
BRIDGE LAWS IN HYPERTEXT:
A LOGIC MODELING APPROACH

Michael Bieber
Computer Science Department

Fulton 430
Boston College

Chestnut Hill, Massachusetts 02167-3808

and

Tom& Isakowitz
Information Systems Department

Leonard N. Stern School of Business
New York University
New York, NY 10003

July 1991

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Working Paper Series

STERN IS-91-17

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-17

ABSTRACT

Increasingly, computerized systems tend to delegate certain portions of their

functionality to other systems. This is routinely done by systems that use Data

Base Management Systems (DBMS) to manage their data. The DBMS is in

charge of all data related operations. A similar phenomena is emerging in the

area of graphical user-interfaces. As more of these delegation phenomena occur,

the establishment of flexible communication channels for the different applica-

tions becomes increasingly important. We propose to achieve this communi-

cation by establishing a set of relationships between the applications. These

relationships will be specified by bridge laws, i.e. laws that establish bridges

between different domains.

We concentrate on a particular example: coupling arbitrary applications to

a hypertext user interface. In terms of the discussion above, one of the systems

in consideration is fixed. We study the elements that are needed in order to

establish effective bridge laws. We do this by defining a general framework and

providing two examples. The first example deals with a Data Base Management

System, and the second one with a model management system. The examples

show that in order to achieve effective interaction between a system and a hy-

pertext interface, some meta-knowledge is required. We extrapolate from our

experiments to conclude the type of general properties of bridge laws that are

necessary to achieve this high level type of process communication.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-17

Contents

1 Introduction 1

2 Back-End Applications and the Front-End Hypertext Interface 3

3 Mapping a Relational DBMS to a Hypertext Interface 5

3.1 Relational Algebra . 6

3.2 Knowledge about the DBMS . 8

3.2.1 Hypertext objects . 9

3.2.2 The bridge laws . 10

4 Mapping a Model Management System to a Hypertext Inter-

face 14

4.1 Basic Model Management System Elements 16

4.2 The Model Management System Bridge Laws 17

4.3 Link Traversal . 19

5 Bridge Laws 20

6 Discussion and Future Research 22

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-17

1 Introduction

Increasingly, computerized systems delegate certain portions of their operations

to other systems. This is routinely done by systems that use Data Base Manage-

ment Systems (DBMS) to manage their data. The DBMS is in charge of all data

related operations. A similar phenomena is emerging in the area of graphical

user interfaces. As more of these delegation phenomena occur, the establish-

ment of flexible communication channels for the different applications becomes

increasingly important. It is important to develop a communications language

protocol between applications. More fundamental, however, is a method for

interpreting the objects each application sends to the other using this protocol.

We propose to facilitate this interpretation by establishing a set of relationships

between applications. These relationships will be specified by bridge laws, i.e.

laws that establish bridges between different domains. The purpose of this paper

is to explore the concept of bridge laws and present a logic model for them.

In this paper we concentrate on a particular example: coupling arbitrary

applications to a hypertext user interface. In our future research we shall be

extending this coupling to complete "front-end subsystems" besides hypertext

interfaces. Implementing a hypertext-based interface is often a complex en-

deavor. We shall argue that by using bradge laws it is possible to establish

a general framework that will enable a reasonably well structured computer-

ized information system to use a reasonably well s2ructured hypertext interface.

This framework will include the elements necessary to establish effective bridge

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-17

laws to support the expression of high level relationships between entities in the

application environment and entities in the hypertext environment as well as

between activities specific to the application and hypertext activities such as

node creation and link traversal.

Bridge laws were briefly introduced in [BK90], in which we presented a logic

model for generalized hypertext-a dynamic model of hypertext necessary for

information systems such as those in this paper's examples. The emphasis of

the present paper is not on the model of generalized hypertext, but rather on

the concept of bridge laws and how they facilitate the coupling of indepen-

dent information systems. As such, this paper differs from [BKSO] in two major

ways. First, we shall be presenting a detailed discussion of bridge laws and their

properties. Second, we have simplified the model of hypertext so as not to com-

plicate the discussion and examples needlessly, and then coupled it using bridge

laws to an expansion of [BKSOI's example and to another information system

domain-database. The bridge laws described in this paper easily could be ex-

panded to incorporate the advanced hypertext generalized features of filtering,

and user-supplied comments and links.

This paper is organized as follows. We begin in section 2 with an overview of

the hypertext concepts we shall be using in our examples. With this background

we ask the question, "Why would the builder of an information system want to

couple his or her application to a hypertext interface?" We give examples of us-

age of bridge laws to incorporate hypertext interfaces to data base management

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-17

systems in section 3 and to model management systems in section 4. We discuss

the bridge law's mechanism and we give evidence to its power and generality in

section 5 and we conclude with summarizing remarks and directions for further

research in section 6.

2 Back-End Applications and the Front-End

Hypertext Interface

Increasingly, designers are turning to hypertext as a model for information pre-

sentation and user navigation in inforrnation systems. Hypertext [Con87, SK89,

NieSO] is the concept of linking pieces of information. At its most basic level,

a hypertext interface comprises document nodes which are interconnected by

links. Links are marked by buttons, portions of text highlighted to indicate a

connection to relevant items of information, Traversang a link originating in one

node is tantamount to generating and displaying the information at its other

end.

We refer the reader to [NieSO] for a comprehensive survey of hypertext, to

[BI91, Bie907 for discussions of incorporating hypertext in dynamic informa-

tion system environments and to [BK90, BieSO] for logic models of dynamic or

generalized hyperted.

Why would information system builders wish to couple their systems to a

hypertext interface? Hypertext offers information systems a natural and corn-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-17

prehensive means of navigating among its components. Standard features of

hypertext systems include browsing and searching mechanisms, backtracking to

previously-viewed stages in the user's session, user-commenting and other types

of annotation via links. Hypertext already has been incorporated into the inter-

faces of a variety of specialized processes. These include argumentation systems

[CB89, SBF+87, GFM891, software engineering systems [GS89, De186, BR87],

legal applications IYou89, VVilSO], and on-line help functions [AMY88], among

others.

Our goal is to develop a way for information system builders to acquire a

hypertext interface relatively easily, and to do so by augmenting their existing

code with bridge laws instead of modifying it. Our approach is to view the

hypertext interface and the information system application as two independent

modules, the former being the front-end and the latter being the back-end.

The two modules use a communications language to pass information. The

application would pass analysis reports, user-input query templates, command

sets and the like, to the interface. The interface would pass user responses and

requests to the application. Bridge laws are the mechanism that allows the

interface to interpret the application elements properly. For example, bridge

laws map application commands to hypertext links.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-17

3 Mapping a Relational DBMS to a Hypertext

Interface

Let us a consider a hypertext user interface to a relational DBMS. In order t o

provide a useful interface it is important to consider not only the data base

but the entity-relationship (E R) diagram as well. In the relational model the

entaties and relationships that appear in the E-R diagram are represented uni-

formly by relations. Both entities and relationships present in the E-R diagram

are mapped to relations in the relational DATA BASE model. Since there is

a conceptual difference between entities and relationships which is important

for the user's understanding of the DATA BASE, and since a hypertext front

end interacts with the user, it becomes important to retain the E-R diagram

information. The interface is set up in such a way that each entity in the E

R diagram is represented by a node in the hypertext subsystem. Whenever

there is a relationship between entities, there is a hypertext link between the

corresponding nodes in the hypertext front-end.

For example in a database about student housing on a campus there is data

about apartments, students, maintenance personnel, etc. For each of these en-

tities a node exists in the hypertext front-end. Each node can represent some

(even all) of the tuples in the relation. The contents of each node appear on

screen one tuple per line. Relationships among entities are represented by vir-

tual links, as we explain next. Consider the "occupied by" relationship from

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-17

apartments to students, corresponding to a hypertext link labeled by the same

name. The link is virtual because the actual destination tuples will not be in-

stantiated until the link is traversed at which point a database query is invoked.

Each apartment in the apartments node is a (virtual) hypertext button con-

nected to an "occupied by" link which when traversed triggers a database query

for all students living in the apartment. The query results in a set of students.

The hypertext interface processes the set, displaying each element as a button

on a separate line of a report.

3.1 Relational Algebra

We will use relational algebra as the formal language to express data base oper-

ations since any implementation of a relational data base has to support these in

some way or other. Consider, for example, a hypertext interface to a relational

data base with information about students, dorm apartments and about the

relationship "occupied by" between dorm apartments and students. There are

three relations: studs, apts and apts-stud as given in figures 1, 2 and 3. The

last one represents the relationship between students and apartments.

Our discussion will focus mainly on querying Data Bases as opposed to

constructing and maintaining it. Therefore, we shall only use the projection

(T), selection (0) and join (W) relational algebra operators in the following. For

example, in order to find the names of all occupants of the apartment located

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-17

studs

SS Name DOB

546-98-3058 Alberto Gortez 11/15/91

547-54-9807 Richard Gulligan 6/29/71

679-07-6323 Mary Smith 8/30/73

995-67-3211 Jonathan Pressman 7/14/68

. . .

Figure 1: The s tuds relation

apts

Addr Type Rent

2 WSV. # 13-0, New York, NY 10012 2 BDR 730

4717 Broadway* 3F , New York, NY 10004 2 1/2 BDR 560

. . .

Figure 2: The ap t s relation

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-17

apts-studs

Addr SS

2 YSV. # 13-0, New York, NY 10012 547-54-9807

2 YSV. # 13-0, New York, NY 10012 995-67-3211

4717 Bway# 3F , New York, NY 10004 679-07-6323

. . .

Figure 3: The apts-studs relation

at 2 WSV. # 13-0, New York, NY 10012 we evaluate the following expression:

3.2 Knowledge about the DBMS

The knowledge about the DBMS needed for the hypertext interface is given here

in terms of logic predicates. Predicate names will be in lowercase as will constant

and function names. Variables will be uppercased and an appearance of - in an

argument position is a "don't care variable" meaning that it is irrelevant to the

point and is therefore left unnamed.

The DBMS supplies the functions display-value() and position-o f () which

the hypertext uses to map the data base to the nodes. The first one provides the

actual text to be displayed and the second one specifies the location of tuples

and values within a relation (it is used to "anchor" buttons). The following

are examples of predicates in the context of the students and apartments data

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-17

entity(students, studs), the entity students is represented by the relation

studs:

relation(studs, 'Students on campus'), the name of the studs relation is

'Students on campus';

attr(ss, studs), ss (social security) is an attribute of studs;

pAey(ss, studs) the primary key for the relation studs is ss;

tuple(tl, studs) states that t l is a tuple of the studs relation;

value(A1berto Cortez, name,tl ,studs), the value the name field of tl is

"Alberto Cortez" .

The value of display-value(studs) is a string of ascii characters (with line

feeds) that contains all tuples in the studs relation, similar to figure 1. The

value of position-of(tl, studs) in studs is computed as < 0,41 >.

3.2.1 Hypertext objects

The knowledge about hypertext reduces itself to nodes, buttons and links, and

it is for these hypertext constructs that the database builder must provide

bridge laws. In this section we describe these hypertext constructs and in the

next section we present the corresponding bridge laws. A nodes has an id, a

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-17

name, a type and a content. A node is given by the following predicate:

node(Node-id, Node-name, Type).

Buttons are areas within nodes where links can be accessed. These but-

tons can be invisible, contain a single letter, a word, a sentence or even the

whole node. However, they represent a contiguous portion of a node. But-

tons have a unique identifier and information about their location in a node:

button(IL3, node-location(Node-id, Position)).

There are two types of links: static links and virtual links. In the static ones,

of the form link(1ink-id, link-name, source-button-id, destination-node-id), the

destination is explicitly specified in the declaration. Virtual links, which of the

form vJink(1ink-id, linkslame, source-button-id, operation), specify a delayed

computation of the destination. Instead of a node for the destination of the link,

a back-end operation is provided. This operation is performed by the back-end

at traversal time to determine the destination of the link. In this paper we

shall use only v l ink predicates as it is only practical to specify classes of links

in a large information system.

3.2.2 The bridge laws

We now specify a set of bridge laws that will relate a hypertext interface to the

relational DBMS. All variables appearing in the following formulae are assumed

to be universally quantified. The first law establishes a node for the relation to-

gether with its contents. It also defines the whole relation as a button. Clicking

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-17

anywhere on the relation will activate a link traversal operation. The nature of

this traversal will depend upon the actual links defined.

Bridge law I

relation(Re1, Name) > node(d-h(Rel), Name, relation)/\

contents(d-h(Rel), display-value(Re1))A

button(d-h(Rel), node-location(d-h(Re1, < 0, size(Re1) >))

The use of d-h emphasized a da ta base to hypertext translation. It has only

mnemonic value and it is meant to remind the reader about the nature of the

objects being discussed. The next law is about tuples. These are defined as

buttons within nodes. Their display value is obtained from a data base retrieval,

their location is obtained from the data base by issuing a call to position-in.

B r idge law I1

tuple(T, R e l) ~

pAey(lCey, R e l) ~

key-val(lC, TI Ref) > button(d-h(T, Rel),

node-location(d-h(Rel), position-in(T, Rel)))

In order t o be able to span across relationships by clicking on the appropri-

ate buttons, we define virtual links for every relationship as follows:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-17

Bridge law I11

relationship(E1, Ez, Rel, name)^

en t i t y (&, R 1) ~

ent i ty(E2, RZ)A

relation(Re1, -)A

p-key(R1, Key1)A

tuple(T1, R1)A

key-val(K1, T I , R 1) ~

attributes(R2, A t t2) > v l i n k (re l (E1 , E 2) ,

N a m e ,

d-h(T1, Rl),

o p e r a t i o n (~ ~ i l t t ~ (a ~ ~ . ~ ~ ~ = ~ ~ (R ~) Re1 R2)))

The semantics of link traversal relies upon the data base to obtain the actual

answer to such an interactive query. When traversing a v-link, the formula is

evaluated which causes a set of tuples to be shown. This mechanism is explained

at the end of section 4.

Continuing with our example of students and apartments , the three bridge

laws just presented will infer the following nodes and buttons for the students

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-17

node(d-h(studs),

'Students on campus',

relation)

contents(d-h(studs),

"546-98-3058 Alberto Cortez 11/15/91 547-54-9807 Richard Gulligan

button(d-h(studs),

node-location(d-h(studs), < 0, size of studs relation >))

The students in the studs relation are represented by tuples t l , t 2 . . . which are

made into virtual buttons by the second bridge law. Thus, for the first tuple:

button(d-h(tl, studs),

node-location(d-h(studs), < 0,41 >))

Similarly we have a node and a button for the apartments relation and but-

tons for each tuple therein.

Our example has only one relationship: 'occupied by' which relates apart-

ments to students. This is realized via a virtual link according to the third

bridge law. We obtain one such link per tuple in the apts relation. One such

link is:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-17

vJink(rel(apartments, students),

'occupied by',

d-h(t1, apts),

o~eration(~{~s,name,d~b](uapts,addr="2 WSV,.,"(apts) a~ts-studs studs)))

Traversal of such links is triggered by clicking on the desired tuple in the

apartments node and selecting the 'occupied by' link. The outcome of this

traversal is a new window where the tuples for the students living in the apart-

ment are portrayed.

The hypertext interface we now have is quite powerful. For example any

relationship will automatically be mapped onto a link, yet it only required three

bridge laws to establish. We can easily add more options to the interface such

as explaining the meaning of a given field, retrieving the apartment where a

student lives, obtaining system data about a relation such as author, date of

last update, etc. These can be realized with relative ease with additional bridge

laws.

4 Mapping a Model Management System to a

Hypertext Interface

In this section we describe the mapping between a model management system

back-end and a hypertext front-end interface showing how link traversal is trig-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-17

The result o f executing the net-income model w i t h the

f lnenciai- 199 1 scenario i s :

oro f i t = -$34.706.30

Information Ruailable:

(1) describe
I21 execute

Figure 4: Selecting the describe link

gered and executed. The model management back-end is based loosely on TEFA

[BhaSO], which is part of the Max system [KPBBSO]. It has a knowledge base

that contains mathematical models together with their variables, equations, and

data scenarios containing datum values for the exogenous variables.

Before formally declaring our environment, in Figure 4 we show a hypo-

thetical screen from the hypertext model management system dealing with a

simple net income mathematical model. This model has two data scenarios for

a company: last year's actual financial figures and this year's projected figures.

This screen resulted from the user executing the net-income model with the

financial-1991 data scenario, resulting in Figure 4. The boldface text strings

represent mouse-sensitive hypertext buttons. Assume the user selects the first

button, net-income. We see that two possible links are associated with the but-

ton, to describe the model or re-execute it. Figure 5 shows the resulting display

from describing the model.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-17

The result O f eXeCUt1nf.j the net-income model w ~ t h the

a stmple profi t model

profit =: gross - mex(0, gross * tax-rate)

Figure 5: Result of traversing the describe link

4.1 Basic Model Management System Elements

Just as the data base system had DBMS-specific elements and operations that

it had to map to hypertext nodes, links and buttons, the model management

system has its own components that the hypertext "front-end" must access. Our

model management system stores its elements in a knowledge base of predicates

of which the following are examples:

model(net-income, de f inition('a simple profit model'))

variable(pro f it, de f inition('annua1 net income'), quiddit ~(currency))

variable(revenues de finition('annua1 revenue'), quiddity(currency))

Lprofit =: gross - max(0, gross * tax-rate),

gross =: revenues - expenses]))

scenario(f inancial-1991, de f inition('actua1 financial figures for 1991'))

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-17

scenario(f inancial-1992, de f inition('estimated financial figures for 1992'))

As we see from Figure 4 and the discussion below, some of the possible model

management system operations are describe, execute and explain. We shall not

declare these here as they are quite complex and vary according to the type of

model management system object that the user selects.

4.2 The Model Management System Bridge Laws

The model management builder declares the following bridge laws to map its

objects-the mathematical models, variables, scenarios and execution results-

to hypertext nodes.

model(M, de f inition(Name)) > node(M, Name, model)

variable(V, de f inition(Name), Format) > node(V, Name, variable)

scenario(S, de f inition(Name)) > node(S, Name), scenario)

execution(M, V, S, -) > node(exec(M, V, S) , 'model execution result', execution)

These virtual nodes represent the back-end application's "objects of interest"

in the front-end interface subsystem.

The interface also treats every document as a node, especially the reports

that the model management back-end passes for display. Here are the virtual

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-17

declarations that generated the two documents in Figure 5.

model-equations(M, E)A

first-variable(E, V)A

execution(M, V, S, Result) > node(execution-report(M, S), 'execution analysis report',

 document)^

contents(execution-report(M,S),

["The result of executing the", M, "model with the",

S, "scenario is:\n " , V, "=" , Result])

node(describe(M), 'model description report', docur.nent)A

contents(describe(M),

['LThe", M, "Model\n \n Definition:\n ", De f , "\n Equations:", El)

We also have button declarations corresponding to each of the highlighted

objects within these documents shown in Figures 4 and 5.

Here are the bridge laws the interface uses to access link operations and

determine their traversals. The first law describes a model management object.

It is valid for all button types. The second executes mathematical models when

the user selects a button representing one. Implicit is a scenario selection mech-

anism. The third produces an explanation of an execution result highlighted as

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-17

a button, such as 4 3 4 , 7 0 6 . 3 0 in Figure 5.

button(B, L) >

vlinR(descr(B), 'describe', B , operation(describe(B)))

button(m(B), L) >

vlink(ezec(B), 'execute', B, operation(execute(B)))

button(exec(M, V, S) , L) >

vJink(exec(M, V, S) , 'explanation', exec(M, V, S) , operation(explain(exec(M, V, S))))

Notice that the buttons' location arguments L are left unspecified so that

these virtual link declarations apply t o all appropriate button instances a t any

position in any document.

4.3 Link Traversal

How does the hypertext interface associate the button a user selects to the

desired virtual link, forward the proper operation label to the back-end for pro-

cessing and receive the destination document to display? These actions are

controlled by the hypertext interfaces traverse predicate. The hypertext in-

terface invokes traverse(bzltton(B)), when the user selects button B .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-17

button(B, -)A

collect-links(B, link-list(LL))A

choose-link(link_list(LL), link(L))A

perform-operation(l3, OP, Resu1t)A

create-display(Resu1t) >

traverse(button(B))

The predicate collect-links/:! determines all possible links from button B.

It "returns" these in the list LL. The predicate choose-link generates the

user request shown in Figure 4 so the user may choose the link L to tra-

verse. The actual call to the back-end to execute an operation is taken care

by the perf orm-operation(B, OP, Result predicate. The back-end instantiates

the variable Result, to the result of performing the operation. The hyper-

text interface predicate create-displayll transforms the back-end result into

the document windows the user sees on the screen, such as those in this paper's

figures.

5 Bridge Laws

What are the steps we had to go through in each of the previous examples in

order t o establish a hypertext interface? First, we identified the key concepts or

"objects of interest'' in the application domain with which the user may interact,

e.g., entities, tuples, relations, mathematical models, variables, scenarios; and

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-17

then we mapped these into hypertext concepts, i.e., nodes, links and buttons.

These two steps are tantamount to declaring a theory of what is important to

the application [BK90]. In a hypertext interface, the important elements are

those that the user should be able to access, comment upon and relate to others.

The first step is about discovering the knowledge embedded within a back-

end system. It is asking the question, "What does this sys tem know about?".

Usually we are not interested in individual data instances, rather about the

overall structure of the application, which can be determined by examining its

specifications.

The second step is about relating hypertext concepts to application-dependent

concepts. For instance, in the DBMS example of section 3 we related schemas

to nodes, tuples to lines in nodes, links to relationships and link traversal to

database querying. Part of this second step is to determine how the various

elements should be displayed to the user. By this we do not mean the visual

medium such as windows, etc., but the format of the content (e.g., headers and

dimensions) and which buttons it should contain.

Of high importance is the proper establishment of the correspondences be-

tween links and the actions in the application domain. This is because the

computational power of hypertext is represented by its link traversal operation,

hence the only way to represent a computation in hypertext is via link traversal.

The beauty of bridge laws is that they take advantage of an application's

structure. Instead of an application builder specifying each link among, say,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-17

the individual tuples in the database (most of which are added by users after

the database system is defined), he or she can exploit logical quantdfication and

declare a single general bridge law for each facet of the application's structure

to be represented in the interface.

Bridge laws represent mappings between elements in different domains: in

particular the application domain and the hypertext system. In a way, what

these laws achieve is to provide a semantics for the different objects and opera-

tions prevalent in the application domain. A computer system usually provides

such meaning via the operational semantics via a menagerie of compilers, link-

ers, etc. For the purposes of the interface, we provide here a different meaning to

the objects of the system, namely the form of their expression. There has been

considerable debate about the appropriateness of the distinction between form

and content [Bro89, Thogo]. We show here the power that is to be obtained by

concentrating upon the form.

6 Discussion and F'uture Research

We have shown in this paper that the complex coordination task of interfacing

applications with a hypertext front-end can be achieved by providing knowIedge

about the relevant objects in the application system based upon the application's

internal structure. This knowledge is used to establish a mapping between

objects and operations in the application domain, and objects and operations

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-17

in the hypertext interface. In a similar manner we could couple a hypertext

interface to other applications such as expert systems or intelligent tutoring

systems. We are investigating how to utilize these concepts to support inter-

process communication between arbitrary processes.

Bridge laws allow an application builder to connect two or more distinct

environments so that each can take advantage of the other's unique features.

As long as each environment makes public the nature of its objects and accessi-

bility paths, skillful individuals should be able to declare bridge laws that will

seamlessly provide stable communication between the processes.

References

[AMY881 Robert .M. Akscyn, D. L. McCracken, and E.A. Yoder. KMS: A

Distributed Hypermedia System for Managing Knowledge in Orga-

nizations. Communications of the ACM, 31(7):820-835, 1988.

[BhaSO] Hemant Bhargava. A Logic Model for Model Management: A n Em-

bedded Languages Approach. PhD thesis, Wharton School, University

of Pennsylvania, December 1990.

[BI91] Michael P. Bieber and T o m b Isakowitz. Valuation Links: Formally

Extending the Computational Power of Hypertext. Technical report,

CRIS, New York University, 1991.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-17

[BieSO] Michael P. Bieber. Generalized Hypertext in a Knowledge-based DSS

Shell Environment. PhD thesis, Decision Sciences Department, Uni-

versity of Pennsylvania, Philadelphia, PA 19104, December 1990.

[Biegl] Michael P. Bieber. Issues in Modeling a Dynamic Hypertext Inter-

face. Technical report, Boston College, 1991.

[BK90] Michael P. Bieber and Steven 0 . Kimbrough. On Generalizing the

Logic of Hypertext. In Proceedings of the 2yd Hawaii International

Conference on System Sciences, January 1990.

[BR87] James Bigelow and Victor Riley. Manipulating Source Code in Dy-

namicDesign. In Hypertext '87 Proceedings, pages 397-408, New

York, NY, November 1987. ACM, ACM Press.

[Bro89] Heather Brown. Standards for Structured Documents. The Com-

puter Journal, 32(6):505-514, 1989.

[CB89] Jeff Conklin and Michael L. Begeman. gIBIS: A Tool for All Reasons,

Journal of the American Society for Information Science, 20(3):200-

213, 1989.

[Con871 Jeff Conklin. Hypertext: An Introduction and Survey. IEEE Com-

puter, 20(9):17-41, September 1987.

[Dell361 N. Delisle. Neptune: A Hypertext System for CAD Applications.

In Proceedings of ACM SIGMOD International Conference on Man-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-17

agement of Data, Washington, D.C., pages 132-143 (Also available

as SIGMOD Record Vol 15, No. 2. June 1986), 1986.

[GFM89] Raymond McCall Gerhard Fischer and Anders Morch. JANUS: Inte-

grating Hypertext with a Knowledge-based Design Environment. In

Hypertext '89 Proceedings, pages 105-117, New York, NY, November

1989. ACM, ACM Press.

[GS89] Pankaj K. Garg and Walt Scacchi. Ishys: Designing an Intelligent

Software Hypertext System. IEEE Expert, 4(3):52-64, Fall 1989.

[KPBBgO] Sreven Kimbrough, Clark Prichett, Micahel Bieber, and Hemant

Bhargava. The Coast Guard's KSS Project. Interfaces, 20(6):5-16,

November/December 1990.

[Mey89] Norman Meyrowitz. The Missing Link: Why we're all doing hyper-

text wrong. In Edward Barrett, editor, The Society of Text, pages

107-14. MIT Press, Cambridge, MA, 1989.

[NieSO] Jakob Nielsen. HyperText & HyperMedia. Academic Press, 1990. A

very readable int<roduction to the field.

[SBF+87] Paul Smolensky, Brigham Bell, Barbara Fox, Roger King, and Clay-

ton Lewis. Constraint-based Hypertext for Argumentation. In Hy-

pertext '87 Proceedings, pages 215-246, New York, NY, November

1987. ACM, ACM Press.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-17

[SF891 P. David Stotts and Richard Furuta. Petri net based Hypertext:

Document Structure with Browsing Semantics. ACM 13.ansactions

on Information Systems, 7(1), January 1989.

[SK89] Ben Shneiderman and Greg Kearsley. Hypertext Hands-On! An In-

troduction to a New Way of Organizing and Accessing Information.

Addison-Wesley, 1989.

[Tho901 Craig W. Thompson. Strawman Reference Model for Hypermedia

Systems. In Judi Moline, Dan Beningni, and Jean Baronas, editors,

Proceedings of the Hypertext Standartization Workshop, pages 223-

246, Gaithersburg, MD 20899, March 1990. National Institute of

Standards and Technology, NIST special publication 500-178.

[Wil9O] Eve Wilson. Links and Structures in Hypertext Databases for Law.

In A. Rizk, N. Streitz, and J . AndrC, editors, Proceedzngs of the Eu-

ropean Conference on Hypertext, pages 194-211, France, November

1990. INRIA, Cambridge University Press.

[You891 L. De Young. Hypertext Challenges in the Auditing Domain. In

Hyperl'ext-89 Proceedings, pages 169-180, November 1989.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-17

