VALUATION LINKS:
FORMALLY EXTENDING THE
COMPUTATIONAL POWER OF HYPERTEXT

Michael Bieber

Tomas Isakowitz

Department of Information, Operations, and Management Sciences
Leonard N. Stern School of Business, New York University

44 West 4™ Street, New York, NY 10012

VALUATION LINKS:
FORMALLY EXTENDING THE
COMPUTATIONAL POWER OF HYPERTEXT

by

Michael Bieber
Computer Science Department
Fulton 430

Boston College
Chestnut Hill, Massachusetts 02167-3808

and

Tomas Isakowitz
Information Systems Department
Leonard N. Stern School of Business
New York University
New York, New York 10003

June 1991

Center for Research on Information Systems
Information Systems Department
Leonard N. Stern School of Business
New York University

Working Paper Series

STERN IS-91-11

ABSTRACT

We view hypertext as an inherently dynamic concept to incorporate in the interface of dynamic information systems.
What challenges does hypertext face in a constantly changing environment? In this paper, we discuss the benefits
and the problems we face in our research into hypertext-oriented decision support systems. Then we focus on a new
hypertext construct beneficial to this domain: valuation links. Valuation links support the dynamic spreading of
computation via a well defined link traversal operation. We present two classes of such links: static and dynamic,
and specify an algorithm for their traversal. We also show how these constructs can be used in sophisticated DSS
environments.

KEYWORDS: Computer Interfaces, Decision Support Systems, Hypertezt, Virtual Structures.

Valuation Links: Formally Extending the Computational Power of Hypertext

Many of today's information systems (decision support systems, executive
information systems, database query systems, etc.) operate in dynamic environments
where users need up-to-date information and this information changes rapidly.
Hypertext browsing would enhance the functionality of these systems by giving users an
intuitive way to access related details and annotations. Implementing this, however,
presents several challenges to the traditional stable, "static" notion of hypertext where
users are in control of changes, not the external environment.

In most of today's hypertext systems, link traversal affects the user's perception of the
hyperdocument. Beyond procedural attachment for formatting, however, traversal
generally has no impact upon node contents. Designers have tended to minimize
interaction between node contents and the hyperdocument node and link structure in
order to better formalize hypertext functionality and ease implementation. [CG88,
SF89a, SF89b, Tom89]. Most interaction takes place during keyword/glossary search
and other "querying” of node contents that result in the creation of a virtual link from
its, e.g., keyword source to its definitional destination [Co87, YMvD85]. Even with query,
however, we distinguish between content search and structure search—power is obtained
from their combination [BKS0, AKSO, CM88]. We argue here that there is significant value
in opening up hypertext to the richer, more dynamic environment that hypertext
computation affords, where structural operations (such as link traversal) interact with
hypertext content (such as generating and changing portions of text within a node, as we
shall explore in sections 1 and 2 respectively].

Indeed. we believe that the power obtained from such functionality is especially
important for general information systems that provide decision support and other
intelligent interfaces. Furthermore, we believe this interaction should be formalized so
its effects are controlled and do not present authors and users with unpleasant surprises
when computation alters information unexpectedly. Current hypertext systems
implement computation in an ad hoc manner (such as Guide's command buttors (GUI87]),
generally requiring a knowledge of programming.

The purpose of this paper is to raise some of the issues we have faced in designing
"dynamic" hypertext interfaces for decision support systems [BBK88, KPBESQ].! In
section 1 we begin by reviewing two mandatory characteristics of dynamic hypertext
environments: virtual network structures and real time computation. Then in section 2
we describe problems we have come up against when modeling these in our research. In
section 3 we focus on one particular challenge that dynamic information systems present
to hypertext—updating the display contents of link markers so they remain accurate
indicators of the links they represent. To do so we have formalized the concept of
hypertext "valuation links" which update their source link marker when traversed. We
demonstrate their usefulness in an information system that performs portfolio
management. We conciude in section 4 by sharing our future research paths in modeling
dynamic hypertext interfaces.

§1 Dynamic Hypertext
Two of the seven issues for the "next generation of hypermedia systems" that Frank

Halasz puts forth in [Hal88] are virtual structures and computation over the knowledge
base during link traversal.

In virtual structures, links are unresclved at the time a builder embeds their buttons

1 Another example of a hypertext decision support system (DSS) can be found in ([DeY89]. Far a review of
hypertext and DSS see [Mig9]. Yo a

l_‘-x

(link markers) in originating nodes for user selection. The builder must associate some
routine with these buttons that resolves the identity of the link and destination node.
One example {s Glasgow Online (BMH88, BP89], which determines the actual destination
of links pointing to train schedules according to the actual time of link traversal, in
order to provide relevant information. As another example, Nguyen and Greenes [NG86]
have developed a frame-based hypertext knowledge management system called
EXPLORER-1 designed for the medical profession that supports various medical
knowledge bases. Authors embed link marker "hot spots" in the frame declarations,
which when selected, invoke either a procedure that resolves the identity of the
destination frame based on a taxonomy of keywords contained by the frame or a
procedure that can access a journal of the users transactions and obtain user input.

We need virtual linking (“computed linking” [NieS0]) because in a truly dynamic
executive information system or decision support system, for example, it is quite
possible that we canmnot specify beforehand which links will be available from a link

anchor.

Whereas resolving virtual links determines the links to traverse, "computation”
involves creating new destination nodes. For example, exercising a "what-if" scenario
generates analysis results to display. Expert system-style explanations and reports
containing the most up-to-date information may need to be compiled in real time.
Simply retrieving the current stock price for a display involves a call to a commercial
database external to the hypertext system.

Several hypertext systems support some kind of programmed interface beyond
procedural attachment (reformatting existing contents)—HyperCard [ACI| has buttons
with underlying scripts, Guide [GUI87] has a "command butiton", KMS [AMY88| has
"program links", NoteCards [Hal88] has access to an computational engine. Computation
is implemented by invoking a procedure and results in the generation of a node, link or
display value. One example is a KMS application that uses "computational hypertext” is
Schnase and Leggett's Cassin's Sparrow energetics model [SL89|. This application
recalculates values in a table and draws business graphs when the user selects a KMS

program button.

We see the need for an enhancement to this degree of computation in a number of ways.
First we may want to generate entire nodes on the fly. Second. changes to the hypertext
network may originate outside the system and require automatic updates to the
hyperdocument for display without user intervention [FS90, BIKMS1|. Third, to track
the interdependent effects of changes we need to maintain a dependency tree of all related
system elements. We discuss this dynamic link dependency further in section 3.

Perhaps the greatest difference between most existing applications and the dynamic
systems we are considering, however, is our underlying philosophy of hypertext as an
inherently dynamic concept. In most existing systems the computational engine
invoked, if any, is external to the hypertext system. In information systems with real
time requirements, the hypertext computational engine should be an integral component
of the system architecture. This is necessary because the vast majority of hypertext
components are virtual entities, their identities, attributes and display values remaining
unresolved until invoked. This presents several cognitive and technical challenges,
which we describe in the next and in the final sections.

§2 Challenges to Hypertext in a Dynamic Environment
The word "dynamic” connotes "change" and change provides challenges to a generated

hypertext network. Issues of change are compounded by the virtual structures and
computation associated with a dynamic environment. Nodes and their contents may not
exist (be neither resolved nor generated) until the link pointing to them is generated and

then traversed (the hypertext equivalent of "just in time" delivery). In this section we
shall discuss several change-related issues and some solutions. In subsequent sections
we shall concentrate on keeping displays up-to-date.

How does change affect a dynarmically generated hypertext network? First of all, the
user can never be sure that the link he traverses today will be available tomorrow. This
is, of course, useful if you want the most up-to-date informmation, as will be the case in
section 3. But it could lead to surprises for users who do not anticipate changes and have
based user-declared links or comments on particular objects (e.g.. the price of a stock) or
reports containing these. For example, a decision maker may have based a (decision and)
comment on the "final" sales figures for the quarter, not anticipating that the figures
were in error and subsequently revised, invalidating both his decision and the comment.
If the underlying parameters change then the user-declared link or comment may not be
valid the next time the object is included in a generated report. The same goes for objects
"pasted” into user-created documents when these documents are re-opened. This all calls
for some type of version management, allowing the user to specify whether he or she
wants to see up-to-date information or an older version. This is especially important for
decision justification where an executive may need to recreate the information available
at the time he made a particular decision or recommendation. In addition. being able to
explain changes would be an especially helpful feature in a decision support or executive
information system where the change, say, to a computed result may be caused indirectly
by a change to an underlying data value or model parameter. '

Another issue we face is determining when a user-declared link or comment is no
longer valid, i.e., when its subject has changed so much that it is no longer accurate or the
relation captured is no longer relevant. This is a problem in both static and dynamic
environments. We may, however, be able to take advantage of the known structure of the
application knowledge base to determine automatically when, at least a subset of these
links and comments is no longer valid. If the user can declare some validity conditions
based on parameter or data values in the underlying knowledge base then the hypertext
engine should be able to check this before making the link or comment available. For
example, the user may declare a comment or link to an expert system-generated plan of
action, to be made available only when the price of a stock moves outside a certain,
computed ranges. When this condition does exist, selecting the appropriate button will
find this link or comment, otherwise it will not be presented as an option to the user.

§3 Valuation Links .
In the rest of the paper we shall concentrate on a single theme within a dynami

hypertext environment—updating the display value of link markers. In particular we
shall explore a new hypertext construct, valuation links, where the hypertext engine
automatically updates the "source” link marker when underlying parameter values used
in hypertext computation change. Recall the purpose of link markers—to serve as an
indication of potential links to traverse. If updated information about the link to
traverse becomes available, then to be accurate indicators, there will be times when
marker values should change to reflect the current state of the system or the represented
environment.

Example

A portfolio manager in an investment bank is in charge of several clients. He or she
composes a personalized portfolio for each client conforming to some constraints. One
of these constraints is the amount of risk involved in a given stock or bond. Some
clients prefer low risk securities while others are more risk-inclined.

As part of his decision process the portfolio manager uses a hypertéxt system that
supports valuation links. He describes a computational model that selects the
securities for a particularly risk-averse client. The sSystem receives input from

external sources on the risk levels of the securities in the client's portfolio. This input
is channeled via a valuation link to the node containing the model used to configure
the client's portfollio. As the risk level parameter changes in real-time inside the node
due to external factors, the portfolio configuration model at the destination of the

valuation link is dynamically re-evaluated.

This dynamic re-evaluation in turn might influence other nodes in the system. For
example, the portfolio manager might keep a table in a hypertext node that specifies
which stocks to buy and which stocks to sell. Next to each stock name the word "BUY" or
"SELL" will appear as a valuation link marker associated with a destination node that is
an analysis model. That model in turn might receive input from other nodes via other
valuation links. We shall show later in this section that valuation links can propagate
automatically in an iterative manner. Thus, a change in value in one node might trigger
a sequence of re-evaluations which might change values in many nodes. For example,
there may be several portfolios for different clients, or several "what-if" scenario
portfolios containing a particular stock. When the price or other market factors change
then the value and recommendation of all these related portfolios may need to be

updated.

Valuation link markers can support standard hypertext functionality as well. For
example, if the portfolic manager ever wishes to question a particular buy or sell
decision he can do so by traversing a link from the valuation marker to a static (or
generated) explanation of the underlying destination model. Thus valuation links can be
treated referentially (Co87] when desired. The user can even perform "what-if" analysis
by changing the model's equations or aitering parameter values.

The previous example exhibits a seamless integration of different types of processes,
data and action, all related by a sophisticated hypertext linkage mechanism. This
environment provides an intuitive method for users to specify the composition of
computations. The user is able to compose models on the fly by specifying that the output
of one computation is to be used as the input for another one. It also permits interprocess
communication to heterogeneous external systems. In UNIX the pipe paradigm is used
for this effect. In our environment, valuation links take the place of pipes. J

M

We have implemented valuation links and the dependency tracking they require in the
Maluar System [[sa91]. Written in LISP, Maluar makes LISP available to all nodes.
Maluar provides a basic set of tools that can be used to create more elaborate hypertext
environments. One such environment is the PM system [BIKM91], which captures the
decisions a portfolio manager (PM) in an investment bank. The PM makes portfolio
decisions through some combination of doing analysis, and using information from the
bank's industry-specialist analysts and from external systems. Both analysts and PMs
have the same sources of information at their disposal. If they were to use the same
models and had the same assumptions embedded in their evaluation heuristics, they
would arrive at similar recommendations. In reality, however, there is asymmetry in
information, decision criteria and assumptions. Such asymmetry gives rise to potential
for conflicts. A portfolio manager may come up with a recommendation of "buy” based on
the analysis that he makes and the rules that he has for making such decisions. On the
same item an analyst may come up with a contradictory recommendation. The PM
system uses the Maluar system's dependency tracking and automatically updating
valuation links to not only support the processes that converge to a decision on a given
stock item, but also to be able to detect discrepancies between PMs and analysts, and act
upon these. The system contains both nodes representing models that embody heuristics
for portfolio composition and conflict detection nodes which continuously and
automatically monitor for discrepancies among nodes used by analysts and PMs.

Figures 1 and 2 present an example of the system in use. Linda Goodman is an analyst
and Don Bumt is a PM. Both issue recommendations upon the stocks of Prudential using
the following information: number of shares, projected dividends and dividends per
share (which is computed dynamically). Each, however, uses different heuristics which
are embodied in a node which dynamically evaluates a recommendation: "buy”, "sell" or
"hold". In each figure the PM system determines that there is a conflict.

The first case of conflict is demonstrated in Figure 1, in which links between nodes are
depicted as arrows indicating the direction of information flow in the link. The
information that Don has helps him infer that the stock should be "held". Linda's
information, however, leads her to infer a "buy" action. Backtracking from Linda's
recommendation leads Don to the information asymmetry, that is the node that
contains "projected dividends". Once this is corrected, the other valuation link markers
are updated automatically.

The second case of conflict is demonstrated in Figure 2. Here Don's heuristic helps him
infer that the stock should be "sold". Linda's heuristic leads her to infer that the action to
be taken is "hold". In this case, following the links back from Linda's recormmendation
leads Don to the conclusion that Linda uses a different heuristic, and this can help him
judge future recommendations from Linda.

A Formal Descrintion of Valuation Links

We are proposing a new hypertext construct. valuation links, and have sought to
motivate them through the examples above. Valuation links have their source link
marker in a visible node and have a computational program as a destination node. The
effect of traversing a valuation link is to update the display value of the source link
marker with the result of the destination node's computation. While such behavior is
mentioned in the Trellis hypertext reference model [FSS0] and admittedly could be
achieved by many of the ad hoc computational mechanisms described in §1 (e.g., Guide
command buttons), as yet we have seen no formal link taxonomy [DeR89, Nie90| with
this functionality. This is what we present here.

We identify two kinds of valuation links:

static valuation links, the computation associated with the link is performed upon
demand by explicit user request, and _

dynamic valuation links, the link is automatically activated whenever its -
destination is updated.

Previously we have given several examples of dynamic valuation links. Static
valuation links are also useful. Suppose a manager creates a report where there is a static
valuation link representing projected sales. The static link is connected to a projection
model. As new sales data is fed into the system, the projection figures change.. The
manager, however only re-evaluates his figures when he determines a need to do so. In
the meantime he does not want the report to change.

In order to traverse these links an algorithm is needed to help keep the up with the
potential chain reaction of re-evaluations which might be triggered by a single link
activation. The following algorithm manages evaluation of value regions (i.e., link
anchors) associated with valuation links and programs that return values. A value is
associated with each value region and with each valuation link. The strategy we adopt
here forces each value region to always keep the current value of the computation it
represents stored in a variable. Every time a node content change is performed, the
affected links are computed and propagation takes place. There are three functions:

function value-traverse(value-link]
begin
retrieve_source_region(value-link, source-region);
paste value of value-link in source-region;
if source-region is a value-region
then evaluate(source-region);
end;

function update-value(value-link, val
begin
set value of value-link to val;
if value-link is a hot-link
then value-traverse(value-link);
end;

function evaluate-region(value-region)
begin
val := result of execution of value-reglor;
for each value-link ending in value-region
update-value(value-link, val;
end;

The difference between dynamic and static valuation links is in the update-value
function. In the case that the link is dynamic, after its value is updated, the link is
traversed. This in turn will cause the value region at the source of the link to be
evaluated, the display value of incoming value links to be updated. and so on.

From these three recursive functions and their types of dynmamic interaction they
support, it should be clear that valuation links are a general and powerful tool for

dynamic information systems.

§4 Discussion
This paper concerns itself with incorporating computational power into hypertext in a

well defined manner. Although the idea of computational hypertext is not new, many of
the approaches taken elsewhere [GUIS87, AMY88, ACI—HyperCard] are not rigorous in
their specification and abandon the link traversal metaphor to some extent.. The
valuation links introduced here provide rich computational power while staying within
the framework of hypertext. In doing so we revisited the meaning of link traversal to
make it dependent upon the type of link being traversed, but beyond the notion of
procedural attachment. We do this more in the spirit of the corresponding access
operation for nodes. It has been recognized that the exact meaning of node access varies
depending upon the node type: text nodes are presented in a window; video nodes are
projected: audio nodes are played: program ncdes are evaluated. Similarly, traversing
referential links is interpreted as access to the destination node, whereas traversal of,
e.g., note links in Guide {GUI87]| relates to pop-up a window. Traversal of valuation links
entails the transfer of values. What is achieved by using this paradigm is the
incorporation of powerful computational mechanisms while remaining within the
browsing paradigm that characterizes hypertext. This computational power is key to the
acceptance of hypertext as a decision support tool and paves the way for a larger user

audience,

Our intended research takes us deeper in the domain of formal models that explicate
the nature of computation (e.g., [BiS0]). One route we may take is incorporating type
dependent link traversal into a formal model along the lines of the Trellis model
[SF89a]. In any event we shall contine to exploit the the power of computational

-t o e ae e 0 be o

hypertext to develop sophisticated but simple-to-use information systems for decision
support.

Ackmowiedgements
The authors want to thank Raghav K. Madhavan and P. R. Balasubramnanian

for their technical support for this paper.

References
[ACI] Apple Computer, Inc., 20525 Mariani Avenue, Cupertino, CA 85014.

[AKQO] F. Afrati and D. C. Koutras, "A Hypertext Model Supporting Query Mechanisms",
in Proceedings of the European Conference on Hypertext, 1990.

[AMY88] Robert M. Akscyn, D. L. McCracken, and E. A. Yoder, "KMS: A Distributed
Hypermedia System for Managing Knowledge in Organizations," Communications of the
ACM 31(7):820-835, 1988.

(BBK88] Hemant Bhargava, Michael Bieber. and Steven O. Kimbrough, "Oona, Max and
the WYWWYWI Principle: Generalized Hypertext and Model Management in a Symbolic
Programming Environment, " in Janice I. DeGross and Margarethe H. Olson, editors,
Proceedings of the Ninth ICIS, pages 179-192, 1988.

[Big0] Michael Bleber, Generalized Hvpertext in g Knowledde-based DSS Shell
Environment, Ph. D. Dissertation, Decision Sciences Department, University of
Pennsylvania, 1990.

[BIKM91] P. R. Balasubramanian, Tomas Isakowitz. Rob Kauffiman, and Raghav K.
Madhavan, "Hypertext in Risk Management,” Technical Report, NYU, 1991.

[BKSO] Catriel Beeri and Yoram Kornatzky, "A Logical Query Language for Hypertext
Systems." in Proceedings of the European Conference on Hypertext, 1990.

[BMHS88| P. Baird, N. Mac Morrow, and L. Hardman, "Cognitive Aspects of Constructing
Non-linear Documents: HyperCard and Glasgow Omnline,"” in Proceedings Online
Information ‘88, pages 207-218, December 1988.

[BP89| P. Baird and M. Percival, "Glasgow Online: Database Development Using
HyperCard." in R. Mc Aleese, editor, HyperText Theory into Practice, 1988, pages 75-92.

[CG88] B. Campbell and J. M. Goodman, "HAM: A General Purpose Hypertext Abstract
Machine," Communications of the ACM, July 1988.

[CM89] M. P. Consens and A. O. Mendelzon, "Expressing structural Hypertext Queries in
GraphLog," in Hypertext ‘89 Proceedings, pages 249-258.

(Co87] Jeffrey Conklin, "Hypertext: a Survey and Introduction,” IEEE Computer, v20:9,
1987, 17-41.

[CPWRS6] D. Canter, J. Powell, J, Wishart, and C. Roderick, "User Navigation in Complex
Data Base Systems," Behaviour and Information Technology, 5(3):249-257, 1986.

[DeR89Y| Steven J. DeRose, "Expanding the Notion of Links," in Hypertext ‘89 Proceedings.
pages 249-258, 1989.

[DeY89] Laura DeYoung, "Hypertext Challenges in the Auditing Domain," in Hypertext ‘89
Proceedings, pages 169-180, 1888.

[FS90] Richard Furuta and P. David Stotts, "The Trellis Hypertext Reference Model,"
Proceedings of the Hypertext Standardization Workshop, NIST Special Publication
SP500-178, 83-94.

[GUI87] Guide User's Manugl, Owl International Inc., 1428 NE 21 St., Bellevue, WA 98007,
1987.

[Hal88] Frank G. Halasz, "Reflections on Notecards: Seven Issues for the Next Generation
of Hypermedia Systems,” in Communications of the ACM, 31(7):836-852, 1988.

[Isa91] Tomés Isakowitz, "MALUAR - A Computational Hypertext Environment,"
Technical Report, NYU, 1991.

[KM89] M. R. Kibby and J. T. Mayes, "Towards Intelligent Hypertext,” in R. Mc Aleese,
editor, in Hypertext Theorv into Practice, pages 164-172, 1989.

[KPBB90] Steven O. Kimbrough, Clark Prichett, Michael Bieber and Hemant Bhargava,
"The Coast Guard's KSS Project”, Interfaces, V20:6, November/December 1990, 5-16.

[M1i89] Robert Minch, "Application and Research Areas for Hypertext in Decision Support
Systems," Journal of Management Information Systems, V6:3, Winter 1889-90, 118-138.

[NG86] L. T. Nguyen and Robert A. Greenes, "A Framework for the Use of Computed Links
in the EXPLORER-1 Knowledge Management System," in MEDINFO 86, IFIP-IMIA, R.
Salamon, B. Blum and M. Jergensen (eds), North-Holland: Elsevier Science Publishers
B.V.. 1986, pages 891-894.

[N1eS0] Jakob Nielsen, Hypertext & Hvpermedia, Academic Press, 19S0.

[SF89a] P. David Stotts and Richard Furuta, "Petri-Net Based Hypertext: Document
Structure with Browsing Semantics," ACM Transactions on Inforrmation Systems, 7(1),
January 1988S. .

[SF89b] P. David Stotts and Richard Furuta, "Programmable Browsing Semantics in
Trellis," in Hypertext ‘89 Proceedings, pages 27-42, 1989.

[SL89] John L. Schnase and John J. Leggett, "Computational Hypertext in Biological
Modelling," in Proceedings of the 1989 Hypertext Conference, Pittsburgh, PA, November
1989, pages 181-198.

[Tom89] Frank Wm. Tompa, "A Data Model for Flexible Hypertext Database Systems,"”
ACM Transactions on Information Systems, 7(1), January 1989.

[YMvD85] Nicole Yankelovich, Norman Meyrowitz, and Andries van Dam, "Reading and
Writing the Electronic Book." IEEE Computer, October, 1985.

<a

| rie (WY L e o ek o

_ LINDA-PRUDEN
= ‘

{
lHa..m’ ~ of Shores
N

Tus=R N |

r "inda Prudent

Pryj ectdd Dividends
lusER| i
) Y igda Stats

detact-conflict

[DON-PRUDENTIR |

L)

e i 0

16)
Humaer o7 Scres

fT:.-:'.I::'::: conflicd)

| USSR l

\
[__ DON-PRUDENTIA |
)
Pr'Llj:cingi Dividerd)
TR |

[V =n\i‘n_ﬂ N-STATS

¢¢¢ 8500 1002 '

Divi de‘r{d ger snare

= = rLinde-Don-Prudepiial Couf

Lince and Con ar= In “Gsarlict”

uszR| |\ I

<[EIE

BZER| Killed regian savad

\
[_Vtinaagec |

e P ——

A

FCinc='s Prudantial Hauris 1._1;-:)!

uSzRI \

!

\

| 'Linda Gaawman's §

rzconmnaa tlen: “BUY*®

|

~—

o <
K7 S0 00 35 l

Qivi dand

Par Sh=ra ’

usr| | |

|
N\ 'DonlBurnt's Prud

an' = Prucential He-.u-iatlg)]
———-._._.—.\——---—-"'-

|us=a| \ [

\

| 'Don Burnt's Stach

R2canmendction: THOLD™ 1

== ' jus=s] i
o€ 2

= Ffile Edit Eval Tools Windows links webs nodes keywords S
| LINDA-PRUBEN | [_detect-conflict | DON-PRUDENTIA 5
@{r ’ F%‘*:E‘: canfligi) \I?g

Humber of Shares Lsa'é\l Hunter ot Sharas

| __ lLinde Prudent

Y

Prc‘g;e:gad 0ividands

Us=Al

\

__ ‘DON~PRUDENTIA

=

Pr}?jccx_d Oividerd
\

usaal |\ USEA |
_ nlinda Stats \/_"BON-STATS
(7 990 002) == 'linda-Don-Prudenlial Cani ZTIE| [/ 90 100)
i'\\ I .'._.J — % ‘(\ -
Diuide:{d ger share Linga ang Con cre In “Conflicy \ = |Qiuvidand|Par Skara
UsEa | \ | BER| Killed regian soued K:[E_IH@ US=A| ‘ b

\ /

_\Linga Rec /

BF
= ——

— -

\

{ 'Linda Gaandman's § ‘[

racanmncztz ort: "HCLO™

| ue=sa!

I

A

'Don/Burnt's Prud

-Jan' =3 Prucdsntial Hewis<iey

— ey —

A

[us=Rd - X |

\

-

'Don Eurnt"gStaci

Aecszmmenaction: "3l

R D
S=v

iu::‘: | ; J

—

