks 70% gain 130% gain

MaintenancelEnhancement
Productivity 80% gain 120% gain

TABLE 2. PROJECT MANAGER ESTIMATES OF DEVELOPMENT
PRODUCTIVITY GAINS IN TWO DEVELOPMENT SCENARIOS --
RETAILING APPLICATION (EXPERIMENT #1)

Throughout the experiment, we observed no explicit reuse of objects that

were constructed in other projects and stored in the repository. However, the

developer "templated" a great many new objects, by making slight modifications to

objects that she had built. Nevertheless, the productivity results, averaging 149

function points per person month across the six experimental tasks, compared

favorably with national estimates of software development productivity in the United

States that are presented near the end of this paper (Bouldin, 1989).

We also noted that productivity increased when the developer performed

the second of two inter-related tasks. This is indicated by the relatively higher

productivity levels observed for the enhancement tasks. We also observed that the

developer's productivity declined following the brief, mid-project switch after Task

#3 to another job. Finally, we observed that the developer pushed the limits of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

HPS' high productivity in completing the final task. We believe that this did not

represent normal output, however, because the developer was due to go on vacation

a t the end of the week the project was completed. Table 3 summarizes these

results.

UNADJUSTED
EXPERIMENTAL ACTUAL
DEVELOPMENT PRODUCTIVITY
TASKS (Function points1

person month)

ADJUSTED
ACTUAL
P R O D U ~
(Funaion pow
person month)

Primary Tasks
Task #1
Task #2
Task #3
Task #4

Enhancement Tasks
Task #5
Task #6

Overall Project
Tasks #I-#6

Note: We report both unadjusted and adjusted actual productivity estimates. Adjusting the actual
productivity estimates downward by about 40% makes them comparable to development in
other First Boston Corporation projects.

The actual development effort we o b s e ~ e d commenced at the technical design phase, whereas
in most software development shops, strategic planning, business analysis and functional design
account for a substantial amount of effort that we have not measured in the experiment.

TABLE 3. PRODUCTIVITY BY DEVELOPMENT TASK -- RETAIL
APPLICATION (EXPERIMENT #I)

Clearly, these figures are only estimates; they could not be substantiated at

the time because the CASE tool was so new. In addition, the experimental project

was small, and one could argue that commercial development of larger systems

wouId be an order of magnitude or two more complex. Still, the results prompted

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

us to look into HPS-based development performance more deeply, to attempt to

understand what factors led to the high level of observed productivity.

Experiment #2: An Executive Information System

Applcation Description. This experimental application was meant to greatly

extend the core functionality of a system that previously had been built using 4GL

tools at a large financial institution. The application was intended to offer executives

the opportunity to make queries about the content of business relationships with

important customers.

Function Point Analysis. This application measured 1509 function points,

and was broken into two modules:

(1) a customer reporting module, representing about 1056 function points, or

70% of the application's functionality, derived primarily from external

interfaces and input types;

(2) a customer account maintenance module, representing the remaining 30%

of the functionality, or 453 function points, derived primarily from input and

output types.

The complexity multiplier for the application was 1.03, suggesting that it was

of normal complexity, and in fact, the application exhibited a somewhat lower level

of functionality than we saw in other systems developed using HPS. Yet, this

application was a cooperative processing application, as the experiment was designed

to demonstrate three-tiered development productivity. User query databases were

located on a mainframe. The front-end graphics were generated by a

microcomputer, and employed data that were downloaded from a mainframe and

updated in real-time by a fault-tolerant minicomputer.

Task Description. The design specifications of this experimental project were

created with the idea of testing the development of an application that incorporated

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

many features that were believed to be well-supported by various elements of the

HPS tool set. Thus, the resulting application included the basic functionality of its

4GL-developed predecessor, but emphasized on-line, real-time functionality.

Estimate of Labor Required. The core elements of the application were

estimated by the developers to take about 4 to 5 person months to code using CICS

screens and mainframe COBOL. However, we were unable to perform a function

point analysis to determine the size of the 4GL-developed system. The developers

indicated that the new version of the system that was to be built experimentally

could not have been developed without HPS.

Experimental Setting and Subjects. Experimental development was carried

out under similar technical conditions as in Experiment #l. HPS Version 2.61 was

used and the tool was stable during the time the application was under development.

In addition to the design specifications, the primary difference between this

experiment and Experiment #1 was that this development was undertaken by a

team of seven developers, instead of just one person. Among the members of the

experimental project team, only one had more than six months experience in the use

of HPS, however, none of the participants was a novice in software development.

Experimental Results. Total observed work effort for the project was 918

hours, or about 5.18 person months, however, work on the project was not

continuous for all the developers. Each person spent an average of about 135 hours

on the project, with one person spending 10% more and another 10% less. These

estimates reflect the fact that the developers were also spending time in

demonstrations of the tool, in meetings and in other non-project related activities

for 40 hours over the five-week period. This level of effort is consistent with the

production of 175 function points per person month for the project overall.

The developers uniformly reported that becoming adept at HPS

development did not take very long. The application was developed in a series of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

increasingly complex prototypes, with developers alternately playing the role of

critical users. The core functionality of the 4GL-developed system was in place

within the first two weeks, and developers reported that team members had reused

a significant number of objects built by the team members for the project. However,

we did not have a measurement approach in place at that time to capture the levels

of reuse that were occurring.

Experiment #3: A Trader Workstation Front-end

Application Description. Experiment #3 involved the re-creation and

expansion of the functionality of a trader workstation front-end that previously had

been built at a large financial institution. The application was redeveloped to

demonstrate that HPS could support a set of cooperative processing functions that

were evenly distributed across the mainframe, minicomputer and microcomputer

platforms.

Function Point AnaZysis. The size of the application was 1389 function

points. The functionality was distributed as follows:

(1) 691 function points represented minicomputer functionality; and,

(2) the remainder, 698 function points, ran on the mainframe and

microcomputer.

When we examined the function point results more closely, we found that

approximately 37% of the functionality was derived from interfaces and 25% was

derived from inputs.

This experiment occurred about four months after Experiments #1 and #2,

and by that time, we had begun to make progress in understanding that tracking

productivity alone would not tell the whole story of development performance with

HPS. Thus, for this project we began to measure reuse more directly, in terms of

a metric called "reuse leverage". Reuse leverage is defined as follows:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

In addition to the overall level of reuse leverage, we also tracked the

greatest observed level of reuse leverage for an object, and individual reuse leverage

ratios for 3GL components, and HPS screens and rules.

Experimental Setting and Subjects. HPS Version 2.61 again was used and the

tool was stable during the time the application was under development. The team

of developers that worked on this experiment had been involved in the development

of a 3GL version of the same system at another financial institution.

Experimental Results. Table 4 reports the reuse leverage results for

Experiment #3. When examining these results, the reader should keep in mind that

all objects (except existing 3GL components) used by the developers were also built

by them during the course of their experimental development work.

The reuse leverage results indicated that the developers extensively reused

objects that they built themselves. The overall level of reuse leverage of 3.35 times

indicates that only about 30% (113.35) of the functionality had to be built from

scratch, indicating significant potential for a productivity gain to be observed.

Trader workstation software normally requires many calls to well-tested 3GL

components that provide specialized functions related to the pricing and trading of

financial instruments. In most investment banks such library routines are normally

available right off the shelf, so the reuse leverage observed for 3GL components is

quite realistic.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

REUSE LEVERAGE CATEGORY REUSE LEVERAGE

Overall Reuse Leverage 3.35 times

Greatest Observed Reuse
Leverage for a Specific Object 17.00 times

3GL Component Reuse Leverage 11.10 times
-- -

HPS Screen Reuse Leverage 3.43 times

HPS Rule Reuse Leverage 2.72 times

TABLE 4. REUSE LEVERAGE RESULTS FOR TRADER WORKSTATION
FRONT-END (EXPERIMENT #3)

The greatest observed level of reuse leverage for a single object was about

17 times, and this object was one that was built by the developers as an HPS object

during the project. Such high levels of reuse often occur in financial analytics

software, for example, when date or interest rate-related computations must be

performed in order to compute the present value of a series of cash flows related

to a financial instrument.

More interesting to us was the evidence that two kinds of HPS objects --
"rules" and "screens" -- offer significant reuse opportunities. Rules can be thought

of in COBOL as statements in the procedure division. Screens, on the other hand,

enable users to interact with the application, input trade-related data and see the

results of specific trades. In on-line, real-time applications, these two object types

are the most labor-consuming to build. (Batch applications involve the creation of

HPS "reportw objects, while both batch and on-line applications require developers

to build "files" and other less labor-intensive objects.)

A reuse leverage of 2.72 times for rules is consistent with only having to

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

build about 37% (112.72) of the procedure division, if development had occurred

using COBOL. Screens tended to be reused even more, 3.43 times, which means

that developers only built about 30% (113.43) of all application screens from scratch.

Table 5 presents productivity results for Experiment #3, and breaks them

out across the minicomputer function points and the combined PC-mainframe

function points. The application required 502 person-hours of effort, for an

aggregate productivity level of about 272 function points per person month.

FUNCTION POINTS/
DEVELOPMENT ACTMTY FUNCTION POINTS PERSON MONTH

Minicomputer Software
Functionality

PC and Mainframe
Software Functionality 698 336

Overall Application 1389 272

Note: The actual productivity estimates were adjusted downward by about 40% to make them
comparable to development in other First Boston Corporation projects. The actual
development effort we observed commenced at the technical design phase, whereas in most
softwaredevelopment shops, strategic planning, business analysisand functional design account
for a substantial amount of effort that we have not measured in the experiment.

TABLE 5. PRODUCTMTY RESULTS FOR TRADER WORKSTATION FRONT-
END (EXPERIMENT #3)

The results that were observed in the development of the trader workstation

front-end (perhaps to a greater extent than the results observed in the first two

experiments), confirmed that software reuse has the power to play a major role in

the realization of improved productivity results. Although some of our preliminary

questions about the extent of the productivity gains that might be observed in HPS

development were answered, many more new questions emerged that would require

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

additional study. These questions included the following:

(1) Would the order of magnitude of the software development productivity

results hold when the project was scaled up from an experiment to the

creation of larger, more complex systems?

(2) Would differences in software reuse leverage levels appear in larger

projects? In projects that performed predominantly on-line, real-time

processing versus batch processing?

(3) How would software development performance change as the use of the I-

CASE tool and the tool set itself matured? HOW rapidly could developers

come up to speed to enable large productivity gains to be achieved?

(4) What modifications to standard models in the software engineering

economics literature would be needed to capture the impact of reuse on

productivity? Does the creation of "reuse leverage" represent a separate

"production process"?

EVIDENCE FROM LARGE-SCALE DEVELOPMENT USING I-CASE:

FIRST BOSTON'S NEW TRADES PROCESSING ARCHITECTURE (NTPA)

The recent trend in software development in the investment banking

industry has been in the direction of applications that deliver a higher level of

functionality for the user. Such applications are exemplified by workstation displays

that present historical pricing data, graphical analytics and up-to-date prices for

financial instruments, in addition to a capability to effect a trade. In this section we

will examine the First Boston Corporation's experience with respect to I-CASE-

based software development of such applications. The software development

performance results that we present emphasize the close relationship between

software reuse and the firm's ability to achieve high levels of development

productivity.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

First Boston's New Trades Processing Architecture: Background

During the latter half of the 1980s, First Boston Corporation's senior IS

management believed that to effectively support the firm's investment banking

business increasingly sophisticated software applications and growing computer

hardware power for high speed securities and money market transactions processing

would be needed. This also would require immediate access to large mainframe

databases whose contents could be processed in real-time using highly complex

financial analysis software. Such applications would require local access and

customized analysis of distributed databases for financial market traders, and

management and control of the firms cash balances and securities inventory.

Similar to other firms in the industry, First Boston's systems would soon

need to operate 24 hours a day across three platforms -- microcomputers,

minicomputers and mainframes -- in support of global investment banking and

money market trading activities. Much of the power that such softwarehardware

combinations would deliver was aimed at giving traders a few minutes (or even

seconds) worth of time, an advantage that would help them to realize a profit in

highly competitive markets. Such high functionality software was believed to offer

a trader the ability to:

(1) obtain improved information access, through consolidation of multiple

digital data feeds of market information on a single trader workstation;

(2) utilize real-time computer-based financial optimization analytics to support

trading decisions with respect to existing and newly created financial

instruments, and that would take advantage of the consolidated digital

feeds; and,

(3) customize a user-friendly, windowing interface to suit a specific need.

In addition, senior management believed that higher functionality software

could pay off in other ways. For example, through the delivery of consolidated and

unbundled information on customer accounts and trader positions, it might be

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

possible to improve global and local financial risk management.

The firm's senior management also recognized that it was not possible to

bring high functionality systems into production rapidly with traditional development

methods. The only way to avoid this "software trap" was to consider automating

software development (Feder, 1988). Following a survey of the available

technologies then on the market, it was decided that an integrated CASE tool would

be built in-house (Clemons, 1991). The result was the commitment of $100 million

over the course of the next several years to create a new software development

methodology and a new architecture of investment banking software applications.

This investment would lay the foundation for High Productivity Qstems (HPS), the

firm's I-CASE tool set, and the infrastructure of investment banking applications for

the firm that came to be known as the New nudes ProcessingArchitecture (NTPA).

HPS and the Reusable Software Approach

The approach that the firm implemented emphasized software reuse. The

technical vision involved rebuilding the firm's information systems architecture in a

way that their basic building blocks -- objects and modules -- could be reused

repeatedly. The methodology also would help to reduce the bank's reliance on

costly language-specialized programmers by making it possible to develop software

that could run on any of the three platforms with a single "rules language." This

rules language would be defined within the HPS I-CASE tool. Code generators

would then process this HPS code so that run-time COBOL, PL/1 and C and other

code would be generated for each of the three major development platforms. The

automated generation of run-time code was meant to screen developers from the

complexity of the development environment. Most developers could focus on

development by employing the HPS rules language, instead of traditional 3GLs.

HPS supports reuse because it operates in conjunctionwith an object-based

centralized repository. The object types are defined within the rules language and

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

include programs, rules, output screens, user reports, data fields and 3GL

components, among others. The centralized repository is the key enabling

technology that supports the firm's reuse methodology. Specifications for the objects

used to construct an application are stored in the repository and are widely available

to other developers. The repository includes all the definitions of the data and

objects that make up the organization's business.

The motivation for having a single repository for all such objects is similar

to that for having a single database for all data: all objects need only be written

once, no matter how many times they are used. When they are used and reused in

various combinations, repository objects form the functionality that represents the

information systems processing capability of the firm.

At the time we conducted this study, HPS provided application entity

relationship diagramming and screen prototyping facilities for enterprise modeling

and analysis and design. It also offered code generators for several development

languages, as well as tools for debugging code and managing versions of the same

application. Table 6 presents an overview of some of the capabilities of HPS in the

first two years that it was deployed.

Data Collection

Data were gathered on the development of twenty NTPA applications

(some of which were broken in sub-projects), representing substantially all I-CASE

development at First Boston during the first two years following the deployment of

HPS. Table 7 presents information that will provide the reader with some

understanding of the functions these applications provided for the bank's

information processing infrastructure.

We obtained data in the following ways:

(1) examination of records on labor charges to projects;

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

LIFE-CYCLE ACTIVITY
PHASE SUPPORTED

SPECIFIC TOOL SET
CAPABILITY

-

Requirements Enterprise modeling Information engineering-based
data modeling package

Information engineering Diagramming tools to represent:
* entity-relationships
* business function hierarchies
* object-functionmatrixmapping

System Detailed support for Capabilities of diagramming tools
Anabsis enterprise modeling mentioned above apply here also
and Design and information

engineering Data dependency diagramming

Construction Code development for Languages include: C, COBOL,
cooperative processing on assembler, PL1 and SQL
mainframes, minis and PCs

Code generation from HPS Specific generators for: Windows
"rules language" and OS12; COBOL CICS/MVS

batch; IBM SI88 batch and on-line
COBOL; IBM 3270 terminal
screens; Windows and 0512
PresentationManager menusand
HELP screens; DB2 databases

Implementation
and Testing

Application code debugging Debugging tool for generated code

Installation support Tool capabilities include:
* autoversioninstallationcontrol
* repository migration control
* system rebuild

Production Miscellaneous
and

Maintenance

Production version management
facilty; software distribution
control; debuggers for maintaining
code

TABLE 6. THE HPS TOOL SET IN YEARS 1 AND 2 FOLLOWING
IMPLEMENTATION

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

Broker Master Product Master

Trade Inquiry Dividend Interest Redemption

Dealers' Clearance Real-Time Firm Inventory

Producer Master Affirmation

Trading Account Mortgage-Backed Securities

Trade Entry Overnight Firm Inventory

Figuration FloorDesWreaksheet

Cash Management Firm Price Management

Customer Account General Ledger Interface

Note: In some instances, applications were subdivided forming the "projects" that we tracked. This
led to the identification of multiple projects for a small number of the applications. In
addition, the data set we examined did not actually include all of the applications listed above;
some were excluded due to unavailable documentation or labor expense data.

TABLE 7. APPLICATIONS IN THE NEW TRADES PROCESSING
ARCHITECTURE -- SOFTWARE FOR THE OPERATING
INFRASTRUCTURE OF AN INVESTMENT BANK

(2) function point analysis based on examination of documentation describing

NTPA applications;

(3) interviews with project managers and project team members; and,

(4) object analysis based on DB2 queries to the object repository and manual

examination of application documentation.

Estimates of labor consumed. We obtained disaggregated and detailed

reports on the hours for each developer assigned to an application project.

Although this data was relatively complete, the bank did not have a productivity

reporting system in place (nor did it track productivity in terms of function pdints).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

As a result, in some cases it was necessary to apply second checks to ensure that we

had captured all (or substantially all) of the labor hours expended on a project. In

other cases where we believed that the data were too sketchy or likely to be in error,

we omitted the project from further consideration in the study.

Function point analysis. To perform function point analyses for NTPA

applications, we collected application documentation for as many applications as we

could. In some cases, no documentation was yet available. These had been built

using HPS prior to the time that application documentation was an automated by-

product of system analysis and design procedures.

Function point analyses performed by members of the research team were

double-checked for accuracy, and all members of the team were thoroughly trained

to reduce the likelihood that the results would be different for different analysts.

Project managers offered information about the extent to which the application

development environment differed from the norm, making application development

more complex.

Interviews with project managers and team members. These interviews were

conducted by two members of the research team over the course of two months.

The primary purpose of the interviews was to gain assistance with interpreting the

labor charges that were made to the projects, how to break those charges out over

sub-projects (where they were defined and software developers were broken into

smaller teams), and other aspects of a project that might result in different levels of

observed productivity. For example, project managers assisted us by specifying the

"environmental modifiers" that are applied in function point analysis. In many cases,

we learned that I-CASE development tended to reduce environmental complexity

for development.

Because the research team was on-site at the bank, the interview process

allowed for an initial meeting and then multiple follow-up interviews, when

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

necessary. In many cases, project managers played a crucial role in helping to

ensure that the data we collected were accurate. They also offered advice and

guidance that helped us to shape a new modeling perspective that reflects the

related activities of reusing software and improving productivity.

Project team members provided useful information to enable us to better

understand how the reusable software approach was applied in specific software

projects. Through interviews with these developers, we learned about some of the

advantages and disadvantages of the approach, and how smaller and larger projects

might be affected differently.

The key issue that was discussed had to do with the incentive compatibility

of software developers to build objects that would be widely reusable by other

software developers. In the first two years of software development under HPS,

developers "owned" objects that they developed first. Thus they had some measure

of responsibility to ensure that the objects performed well in their own and in other

developers' applications.

Because guaranteeing the performance of a software object in multiple

contexts was difficult for individual developers, an agency problem developed which

resulted in developers encouraging one another to make slight modifications to

existing objects, and then to rename them. This had the effect of shifting ownership

from the original developer to the developer who modified the object.

Object analysis. In order to obtain information about software reuse levels

in each of the projects, research team members conducted "object analyses" to

enable the estimation of project reuse leverage. This proved to be more difficult

than we envisioned for two reasons:

(1) It was necessary to ensure that the documented application matched the

content of the application that was actually built; and,

(2) the documentation varied in quality, in some cases enabling function point

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

analysis, but not a detailed count of application objects.

In view of these difficulties, a compromise was necessary. We found this

compromise in follow-up interviews with project managers, who informed us that

some HPS objects required very little effort to build, while others would be likely to

act as the primary cost drivers. This enabled us to focus data collection efforts on

the key cost driver objects (rules, screens, files, reports and 3GL components). As

it turned out, much of this data was available from the documentation, and was

quite accurate.

(More recently, we have been attempting to implement an automated object

analysis procedure to confirm the quality of the NTPA project reuse leverage levels

that we report in this paper and elsewhere (Banker and Kauffman, 1991). Our

attempts to carry out automated object analysis for the NTPA projects have been

hampered as the I-CASE tool has evolved. Further analysis requires the migration

of prior versions of the applications to the centralized object repository that operates

under the current version of HPS.)

Software Reuse Results

Table 8 presents the results obtained for reuse leverage in the twenty NTPA

projects. The results contrast software development under HPS in Years 1 and 2

following implementation. They show how reuse leverage differed for on-line, real

time versus batch processing application development. The table also shows the

distribution of the application projects across these categories.

The observed levels of reuse leverage were lower in Year 1 (1.82 times)

than they were in Year 2 (3.95 times). This is a very likely outcome. The lower

reuse leverage in Year 1 was probably caused by one of several factors. These

include:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

CASE TOOL WEIGHTED AVERAGE REUSE LEVERAGE
BY APPLICATION TYPE

EXPERIENCE
CATEGORIES ON-LINE BATCH BOTH

(# PROJECTS) (# PROJECTS) (# PROJECTS)

YEAR 1
PROJECTS 2.95 1.41 1.82
ONLY (5) (8) (13)

YEAR 2
PROJECTS 4.11 3.05 3.95
ONLY (6) (1) (7)

Note: The average reuse leverage results are weighted for project size in terms of the total number
of objects in an application.

TABLE 8. REUSE LEVERAGE FOR ON-LINE AND BATCH APPLICATIONS BY
CASE TOOL EXPERIENCE CATEGORY

* lack of familiarity on the part of developers with the reusable software

approach;
* difficulty in finding the appropriate objects to reuse;
* the practice (discussed earlier and interpreted as a response to the agency

problem of object "ownership") of templating and renaming nearly matching

software objects to avoid having to debug them; and,
* the small number of objects available in the repository for reuse.

In the Year 1 results, it is also interesting to note that on-line, real-time

application development evidenced higher reuse leverage (2.95 times) than batch

processing applications (1.41 times). In Year 1, the HPS tool set was biased to

support on-line, real-time development to a greater extent than batch processing

applications. Although the developers of the HPS I-CASE tools had a year or more

lead time to develop its capabilities, the functionality of the tools was still limited.

Management decided to focus efforts to create HPS tools that would support on-

line, real-time development earlier. Facing substantial risks associated with the large

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

investment in building an I-CASE tool set, it was important to enable the delivery

of applications that would be visible to users early on and whose impact would be

felt in the business. In addition, the higher cost of developing more complex on-line,

real-time applications made the focus natural.

By Year 2 the HPS tool set increasingly treated on-line, real-time and batch

development on equal terms. Year 2 reuse leverage for batch processing application

(3.05 times) exceeded the Year 1 level observed for on-line, real-time applications

(2.95 times). This improvement can be attributed (in part) to changes in the HPS

tool set. For example:
* batch development activities were made more productive through the

deployment of a "report painting" facility; this enabled developers to nearly

match the productivity that they could obtain for on-line, real-time

applications when using a screen painter; and,
* when communication between platforms was required for both batch and

on-line applications, highly specialized 3GL components (frequently called

"middlewaren by the developers we interviewed) had now become available

that could be "plugged in".

Developers indicated that they were learning how to use HPS, and in the

process, how to reuse more code more often. This perhaps best explains the level

of reuse observed for Year 2 on-line, real-time application development (4.11 times).

This level of reuse is consistent with building just 24% of an application from

scratch, while the remaining 76% results from reused objects.

Large Application Development Productivity

Table 9 presents the function point productivity levels that were observed

for the twenty NTPA projects. Similar to our presentation of the reuse leverage

results, we include results for Years 1 and 2 to indicate the extent of the learning

that was occurring about how to develop software using HPS. We also include

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

separate productivity figures for on-line, real-time and batch processing applications.

PRODUCTMTY BY APPLICATION TYPE OF PROJECT
CASE TOOL IN FUNCTION POINTS PER PERSON-MONTH

EXPERIENCE ON-LINE BATCH BOTH
CATEGORIES (# PROJECTS) (# PROJECTS) (# PROJEmS)

YEAR 1
PROJECTS 32.1
ONLY (5)

YEAR 2
PROJECTS 135.4
ONLY (6)

Note: The average productivity results are weighted for project size in function points.

TABLE 9. PRODUCTMTY COMPARISONS FOR ON-LINE AND BATCH
APPLICATIONS BY CASE TOOL EXPERIENCE CATEGORY

The productivity results in Year 1 suggest the power associated with

software reuse. Productivity for Year 1 on-line, real-time application development

was on the order of 32 function points per person month (FFIM), while Year 1

batch processing application development was only 9.4 W/M. The reuse leverage

associated with the on-line projects was 2.95 times (only 34% of the total

functionality of the applications had to be built), and batch projects was a more

modest 1.41 times (71% of application functionality had to be built from scratch).

By Year 2 productivity for both on-line and batch application development

was substantially improved. Year 2 productivity for batch projects (38.4 FP/M) now

exceeded Year 1 productivity for on-line, real-time applications. When these results

were reviewed with project managers and software developers, most indicated that

the increase in reuse leverage for batch development was responsible, and that the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

improved capabilities of the I-CASE tool set was a major factor. (Recall that Year

2 reuse leverage of 3.05 times for batch processing application exceeded the Year

1 level of 2.95 times observed for on-line, real-time applications.)

Meanwhile, Year 2 productivity for on-line, real-time projects improved to

135.4 WIM, four times better than in Year 1. Developers that we interviewed

indicated that the primary factors responsible for this result were the availability of

a larger pool of reusable repository objects, and the knowledge of how to locate

them. In Year 2 developers became more familiar with a facility in HPS that

provided key word search for objects. The key words were taken from the object

name, still a relatively weak method on which to develop a complete set of

candidate objects for reuse, but apparently very useful.

(Since the time that we did this analysis, we have learned much about the

process of reusing software in the HPS I-CASE development environment. Banker,

Kauffman and Zweig (1992) reported that reuse is often biased towards reuse of

"ownedn objects or objects created by project team members. Apparently the key

word search facility was not the only, and probably not even the primary mechanism

that developers used to identify objects that could potentially be reused.)

Comparison of Productivity Results with National Averages

Table 10 summarizes the productivity results obtained in the study and

compares them with estimates of national averages of software development

productivity made by Capers Jones. The present results compare favorably with the

estimated national averages, and suggest the potential for order of magnitude

productivity gains that may become possible when I-CASE development tools are

used.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

FUNCTION
PROJECT POINTS1
COMPARISON PERSON-
CATEGORIES MONTH COMMENTS

Intru-fm Estimates of Year 2 Pefomance

BATCH 38.4 Productivity influenced by lack of 3GL component
PROCESSING handling facility in earlier version of CASE tool.
ONLY Batch report painter and SQL query support

added to boost productivity in Year 2.

ON-LINE, REAL- 135.4 Productivity enhanced by use of rapid, on-line
TIME ONLY screen painter, and high levels of reuse.

External World Estimates

MILITARY1 3.0 Large, technically complex development efforts.
DEFENSE DEPARTMENT

TRADITIONAL 5.0 Averages initial development and subsequent
3GL maintenance.

MIS BUSINESS 8.0 Averages development activities conducted with
APPLICATIONS and without CASE tools.

MATURE CASE, 15.0 "Mature" defined as a minimum of hvo years of
NO REUSE experience with a relatively stable tool set.

MATURE CASE, 65.0 A projected target for firms using an I-CASE
WITH REUSE tool.

Note: The external world figures are found in Bouldin (1989), who attributes them to Capers Jones.

TABLE 10. COMPARISONSBETWEENINTRA-FIRM AND EXTERNAL WORLD
SOFTWARE DEVELOPMENT PRODUCTMTY

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

CONCLUSION

This paper provided evidence of the extent to which software reuse and I-

CASE tools that operate in conjunction with a centralized repository have the

potential to influence software development performance. Clearly, the results of this

study can only be generalized to a limited extent. The research examined one I-

CASE tool set at one site over two time periods, just following deployment of the

tools. Nevertheless we learned much about the process of modeling software

development productivity in this kind of development environment and the kinds of

new metrics that management will want to track to better understand I-CASE

development. In this concluding section, we first offer some preliminary answers

to questions that were posed earlier. Finally, we end this paper by offering some

thoughts about what implications our work may have for researchers and managers.

Did the order of magnitude of the software development productivity results

observed in the experiments hold for larger-scale development? Apparently they did

not. Although development productivity was at least one order of magnitude better

(135.4 FP/M for I-CASE on-line, real-time application development versus Capers

Jones' estimate of 8.0 FP/M for business MIS applications developed using

traditional methods) than if 3GL methods had been used, it was evident that the

results only held in a limited scenario. Moreover, nowhere did we observe in the

NTPA development the 200+ F P M productivity levels observed in experimental

development.

Were the levels of software reuse different in the experimental and large-

scale development projects? Here we had just one data point among the

experimental projects to make our comparison. The results suggest that they were

similar, especially in Year 2. (The comparison is between the overall reuse leverage

(3.35 times) observed for Experiment #3, the trader workstation front-end, and the

reuse leverages observed for NTPA on-line (4.11 times) and batch processing (3.05

times) applications in Year 2.) Increasing software reuse as project size increases

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

involves planning, coordination and search costs that were not evident for the

experimental projects or for smaller projects. But larger projects may offer more

opportunities for reuse, despite their complexity. The relationship between project

scale and software reuse observed is an issue that must be addressed in future

research.

Did development performance change as the use of the I-CASE tool and

the tool set itself matured? There is no doubt from the results that we report and

the interpretations offered to us by First Boston Corporation project managers that

learning played a very important role in the outcome. Developers were learning to

use the new tools as they became available. They were learning to be better at

reusing code simultaneously. We observed a very steep learning curve for

productivity and reuse leverage between Years 1 and 2 in the use of HPS to develop

NTPA. The extent of the potential impact of future learning remains an open issue,

however.

What was learned from this study that will assist other researchers in their

attempts to model I-CASE development performance? Our research suggests that

software development labor is transformed into software outputs (objects, modules

or function points in this case) in the presence of a second production process that

leads to observed reuse. From what we have seen, reuse leverage is created through

a separate production process that involves labor, an existing pool of software

objects and significant capital invested in a tool that supports the reusable software

approach. Although detailed considerationof the factors that may drive higher levels

of software reuse is beyond the scope of this paper, the reader should recognize that

such factors must be considered to understand how to manage projects to generate

higher levels of software reuse, paving the way for order of magnitude of gains in

development productivity.

From a software engineering economics perspective, the well-accepted

concept that software outputs are based on a single "software development

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

production function" may need to be re-evaluated. We have made initial attempts

along these lines by estimating two separate production functions using seemingly

unrelated regression estimation. For additional details, see Banker and Kauffman

(1991).

The implications of this research for managers in I-CASE environments are

as follows:

(1) Because software reuse appears to constrain the potential for software

development productivity, it makes sense to implement measurement

systems that track software reuse, as well as software development

performance. Problems with software development productivity may be due

to insufficiently high levels of reuse.

(2) If managers believe that it is worthwhile to measure software reuse, they

should also recognize the potential difficulties that such measurement may

entail. The metric that is discussed in this paper, reuse leverage, is

probably new to the reader. There are no widely implemented standards

at present, though the IEEE has written a standards document and made

it widely available for comment. In addition, measuring reuse leverage

manually was very labor and time-consuming. The only real solution is to

automate such analysis. (In fact, very little work has been done to date in

this area also. One exception is the work of Banker, Kauffman, Wright and

Zweig (1992), who proposed a taxonomy of software reuse metrics and

suggested an approach to their automation.)

(3) The levels of observed reuse are likely to be influenced by the set of

incentive mechanisms that managers devise to overcome the "agency

problem" that we described. In the development environment that we

studied it is likely that a one-time (if minor) gain in reuse leverage could be

obtained by placing objects, once they have been developed and tested, on

neutral ground, so that the original developer would no longer be required

to guarantee their performance. Other gains could be achieved by

implementing incentive mechanisms to increase more directly the observed

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

levels of reuse.

A natural new owner would be an "object administrator", whose primary

roles would involve:

(1) ensuring that a broad base of reusable repository objects is available for

other developers to use;

(2) planning for a minimal subset of "reusable objects" to provide the kind of

functionality that is needed in many different kinds of projects; and,

(3) proposing incentive mechanisms for senior management review that will

assist in the achievement of higher levels of reuse leverage to support

improved productivity.

Our call for "object administration" is meant to achieve the same kinds of

payoffs in I-CASE development in the 1990s that database administration has

delivered since the 1970s.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

REFERENCES

[Albrecht and Gaffney, 19831 Albrecht, AJ. and Gaffney, J.E. "Software

Function, Source Lines of Code, and

Development Effort Prediction: A Software

Science Validation," IEEE Transactions on

Software Engineering, 9:6, November 1983.

[Banker and Kauffman, 19911 Banker, R. D, and Kauffman, R. J. "Reuse and

Productivity: An Empirical Study of Integrated

Computer Aided Software Engineering (ICASE)

Technology at the First Boston Corporation," MIS

@arterly, September 1991.

[Banker, Kauffman and

Zweig, 19921 Banker, R. D., Kauffman, R. J., and Zweig, D.

"Monitoring the 'Software Asset' Using Repository

Evaluation: An Empirical Study." Forthcoming in

IEEE Transactions on Software Engineering.

[Banker, Kauffman, Wright

and Zweig, 19921

[Bouldin, 19891

Banker, R. D., Kauffman, R. J., Wright, C., and

Zweig, D. "Automating Reuse and Output

Measurement Metrics in an Object-Based

Computer Aided Software Engineering

Environment." Forthcoming in IEEE Transactions

on Software Engineering.

Bouldin, B. M. "CASE: Measuring Productivity --

What Are You Measuring? Why Are You

Measuring It?" Software Magazine, 9:10, August

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

[Clemons, 19911

[Symons, 19881

Clemons, E. "Evaluating Investments in Strategic

Information Technologies," Communications of

the ACM, January 1991.

Feder, B. "The Software Trap: Automate -- Or

Else,"Business Week, May 9, 1988.

Kemerer, C. F. "Reliability of Function Points

Measurement: A Field Experiment," Working

Paper, Sloan School of Management, MIT,

December 1990.

Symons, C. R. "Function Point Analysis:

Difficulties and Improvements," IEEE

Transactions on Sojiware Engineering, 14: 1,

January 1988.

ACKNOWLEDGEMENTS

Special thanks are due Mark Baric, Gene Bedell, Gig Graham, Tom Lewis and

Vivek Wadhwa of Seer Technologies. They provided us with access to data on

software development projects and managers' time throughout our field study at the

First Boston Corporation. We also appreciated the efforts of Eric Fisher, Charles

Wright, Vannevar Yu and Rachna Kumar, who assisted in the data collection. An

earlier version of this research was presented at the "Software Engineering

Economics I Conference," sponsored by the MITREWashington Economic Analysis

Center, June 1991, Jean Kauffman provided helpful editorial comments to improve

the readability of the paper. All errors are the responsibility of the authors.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-34

