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Modeling Dynamics of Databases with Relational Discrete Event 
Systems and Models* 

Alexander Tuzhilini 
Zvi M. Kedemt 

Abstract 

Behavior of relational databases is studied within the framework of Relational Discrete Event 
Systems (RDESes) and & d e b  (RDEMs). Three behavior specification methods based on pro- 
duction systems, recurrence equations, and Petri nets are defined and their expressive powers 
are compared. Production system RDEM is extended to support non-determinism, and various 
deterministic and non-deterministic production system interpreters are introduced and formally 
compared in terms of their expressive power. It is shown that the parallel deterministic inter- 
preter has more expressive power than other interpreters including an OPS5-like interpreter. 
Since it is also parallel, this makes the parallel deterministic interpreter a very attractive inter- 
preter for production systems. 

1. Introduction 

There has been much work done on studying behavioral aspects of databases. Examples of this 
work include active databases [MI189], triggers [Aea76, St0861 and alerters [BC79], database mod- 
els that explicitly support behavior, like RUBIS [LNR87], SHM+ [BR84], Event Model [[KM84], 
integration of production and database systems into expert database systems [dMS88a7 SLR88, 
WF'90, SJGP90, sig891, modelling behavior as a sequence of states [GT86, Via871, and studying 
behavioral specifications with transaction languages [AV]. 

However, there is no unifying formal framework for studying behavior which allows comparison 
of the proposed models in terms of their behavioral properties as relational query languages can 
be compared in terms of expressive power and relational completeness. Because of that, there are 
many different approaches for specifying behavior which yet have to be brought together in a single 
formal framework. 

This paper contributes towards the development of such a unifying framework by introducing 
the concepts of Relational Discrete Event System (RDES)  and Relational Discrete Event Model 
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and by the National Science Foundation under grant number CCR-89-6949. Portions of this paper appeared in the 
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Event Systems and Models." 
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(RDEiCI). RDES is defined as a set of trajectories over the space of relational database states with 
a specified schema and is based on the notion of a Discrete Event System (DES) [VK87]. RDEM 
is a formalism, based on the relational data model, which describes a possibly infinite RDES set of 
trajectories in finite terms1. 

The concept of a trajectory or a trace was introduced in computer science some time ago. 
Mazurkiewicz defined a notion of a trace in [Ma2771 when he studied concurrent systems and 
their relationship to Petri nets. Surveys of work on trace theory include [Diego, Maz881. In 
databases, sequences of database states were studied in [GT86, Via871 and in the framework of 
finite [Ari86, Sno87, Gad88, CC87, NA88, TC90] and infinite [CI88, KT89, Tuz89, KSW9OI temporal 
databases. It was proposed in [VK87] to study relationships between (infinite) sets of traces (DESes) 
and their finite computational representations (DEMs). 

In this paper, we adopt the notions of Discrete Event Systems and Models to traces of database 
states (RDESes and RDEMs) and propose to use these concepts as a basis for comparison of 
different models describing dynamics of databases. We also do a comparison of the RDEMs based 
on production systems with different interpreters, recurrence equations, and Petri net based RDEMs 
in terms of the sets of traces they generate. We show that the three formalisms have the same 
expressive power: they generate the same class of trajectories of database states. Furthermore, we 
consider non-deterministic RDEMs generating sets of non-deterministic trajectories and compare 
several non-deterministic production system RDEMs in terms of their expressive power. 

The significance of the RDEMIRDES approach comes from the fact that it allows comparison 
of any two computational methods, describing dynamics of relational databases, in terms of the 
expressive power, i.e. in terms of the sets of traces the two methods can generate. For example, 
we show that the three methods, mentioned above, generate the same class of trajectories. This 
means that these three methods capture an "interesting" class of database trajectories and deserve 
some additional studies. 

The rest of the paper is organized as follows. In Section 2 we define relational discrete event 
systems and models. In Section 3, we define deterministic production systems, interpreters for 
these sys tems and consider alternative conflict resolution strategies. In Section 4, we define RDEMs 
based on recurrence equations and compare them to production systems. In Section 5, we define 
RDEMs based on a special type of a Petri net, called Predicate Transition Network, and study its 
relationship to production systems. Finally, in Section 6, we extend production system RDEMs to 
support non-determinism and study several non-deterministic interpreters. 

2 Definitions of RDEIM/RDES 

First, we review the concepts of Discrete Event Systems (DES) and Discrete Event Models (DEM). 
We will follow [Ram871 and [IV87] with some modifications of their work. Then, we define Relational 
Discrete Event Systems and Models as a special case of Discrete Event Systems and Models. 

As a comparison, a finite automaton is a formalism that characterizes a, generally, infinite language it accepts in 
finite terms. 
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2.1 Overview of Discrete Event Systems and Models 

Let A be a, generally infinite, alphabet, and let A* and Am be the sets of finite and infinite 
strings (sequences) over A respectively. A Discrete Event System (DES) over A, C(A), is a subset 
of A* U Am such that if a belongs to the DES then no prefix of a belongs to the DES, i.e. 
a E C(A) + (V,b)(,b is prefix of a + ,f3 $ I=(A)). Note that a Discrete Event System can be infinite 
in general. A Discrete Event Model ('DEM) is a finite mathematical description of the possibly 
infinite set DES. 

We made an assumption that A is an infinite alphabet in general. This violates the assumptions 
of [Ram871 and [IV87] that A is finite. The need for an infinite alphabet comes from the fact that 
we will consider relational DESes and DEMs where A can be infinite. 

In this work, we restrict our attention to a special case of Discrete Event Models that can 
be specified as follows. Let f be a computable function from A* to 2A.  Let S be the smallest 
subset of A* satisfying the following properties: 1) 0 E S ;  2 )  if a E S and a E f ( a )  then aa E S .  
Note that this smallest set exists since A* satisfies this property and since the intersection of two 
sets satisfying this property also satisfies this property. Let a E A* U Am. Denote a; to be 
the string consisting of the first i elements of a. Define L, = { a  I a E S A f (a)  = 0 )  and 
L, = {a I a E Am A a; E S for all i). In other words, L, and L ,  are the sets of finite and infinite 
strings generated by function f .  Then function f defines a DEM, whose DES is L, U L,. Inan 
and Varaiya [IV87] call the function f event function, and Ramadge [Ram871 calls it supervisor. 
However, [IV87] and [Ram871 do not impose any restrictions on f .  Contrary to this, we assume 
that f is computable. In what follows, we restrict our attention only to DEMs generated by some 
computable function in the manner described above. We will call f a generating function of a DEM. 

A generating function maps a string over A into a set of alternative elements of A thus resulting 
in the set of non-deterministic strings generated from an initial element of A. Therefore, generating 
functions are non-deterministic in general. However, if we assume that a generating function f 
always maps a string over A into a set always consisting of a single element of A then such a 
generating function is deterministic, 

The next proposition states that not all sets of trajectories can be described in finite terms. 
Therefore, we have to concentrate only on these sets of trajectories that can be represented with a 
DEM. 

Proposition 1 Let A be an alphabet. There are DESes over A that cannot be represented by any 
DEM. 

Proof: Consider a non-recursive set S of strings from A*. It cannot be generated by a computable 
function f because, otherwise, S has a membership test a E S + f (a)  = 0. 1 

As it follows from the proof of the proposition any non-recursive DES consisting of finite se- 
quences cannot be represented with a DEM. 

2.2 Relational Discrete Event Models 

In this section, we consider Relational Discrete Event Systems and Models. Let R be a database 
schema with generally infinite domains. Let X(R) be the set of all the database states with schema 
R. 
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A Relational Discrete Event System (RDES) is a Discrete Event System with the "alphabet" 
f=(R). Ln other words, an RDES is a set of finite and infinite sequences, called trajectories, over 
all possible database states with schema R.  Intuitively, an RDES defines the class of all possible 
evolutions of a relational database, and a trajectory represents an element of this class, i.e. one 
possible evolution of the database in time. 

A Relational Discrete Event Model (RDEM) is a Discrete Event Model of an RDES set. In 
other words, an RDEM is a pair (R, F), where R is a relational schema and F is a generating 
function over the alphabet C(R), 

For example, consider a Datalog program [Ull88] P which is defined over a set of predicates with 
schema R and consider some extensional database predicates (EDBs) for that schema. Then all 
the intermediate stages in the computation of the fixpoint of P with these EBDs form a trajectory. 
The program P is an RDEM since it describes an infinite set of trajectories in finite terms. The 
generating function for this RDEM is specified with Datalog program P. The class of RDEMs 
defined over all possible Datalog programs will be called the Datalog RDEM specification method. 
Similarly, we define other RDEM specification methods in this paper based on other mechanisms 
for generating trajectories, such as production systems, recurrence equations, and Petri nets. 

We distinguish between deterministic and non-deterministic RDEMs depending on whether or 
not the generating function is deterministic or non-deterministic. A deterministic RDEM generates 
a single trajectory given its initial state and the generating function, whereas a non-deterministic 
RDEM generates a set of alternative non-deterministic trajectories from the initial state. In this 
section and in Sections 3, 4, 5 ,  we will restrict our attention only to the deterministic RDEMs. In 
Section 6, we will consider non-deterministic RDEMs. 

Given two generating functions or two RDEM specification methods, we want to be able to 
compare them. In order to define this comparison, we need the following preliminary concepts. 

Let TR1 and TR2 be two trajectories, and let TR(i) be the i-th step in trajectory TR. We say 
that a trajectory TR1 is n-congruent to trajectory TR2 if TR1 is a subsequence of TR:! and, for 
all i, TRl(i) and TRl(i + 1) are never more than n steps apart in TR2. This means that any two 
subsequent steps in TR1 cannot be arbitrarily far away in TR2. 

Definition 2 Let (R, F1) and (R, F2) be two RDEMs with the same schema R. We say that the 
RDEM (R, F2) simulates the RDEM (R, F1) if there exists a number n such that for any initial 
state of the database D with schema R ,  the trajectory generated by F1 from D is n-congruent to 
the trajectory generated by F2 from D. If n = 1 then we say that (Et, F2) exactly simulates (Et, 
Fl). 

For example the Datalog program r(x, u) t- r(z, y) Ar(y, z)Ar(z, u) is simulated by the following 
doubly negated Datalog (Datalog1*) program with the inflationary semantics [AV89] (in which 
negations are allowed both in the head and in the body of a rule) 

The predicate q and propositions To, TI are auxiliary, i.e. they are not part of the trajectory 
generated by this RDEM (only predicate r forms the trajectory). Notice that the Datalog'" 
program simulates each step of the original program in two steps. Therefore, n = 2. 
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Let Fl(R) and F2(R) be two RDEM specification methods defined over the same schema R.  

Definition 3 Fl(R) dominates F2(R) i f  for any generating function F2 for the specification 
method F2(R) there is a generating function F1 for the method Fl(R) such that the RDEM &, 
F1) simulates the RDEM (R, F2). Furthermore, i f  the simulation is always exact, we say that 
&(R) strongly dominates &(R). 

For example, the RDEM specification method based on negated Datalog with inflationary se- 
mantics IAV88, KP88] strongly dominates the RDEM specification method based on Datalog. As 
will be shown in Section 3, the RDEM specification method based on production systems [BFK86] 
with the parallel interpreter, that applies all operations simultaneously, dominates the production 
system specification method based on the selective interpreter, that selects only one operation at a 
time, as 0PS5 interpreter does [BFK86]). 

In the next several sections, we will compare various RDEM specification methods, such as 
different production systems, recurrence equations and Petri nets, in terms of the type of dominance 
introduced in Definition 3. 

3 Deterministic Production System RDENIs 

In this section, we introduce the production system RDEM (PS RDEM), an RDEM whose gener- 
ating function is specified by a production system. 

A production system is defined by three components [BFK86]: a working memory that deter- 
mines the state of a production system at a certain time, production rules, and by an interpreter 
that specifies how these rules are applied and how they change the state of the working memory. In 
Section 3.1 we review production rules. In Section 3.2, we define two alternative interpreters and 
study the relationship between them. We also formally define a PS RDEM specification method. 
Finally, in Section 3.3, we study the conflict resolution strategies for the interpreter that applies all 
the rules in parallel. 

There have been many alternative models of production systems proposed in the literature 
[WF90, SJGP90, dMS88a, SLR881. The special issue of the SIGMOD Record [sig89] describes this 
research. In this paper, we simplify these models by considering only their most important features. 
For instance, we consider only a single insert or delete operator in the head of a rule, and do not 
consider "event" clauscs (when clause of [WF90] and on clause of [SJGPSO]). We believe that this 
simplification does not diminish the power of the model and, at the same time, will help us to do 
formal analysis of production systems. 

This paper contributes to the research on production systems in three ways. First, we present a 
characterization of different types of interpreters (Section 3.2 and especially Section 6.2). Second, 
we propose two conflict resolution strategies and study the relationship between them (Section 3.3). 
Third, we study non-deterministic production systems ( Section 6). 

Since we consider relational DEMs in the paper, we will use relational terminology describing 
production systems. For example, we will associate predicates with relations and working memory 
with database states. 
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3.1 Overview of Production Rules 

Production rules are defined as follows. Terms are defined as usual in the first order logic [End72]. 
We allow arbitrary recursive functions in terms. Let 0 be the INS (insert) or DEL (delete) operator 
having the form < o p  > (R, XI, 2 2 , .  . . , xm), where < o p  > is either INS or DEL, xi's are all distinct 
variables, and R is the relation to be modified. Then the format of a production rule is 

where Pi is a literal, i.e. a predicate from R, a relational operator (=, >, etc.), or their negations. 

Safety is defined as in [Ull88, pp. 104-1061 as follows. First, we define limited variables in the 
body of a rule. Any variable that appears in a positive predicate in the body of the rule is limited. 
Also, any variable X that appears in an expression X = a in the body of the rule is limited where 
a is a constant. If a variable Y is limited and there is an expression X = Y in the body of the rule 
then X is also limited. A rule is safe if all the variables both in the body and the head are limited. 
Notice that this definition implies that any variable in the head of a rule must appear in the body 
as well. Only safe rules will be considered in the sequel. 

Example 1 Consider a simplified airline system AIRLINE that has a fleet of planes travelling 
between airports. When a plane arrives at an airport, it is scheduled for landing. Once it lands, it 
moves to a terminal and discharges the passengers. Then it takes new passengers, their luggage, 
departs the terminal and is prepared for the take-off. When its turn comes, it takes off and flies 
to another airport. This process continues indefinitely (we disregard maintenance in this simplified 
model). 

Assume the state of AIRLINE is defined by the following relations: 

AIRPORT(A, TRM): an airport A has a terminal TRM; 
DOCK(A, TRM, P): a plane P is docked at a terminal TRM in an airport A; 
LQ(A, P, POS): a plane P is in position POS in the landing queue of an airport A; 
TQ(A, P, POS): a plane P is in position POS in the takeoff queue of an airport A; 
READY-TKOFF(A, P): a plane P is ready for the take-off at an airport A; 
TK_REQ(A, P): a plane P submits a take-off request to the control tower at an airport A; 
SCHED(P, TRM): a plane P is scheduled to arrive at a terminal TRM; 
DEST(P, A): a plane P is flying towards an airport A. 
N EXT(P,  A, A'): a plane P flies from an airport A to an airport A'. 

Below are examples of rules modeling processes in the AIRLINE system. 

PI: If an airplane is ready for the take-off, it departs from the terminal and submits the take-off 
request to the control tower. 

A: DOCK(A, TRM, P) A READY-TKOFF(A, P )  4 DEL(D0CK; A, TRM, P )  

B: DOCK(A, TRM, P )  A READY-TKOFF(A, P) -+ INS(TK-REQ; A, P) 

P2: If an airplane is the first in the take-off queue then it will take off and fly to its next destination. 

A: TQ(A, P, POS) A P O S  = 1 -+ DEL(TQ; A, P, POS)  

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-91-05 



B: T&(A, P, POS) A P O S  = 1 A NEXT(P, A, A') -i INS(DEST; P, A') 

1 

Production rules, as defined in this section are related to the doubly negated Datalog (Datalog'*) 
with inflationary semantics [AV89] since each INS operation can be interpreted as an addition of a 
new fact to the database and each DEL operation as a removal of an old fact. The main difference 
between the two formalisms is that production systems support function symbols and Datalog'* 
does not. 

3.2 Interpreters 

An interpreter is the third component in the definition of a production system2. It will be described 
together with the recognize-act cycle [BFK86] of a production system. We briefly review the steps 
of the recognize-act cycle using the database terminology. 

In the first step of the cycle, the left-hand-side (LHS) of each rule is matched against the current 
state of the database. This matching process corresponds to a query against the database of all 
the relations appearing in the LHS of a rule. The answer to the query is called an instantiation 
set, and the tuples appearing in the instantiation set are called instantiated tuples. Next, project 
the instantiated tuples on the attributes of the relation appearing in the RHS of the rule and form 
an operation out of each resulting tuple. The resulting set of operations is called an operation set 
of the rule. 

Example 2 Assume AIRLINE has the current state as shown in Fig. 1, Rule P2B in Example 
1 has variables A, A', P, and POS. The set of the instantiated tuples for that rule is shown in 
Fig. 2. The set of tuples projected on attributes of relation D E S T  is shown in Fig 3. Finally, the 
operation set for rule P2B is shown in Fig. 4. 

The union of all the operations over all the production rules in a program is called an operation 
set for that program. Therefore, an operation set is the set of all the operations that can be 
performed in a given cycle. We denote an operation set as 0. 

In the second step of the recognize-act cycle, conflicts between insert and delete operations in 
the operation set 0 have to be resolved. In Section 3.3, we will consider two conflict resolution 
strategies and compare them. The following is an example of a conflict resolution strategy to be 
studied in Section 3.3. If operation INS(R,  al, . . . , a,) conflicts with operation DEL(R, al, . . . , a,), 
and the tuple (al, . . . , a,) is in the database then D E L  has precedence over I N S .  As a result of 
this, INS(R, al,  . . .,a,) is removed from the operation set 0. If (al , . .  .,a,) is not present in the 
database then I N S  has precedence over DEL and DEL(R, al ,  . . .,a,) operation is removed from 
0. As a result of conflict resolutions, we get a reduced set 0 containing no conflicts. 

In the third step of the recognize-act cycle, a subset of operations is selected for the execution. 
An interpreter does this selection. Specifically, for a set of operations 0, an interpreter I chooses 
a subset of 0 and executes all the operations in this subset. Such an interpreter will be called 
deterministic because it selects the subset of 0 deterministically. In Section 6, we will study 
non-deterministic interpreters that can select several non-deterministic subsets of 0. 

2We will define an interpreter differently from [BFK86]. In [BFK86], an interpreter is a module that supervises 
the execution of production rules, whereas in this paper, the interpreter is the part of this module that selects a set 
of operations for the execution. We will provide a precise definition of an interpreter later on in this section. 
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Figure 1: AIRLINE database 

Figure 2: Instantiation Set for Rule P2B 

TWA5 SFK 

Figure 3: Tuples Projected on Relation DEST 

Figure 4: The Operation Set for Rule P2B 
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Finally, the operations selected by the interpreter in the third step of the cycle are executed. 
This completes one iteration of the recognize-act cycle. 

We will consider two deterministic interpreters. The parallel deterministic interpreter selects 
all the operations in 0 ,  i.e. it executes all the operations in 0 simultaneously. Note that it is 
unimportant in which order operations in 0 are executed since all the conflicts in the operation set 
have been resolved (this means that the interpreter has the Church-Rosser property). 

The selective deterministic interpreter selects only one operation out of the operation set 0 
based on some selection function f .  In this paper, we assume that the selection function f maps 
a rule R and the values of variables in the operation set of the rule into a numeric value. We also 
assume that the selection function cannot produce the same value for two different arguments. Then 
the operation to be scheduled for the execution in the current recognize-act cycle by the selective 
deterministic interpreter is determined as follows. We compute the value of the selection function 
for all the operations in the operation set 0 and select that operation which has the largest value. 
Because of the previous assumption, there is only one operation that produces this largest value. For 
example, assume a set of production rules is totally ordered, and assume that there is a lexicographic 
ordering on constants in the operation set, e.g. assume that (R, as,. . .,a,) > (Q, bs, . . . , b,) if 
R > Q or if R = Q and (al, .  . .,a,) > (bl , .  . ., b,). Then f can be any function monotone with 
respect to >. In the paper, we postulated an existence of a selection function without proposing 
any specific one. Although the selection of a good function is an important issue, it lies outside of 
the scope of this paper. 

The selective deterministic interpreter is similar to the 0PS5 interpreter because both of them 
deterministically select only one element per recognize-act cycle according to some algorithm3. This 
element is an instantiated tuple for the 0PS5 interpreter and a single operation for the selective 
deterministic interpreter. However, the two interpreters differ in the way this element is selected. In 
case of the selective deterministic interpreter, the selection is based only on the values of operations 
in the operation set and on the rule that produced this operation. 0PS5 uses several "screening" 
tests to eliminate other candidate elements, Contrary to the selective deterministic interpreter, 
these screening tests are not based strictly on the values of operations in the operation set nor on 
the corresponding rules. For example, one of the screening tests is based on the recency value of 
a tuple, i.e. how recently the tuple was inserted in the database. Because of these differences, the 
0PS5 interpreter cannot be considered as a special case of the selective deterministic interpreter. 
However, because of the similarities and because of the popularity of OPS5, we will call the selective 
determinis tic interpreter the OPS5-like interpreter. 

After defining the structure of production system rules and interpreters that execute these rules, 
we are ready to define a production system RDEM (PS RDEhf). A PS RDEM is a pair (R, F), 
where R is a relational schema, and the generating function F is defined with a set of production 
rules over that schema and with an interpreter. This means that, given an initial state of the 
database (working memory), and a generating function defined by the set of production rules, and 
by an interpreter, the PS RDEM generates the trajectory of database states by repeatedly applying 
production rules to working memory in a recognize-act cycle. 

Since each interpreter gives rise to its own PS RDEM specification method (see Section 2.2 for 
the definition of RDEM specification methods) it is important to compare the expressive powers of 

3Actually, 0PS5 interpreter is stochastic because the last screening test in 0PS5 picks one of the remaining 
instantiations at  random. However, this last screening test is applied very seldomly. Therefore, we ignore i t  to 
simplify the presentation. 

9 
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these methods, 

Theorern 4 The PS RDEM specification method based on the parallel deterministic interpreter 
dominates the PS RDEM specification method based on the selective deterministic interpreter. 

Proof: Consider a program P with schema R and the selective interpreter. Let rule R; in P 
have the form Qi(%) -+ 0; for i = 1, . . . , k ,  where Z is a vector of free variables in Q;. Let 
the evaluation function of the selective interpreter be f .  Then the equivalent program PI for the 
parallel interpreter consists of the following pseudo-rules4. Each rule Ri becomes 

This rule selects only those tuples satisfying Q; for rule R; whose evaluation function is greater 
than the evaluation function of all other tuples satisfying the same rule and all the tuples satisfying 
all other rules. This means that only the tuple with the largest evaluation function over all the 
rules will be selected. Therefore, programs P and P' produce the same RDES and, hence, are 
equivalent. 

To finish the proof, we have to show how pseudo-rules (2) of program P' can be converted into 
"equivalent" rules of the form (1). To do this, we will iteratively remove universal quantifiers from 
the LHS of rules (2) one at a time5. Assume, we have a rule of the form Q;(Z)~l(37j )U(q,  7j) -+ O;, 
where U is a first-order formula, and Q; is a conjunction of literals as in (2). Then replace this rule 
with the following set of rules: 

where the flags To, TI, Tz, and the relations S(x), R(x) are temporary relations. Originally, 
R = S = 8, TI = T R U E ,  and To = T2 = FALSE. 

The predicate R(C) simulates the formula (3y)U(Z,y), and the flags 2'0, TI, T2 simulate a 
counter modulo 3. The purpose of the flag Ti is to let the rules with that flag be executed i cycles 
after the execution of the main rule To A Qa(Z) A l R ( Z )  -+ 0. 

P" is obtained from P' by replacing (2) with rules (3) - (4) and by adding To to every other 
rule in P'. Because To is added to every rule in PI' inherited from P', these rules are executed only 
once in three cycles. 

*These rules are called "pseudon because they contain universal quantifiers and do not have the form of (1). 
51t was shown in [Tuz89] how this technique can be applied to arbitrary "non-normanized" production system 

programs, i.e. the programs that have arbitrary first order formulas in the LHS of a rule. 
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P" is obtained from P' by removing a single universal quantifier. By repeating this process 
iteratively, all universal quantifiers can be removed from all the pseudo-rules in PI, and the resulting 
program can be converted into the program P"' with the rules of the form (1). 

However, trajectories generated by P"' will contain trajectories of P as subtrajectories. More 
precisely, the trajectories of P will be n-congruent to the trajectories of PI'' for some n. I 

For some production system programs, the PS RDEM generated by the parallel interpreter 
cannot be simulated by any other program and the selective interpreter as the following example 
shows. 

Example 3 Let R consist of a relation R(X), and let program P have two rules R(x) A x' = 
x + 1 -+ DEL(R, x) and R(x) A x' = x + 1 -+ INS(R,x'). Clearly, the RDEM defined by this 
program and by the parallel deterministic interpreter cannot be simulated by any production system 
program with the selective deterministic interpreter. 

I 
Theorem 4 and Example 3 show that the parallel deterministic interpreter has more expressive 

power than the selective deterministic interpreter. 

3.3 Conflict Resolution Strategies for Parallel Interpreters 

In this section, we consider conflict resolution strategies for parallel interpreters. This problem 
has been addressed before for the RDLl interpreter [dMS88b]. The RDLl interpreter provides a 
synchronization of insert and delete operations within one rule by cancelling the two conflicting 
operations. 

In this section, we define two additional synchronization strategies and show their equivalence. 
The first one, S E M ,  is semantically oriented in the sense that it is utilized by the interpreter. The 
second strategy SYNT is syntactically oriented, since it is achieved by imposing certain syntactic 
restrictions on production rules that guarantee no conflicts. We describe the two strategies in turn 
now. 

Syntactic conflict resolution strategy SYNT replaces each rule 

P -+ INS(R, 21,. . . , x,) ( 5 )  

in the program with the rule 

and the rule 
P -+ DEL(R, 21,. . . , x,) 

with the rule 
R ( x ~ ,  . . ., x,) A P -+ DEL(R, xi , .  . ., 2,) 

where P is a usual conjunction of literals in the LHS of a rule. 

Clearly, the new program does not produce any conflicts because it always checks if a tuple is 
in the database before deleting it and if a tuple is not in the database before inserting it. 
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SYNT can be enforced in two ways. First, it can be the responsibility of a programmer to 
write rules satisfying the syntax of (6) and of (8). Alternatively, a precompiler can transform a set 
of rules not satisfying SYNT conditions into a set of rules that do satisfy these conditions. In the 
first case, it is the user who provides synchronization of parallel executions. In the second case, it 
is the responsibility of the precompiler. 

Since SYNT is achieved by syntactically modifying the program, it is not a real synchronization 
strategy: it does not resolve actual insertion and deletion conflicts but prevents them. 

Therefore, we introduce the second conflict resolution strategy S E M  that semantically resolves 
conflicts between insertions and deletions. Since it was defined in Section 3.2 already, we only briefly 
review it now. If the operation set 0 of a program has two operations INS(R,  al, . . . , a,) and 
DEL(R, ax,. . .,a,) and the tuple (al, . . .,a,) is in the database then remove INS(R, al, . . .,a,) 
from 0. If (al, . . . , a,) is not present in the database then remove DEL(R, al, . . . , a,) operation 
from 0. 

It is easy to see that the two conflict resolution strategies S E M  and SYNT are equivalent in 
the following sense. Let P be a production systems program, and P' be the program obtained 
from P by applying SYNT. Assume that both P and P' use the parallel deterministic interpreter. 
Then 

Proposition 5 P with the confict resolution strategy S E M  and P' define the same PS RDEM. 

Proposition 5 makes S E M  an attractive conflict resolution strategy because it establishes its 
equivalence to an intuitively appealing strategy SYNT. Therefore, we will adopt S E M  as the 
conflict resolution strategy for parallel interpreters in the sequel. 

As stated before, the language RDLl [dMS88b] provides a diEerent type of insert and delete 
synchronizations. However, as will be shown in a forthcoming paper, they are "equivalent7' in some 
sense, i.e. one synchronization strategy can always be "reduced" to another. 

To summarize, in this section we considered production system RDEMs for two types of inter- 
preters and compared their expressive powers. We also considered two types of conflict resolution 
strategies and showed their equivalence. In the next section, we define an RDEM based on recur- 
rence equations and compare it with PS RDEMs. 

4 Recurrence Equation RDEM 

In this section, we define the recurrence equation RDEM and compare it to the production system 
RDEM with the parallel deterministic interpreter in terms of the expressive power. 

Let R = (R1(A1l,. . .,Al&,), . . .,Rm(Aml,. . .,Amk,)) be a database schema and D(,) = 
(R?), R?), . . . , R?)) be the state of a database with that schema a t  time n, where R!") is a 
relation instance at time n. Then the recurrence equation RDEM (RE RDEM) is defined as 
~ ( , + l )  = F(D(~) ) ,  where F is a vector-valued function defined by 

TRUE if Pi(xil,. . ., xiki) 
~ $ ~ + ~ ) ( x ~ ~ ,  . . . , xiki) 

= i FALSE if Qi(~i1 ,  . . - , xik;) (9) 
( x  . , x i )  otherwise 
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(n) where Pi, Qi are quantifier-free disjunctive normal form (DNF) formulas with predicates R?), . . . , R, , 
relational operators (=, >, etc.) and their negations, such that Pi A Qi = FALSE. Notice that, 
as in production systems, we allow function symbols in recurrence equations in general. Moreover, 
conjunctive clauses in these DNF formulas are safe (see definition of safety on page 6). 

The equation (9) has a natural interpretation in terms of insertions and deletions in the database. 
(n+l) If a tuple is inserted into relation Ra then Ri (xil , . . . , x;k, ) is true, and if it is deleted then 

~ ! ~ + l ) ( r ; ~ ,  . . . , z;k,) is false. 

Example 4 The recurrence equation for relation DOCK in the AIRLINE system from Example 
1 is 

TRUE if LQ(A, P, POS) A SCHED(P,  TRM) 
AAIRPORT(A, TRM) A P O S  = 1 

DOCK(A, TRM, P) = if DOCK(A, TRM, P)A (lo) 
READY-TKOFF(A, P) 

DOCK(A, TRM, P) otherwise 

It says that if a plane is the first in the landing queue and it is scheduled to go to a terminal 
then dock this plane at that terminal. Also, if a plane is docked at a terminal and it is ready for 
the take off then move that plane away from the terminal. 

To simplify the notation in this example, we dropped the time index n from the equation. In 
this simple example, both if conditions consist of a single clause. In general, an if condition consists 
of several clauses connected by disjunctions. 

The next two propositions show that production systems with parallel interpreters and re- 
currence equations produce RDEM specification methods equivalent in terms of their expressive 
power. 

Theorem 6 The production system RDEM specification method for the parallel interpreter strongly 
dominates the recurrence equation RDEM specification method. 

Proof: Let F be an RE RDEM defined with the recurrence equations of the form 9. Since Pi and 
Qi in (9) are in DNF, they can be written as Pil V.. . V Pik and Qil V . . . V Q;, respectively, where 
Pij and Qij are conjunctive clauses as in the LES of 9. For each formula (9) make the following 
production rules: 

Pij(xi1, - . - 7  xik,) -j INS(&,  xi1,. . , ~ i k , )  ( 11) 

Qij(xi1i * . . , ~ i k , )  --+ DEL(Ri, xil,. . - xik,) ( 12? 

The PS RDEM defined by these rules generates the same set of trajectories as the RE RDEM F.I 
The inverse of this theorem also holds. 

Theorem 7 The recurrence equation RDEM specification method strongly dominates the produc- 
tion system RDEM specification method for the parallel interpreter. 
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Proof: By Proposition 5, any production system program can be converted into an equivalent 
SYNT program having the property that LHS's of inserts and deletes do not intersect. 

For each predicate R; in this equivalent program, take all the rules having the form (11) and 
(12) and create the following equation 

TRUE if V j  Pij 
E:~")(X;~, .  . . , xiki) FALSE if Vm a i m  

(xil,. . . , xiki) otherwise 

Variables in different Pij, that are not among xa ,  . . . , x;ki, differ from each other for various j's. 
The same is true for different predicates Q;,. Since the production system program satisfies the 
SYNT requirements, the proposed RE RDEM is well defined, i.e. v j(Pij) A Vm(Qim) = FALSE. 
It is easy to see that the two RDEMs will always generate the same set of trajectories. I 

5 Petri Net RDEM 

In this section, we define an RDEM based on a special type of a Petri net, called a Predicate Tran- 
sition Net (PrT Net) [GenS6], or more precisely, on its modification called Production Compilation 
Network (PCN) [dMSSSa]. A modified Predicate Transition Network (PrT Net) consists of: 

1. A bipartite directed graph (P, T, F ) ,  where P is a set of places, T is a set of transitions, and 
F is a set of directed arcs connecting a place p E P to a transition t E T and vice versa, so 
that F c ( P  x T) U (T x P). Each place is associated with a predicate, generally, changing 
over time, and the transitions represent rules describing these changes. 

2. A labeling of arcs with symbolic sums Cia; < x; >, where a; is either +1 or -1, and < x ;  > 
is a tuple of variables, such that the arity of each tuple is the arity of the predicate associated 
with the adjacent place. We will also treat the sum C; a; < x; > as a set of individual terms 
{a; < x; >) in order to simplify the presentation. 

3. A mapping of a set of transitions T into the set of formulae (called transition selectors) that 
are conjunctions of relational operators. A relational operator has the form xOy, where x 
and y are variables appearing in tuples of some sums that label the edges adjacent to the 
transition, and 0 is a relational operator =, or < or <. 

4. A marking of places with tokens t = (al, az, . . . ,an)  so that the place p has a token t if and 
only if for the predicate P associated with this place P(al,  az, . . . , a,) is true at that time. In 
other words, the tokens in the place consist of all the tuples that make the predicate at this 
place true. 

As was observed in [dMS8Sa], PrT Nets exhibit similarities with production systems. In fact, the 
following associations can be made between the two mechanisms. A place corresponds to a predicate 
and a transition to a rule or a group of rules. The input places for a transition correspond to the 
predicates in the LHS of a rule, and each output place defines a separate production rule with the 
predicate from the place appearing in the RHS of that rule. The transition selector corresponds 
to the conditions of the rule. This correspondence is presented in Fig. 5. It turns out that the 
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Relational Predicate P 
Predicate P(x l , .  . , , x,) in the LHS of R 
Predicate l P ( x l , .  , . , x,) in the LEIS of R 
Operation I N  S ( P ;  XI, . . . , x,) 
Operation DEL(P ;  XI, . . . , x,) 
Condition xOy 

Production systems 
Rule R 

Place P 
Label + < X I , .  . . , x, > on the arc (P, T)  
Label - < $1,. . . , x, > on the arc (P, T )  
Label + < X I , .  . . , x, > on the arc (T, P )  
Label - < X I , .  . . , x, > on the arc (T, P )  
Transition selector xQy 

PrT Nets 
Transition T 

Figure 5: Relationship Between Production Systems and PrT Nets. 

relationship between the two mechanisms, as defined in this paper, is so close that it will be proven 
in Theorem 8 that they define the same RDEM specification methods. 

As in production systems, we impose the following safety conditions on PrT nets. For a tran- 
sition T, we take all the labels on the incoming arcs and the transition selectors and define limited 
variables as in Section 3.1. Then a transition T is safe if all these variables are limited and if all 
the variables in all the outgoing arcs are also limited. A PrT Net is safe if all of its transitions are 
safe. We consider only safe PrT Nets in the sequel. 

The semantics of PrT Nets is defined as follows. As in (Gen861, tokens move between places 
by firing transitions. If a transition T has incoming edges from predicates PI, . . . , P, and Pi is 
labeled with the sum C jn' C Y ; ~  < xij >, where cxij is either $1 or -1 and x;j is a tuple variable, then 
the transition is fired if places Pi have tokens a;j such that the following condition holds: 

Furthermore, if place P has an incoming edge from transition T that is labeled with P < yl, . . . , y, > 
then add (delete) tokens (t l , .  , . , t,) to (from) P depending on whether P is +1 or -1 as follows. 
Since the transition is safe, all yi7s must occur positively in some predicate Pi in (13). Then take 
the tokens satisfying (13) and bind variables y; to  the appropriate constants in (13) producing a 
token ti. The set of tokens (t l , .  . . , t,) is obtained by repeating this matching process for all token 
a;j satisfying the condition (13). 

Example 5 Consider the following fragment of a PrT net, as presented in Fig. 6, partially 
describing an AIRLINE: system from Example 4. Each place in Fig. 6 is labeled with the name of 
thc associated predicate. Each transition describes how predicates change over time. For example, 
the transition T1  says that if LQ(A, P, POS),  SCHED(P ,  TRM), and AIRPORT(A, TRM)  are 
true, and also if P O S  = 1 (the transition selector for T I )  then DOCK(A, TRM, P )  will be true. 
Note how labels on arcs, e.g. (A, P, POS),  (P, TRM),  (A, TRM, P), are used to  specify what 
tokens will be true at  the next moment in the manner similar t o  production systems. 

The transition T 1  is fired when the places LQ, S C H E D ,  and AIRPORT have tokens satisfying 
the condition 

LQ(A, P, POS) A SCHED(P ,  TRM)  A AIRPORT(A, TRM)  A P O S  = 3 

As a result of this firing, place DOCK will get new tokens (A, TRM, P ) ,  where A, TRM,  and P 
satisfy the previous condition. 
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DOCK ih 

Figure 6: A Fragment of a PrT Net for the AIRPORT System. 

The plus sign, +, in the label +(A, TRM, P )  on the arc between T1 and D O C K  means that the 
token is added to place D O C K .  Si~llilarly, the minus sign, -, in the label -(A, TRM, P )  between 
T2 and D O C K  means that the token (A, TRM, P) is removed from the place D O C K .  

In general, we allow minus signs, -, on the arcs from places to transitions. These minuses stand 
for negated predicates. However, we do not have this type of situation in this simple example. 

I 
We follow [dMS88a] by making the following modifications to  the original definition of PrT Nets, 

as defined in [Gen86]. First, as proposed in [dMS88a], we assume that coefficients in sums, as defined 
in item 2, are either +1 or -1, as opposed to arbitrary positive coefficients in [Gen86]. Second, also 
following [dMS88a], we consider conservative nets, i.e. we assume that firing a transition T will 
change only the states of the output places of T but will not affect the input places. Third, we 
consider only conjunctions of relational operators in the transition selector formulas as opposed to 
arbitrary formulas over operators and static predicates as in [Gen86] (static predicates do not change 
over time). We do this for the following reasons. Since nets are conservative, we associate some 
places with static predicates. Therefore, there is no need to put static predicates into transitions. 
Also, unlike [dMS88a], we do not put negative predicates into transitions because we allow -1 
coefficients in the sums of the arcs coming into transitions. Therefore, only relational operators 
can appear in transition selectors. 

A PrT Net defines an RDEM which we call a Petri Net RDEM. This RDEM generates a 
trajectory of markings from an initial configuration of markings; each marking in this trajectory is 
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obtained from the previous one by firing transitions. 

The following theorem establishes the relationship between production systems and PrT Nets. 

Theorem 8 The Petri Net and the the production system RDEM spe.cification methods are equiv- 
alent, i.e. each of them strongly dominates the other, 

Proof: To show that the Petri net specification method strongly dominates the production system 
specification method, consider a production system program PS. The corresponding PrT net P r  
is obtained out of PS as follows. For each predicate R in PS make a place R' in P'. For each rule 
T in P, make a transition TI in PI. If rule T has an operation INS(&?; X I , .  . . ,x,) in its RHS, then 
make an arc from the transition corresponding to that rule to  the place corresponding to predicate 
R and label that arc with + < X I , .  . . ,x, >; if the operation is DEL(R; X I , .  . .,x,) then label 
that arc with - < X I , .  . ., x, >. For each predicate in the LHS of R, draw an arc to T from the 
place corresponding to R. For each occurrence of R(xl, .. . , x,) in the LHS of T ,  put the label 
+ < XI,.  . . , x, > on that arc if R occurs positively in T and the label - < XI, .  . . , x, > if R occurs 
negatively in T. For all conditions x0y in T ,  create the transition selector with the same conditions. 
Clearly, the resulting PrT net P r  exactly simulates PS. 

To show that the production system specification method strongly dominates the Petri net 
specification method, consider a PrT net Pr. The production system program PS that exactly 
simulates Pr is defined as follows. Consider a transition T and an arc from T to  some place P 
in P r .  Fbr each term < X I ,  . . . , x, > of the sum in the label on that arc, define the following 
production rule R in PS. If the term < X I , .  . . , x, > occurs positively in the sum then the RHS of 
R is I N S ( P ;  X I , .  . .,a,); if it occurs negatively, then the RHS of R is DEL(P ;  X I , .  . .,a,). The LHS 
of R is obtained as follows. Each arc going from some place P' to T and each term < XI , .  . . , x, > 
of the sum in the label on that arc, give rise to  a conjunct Pf(xl , . . . , x,) in the LHS of R. If the 
term occurs positively in the sum, then the predicate P' also occurs positively in the LHS, and if 
the term occurs negatively in the sum, then the predicate also occurs negatively in the LHS. In 
addition, the LHS of R contains conditions corresponding to  the transition selector of T. Clearly, 
the resulting production system program PS exactly simulates the PrT net P r .  II 

It follows from Theorems 6, 7, and 8 that production system, recurrence equation and Petri 
net specification methods have the same expressive power. This means that the three formalisms 
define an important class of trajectory generating methods (RDEMs). 

We considered only deterministic RDEMs until now, i.e. RDEMs that produce a single trajectory 
given a generating function and an  initial state of the system. In this section, we will extend this 
concept to non-deterministic RDEMs. 

If a generating function, as defined in Section 2.1, is non-deterministic then the corresponding 
RDEM is also non-deterministic and can generate multiple non-deterministic trajectories. For 
example, consider a production system RDEM (PS RDEM), as defined in Section 3, with the 
interpreter that selects a single operation out of the operation set a t  random. Clearly, such an 
interpreter is non-deterministic because it can generate many non-deterministic trajectories. 
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In the next section, we will consider non-deterministic production system RDEMs and in Section 
6.2 we compare various types of interpreters for non-deterministic PS RDEMs. 

Since non-deterministic interpreters can generate many alternative trajectories, they cannot be 
adequately compared with deterministic interpreters in terms of trajectories they generate: in one 
case, the interpreter generates multiple trajectories and in another only a single trajectory. To put 
deterministic and non-deterministic interpreters on an equal footing, we have to introduce non- 
determinism directly into production rules. In this case, both types of interpreters will generate 
multiple trajectories. This motivates the following definition of non-deterministic production rules. 

A non-deterministic production rule has the form 
m 

A Pi(xi1, . - - 7 xikt) + 

i=l 
Oj  (14) 

where Pi and Oj  are defined as in (1) and where @ is an EXCLUSIVE-OR operator, i.e. O1 @ Oz 
means: either apply operator 01 or operator O2 but not both. As in Section 3.1, we assume that 
rules are safe. 

We consider two kinds of rule-based non-determinism or just rule non-determinism. First, 
action-based non-determinism or just action non-determinism is syntactically expressed with the @ 

operator and defines non-deterministic alternatives among different types of operations. Specifically, 
it non-deterministically selects an operator O for some j in the RHS of (14). For example, the 
statement "if the weather is nice, I shall go for a walk, or I shall do some swimming" can be written 
as "weather is nice + I go for a walk @ I do swimming." The second kind of non-determinism, 
called variable-based non-determinism or just variable non-determinism, expresses choices among 
an a priori unknown number of alternative variable assignments. To define variable-based non- 
determinism, we distinguish between deterministic and non-deterministic variables. We further 
elaborate on the variable-based non-determinism in Section 6.2 when we describe an interpreter 
and only explain this concept by an example at this point. Both kinds of non-determinism provide 
a way for the user to specify syntactically what kinds of non-deterministic choices he or she wants. 

Example 6 Consider the following rule for the AIRLINE example: 

P3: If an airplane is the first in the landing queue and there are free terminals then move the plane 
non-deterministically to one of the free terminals or wait (until a better terminal becomes 
available). 

LQ(A, P, POS) A P O S  = 1 A A I R P O R T ( A , ~ )  A F ' R E E ( A , ~ )  
+ INS(DOCJI; A,EGV, P) g WAIT 

The variables overlined in the example are non-determinis tic. Intuitively, the non-determinis tic 
variable TRM specifies a choice among free terminals to which the airplane P can move on the 
arrival. This is an example of a variable-based non-determinism: the set of non-deterministic alter- 
natives is determined a t  the time when the rule is evaluated. The second type of non-determinism 
( g )  is associated with the choice between the two alternative actions: either move a plane to the se- 
lected terminal or wait (presumably for a better terminal). The set of non-deterministic alternatives 
is specified at the time when the program is written. 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-91-05 



We introduced action and variable based non-determinism in rules to distinguish choices among 
several a priory known types of operators (action-based non-determinism) from choices among 
an unknown number of alternative variable assignments within the same operator (variable-based 
non-determinism). 

6.2 Interpreters 

Non-deterministic production systems execute recognize-act cycle similarly to the deterministic 
systems with several important differences between the two. We will describe the recognize-act 
cycle for the non-deterministic case while emphasizing these differences. 

First, as in the deterministic case, the LHS of a rule is matched against the current state of the 
working memory (database) resulting in the instantiation set of the rule (see page 7). 

Second, non-deterministic choices are made among the tuples in the instantiation set for non- 
deterministic variables in the LHS of a rule and for various choices of the @ operator in the RHS 
of a rule. Specifically, partition the instantiation set of a rule based on the values of deterministic 
variables, i.e. all the tuples with the same values of deterministic variables go into a single partition. 
Non-deterministically select one tuple out of each partition. This selection corresponds to the 
variable-based non-determinism. For each selected tuple make a non-deterministic choice among 
alternative operators in the RHS of the rule. This choice corresponds to the action-based non- 
determinism. For a selected choice of alternative actions, create an operation (either insert or 
delete) for each instantiated tuple. The resulting set of operations forms the operation set for a 
rule. The union of all the operation sets taken over all the rules forms the operation set for the 
program corresponding to the non-deterministic choices already made for the rules. 

Example 7 Assume that the instantiation set for the rule P3 from Example 6 is as shown in Fig. 
7. All the tuples with the same values of deterministic variables are grouped into one set. This 
results in two sets of tuples as shown in Fig. 7. Non-deterministically, select one tuple in each set. 
An example of these non-deterministic choices is shown in Fig. 8. 

I 
Third, as in the deterministic case, conflicts between inserts and deletes are resolved for a specific 

non-deterministic choices in rules using the conflict resolution strategies described in Section 3.3. 

Fourth, as in the deterministic case, a subset of operations is selected for the execution by an 
interpreter. However, a non-deterministic interpreter, unlike its deterministic counterpart, selects a 
set S(0)  = {01, 02,. . . ,On) of non-deterministic alternative subsets of 0 (i.e. 0; E S(0)) .  After 
the interpreter selects the set S(O), all operations in the set 0; E S(0)  are executed simultaneously. 
This is done non-deterministically for all i = 1, . . . , n, which means that n new states are generated 
after the execution. Therefore, a trajectory splits into n non-deterministic trajectories. This 
completes the recognize-act cycle. 

If always n = 1 in the definition of the set S ( 0 )  then the interpreter is called operationally 
deterministic to distinguish this kind of determinism from the rule-based determinism. 0 therwise, 
the interpreter is called operationally non-deterministic. If for all i ,  an interpreter selects a single 
operation from 0; then such an interpreter is called a sequential interpreter; otherwise, it is called 
a parallel interpreter. 
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Figure 7: Partitioning of the Instantiation Set for Rule P3 Based on the Non-deterministic Variable 

A 
JFK 
JFK 
JFK 
JFK 
JFK 

Figure 8: Non-deterministic Choices in the Partitioned Instantiation Set 

We consider the following four types of interpreters in this paper: 

P 
TWA5 
TWA5 
TWA5 
AA3 
AA3 

UniversaE: non-deterministically applies operations in all the subsets of 0. This means that 
the universal interpreter produces 21'1 alternative operation sets. 

Parallel operationally deterministic: deterministically applies all the operations in 0, i.e. 
n = 1 and O1 = 0. In Section 3.2, we called this interpreter parallel deterministic. We added 
the adverb "operationally" to  distinguish the non-determinism of the interpreter from the 
rule-based non-determinism. 

POS 
1 
1 
1 
1 
1 

Selective operationally non-deterministic: each Oi consists of a single operation. This inter- 
preter produces n alternative operation sets consisting of a single operation. 

TRM 
TRMl 
TRM3 
TRM8 
TRM3 
TRM5 

Selective operationally deterministic: deterministically selects a single operation out of the set 
0 according to some selection function. We called this interpreter "selective deterministic" 
in Section 3.2. 

Finally, each non-deterministically selected operation set is executed by the production system in 
the current recognize-act cycle. This non-deterministic choice in conjunction with non-deterministic 
choices in rules results in the generation of different non-deterministic alternative states of the 
database. Therefore, a non-deterministic PS RDEM produces a set of alternative trajectories from 
a given initial state of the database. 

We considered rule-based and operational non-determinisms in this section. The user has an 
explicit control over the first type of non-determinism by using non-deterministic variables and 
operator @. Contrary to this, the user has no control over operational non-determinism since 
the interpreter makes non-deterministic selections among the alternative operation sets without 
any interaction with the user. On the other hand, operational non-determinism constitutes a 
more declarative way to describe dynamics of databases since the programmer does not have to 
be concerned about explicit declarations of non-deterministic rules. Therefore, the two types of 
non-determinism are complimentary to each other. 
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In the next section, we study relationships between different interpreters in terms of the sets of 
trajectories they can generate and will show that the rule-based non-determinism is "more powerful" 
than the operational non-determinism for the interpreters introduced in this section. 

6.3 Expressive Powers of Non-deterministic Interpreters 

As was pointed out in Section 3.2, each deterministic interpreter gives rise to its own PS RDEM 
specification method. In that section, we compared the parallel deterministic and selective deter- 
ministic interpreters in terms of the PS RDEM specification methods they generate. In this section, 
we extend these concepts to non-deterministic interpreters and compare the parallel deterministic 
interpreter with the universal and selective non-deterministic interpreters. 

In Section 2.2, we defined simulation and RDEM specification methods for the class of de- 
terministic interpreters. These concepts are easily extended to the non-deterministic case. One 
non-deterministic PS RDEM simulates another one if there is a number n such that for each initial 
value of EDB predicates, there is an isomorphism between non-determinis tic trajectories generated 
by the two RDEMs such that each trajectory of the second RDEM is n-congruent to the isomor- 
phic trajectory of the first RDEM. Dominance for the non-deterministic case is defined as in the 
deterministic case. 

In the rest of this section, we compare the parallel deterministic interpreter with the universal 
and the selective non-determinis tic interpreters. We start with the universal interpreter. 

Theorem 9 The parallel deterministic interpreter dominates the universal interpreter, 

Proof: Let P be a program that generates some RDES with the universal interpreter. To create 
the same RDES with the parallel deterministic interpreter, add WAIT (no-op) operator as a non- 
deterministic alternative via 8 operator to the RHS of each rule in P. I 

Corollary 10 Any rule deterministic program with the universal interpreter can be simulated with 
a rule non-deterministic program with the prallel deterministic interpreter. 

This corollary establishes the relationship between the rule-based non-determinism of the par- 
allel deterministic interpreter and the operational non-determinism of the universal interpreter. It 
says that the operational non-determinism of the universal interpreter can always be "converted" 
into rule non-determinism of the parallel deterministic interpreter. As was already stated before, 
rule-based non-determinism is more flexible than the operational non-determinism. This corollary 
makes the rule-based non-determinism even more "attractive" because it has more expressive power 
than the operational non-determinism of the universal interpreter. 

The next result and Theorem 9 say that the parallel deterministic interpreter strictly dominates 
the universal interpreter. 

Proposition 11 There is a program P such that n o  program P' with the universal interpreter can 
simulate P with the prallel deterministic interpreter. 

Proof: Consider the program P 
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that generates the transitive closure of R. Assume that there is a program P' and an integer n 
such that P is n-congruent to P'. Take such EDB's for R that there are two consecutive states 
in the RDES generated by P and the parallel deterministic interpreter that have more than n 
different tuples. This means that the RDES generated by program P' and the universal interpreter 
must have a step when the operation set of P' contains more than one element. Since this is the 
universal interpreter, there are additional non-deterministic trajectories generated for program P'. 
This means that the RDES generated by PI and by the universal interpreter does not coincide with 
the RDES generated by P and by the parallel deterministic interpreter. I 

Next, we want to compare the parallel deterministic and the selective non-deterministic inter- 
preters in terms of dominance. 

Theorem 12 The parallel deterministic interpreter dominates the selective non-deterministic in- 
terpreter. 

Proof: Let P be a non-deterministic production system program and it has n rules of the form 
R; -+ 5, where Ri is a usual conjunction of literals, 0, is Oil @. . . @ Oik,, and Oij is either an insert 
or a delete operation. We assume that the corresponding interpreter is selective non-deterministic 
one. Create the following program P' consisting of 2n rules having the form Q j l A .  . .A& j, -+ RHSj, 
where Qj, is either Ri(xl,. . . x,) or its negation (b'xl) . . . (ti'xp)iR;(xs,. . .x,) (therefore, there are 
2n formulas) and where RHSj  consists of the choice @ of 0, corresponding to those R; that occur 
positively in j's rule. All the free variables in all the rules in P' (and PI') are non-deterministic. 
Note that the rules in PI are, generally, not in the conjunctive form because of the negated terms. 
However, using the same techniques as presented in the proof of Theorem 4, we can show that P' 
can be converted to program P" with conjunctive rules generating an n-congruent RDEM for some 
n. All the variables in Q j r  differ from the variables in any other Q jp for 1 # p. Note that all the 
2n rules in P' are mutually exclusive. It can be shown that program P" generates the RDEM with 
the parallel deterministic interpreter that is n-congruent to the RDEM generated by P with the 
selective non-deterministic interpreter. I 

Corollary 13 Any rule deterministic program with the selective non-deterministic interpreter can 
be simulated with a rule non-deterministic program with the prallel deterministic interpreter. 

This corollary shows that the operational non-determinism of the selective non-deterministic 
interpreter can always be "converted" into the rule-based non-determinism of the parallel deter- 
ministic interpreter. The next result and Theorem 12 say that the parallel deterministic interpreter 
strictly dominates the selective non-deterministic interpreter. 

Proposition 14 There is a program P such that no program P' with the selective non-deterministic 
interpreter can simulate P with the parallel deterministic interpreter. 

Proof: Similar to the proof of Proposition 11. I 

It follows from Theorems 9,12 and Propositions 11,14 that the parallel deterministic interpreter 
strictly dominates the universal and the selective non-deterministic interpreters. Moreover, we 
showed in Theorem 4 that it dominates the selective deterministic interpreter for the determinis tic 
case. Therefore, the parallel deterministic interpreter has the following important properties. 
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it is a "powerful" interpreter because it dominates other interpreters; 

operational non-determinism of the universal and selective non-deterministic interpreters can 
always be converted into the rule-based non-determinism of the parallel deterministic inter- 
preter; 

it is a parallel interpreter; therefore, it provides a better performance. 

These properties make the parallel deterministic interpreter an  attractive interpreter for pro- 
duction systems. 

7 Conclusions 

In this paper, we proposed a unifying framework for modeling behavior of information intensive 
systems based on the concepts of Relational Discrete Event System and Model. We compared 
formalisms based on production systems, recurrence equations and predicate transition networks 
within this framework, i.e. in terms of the sets of trajectories (RDESes) they can generate. We 
have shown that the three formalisms are equivalent, i.e. they always generate the same sets of 
trajectories. This makes the class of trajectories generated by these three methods interesting and 
worthy of additional studies. 

If we disallow function symbols in these three formalisms, then it can be easily shown that 
they are also equivalent to  doubly negated Datalog (Datalog'*) of Abiteboul and Vianu [AV89]. 
This observation also contributes to  the fact that the three formalisms define an important class of 
trajectory generating methods (RDEMs). 

We also extended production systems to support rule-based and operational non-determinism, 
and studied several deterministic and non-deterministic interpreters. We showed that the parallel 
operationally deterministic interpreter dominates other interpreters considered in this paper. Since 
this interpreter is also parallel, this makes it a very attractive type of interpreter for production 
systems. 

We also defined a syntactic and a semantic conflict resolution strategy for production systems 
and showed their equivalence. Although the syntactic strategy is intuitively more appealing, the 
semantic strategy is more practical because it can be easily integrated with the interpreter. 
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