
ON THE NEED FOR TOOLS TO SUPPORT SEARCH IN SOFTWARE REUSE
A Perspective Paper Presented to Seer Technologies, Inc.

Tomas Isakowitz
Department of Information Systems

Stern School of Business
New York University

New York, NY 10012-1126

Robert J. Kauffman
Department of Information Systems

Stern School of Business
New York University

New York, NY 10012-1126

June 1992

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Workinq Paper Series

STERN IS-92-41

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-41

ON THX NEED FOR TOOLS TO SUPPORT SEARCH IN SOFTWARE REUSE

A Perspective Paper Presented to Seer Technologies, Inc.

June 1992

TOMAS I S A K O W Z

Assistant Professor of Information Systems
Stem School of Business

New York University

ROBERT J. KA-

Associate Professor of Information Systems
Stem School of Business

New York University

ABSTRACT

Software reuse in the presence of a repository and object-based CASE tool is likely to be "biased." Prior
research (Banker, K a u f k m and Zweig, 1991) showed that a developer wilI be: most likely to reuse her
own objects; somewhat less likely to reuse objects developed by her project team members; and, wen less
Likely to reuse objects stored in the repository, but developed elsewhere in the corporation. This paper
characterizes this problem in terms of three familiarity biases: personal bias, project bias and time bias. In
the presence of these biases it is appropriate to deploy tools that support the search for software reuse, so
that they may be overcome. However, the tools that are chosen or created for this purpose must
adequately treat the technical and cognitive fundamentals for individual developers, and recognize the
organizationai and economic perspectives of a firm that wishes to maximize the business value of its
software development activities.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-41

1. INTRODUCTION

Carma McCIure, a noted author and consultant
in the area of software development, has
recently characterized the ongoing revolution in
somvare engineering methods in terms of three
"R's", re-engineering, repository and reusability
(McClure, 1992):

(1) Re-engineering applies capital
intensive technology to support the set
of activities that are involved in +

maintaining existing software
applications. Very often re-engineering
involves restructuring and optimizing
existing code, reverse engineering
software, and providing control as
enhanced software is &grated to
improve the functionality of business
information systems.

(2) The repository is central to software
automation, and provides a basis for the
development tool set, life cycle
integration, business function and
process modeling and data architecture
design, software construction and
software reusability. The repository is
the storehouse of a firm's software
assets, which become available to other
developers as they are placed in the
repository, and these create value for
the firm when they are combined to
support revehue-generating business
functions.

(3) Software reusability is a software
development meEhodology that
emphasizes the use of existing software
assets to speed and streamline the
creation of new software applications.
Reuse is made possible when an
automated software engineering
environment supports a repository
existing sofhvare assets whose
functionality can be identified for reuse
in new applications.

Re-engineering approaches, repository-based
computer aided software engineering (CASE)
tools, and software reusability represent the new
frontier of software development methods aimed

at achieving improved sohvare development
performance. Repository-based integrated CASE
enables sofhvare reuse to ex%end into all the
sofhvare development life cycle phases,
beginning as early as functional design. Re-
engineering tools, meanwhile, enable software
reuse to occur in maintenance activities and in
construction the fist time around.

Software development methodologies that
emphasize reusability are increasingly
recognized in terms of the value that they
deliver in helping firms to achieve higher levels
of software development productivity and
reduced software costs (Apte, Sankar, Thabur
and Turner, 1990; Banker and KaufEman, 1991;
Karimi, 1991; Kim and Stohr, 1991). Although
software reuse is unlikely, by itself, to forestall
the software development crisis, the attention
that it has received is nqdoubt warranted. If
firms are able to reduce the proportion of new
code that must be constructed from 70-100% of
the total (as in traditionally developed
applications) to between just 30-40% (as has
recently been observed in CASE development
(Banker and KauEman, 199 1 and 1992)), the
process of software development will be
irrevocably altered.

1.1. Promoting and Supporting Software
Reuse

In order to accomplish this, however, capital
investment in tools that appropriateIy support
and promote software reuse must occur. The
research questions that we will address in this
paper focus on what is meant by the words
"appropriately support and promote software
reuse." For a too1 to offer appropriate support it
must match both the technical and cognitive
perspectives ofthe developer, as well as the
organizational and economic perspectives of the

J h 7 .

Developer Perspectives. The technical
perspective of the developer can be
characterized by answering such questions as:
What existing software is available for reuse,
and can it be incorporated into a new
application? Does the existing soffware match
the need for specific functionality? E not, how
must the existing software be m&ed?

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-41

The cognitive perspective of the developer
reveals another set of concerns. These include
questions such as the following: How can
targets for reuse be idenu~ed? How will the set
of potential targets be screened? How hard,
costly or timeconsuming -will they be to locate?
How can one tell that a software object that is
targeted for reuse will really deliver the desired
function? If the functionality match between
what is needed and what seems to be available is
not perfect, when should a developer stop
searching and start building new functionality?

Firm Perspectives. The firm's perspectives
differ substantially. At the level of the firm,
tools that appropriately support software reuse
must address basic organizational and economic
concerns. From an organizational perspective
a number of questions are raised: Can software
reuse tools be deployed that will create a
common environment for development to
proceed? Can developers be trained to use the
tools in a reasonable amount of time with
predictable results? What will it take to
convince developers to utilize the reuse support
tools as they were intended to be used?

Finally, the economic perspective of the fkm
will require management to ask the following
questions: How much will it cost to deploy
reusable software support tools and how long
will it take to obtain the desired results? Can
the new tools be piggy-backed onto existing
capabilities to minimize deployment costs? How
large will the resulting impacts on development
performance be and will the impacts be
sustainable?

These questions set the broader context within
which questions can be addressed about the
appropriateness of a tool set that supports and
promotes software reusability. This paper
provides a basis for speciQing the requirements
of a software reuse support tool that can address
the technical and cognitive concerns of the
developer, without losing sight of the
organizational and economic concerns of the
finn

2. WHY SUPPORT SEARCH FOR
REUSABLE SOFT\;ILRE?

The rationale for providing a tool to improve the
effectiveness of a developer's search for reusable
software follows from a consideration of several
key questions:

(1) How can reuse assist in the
improvement of sofhvare development
productivity?

(2) What factors affect software reuse that
are addressable through a reuse support
tool?

(3) To what extent do search costs matter?

(4) How do familiafity biases influence a
developer's sea.ch:for reusable
software?

2.1. How Can Reuse Lead to Improved
Productivity?

In related research, we reported that reuse levels
for an integrated CASE development
environment deployed at the First Boston
Corporation and Carter Hawley Hale stores, Inc.
contributed to higher development productivity
(Banker and Kauffman, 199 1 and 1992; Banker,
Kauffman and Zweig, 1991). The metric that
we used to gauge software reuse is called "reuse
leverage" and is defined as the ratio of the
number of calls made to software objects in an
application and the number of new objects built
specifically for the application. The metric is
meant to characterize how many times an object
is used on average.

Experimental development of a number of
small, but realistic applications evidenced a
reuse leverage ratio on the order of 3 times. In
large-scale development, this level of reuse was
often exceeded, rising as high as 4.11 times. A
reuse leverage ratio of 4.1 1 times is consistent
with an application that has just 24% of its
functionality developed specifically for the
application, while the remaining 76% is
obtained through reuse.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-41

2.2. What Factors Affect Software Reuse?

Banker, KauEman and Zweig (1990) identified
several factors that appear to have had a
significant impact on soflsvare reuse. These
included:

(1) the potential to reuse software in
applications that have been designed
with the intent of promoting reuse;

(2) the search mechanism that is employed
to locate potentially reusable sofnvare
objects as development proceeds; and,

(3) the reuse implementation mechanisln
that enables a developer to incorporate
previously developed software objects
into applications that are under
construction or that are being
enhanced.

Reuse is possible in all phases of the s o h a r e
development cycle. In fact, it is important to
keep in mind that construction usually consumes
40% or less of total life cycle costs. To the
extent that CASE increases the relative
proportion of effort devoted to early life cycle
activities such as planning, analysis and design,
software reusability in the form of reusable
requirements, designs and data definitions
becomes increasingly important For this
reason, it is worthwhile to consider reuse
potential, the search mechanism and the reuse
implementation process as they apply across the
Life cycle phases.

Integrated CASE tools that operate in
conjunction with a centralized repository of
software assets have the potential to provide
computerized support for reuse. For such tools
to be appropriate, they will need to address each
of the factors stated above: reuse potential, reuse
search and reuse implementation

2.3. Do Search Costs Matter?

When business analysts and somare designers
have laid out plans for s o h e that offer the
potential for reusability, the burden of reusing
software will rest with developers who perform
activities associated with the technical design
and software construction phases of the life
cycle. In the technical design phase, a developer

must actually determine whether it is feasible to
reuse existing software objects; in the
construction phase, the existing software must
be plugged into the newly constructed
application.

The technical aspects of reuse ;%ill pose major
concerns to developers involved in technical
design. In order to reuse an object, it must be
available to a developer within the repository.
Firms that are actively pursuing software
development in repository-based CASE
normally have multiple repositories, including
one for software that is under development,
another for software that is being checked and
tested for migration from one location to
another, and a thud for implemented software.
Typically the development repository offers the
most complete set of pokntiaUY reusable objects,
but this may contain so many objects that even
experienced developers will not be aware of the
breadth of the hctionaIity available for reuse.

Thus, a cost-effective search mechanism is
needed to support the search for reuse. Search *

costs are undoubtedly a major factor in£luencing
the observed levels of reuse leverage in a project.
When search costs are unacceptably high -- for
example, in the absence of a repository or well-
organized code libiary - it is likely that
developers will search no more than the contents
of their o m memories. Although such search
may yield considerable reuse, it is likely that a
significant number of opportunities to reuse
software objects will be missed.

Banker, Kaufkan and Zweig (199 1) reported
that reuse Ievels at the firms whose software
development operations they investigated seem
to have remained constant over time, despite
substantial growth in the n k b e r of repository
objects and increasing programmer experience
with the tool. The following facts d e s c n i why
this may have been observed:

(1) 60% of software reuse involved objects
written and reused by the same
developer,

(2) 8590% of software reuse involved
objects that were reused by members of
a project team within the same
application;

Center for Digital Economy Research
Stem School of Business
Working Paper IS-92-41

(3) 5% of the developers accounted for
about 20% of the sofi~are objects and
over 50% of the reuse; and,

(4) the top reusers were also experience
programmers, and they were able to
achieve average reuse leverage levels of
about 4 times, indicating that 75% of
the code that they produced resulted
from reuse.

Apparently a software developer is predisposed
to reuse either her own s o h e objects or those
of people with whom she works closely. There
is a good chance that she won't take the time to
conduct a careful search of the repository to
identify those objects; she will merely search her
memory of for relevant software objects that
were encountered in her prior development
experience. This suggests that reuse is a skill
that can be learned, and that top-notch
developers may be most suited to creating
reusable software. When there are no specific
incentives to reuse sofhvare or when took that
support reuse are not available to a develo$r, a
lower level of reuse is likely to result.

Characteristically similar results were obtained
by Woodfield, Embley and Scott (1987), who
examined the performance of programmers who
were relatively untrained in reuse. Although
they limited their examination of reuse to
abstract data types stored in a software
component library, the results suggested that
software developers found it hard to gauge the
worth of reuse, that individual biases can
influence what elements are thought to be
"importantn in identifying targets for reuse, and
that if the effort to reuse is perceived to be less
than 70% of the effort to build similar
functionality, then the reuse candidate was
chosen The fact that the evidence suggested
that the reuse effort threshold was not at 100%
(or thereabouts) of development effort is
suggestive of the inefficiency of the reuse search
support mechanism. (See also Fischer (1987)
for additional evidence.)

2.4. How DO Familiarity Biases in the Search
Mechanism fofl uence Reuse Search?

When a developer limits her search to just her
own memory, the pool of objects that are

available for reuse is constrained by three
familiarity biases:

(1) A personal bias results in the developer
limiting search to just his own objects.

(2) Aproject bias results in the developer
limiting search to the current project's
objects.

(3) A time bias results in the developer
focusing the search on objects which
have been created or reused recently,
and thus are fresh in the developer's
memory.

Bias in search seems to explain the observed
bias in reuse. This is probably true when over
half of all reuse results from a developer reusing
her own objects, and when programmers who
are the largesttproduceri of software also exhiiit
the highest reuse levels. When 85-90% of
software reuse involves objects within the same
application, it is reasonable to consider the
project and time biases as the factors that drive
this result.

3. THE NEED FOR A TOOL TO SUPPORT
REUSE SEARCH

The reuse search suppart tool used by the E m s
discussed by Banker, Kauffman and Zweig
(1991) provided littIe more than "keyword
search." Keyword search has been found to
offer limited power, and be impractical in many
kinds of applicatiqns (Bates, 1986; Fidel, 1985;
Furnas, Landauer, Gomez and Dumais, 1987;
Tan and.Borko, 1974; Zunde and Dexter,
1969). In software development, finding an
object that can be reused may often require more
effort than programmers are willing to expend,
given the relative ease of writing the code for a
single new object.

A technical tool for search should support the
identification and reuse of objects beyond the
boundaries of the familiarity biases which all
developers are likely to exhibit I . addition to
the most straightfomd alternative - N1 text
search - a number of alternative mechanisms to
achieve this goal have been considered to date:

(1) Prieto-Diaz and Freeman (1987)
proposed a object indexing scheme that

Center for Digital Economy Research

. . . .- Stem School of Business - _ ,

Working Paper IS-92-41

they called "facet classification", which
dra\vs on concepts in library science.
Facet classification "relies not on
breaking down a universe, but on
building up or synthesizing" from the
content of software objects @. 8). This
view matches well the perspective that
is used in the object-oriented paradigm.

(2) An alternative, but related approach
involves indexing software objects
through "latent semantic analysis"
(Deerwester, Dumais, Fumas,
Landauer and Harshman, 1990). The
basic idea as it relates to software reuse
is that it might be possible to take
advantage of the implicit or higher
order structure in associating software
objects with their hctionality
contents. "Semantic structure",
according to the authors, can be
e.uploited so that it might be possible to
identify potentially reusable software
objects from a cluster of characteristics,
rather than single-valued descriptions.

(3) Creech, Freeze and Griss (1991)
reported on an exploratory use of
"hypertext search" to identify reusable
elements in the context of software
development at the Hewlett Packard
Corporation. S id la r efforts also have
been under way in Europe (Vassilioy
1990). Hypertext capabilities can be
used to search a repository in ways that
circumvent the constraints of less
powerful search approaches, by
creating links between repository
objects that will help a developer to
more rapidly identify the relevant
objects to target for reuse.

In the latter case, even though the capabilities of
the hypertext-based reuse search support tool are
far more powerful than that those of keyword
search, the approach has not been widely used.
Hypertext tools still are in their infancy, and
people who have used them in various settings
report that this makes them more difticult to use
than is really desirable. Faced with an
opportunity to use such tools in soAware
development, a key concem will be whether the
support for reuse that is provided is cost-
effeaive.

Clearly, the requirements for a more effective
search mechanism will involve balancing the
treatment of multiple aspects of the problem. A
technical solution is likely to address well the
technical concerns of the developer. But it may
fail if it does not adequately address his
cognitive concerns, and also address the
organizational and economic concerns of the
firm to cost effectively increase levels of reuse.
Whatever mechanism is selected to support the
search for reuse also must be able to span the
familiarity boundary. This calls for the
formuiation of a mental model of the search
process that can bring the familiarity boundary
into sharper relief.

In future research, we intend to explore research
questions that can.deepen our understanding of
how to support the search for reusable software.
These questions include:

(1) How can we create a formal model that
represents the process of search for
reusable software?

(2) What is wrong with the search process
used by developers who utilize
currently available reuse support tools?
How is its power limited?

(3) How can search for reusable software
be more effectively assisted? Are there
opportunities to design a technical
environment that can help developers
to overcome their familiarity biases in a
way that is cost-effective for the £irm?

REFERENCES

Apte, U., Sankar, C. S., Thakur, M, and Turner,
J. Reusability Strategy for Development of
Information Systems: Implementation
E.uperience of a Ba& MIS Quarterly,
December 1990,421-43 1.

Banker, R D, and KaufFman, R J. "Reuse and
Productivity: An Empirical Study of Integrated
Computer Aided Software Engineering (ICASE)
Technology at the First Boston Corporation,"
MIS Quarterfy, September 1991.

Banker, R D., and KauEman, R J. "Measuring
the Development Performance of Integrated

Center for Digital Economy Research
Stem School of Business
Working Paper IS-92-41

Computer Aided Software Engineering (I-
CASE): A Synthesis of Field Study Results from
the First Boston Corporation, in Sofiare
Engineering Economics, T. Gulledge (ed.),
Springer-Verlag Publishers, New York, NY,
1992.

Banker, R D., Kauffman, R J., and Zweig, D.
"Factors Affecting Code Reuse," Working
Paper, Center for Research on Information
Systems, Stem School of Business, New York
University, 1990.

Banker, R D., KaufFman, R J., and Zweig, D.
"Monitoring the Software Asset," Working
Paper, Center for Research on Information
Systems, Stem School of Business, New York
University, 199 1.

Bates, M. J. "subject Access in Online
Catalogs: A Design Model", Journal ofthe
American Society of Information Science, Vol.
37, 1986,357-376.

Creech, M. L., Freeze, D. F., and M. L. Griss,
"Using Hypertext in Selecting Reusable
Software Components," Hypertext '91
Proceedings, ACM Press, San Antonio, Texas,
December, 1991,25-38.

Deerwester, S., Dwnais, S., Fumas, G.W.,
Landauer, T, K., and R Harshmnn . "Indexing
by Latent Semantic Analysis", Journal of the
American Society for Infomation Science, Val.
41, No. 6, September 1990,391-407.

Fidel, R "Individual Variability in Online
Searching Behavior," Proceedings of the
American Society of Information Science 48th
Annual Meeting, Vol. 22, 1985,69-72.

Fischer, G. "Cognitive View of Reuse Design,"
IEEE Solfware, JuIy 1987, pp. 60- 72.

. .
Furnas, G. W., Landauer, T. K, Gomez, L. M,
and S. T. Dumais, "The Vocabulary Problem in
Human-system Communications,"
Communications ofthe A m , Vol. 30, 1987,
964-971.

Karimi, J. "An Asset-Based Systems
Development Approach to Software
Reusability." MTS Quarterly, June 1990, 179-
198.

Kim, Y., and Stohr, E. "Sohvare Reuse: Issues
and Research Directions, " Proceedings of the
Hawaii International Conference on System
Sciences, E E E Computer Society Press, Vol.
IV, 612-623,1992.

McClure, C. The Three R's of Sojlware
Automation: Re-engineering, Repository and
Reusability, Prentice-Hall, Inc, Englewood
CEEs, NJ, 1992.

Prieto-Diaz, R, and Freeman, P. "Classifying
Software for Reusability," IEEE Software,
January 1987, 6-16.

T m , D., and H. Borko, "Factors Influencing
Inter-indexer Consistency", Proceedings ofthe
American Society for Infopation Science 37th
Annual Meeting, Vol. 1 1, 1974,50-55.

Vassiliou, Y. Personal communication,
November 1990.

Woodfield, S. N., Embley, D. W., and Scott, D.
T. "Can Programmers Reuse Software," IEEE
Sofiare, January 1987; 52-59.

2;unde, P., and M. E. Dexter. "Indexing
Consistency and Quality", American
Documentation, Vol. 20, No. 3, July 1969,259-
264.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-41

