
VALIDATING REQUIREMENTS
SPECIFICATIONS STATE11 IN KNOWLEDGE
REPRESENTATION LANGUAGE TEMPLAR

Alex Tuzhilin
Assistant Professor

Information Systems Department
Leonard N. Stern School of Business

New York University
New York, New York 10003

October 1991

Center for Research on Information Systems
Informat ion Systems Department

Leonard N. Stern School of Business
New York University

Working Paper Series

STERN IS-91-28

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

Validating Recluirements Specifications Stated in Knowledge
Representation Language Templar

Alexa,nder Tuzhilin

Information Systems Department
Stern School of Business

New York University *

Abs t r ac t

Techniques for analysis and validation of software requirements specifications written in the
knowledge representation language Templar are presented. Templar specifications are analyzed
in terms of ambiguity, non-minimality, contradiction, incompleteness, and redundancy. Since
Templar is a powerful knowledge representation language supporting a rich set of modeling
primitives, it is difficult to reason directly on Templar specifications. To solve this problem,
Templar specifications are mapped into equivalent temporal logic programs which are analyzed
in terms the criteria listed above. However, it is hard to reason about Templar specifications
because some of the criteria cannot be formally proven, and the verification of other criteria
constitute undecidable or intractable problems. To overcome these difficulties, we consider a
set of tractable conditions for each criteria, which serve as "alarms" for the user. If a condition
is violated then it means that the specification either definitely has or potentially can have a
problem. Furthermore, the user is notified about the source and the nature of the problem in
certain cases.

1 Introduction

The size and complexity of software systems increased dramatically over the past decade [DavSO].

As a result of this, the probability of making errors in specifying and designing these systems has

also increased [DavSO]. One way to reduce these errors is to develop suitable techniques for analysis

and validation of requirements specifications.

Meyer [Mey85] described seven problems commonly found in requirements specification docu-

ments. He called them seven "sins" of the specifier. Subsequently, Dubois and IIagelstein [DH87]

consolidated them into five problems:

ambiguity: a specification admits multiple interpretations

'Address: 40 West 4th Street, Room 624, New York, NY 10003; Internet: atnz11ilinOstern.ngl1.edu.

I

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

non-minimality: the presence of an element in the specification that corrcsponds not to a

feature of the problem but features of a possible solution (also called over-specification)

incompleteness: omission of relevant aspects of the system being specified (also called under-

specification)

contradiction: a specification ha,s two or more incompatible features (also called inconsistency)

0 redundancy: repetition of information.

In this paper, we present some formal methods for validating requirements specifications writ-

ten in the ltnowledge representation language Templarl in terms of these five criteria. Templar is a

software specification language based on knowledge representation methods designed to meet the

following objectives: specifications written in Templar should be easy for the non-computer oriented

users to understand, should have formal syntax and semantics, and it should be easy to map them

into a broad range of design methods. A Templar specification consists of a set of rules and a set

of activity specifications that describe composite activities in terms of its subactivities. It explic-

itly supports rules, events and activities, time, hierarchical decomposition of activities, sequential

and parallel activities, static and dynamic integrity constraints, and data modeling abstractions of

aggregation, generalization, classification, and association. The relationship of Teinplar to otlzer

knowledge representation languages for requirements specifications will be discussed in Section 3

after we introduce the features of the language.

It is difficult to reason about arbitrary Templar specifications because Templar supports a

rich set of modeling primitives and some of these primitives are not based on logic and, therefore,

not amenable to reasoning. For this reason, we map Templar specifications into a certain type of

equivalent temporal logic programs [AM89, BFGS89, KKN+SO, TuzSlb] and the11 try to validate

these programs, thus validating Templar specifications. Since temporal logic programming is based

on souild theories of logic programlniilg [Llo87] and temporal logic [I<roS7], it is much easier to

reason on temporal logic programs than on Templar specifications.

Any attempt to determine a1gorithmica;lly if a software specification has any of the five problems

listed above, encounters the following difficulties:

Informality. Some of the five problems described above cannot be detected with any formal

method even if the specification itself is stated in formal terms. These problems cannot be

lTemplar stands for Temporal logic as a requirements specification language. Templar also means, according to
the American Heritage Dictionary, "A knight of a religious military order founded at Jerusalem in the 12t.h century
by the Crusaders."

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

detected because they are not formally defined. For example consider the problem of incom-

pleteness. It says that a specification is complete if it captures all the relevant knowledge

about the real-world system the user has in mind. Clearly, it is impossil~le to define for-

mally what knowledge the user perceives as "relevant" and what as "irrelevant." Therefore,

incompleteness of a requirements specification cannot be formally validated in general. For

the same reason, non-minimality condition cannot be formally validated unless there exists

a formal definition of a problem space, a solution space and of the boundary between these

two spaces.

* Undecidability and Intractability. Even if some of the five problems can be formally defined,

such as contradiction, redundancy, and ambiguity, it may turn out that validation of these

problems can be an undecidable problem. For example, the problem of showing that one

of the logical statements follows from the set of other statements is undecidable in general

[Chu36]. Furthermore, although the implication problem can be made decidable by restricting

formulas to some smaller classes [DG79], it can still be intractable, i.e. cannot be decided in

polynomial time.

The specification language ERAE [DHLf 861 addresses these problems by providing a combina-

tion of manual deductive reasoning techniques and interactions with the user. Also, the specification

language Tempora [LMPS90] addresses these problems by using a validation technique called se-

mantic prototyping [TWLSO]. This technique also involves an active participation of the user in the

validation process.

In this paper, we have chosen another approach to solving these two problems. We formulate

a set of tractable conditions for some of the five problems in software specificatio~ls listed above.

These conditions serve as "alarms" for the user and are divided into two types. If the condition

of the first type holds, then the software specification definitely has a problem, and the user is

notified about it. If the condition of the second type holds, then the software specification may

have a problem, In this case, the system only warns the user about the potential problem and

shoxvs the source of the problem. Then the user has to decide if he or she wants to change the

specification or leave it unchanged.

The rest of the paper is organized as follows. In Section 2, we overview temporal logic and

temporal logic pr~gra~mming since they will be extensively used throughout the paper. In Section 3,

we present the language Templar. In Section 4, we show how Templar specifications can be snapped

into temporal logic programs of a certain type. Finally, in Section 5, we address the issue of

validation of Templar specifications and their corresponding temporal logic programs.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

2 Preliminaries: Overview of Temporal Logic and Temporal Logic
Programming

Since Templar is based on temporal logic (TL) and since we will map Templar specifications into

temporal logic programs (TLPs) in Section 4, we briefly review temporal logic and temporal logic

programming in this section. Books by Kroger [KroS7] and Rescher and Urquhart [RU71] provide

a good introduction to temporal logic. Also, some of the TLP systems are described in [AM89,

BFG+89, KKN+90, Mos86, Tuzglb].

The syntax of a predicate temporal logic is obtained from first-order logic by adding various fu-

ture temporal operators such as sometimesin- the-future (o), alwaysin- the-future ([I), next

(o), unt i l and their past "mirror" images sometimesin- the-past (+), a lwaysin- the-past (B),

previous (e), and since to its syntax. Note that function symbols are allowed in temporal logic

formulas since they are based on first-order logic.

The semantics of temporal logic formulas is defined with temporal interpretations. A tempord

interpretation for some temporal logic language defines the domain of discourse, the model of

tirne (e.g. discrete or continuous, bounded or unbounded, linear or branching), assigns values

to constants and function symbols in the language as in classical logic, and specifies a temporal

structure [I<roS7], i.e. the values of all the predicates in the language at all the time instances. We

assume any arbitrary structure of the domain of discourse and also assume that time is discrete,

linear, bounded in the past and unbounded in the future (i.e. time can be modeled with natural

numbers). A temporal structure is defined for each predicate Pi in the language as a sequence of

its instances Pit for all the moments of time t = 0,1,2, We denote a temporal structure of

a temporal logic language at tirne t as Kt. Then fit(Pi) = Pit, since it defines the instance of

predicate Pi at time t.

A temporal structure can be extended from predicates to arbitrary temporal logic fornzulas in

the standard inductive way [I<roS7]. For exarnple, I c t (~) is true if for all t' such that t' > t , ICtl(A)

is true. The meanings of the four standard future temporal operators are defined in Fig. 1. The

meanings of past "mirror" images of these operators are defined similarly to the future operators

except that time is referenced only in the past. A temporal interpretation is a nzodel for a set of

temporal logic formulas if all the formulas are true at all the times in this interpretation.

Besides these eight standard operators, other temporal operators can be defined, such as

before, af ter , while, w h e n [Kro87], and bounded necessity, for-t ime (T) (m), and possibility,

within-time (T) (oT), operators [Tuzglb]. For example, A for-time (T) is true now if A is

alwa,ys true within the next T tirne units. These additional temporal operators have the same

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

-

CLA: is true now if A is always true in the future

oA: is true now if A is true at some time in the future

o A: is true now if A is true at the next time moment

A unt i l 3: is true now if B is true at some future time t and A is true for all the
moments of time from the time interval [now, t)

Figure 1: Operators of Temporal Logic

expressive power as the until, since pair [Gab891 and are introduced only for the ease of use.

After reviewing temporal logic, we consider temporal logic programming. There are different

types of temporal logic programming systems described in the literature. We will briefly review

the system based on [Tuzglb].

A present temporal literal or just a literal is either a predicate or a negated predicate. A past

(future) temporal literal is a temporal literal with the past (future) temporal operator associated

with it.

A temporal logic program (TLP) is a set of temporal clauses. A temporal clause has the form

BODY -+ HEAD, where BODY is a conjunction of present and past temporal litcsals and H E A D

contains a single present or future temporal literal. It follows from this definition that the body of

a rule refers to the present and/or to the past, whereas the head of a rule refers to the present or

to the future. It also follows from this definition that negations are allowed both in the head and

the body of a rule.

Example 1 The statement

If an employee has been fired from a company (worked there in the past but not now)

then he or she cannot be hired by the same company in the future.

can be expressed as a temporal logic programming clause

.*EMPLOY(company, person) I\ -tEhdPLOY(company, person) -t

mEMPLOY(company, person)

or using a different syntax as

IF sometimesin- the-past EhfPLOY(company,person) and not EMPLOY(compclny,person)

THEN alwaysin- the-future not EA4PLOY(conzpany,person)

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

The meaning of a tempora.1 logic program is associated, as in the case of a logic program,

with a certain model of that program. As it follows from the previous definition, a model of a

program is a temporal interpretation, the temporal structure h' of which satisfies the condition

that I i t (body; 4 head;) is true for all the rules i in the program at all the moments of time t.

Additional discussion of the semantics of this specific temporal logic programming system can be

found in [Tuzgla].

A model of a TL program is finite if all the program predicates have finite instances in its

temporal structure2. We will consider only temporal logic programs with finite models in this paper.

For example, the following program consisting of two rules q (x) -+ o p (x) and p (x) --+ p (x + 1) and

a fact q (0) is not a valid program because at time 1 predicate p has an infinite instance.

3 Description of Ternplar

In this section, we briefly describe the software specification 1angua.ge Templar. For the complete

presentation of the language refer to [Tuzgla]. The development of Templar was guided by the

following design objectives [TuzSla]:

1. Templar specifications should be easily understood by non-computer oriented people, and the

requirements specifications stated in some form of a restricted natural language should easily

be translated into Templar specifications.

2. Requirements specifications written in Templar should be easy to map into a broad range of

existing software design methods, such as object-oriented design methods [RBPESl], com-

bination of data flow and ER diagrams, and other process and data modeling languages,

such as Telos [MBJKSO] and Tempora [LMPf SO]. This can be achieved by making Tenlplar

independent of various design specification languages. This will allow the systems developer

to postpone decisions about which data and process modeling paradigm to choose until the

design stage. Therefore, he or she has a freedom to select those paradigms in the design stage

that are the most suitable for the requirements specifications produced in the requirements

stage.

3. Templar specifications should be rigorous. Otherwise, there can be many translation errors

from informal requirements into formal design specifications.

2We assume that the Universe of Discourse (UoD) is infinite. In case of the finite UoD, we can replace the
requirement of a finite model with the requirement of a safe model, where safety is defined as in the case of safe
queries in databases [U1188].

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

Templar is designed so that it can be used at different stages of the software development life

cycle. In particular, it can be used in two substages of the software requirements specification stage.

In the problem analysis substage [DavSO], it can be used for the purpose of conreptual modeling.

In the substage of actual writing of software requirements specifications [DavSO], it can be used

as a language used in these specifications. Furthermore, Templar can be used in the design stage

of the software life cycle, especially for the applications in which the data is stored in an active

database [dMSSS, MDS9, VVFSO, SJGPSO] in the implemented system.

A Templar specification consists of a set of rules and a set of activity specifications. It explicitly

supports rules, events and activities, time, hierarchical decomposition of activities, sequential and

parallel activities, static and dynamic integrity constraints, and data modeling abstractions of

aggregation, generalization, classification and association. We describe Templar informally in this

paper with a set of examples. Formal definition of the language can be found in [TuzSla].

Examples of Templar specifications will be based on the description of an IFTP Working Confer-

ence [01182, Appendix A]. Organization of a working conference involves several activities: sending

a call for papers, receiving paper submissions and registering these submissions, sending papers to

be refereed, receiving reports back from referees, making acceptance/rejection decisions and so on.

A Templar specification of such a conference consists of a set of rules and activities that will be

described in turn below.

Rules, A Templar rule is based on temporal logic and on the Activity-Event-Condition-Activity

(AECA) model. AECA is an extension of the Event-Condition-Action (ECA) model of rules in

active databases [dMSSS, MD89, IZTFSO, SJGPSO], and of rule-based design methodologies in In-

formation Systems [MNP+!31] that provide a more comprehensive support for time.

Tlie following is an example of a Templar rule. To make an example simple, wc consider a rule

of the ECA type and describe an AECA rule in Example 3.

Example 2 The user specification

When a reviewer receives a pamper to be refereed, which was sent by the conference

program chairperson, he/she evalua.tes the paper and sends it back to the d ~ a i r .

is expressed with the Templar rule

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

when end.send(paper,chairperson,reviewer)
if referees(paper,reviewer)
t h e n nex t located(paper ,reviewer)
then-do review(paper,reviewer) ; send(paper ,reviewer, chairperson)

This rule is interpreted as follows: when an event end. send(paper , chairperson,reviewer)

occurs (reviewer receives a paper) and if the condition referees (paper ,reviewer) is true then

the post-condition located(paper,reviewer) is also true at the next time momcnt and the activi-

ties review(paper ,reviewer) and send(paper ,reviewer, chairperson) are initiated sequentially

(i.e. when the first activity finishes, the second one starts).

This rule illustrates three major modeling primitives in Templar: activities, events, and con-

ditions. Activity is a process that occurs over time, e.g. a paper is being reviewed by a reviewer for

some time. An event is a change to the system state that occurs instantaneously, e.g. a reviewer

receives a paper a t some moment in time. Prefix "end" in "end.sendfl in Example 2 specifies the

event "activity send(paper , chairperson ,reviewer) has finished." A condition is a logical for-

mula that describes the state of the system, e.g. predicate referees (paper ,reviewer) indicates

that in the current state of the system, objects paper and reviewer are engaged in relationship

referees.

The rule presented above consists of clauses when, if, t hen , and then-do. Each clause deals

with only one type of a modeling primitive: w h e n clause pertains to events, if and t h e n clauses to

conditions, and then-do clause t o activities. This means that in the previous rule referees and

located are predicates, review and send are activities, and end. send is an event (the end of an

activity). This relationship between clauses and types of modeling primitives that can be used in

clauses forces the user to think more structurally when writing specif cations.

Besides the clauses described above, Templar supports other types of clauses, such as while,

before, af ter , and user-defined clauses. Figure 2 shows the relationship between clauses and

activities, events, and conditions. For example, events can occur only in when , before, and a f te r

clauses, and the if clause can take only conditions.

In general, a Templar rule has not only events and conditions in its antecedent, as rules in the

ECA model have, but also activities, as the following example shows.

Example 3 Assume the organizers of a conference have a rule:

While the paper is being reviewed, any request to withdraw the paper will he granted

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

conditions

Figure 2: Types of Clauses

clauses
if, t h e n

events
activities

by the program chairperson.

w h e n , before, a f t e r
t hen-do. while, before, a f t e r

This requirement can be expressed in Templar as

whi le do_reviewing(chairperson ,paper)
w h e n withdrawal_request (paper)
if submission(paper , author , s t a tus)
t h e n - d o withdraw (paper, author)

where doreviewing(chairperson,paper) is the activity of sending a paper by the program chair-

person for reviewing, submission(paper , author, s t a tus) is a condition stating that an author

submitted a paper t o the conference, withdrawalrequest(paper) is an event indicating that

the request t o withdraw the paper was received, and withdraw (paper, author) is an activity of

withdrawing a paper from the conference.

This rule says that while a certain activity lasts, and when an event occurs, and if a condition

holds, then do a new activity. In this rule, unlike the rule from Example 2, the activities in the

t h e n - d o clause depend not only on some conditions and events but also on some other activities.

Therefore, we call this type of a rule the Activity-Event-Condition-Activity (AECA) rule bccalise it

generalizes the Event-Condition-Activity (ECA) rule as defined in [dh/IS88, MD80. 1TTF90, SJGPSO]

by

allowing activities in the antecedent part of the rule;

supporting not only w h e n , if, and t h e n clauses of the ECA model bu t several additional

clauses, including the clauses shown in Fig. 2;

r providing a comprehensive support for time, as will be described below.

It is argued in [SJGPSO] that an ECA model of a rule is a powerfill model becanse it can support

such1 diverse database concepts as views, special semantics for updating views, materialized views,

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

partial views, procedures, special procedures, and cashing of procedures. Since ECA is a special

type of the AECA model, this means that AECA is a very powerful model of a rille.

Activity. Templar distinguishes between atomic and composite activities. A composite activity

consists of sub-activities. For example, the activity review(paper, reviewer) from Example 2

consists of reading the paper and then evaluating it. This can be expressed in Templar with an

activity specification as illustrated in the following example.

Example 4

A specification for the activity review can be stated in Templar as

activity review (paper ,reviewer)

read(paper,reviewer)

evaluate(paper ,reviewer)

e n d a c t i v i t y

An activity specificastion can be compared to a procedure in conventional programming lan-

guages or to the body of a method in object-oriented programming, except it is defined in terms

of temporally oriented modeling primitives (activities).

An atomic activity cannot be divided into subactivities. It is defined with an (optionally

negated) temporal predicnte describing how one of the relational predicates changes over time. For

example, consider the activity specification

activity read(paper ,reviewer)

T = reading-time(paper ,reviewer)

reading(paper ,reviewer) for-time T

end-activity

where reading-time (paper, reviewer) is a function that specifies how much time it takes a re-

viewer to read a paper, and reading is a temporal predicate. Then "reading(paper ,reviewer)

for-time T" is an example of an atomic activity. It states that the predicate

reading(paper,reviewer) will be true for the next T time units.

Ternplar allows the mixture of composite a,nd atomic activities inside an a.ctivity specification.

For example, the previous composite activity review(paper,reviewer) can bc rewritten as

activity review(paper ,reviewer)

T = reading-time(paper,reviewer)

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

reading(paper ,reviewer) for-time T

evaluate(paper ,reviewer)

end-activity

Since subactivities in an activity specification can also be composite activities, Templar sup-

ports the process of hierarchical decomposition of a complex activity into progressively more and

more simple subactivities.

Templar also allows multiple subactivities in the then-do clause of a rule. For in-

stance, the then-do clause in Example 2 has two subactivities review(paper,reviewer) and

send(paper , reviewer, chairperson). Alternatively, these two subactivities could be combined

into one composite activity, and the then-do clause would refer only to this single activity.

The combination of activity specifications and rules makes Templar a pomcrful specification

method. If Templar specifications had only rules then they coiild contain hundreds of rules, and

it would be difficult for the user (and often for the developer) to understand clearly how the

rules interact. On the other hand, if Templar specifications consisted only of activities, then it

could be difficult t o describe the control logic with only the if-then-else statements for certain

applications. With Templar specifications, the user has the flexibility of combining rules and

activities in such a way that there are much fewer rules then for the strictly rnlc-based methods,

and activity specifications tend to be small, simple and easy to understand, as the case study in

[Tuzg la] shows.

Temporal predicates. Templar predicates can change over time. For example, the predicate

submission(paper, au thor , s t a t u s) can have different truth values a t different moments of time

depending on the value of s t a t u s at those moments. Therefore, temporal operators, described in

Section 2, can be applied to these predicates in if and then clauses,

Example 5 The rule

Only the original papers are accepted for the conference, i.e. if a paper has been

published in some journal in the past, it cannot be submitted t o the conference

can be expressed in Temp1a.r as

if submission(paper , author , s t a t u s) and
sometimesin-the-past published(paper , author , j ournal)

then-do r e j e c t (paper, author)

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

where sometimesin-the-past is the temp0ra.l possibility operator defined in Sect ion 2 and r e j e c t

is the paper rejection activity.

Constraints. Templar also supports static [Nic82] and dynamic [CF84, LS87, ITS911 constraints

by specifying rules only with if and then clauses. The static constraint does not]lave any temporal

operators neither in the head nor in the body of a rule. For example, the following static constraint

A paper can have only one specific status a t a time

can be expressed in Templar as

if submission(paper , author, s t a t u s) and submission(paper , author , st a tus ')
then s t a t u s = s t a t u s '

Note that this constraint specifies that paper and author functionally detcrnline s t a t u s in

predicate submission.

A dynamic constraint is defined as an if-then rule where some predicates take temporal

operators. For example, the following dynamic constraint

If a paper is accepted to a conference, it cannot be publisl~ed elsewhere in tlic future.

can be expressed in Templar as

if submission(paper , author , s t a t u s) and s t a t u s = accepted and
publ ica t ion # this-conf erence

then alwaysin-the-future not published(paper, author ,publ icat ion)

where this-conf erence is a constant representing the conference being modeltd .

Other features. Furthermore, Templar snpports data modeling abstractions of classification, ag-

gregation, generalization, and association [TL82, HK871, parallel activities, external events, events

defined by explicit specifications of time, periodic events and temporal precedence operators before

and after. These features of Templar are described in [TuzSla].

In summary, Templar sapports a rich set of modeling primitives, including a powerful AECA

model of a rule, that are integrated into one coherent specification language.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

1) the paper is with the chairperson, a,nd the reviewer does not have the paper
2) the reviewer has the paper and the chairperson does not have the paper
3) the paper is with the chairperson, and the reviewer does not have the paper
4) the paper is accepted for the conference

Figure 3: Sequence of Conditions Consistent with the Specificat ion.

1) the paper is with the chairperson, and the reviewer does not have the paper
2) the paper is accepted for the conference
3) the reviewer has the paper and the chairperson does not have the paper
4) the paper is with the chairperson, and the reviewer does not have the paper

Figure 4: Sequence of Conditions Inconsistent with the Specificat ion.

The meaning of Templar specifications is defined in terms of sequences of predicates (condi-

tions) over time that are consistent with the specification, i.e. in terms of nzodels of specifications.

A sequence of predicates over time is consistent with a specification if it makes all the rules in the

specification to be true at all the moments of time. For example, in the IFIP rase, the sequence

of conditions ("fragments" of predicates) shown in Fig. 3 is consistent with the specification. On

the other hand, the sequence of conditions shown in Fig. 4 is not consistent with the specification

because condition (2) ("paper accepted for the publication") should follow conditions (3) and (4).

More detailed description of semantics of Templar specifications can be found i n [TuzSla].

Related Work There have been many IS specification methods proposed in the literature. Books

by Davis [DavSO], Yourdon [You89], Olle et a1 [OHM+88], Rumbaiigh et a1 [RBPl?91] describe some

of these methods. A variety of different specification methods exist because different applications,

or even different parts of the same application, can best be specified wit11 different nicthods [DavSO].

Since in this paper we are interested in the knowledge-based methods describing evolution of in-

formation systems in time, ure will compare our work to existing knowledge-1)ascd specification

methods dealing with rules and with time, such as RML [BGh485], Telos [hInJT<90], Tempora

[LMP+90], ERAE [DIIT,+86], and RDL [G H I I ~ ~] ~ .

RML, Telos and Tempora are powerful knowledge representation languages supporting a rich

set of modeling primitives. Among other features, RML [BGh185] and Telos [RIDJKSO] support

deductive rules, object-oriented specifications, time, and data modeling abstractions of aggregation,

classification and generalization. Tempora [T,hlP+90] supports time, complex ol)jccts, an extended

entity-relationship data model, and deductive rules. However, all the three la,ngi~agcs do not satisfy

3We do not make any claims about the completeness of this list.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

our design objective of being independent of specific design data models. They depend heavily on

specific design specification methods, such as object-oriented design, complex objects and entity-

relationship diagrams. Furthermore, the rule structure of RML, Telos and Tempora do not support

the powerful AECA rule model of Templar. The rules in Telos have the if-then structure and are

based on some variant of many-sorted first-order logic. The rule structure of Tempora is based on

ECA model [MNP+91] and on temporal logic and is closer to the rule structure of Templar than that

of Telos. However, Tempora mainly supports events and conditions, and does not treat activities

on the equal footing with events. For example, it does not allow activities in the antecedent part

of the rule (e.g. in the while clause).

ERAE is still another specification language supporting time, entities and relationships among

them, events, deductive reasoning system based on first-order logic, and some data mocleling ab-

stractions, such as association (is-in predicate) [DITL+86]. It can support a broader range of design

methods than Telos and Tempora because it is less dependent on specific moclrling constructs,

such as complex objects and ERT diagrams of Tempora and object-oriented features of Telos. For

example, association is modeled with predicate is-in, and is not built into the data model, as is

done in Telos. However, the rule structure of ERAE is based on the if-then model, as in Telos,

and does not support the AECA rule model and temporal logic operators in rules.

Finally, RDL [GHHSl] is a specification language for the requirements and design of time-

dependent systems based on the intuitionistic temporal logic. RDL has a rigorous and very general

specification language and, as a result of this, its specifications can be easily mapped into most

of the design specification languages and also can be formally verified. However, RDL does not

support many of the modeling primitives described in this p a p ~ r , such as an explicit support for

events and activities, hierarchical decomposition of activities, and the support for the parallel and

sequential composition of activities. As a result of this, RDL specifications may be difficult to

understand by non-computer oriented users.

In summary, none of the software specification methods considered in this section satisfies all

the three design goals sta,ted above. Furthermore, the rule structures of these metllods are not as

universal and powerful as the AECA rule model of Templar.

In this paper, we are interested in the problem of validation of Templar spccificatiolls that

were described in this section. However, Templar specifications support a ricli set of modeling

primitives, including such procedural features as activity specifications. Therefore, they are less

suited for reasoning about software specifications. To solve this problem, we have choselz the

following strategy. We will map Templar specifications into equivalent specifications expressed as

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

temporal logic programs (TL programs). Then we will validate these TL programs i11 terms of

the five criteria listed in the introduction. Since the mapping from Templar specifications always

produces an equivalent TLP specification, the validation results obtained for TT,P specifications

will be applicable to the original Templar specifications.

In the next section, we describe the mapping of Templar specifications into eqnivalent temporal

logic programs, and in Section 5, we describe how to reason about these programs.

4 Mapping Templar Specifications into Temporal Logic Programs

In Section 2, we briefly described temporal logic (TL) programs. In this section, we show how Tem-

plar specifications can be ma.pped into these programs. We will not describe the precise algorithm

that converts Templar specifications into TL programs but illustrate this process with an example.

Example 6 Consider the rule from Example 2:

when end.send(paper,chairperson,reviewer)
if ref erees(paper ,reviewer)
t h e n next located(paper ,reviewer)
then-do review(paper ,reviewer) ; send(paper ,reviewer, chairperson)

where activity review, as defined in Example 4, is

activity review(paper ,reviewer)

read(paper ,reviewer)

evaluate (paper ,reviewer)

end-activity

and activity send is

activity send(what,from,to)

T = transfer-time(what,from,to)

next not located(what ,from) 1 1 transf er(what ,to) for-time T

endac t iv i ty

The first step in the conversion process replaces all composite activities with atomic

activities. To show how this can be done, notice that the end of the compos-

ite activity send(paper , chairperson ,reviewer) coincides with the end of atomic activity

transfer (paper, reviewer) for-time T, i.e.

end. send(paper , chairper~on~reviewer) = end(transf e r (~ a ~ e r ,reviewer) for-time T)

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

Therefore, if we replace all the composite activities in our rule with the corresponding atomic

activities, we obtain the rule:

when end(transf er(paper ,reviewer) forfime
transfer-time(paper,chairperson,reviewer))

if referees(paper,reviewer)
then next located(paper , reviewer)
then-do read(paper ,reviewer) ; evaluate(paper ,reviewer) ;

(next not located(paper ,reviewer) 1 1 transf er(paper , chairperson)
for-time transf er-t ime (paper ,reviewer, chairperson))

We will refer t o this rule as the "main" rule subsequently.

In the second step, the rule is split into several rules so that each rule contains one atomic

activity from the then-do clause. In our example, the main rule is split into rules:

when end(transf er (paper ,reviewer) for-time
transfer-time(paper,chairperson,reviewer))

if referees(paper,reviewer)
then next located(paper ,reviewer)
then-do read(paper ,reviewer)

when end.read(paper,reviewer)
then-do evaluate (paper ,reviewer)

when end. evaluate (paper, reviewer)
then next not located(paper ,reviewer)

when end. evaluate(paper ,reviewer)
then-do transfer (paper, chairperson) for-time

transfer-time(paper,reviewer,chairperson))

Notice that these rules follow the sequence of operators in the then-do clause. For example,

if the activity read(paper,reviewer) is in the then-do clause of the first rule and tlze activity

evaluate(paper,reviewer) sequentially follows it in the main rule, then the sccond rule contains

the event end. read(paper ,reviewer) in the when clause and evaluate (paper, reviewer) in the

then-do clause. In case two activities occur in parallel, they have the same action in the when

clause (as in the case of the last two rules).

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

To summarize, after the second step, a rule has only atomic activities in its clauses and the

then-do clause contains only a single activity.

In the third step, we convert all the (atomic) activities and events t o temporal logic formulas.

To illustrate this, consider the first rule in the set of rules produced in step two:

when end(transf er(paper ,reviewer) for-time
transf er-t ime (paper, chairperson ,reviewer))

if ref erees(paper ,reviewer)
then next located(paper ,reviewer)
then-do read(paper ,reviewer)

The event end(transf er (paper ,reviewer)

for-time transf er-t ime (paper, chairperson ,reviewer)) can be expressed as the condition

previous transf er(paper ,reviewer) and not transf er(paper ,reviewer), which says that

the transfer process was true at the previous time moment and is completed now. Also, the

atomic activity read is replaced with the corresponding temporal expression (as defined in Exarn-

ple 4): reading(paper ,reviewer) for-time reading-time (paper ,reviewer). F~~rtlrermore, all

the clauses are mapped into the if and then clauses. Then and then-do clauscs are mapped into

the then, and the rest into the if clause. Therefore, the previous AECA rule bccomes:

if previous transf er(paper ,reviewer) and not transf er(paper ,reviewer) and
referees (paper ,reviewer)

then next located(paper ,reviewer) and
reading(paper,reviewer) for-time reading-time(paper,reviewer)

This completes the conversion process from Templar specifications to TL programs.

However, we want t o simplify the structure of TL programs even further. itre want to convert

TL programs with necessity, possibility and other temporal operators to equivalcrlt TL programs

with only previous (a) and sometimesin-the-future (0) temporal operators. In other words,

we want the rules to have the form

body --. (1) ~

body 4 (1) o p

where body has only previous (e) as a temporal operator, and the negation sign is optional.

The solution to this problem for some of the temporal operators was prescntcd in [I<I<Nf SO].

For example, the TLP rule p -+ can be replaced by two rules p -+ q and mq - q. Similarly, the

rulep -+ o q can be replaced with rules p --+ q , p -+ t = T,aqAt > O -+ q, andmqAt > O -+ t = t-1.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

Also, the rule a p A q --+ o r can be converted to a 2 p A a q --+ r . Notice that the conversion process

requires the use of function symbols, such as subtraction, in some of the rules.

Finally, the TL programs can be simplified even further as follows. Assumr we have a rule

a p A q --+ r. Then this rule can be converted to the following three rules a p --+ p', ell' A 7.1) -+ l p ' ,

and p' A q --+ r. Therefore, a TL program can be converted to an equivalent program with two

types of rules. The first type does not have any temporal operators in them, and the second type

of the rule (with temporal operators) is in one of the forms

aP -+ P'

aPf A 7.p -+ yp'

body -+ o p

where body does not contain any temporal operators. If a TL program is simplified to this form,

i.e. temporal operators in such a program can appear only in rules of the form (I) , then we say

that this program is in the cnnonicol form.

In this section, we presented a method that converts Templar specifications into temporal logic

programs in the canonical form. TL programs have a simpler form making them more suitable for

reasoning than Templar specifications. Therefore, we will reason about them and not about their

equivalent Templar specifications.

5 Validation of Templar Specifications

As was described in the introduction, Dubois and Nagelstein [Dl1871 present five problems occurring

in software specifications:

(I ambiguity: a specification admits multiple interpretations

(I non-minimality: the presence in the problem of an element that corresponds not to a feature

of the problem but featt~res of a possible solution (over-sprcification)

(I incompleteness: omission of relevant aspects of the system bcing specified (nil dcr-specification)

(I contradiction: a specification has two or more incompatible features

redundancy: repetition of informa,tion.

As was also described in the introduction, the validation process cannot be fully automated

because of the following reasons. First, some of these problems cannot be detected wit11 any formal

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

method because they are not formally defined. For example, completeness of a specification cannot

be formally defined because it is impossible to formalize the "relevant" aspects of the real-world

system the user has in mind. Second, certain problems, such as redundancy, cannot be fully

automated because they can be reduced to the decision problem of the first-order logic, which is

undecidable in the most general setting [Chu36].

Therefore, we propose the following partial solution to the validation prohlem. We formulate

a set of tractable conditions for some of the five problems listed above. These conditions serve as

L'alarms" for the user and are divided into two types. If the condition of the first type holds, then

the software specification definitely has a problem, and the user is notified about i t . Tf the condition

of the second type holds, then the software specification may have a problem. In tlris case, the

system only warns the user about the potential problem and shows the source of the problci~~. Then

the user has t o decide if he or she wants to change the specification or leave it nnrhairged.

We will examine each criterion in turn now.

5.1 Consistency

A Templar specification is consistent if it has a model, i.e. a sequence of predicates satisfying that

specification4. To determine if a Templar specification is consistent, we propose to convert it into

an equivalent TL program, as described in Section 4, and verify that the corresponding program is

consistent by showing that it has a model.

Existence of a model of a set of temporal logic formulas is a hard prohlcin. It is shown

in [Har85] that for the general case of arbitrary fist-order temporal logic formi~las it is a highly

undecidable problem (is Iii-complete). For certain restricted cases, the problem 1)ccomes decidable

but still intractable. For example, assume that we impose such strong restrictions as considering

only the static (snapshot) case when TL programs have no temporal operators a t a11 and disallowing

function symbols and the equality operator in the formulas. Then, as it follows from the Expalision

Theorem [DG79], checking if a (temporal) logic program has a model is a decidaltle prol~len~ and

is equivalent to the satisfiability problem, i.e. is NP-complete.

Since the verification of consistency of TL programs is an intractable problcm. we propose the

following partial solution. First, we want to identify the parts of a TL program tliat can produce

inconsistencies. Then we try to see if these sources of inconsistencies are "false alarms," i.e. if

they can never produce inconsistencies. If they can produce inconsistencies, then we alarm the user

about these sources and identify them in the original Templar specification. Filrtl~crmore, we will

4See the definition of a model of a Templar specification in Section 2).

19

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

give the user some "reasona,ble" suggestions on how to avoid these inconsistencies in certain cases.

Then it is the user responsibility to eliminate these potential inconsistencies.

We identify the following two sources of inconsistency in TL programs

Predicates in the heads of two rules can conflict, i.e. we can have a situation when one rule

has the form bodyl -. q and another rule bodyz -+ l q . These two rules can, potentially, have

a conflict and, therefore, a model may not exist.

e A rule can be a constraint, i.e. have a form body -. A < r e l o p > B, wlicre < re lop > is

a relational operator =, <, <, etc. A program may have no model because the constraint

A < rekop > B may be violated.

We will look at these conditions in turn now.

5.1.1 Conflicting Predicates

As was stated before, it is a computationally hard problem to determine if two rules bodyl -- q

and body2 -+ l q will always conflict at some time and, therefore, a TL program has no model.

Therefore, we propose the following methods that check for potentially conflicting coilditio~ls and

warn the user when these conditions occur.

In order to state these conditions, we first introduce some preliminary concepts. The depen-

dency graph of a TL program is a graph with program predicates as its nodes (predicates 11 and i p

form two different nodes, bat p and e p correspond to one node). There is an arc 1)etween nodes p

and q in the dependency graph if there is a rule in the program containing predicates p in its body

and q in its head, and these predicates do not have temporal operators, Depcnrlency graphs, as

defined in this paper, are very similar to dependency graphs defined in [Ull88].

Let bodyl -+ q and body2 -+ -.q be two conflicting rules in a TL program, whrre body,, for i = 1

and 2, has subformula 4; consisting of all the temporal predicates in body; (predicates preceded by

the temporal operator e) and all tlie relational operators. Then warn the user about a potential

conflict between these two rules if one of the following two conditions holds:

1. the dependency graph of the program has a cycle going through nodes q and i q ;

2. the formula A 42 is satisfiable.

Example 7 If a program has two rules - ~ p -+ p and p -p then the user is warncd bccsuse the

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

Figure 5: Dependency Graph from Example 7.

dependency graph for these two rules, as shown in Fig. 5 has a loop going through the nodes p and

' P .
Also, if a program has rules @p -+ q and .p -+ i q then the warning will be issued because the

formula a p A a p is satisfiable. However, if the program has rules a p -+ q and a l p -+ l q then the

warning will not be issued because the formula a p A a l p is not satisfiable.

Both conditions warn the user that it is possible to have a situation when q and l q are true

at the same moment of time, i.e. when the program has no model. However, conflicts can occur

for different reasons. Case 1 detects the situation when conflicts occur because of the "time-

independent" (static) recursion, whereas Case 2 detects possible direct conflicts between the rules.

Furthermore, if a TL program has two rules of the form bodyl -+ o q and body2 -+ l q or of

the form bodyl -+ q and bodya -+ o l q then always warn the user about a potential conflict. The

reason for this comes from the following consideration. If the rule bodyl -+ o q is replaced with

the rule aTbodyl -+ q for some time l" greater than any references to time in body2, then eT bodyl

and body2 are satisfiable (because the predicates refer to different moments of time). Therefore,

the warning to the user will always be issued for rules aTbodyl -+ q and bodyz - l q . Since rule

bodyl + o q implies rule aTbodyl for some T , then to avoid potential conflicts, the user has to be

issued a warning for the two original rules.

After conflicting rules in a TL program are detected and the warning to the user is issued, it

is important for the user to locate the source of the conffict in Templar rules. Since each TL rule is

obtained as a result of the transformation of one Templar rule, it is possible to identify conflicting

Templar rules as long as the record is kept about the correspondence between TL and Templar

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

Furthermore, the user can also be given a suggestion on how to eliminate the source of inconsis-

tency. If the inconsistency is of the type described in Case 1, then the cycle producing the recursion

can be identified and the user should check if he or she really needs that recursive definition. If

the inconsistency is of the type described in Case 2, e.g. the program has rules bodyl -+ q and

bodyz -+ l q , then the user can resolve the inconsistency by replacing these rules with -tqA bodyl -+ q

and q A bodyz --+ l q , since these new rules can never conflict. This is a reasonable choice for the

user because, most of the time, it is a good strategy to check if a predicate is true before making

it true.

5.1.2 Constraints

As was stated before, the problem whether or not a constraint is satisfied is an intractable problem

and we do not have any general "warning" techniques for that. This means that constraint spec-

ification in Templar can lead to inconsistent specifications, and the user should be aware of this

situation.

5.2 Ambiguity

A specification can have many different models in general. For example, in tlle case of an IFIP

conference, it does not matter how much time it takes a reviewer to review a paper or how much

time it takes to send a paper from a reviewer back to the chairperson. Depending on the timing, we

can get different sequences of events and different sequences of predicates over time, i.e. different

models. For example, the program committee can meet either before or after a referee returns

his or her evaluation report of a paper to the chairperson, depending on how much time it takes

himiher to review the paper.

However, existence of multiple interpretations of a specification does not assume that it is

necessariIy ambiguous because the user might have specified the problem in this way on purpose.

In fact, any further attempt to reduce the number of different interpretations may result in an

over-specification of the problem, which is one of the "sins" of a specifier [Mey85].

Nevertheless, there can be specifications that are ambiguous. For instance, consider the fol-

lowing part of the IFIP conference specification (stated informally):

if the chairperson receives an evaluation report from a reviewer he/she records the

results of the review

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

i f a l l t h e evaluat ion repor ts of a paper a re ava i lab le a t t h e program committee

meeting then t h e committee makes an acceptance o r a r e j ec t ion decis ion.

This part of the specification is ambiguous in the following sense. If the chairperson received

an evaluation report before the program committee meeting then nothing in the specification says

that this report is available at the time of the meeting. This means that both interpretations of the

specification are valid: the one that assumes that the report is available and the one that assumes

it is not available.

To resolve this type of ambiguity the user can provide a metarule:

if condition P holds at time t and at the next moment of time t + 1 the conrEition -tB

does not hold then condition P holds at time t + 1

This type of rule is known as inflationary condition in logic programming [AV88, KP88]. If we

assume inflationary conditions for Templar specifications and for TL programs then the ambiguity

of the type described above is resolved: we conclude that the report will be available at the time of

the program committee meeting. This observation is true in general: once we select the inflationary

conditions, Templar specifications become unambiguous; the meaning of a Templar specification is

associated with all the models satisfying the inflationary conditions.

However, the user may still not be satisfied with the set of models for his/her specification,

i.e. he or she may still feel that some of the models are wrong. This means that the user has to

provide more precise spe~ifica~tions to be able to reduce the set of models. Therefore, the original

specification is not ambiguous but incomplete. We will address the problem of incompleteness of

Templar specifications in the next section.

5.3 Iiicoinpleteness

According to [Mey85, DH871, a specification is incomplete if it omits relevant facts about the real-

world system. Since only the user knows what facts are relevant and what are irrelevant, it is

impossible for the system developer to determine formally if a Templar specification captures all

the relevant facts the user has in mind. Therefore, Templar specifications cannot be formally proven

to be complete in general.

However, in certain cases, it may be possible to determine if a specification is certainly incom-

plete even without consulting with the user. In this paper, we consider only one such case when

a Templar specification has a,n infinite model, i.e. when there is a predicate and an instance of

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

time such that the predicate has an infinite instance at that time5. If a specification has an infinite

model then it is incorrect and incomplete because some additional facts that make the model finite

are missing in it. Therefore, we assume that

complete specifications have only finite models

Example 8

Consider the following rule:

When a chairperson receives a paper submission, he/she sends it to a reviewer:

when receives (chairperson,paper , author)
then-do send(paper , chairperson ,reviewer)

This specification rule is incorrect because it says that the chairperson sends the paper to all

the reviewers (that exist in the universe of discourse), i.e. to potentidly infinitely many reviewers.

Clearly, this specification is incomplete because it does not specify to which reviewers the paper

should be sent.

One way to correct this specification is to assign some reviewers to review the pa.per, thus

restricting the number of reviewers to a finite number. For example a new rule can have the form:

when receives(chairperson,paper,author)
if assignedreview(reviewer,paper)
then-do send(paper , chairperson ,reviewer)

We will state the conditions that guarantee finite models for TL programs, and therefore for

Ternplar specifications. However, we introduce some preliminary concepts first.

A rule of a TL program is snfe [U1188] if all of the variables appearing positively in the head of

the rule also appear positively in its body. A Templar rule is safe if all the TL rules obtained from

the Templar rule with the conversion algorithm described in Section 4 are safe. For instance, the

first (incorrect) rule from Example 8 is not safe because the variable reviewer does not appear in

the when clause of that rule. However, the corrected rule in that example is safe.

Next, we consider static and dynamic recursion in TL programs. Intuitively, we say that a TL

program is statically recursive if one of its predicates is defined recursively and the "recursive loop7'

'Finite and infinite models were defined in Sect,ion 2.

24

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

does not contain temporal operators (a and o in our case). To define static recursion formally,

we use the dependency graph of a program [U1188], as defined in Section 5.1. ?Ire say that a TL

program is statically recursive if the dependency graph of that program has a cycle. Furthermore,

we say that a TL program is statically functionally recursive if it is statically recursive, and there

is a cycle in the dependency graph and one of the predicates in the cycle has a function symbol as

an argument in one of the program rules. For example, consider the following program consisting

of two rules

--+ p(x)

and a fact q(0). Its dependency graph has two nodes p and q and only one arc going from p to

p. Therefore, it has a cycle of length one, and no predicate in the cycle has a temporal operator.

Furthermore, the predicate p has a function symbol + in the rule. Therefore, the program is

statically functionally recursive.

A TL program is dynamically reczrrsive if it has recursive definitions of predicates involving

temporal operators. For example, the program consisting of a single rule ep(x) -t p(x) is dynami-

cally (but not statically) recursive.

Proposition. A safe statically functionally non-recursive TL program can haz~e onlly finite mod-

els.

Sketch of Proof: If such a model exists, then take the first moment of time when one of the

predicates has an infinite instance. Since rules are safe, this cannot happen as a result of transition

from the previous to the present time. Therefore, the instances of predicates "passed" from the

previous stage are finite. Since TL programs are statically functionally non-recnrsive, we cannot

get infinite models out of finite instances of predicates "passed" by previous stages. Tlris leads to

contradiction.

It follows from this proposition that recursion does not always lead to infinite moclels. For

example, safe statically recursive programs without function symbols produce only finite models (a

well-known result for Datalog programs and some of its extensions [Ul188]). Also, dynamic recursion

does not produce infinite models by itself (unless it is accompanied by static functional recursion),

as the example ~ p (x) -4 p(x) shows.

It is easy to check if a TL program is safe and statically functionally non-recursive. Tlre former

requires a simple syntactic check. The latter is reduced to finding cycles in the dependency graph

of a program and checking that predicates along these cycles do not take any filnctiolr symbols.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

Therefore, this proposition provides a tractable condition for checking if TL programs have finite

models.

5.4 Redundancy

In order t o study redundancy of Templar specifications, we propose to reduce them to TL programs

using the mapping described in Section 4. A TL program is redundant if one of its rules is logically

implied by the set of other rules.

However, the problem of logical implication is undecidable for a general class of well-formed

formulas in first-order logic [Chu36]. Nevertheless, it easily follows from the techniques developed in

[DG79] that this problem is decidable for TL programs containing no temporal operators, function

symbols and the equality operator.

Nevertheless, this problem is still intractable even in this very simple case. It follows from the

same arguments as presented in Section 5.1 that this problem is still NP-hard. This Incans that

there is no tractable procediire that determines if a given Templar specification is redundant.

5.5 Over-Specification

As was already mentioned in the introduction, Templar was designed so that reql~irernents specifi-

cations stated in the language should be easy to map into a broad range of existing software design

methods. This means that requirements specifications written in Templar are independent of these

design methods. Therefore, the language does not encourage the system developer to ovcr-specify

the real-world system by introducing design elements in the requirements stage. On the other

hand, the language does not discourage such practices because the language supports hierarchical

decomposition of activities into subactivities.

However, the boundary between the stages of requirements specifications and design is not

clearly and formally defined. Therefore, unless such boundary is well-defined, it is impossible t o

prove formally that a Templar specification is not over-specified.

6 Summary

In this paper, we studied the problem of analysis and validation of requirements specifications

written in language Templar. We were interested in analyzing software specifications in terms of

completeness, unambiguity, non-contradiction, non-redundancy, and mini~nality [DfI87].

Since Templar has a rich set of modeling primitives, some of which are procedural in nature,

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

it is difficult t o reason about Templar specifications. To solve this problem, urc mapped Templar

specifications into equivalent temporal logic programs and then analyzed these programs in terms

of the five properties listed above.

We encountered two problems with formal validations of Templar specifications in terms of

the five criteria listed above. First, some of these properties, such as completeness and minimality

cannot be formally proven because they are not formally defined. Second, other properties, such as

contradictions and redundancy, can be undecidable in general. Even for special cases, when these

properties become decidable, the solutions are still impractical because they are still intractable

(NP-hard).

To solve these two problems, we proposed the following solution. We stated trclctable conditions

for some of the properties that served as "alarms:" if these conditions do not hold then the property

either does not or may not hold. For example, if a Templar specification admits an infinite model

then the specification is incomplete. Then Templar specifications can be partially validated by

checking these conditions.

We believe that some of these conditions are good working partial solutions for the original

undecidable or intractable problems. For example, detecting if the dependency grapli of a TL

program has a cycle going through nodes of the type q and l q and detecting satisfiability of

certain simple formulas described in Section 5.1 is a good practical approximation to the intractable

problem of detecting conflicts among predicates in Templar specifications.

On the other hand, some of the other partial solutions constitute only "mild" checks if a certain

property holds. For example, checking if a specification accepts only finite models is a "mild" check

for completeness. This observation raises an issue if there are "stronger" checks for some of these

conditions that are still tractable and issues of theoretical trade-offs between the strengths of these

checks and tractability. These issues constitute a topic of future research.

References

[AM891 M. Abadi and Z. Manna. Temporal logic programming. Journal of Synzbolic Cornpu-
tation, 8:277-295, 1989.

[AV88] S. Abiteboul and V. Vianu. Procedural and declarative database update languages. In
Proceedings of PODS Symposium, pages 240-250, 1988.

[BFG+S9] H. Barringer, 14. Fisher, D. Gabbay, G. Gough, and R. Owens. METATEM: A frame-
work for programming in temporal logic. In Stepwise Refinement of Distributed Systems,
pages 94-129. Springer-Verlag, 1989. LNCS 430.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

[BGM85] A. Borgida, S. Greenspan, and J. Mylopoulos. Knowledge representation as the basis
for requirements specifications. IEEE Computer, pages 82 - 91, April 1985.

M. A. Casanova and A. L. Furtado. On the description of database transition constraints
using temporal languages. In Advances in Database Theory, pages 211-236. Plenum
Press, 1984. vol. 2.

A. Church. A note on the entscheidungsproblem. Journal of Symbolic Logic, 1:40-41,
1936. correction: JSL, 1, 101-102.

A. M. Davis. Softu>are Requirements: Analysis and Specification. Prent,ice It-Iall, 1990.

B. Dreben and 'CT1.D. Goldfarb. The Decision Problem: Solvable Classes of Q~lGtntifiCa-
tional Formulas. Addison-FTTesley, 1979.

E. Dubois and J . Hagelstein. Reasoning on formal requirements: A lift control problem.
In Proceedings of the 4th Internat ional TVorkshop on Software Specification and Design,
pages 161-167, hfonterey, CA, 1987.

E. Dubois, J . Jlagelstein, E. T,ahou, F. Ponsaert, and A. Rifaut. A knowleclge representa-
tion language for requirements engineering. Proceedings of the IEEE, 711 (10): 143 1-1444,
1986.

C. de Maindreville and E. Simon. Modelling non deterministic queries alzcl updates
in deductive databases. In International Conference on Very Large Databases, pages
395-406,1988.

D. Gabbay. The declarative past and imperative future: Executable temporal logic for
interactive systems. In B. Banieqbal, H. Barringer, and A. Pnueli, editors, Proceedings
of Colloquium on Temporal Logic in Specification, pages 402-450. Springer-Verlag, 1989.
LNCS 398.

D. Gabbay, I. IIodkinson, and A. Hunter. Using the temporal logic RDL for design
specifications. In Concurrency: Theory, Language, and Architecture, pages 64 - 78.
Springer-Verlag, 1991. LNCS 491.

D. Harel. Recurring dominoes: Making the highly undecidable highly understandable.
Annals of Discrete Afothematics, 24:51-71, 1985.

R. Hull and R. King. Semantic database modeling: Survey, applications and research
issues. AChf Computing Surveys, 19(3):201-260,1987.

K. Hulsmann and G. Saake. Theoretical foundations of handling largc substitution sets
in temporal integrity monitoring. Acta Informatica, 28(4), 1991.

D. Kato, T. I(ikuchi, R. Nakajima, .J. Sawada, and 1%. Tsniki. Modal logic programming.
In VDM and Z - Formal Methods in Software Development. Springer-Verlag, 1990.
LNCS 428.

P. G. I<olaitis and C. I-I. Papadimitriou. Why not negation by fixpoint? In Proceedings
of PODS Symposium, pages 231-239, 1988.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

[Kro87] F. Kroger. Temporal Logic of Programs. Springer-Vcrlag, 1987. EATCS Monographs
on Theoretical Computer Science.

[Llo87] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, second edition, 1987.

[LMPf 901 P. Loucopoulos, P. McBrien, U. Persson, F. Schumacker, and P. Vasey. TEhilPORA -
integrating database technology, rule based systems and temporal reasoning for effective
software. In Esprit'90 Conference Proceedings. Kluwer Academic Pul~lishers, 1990.

[LS87] U. W. Lipeck and G. Saake. Monitoring dynamic integrity constraints based on tem-
poral logic, Information Systems, 12(3):255-269,1987.

[MBJI<9O] J. Mylopoulos, A. Rorgida, hil. Jarke, and M. Koubarakis. Telos: Representing knowl-
edge about information systems. A C A Transactions on Information Systen~s, S(4):325
- 362, 1990.

[&ID897 D. McCarthy and U. Dayal. The architecture of an active, object-oriented database
system. In Proceedings of ACM SIGMOD Conference, 1989.

[Mey85] B. Meyer. On formalism in specification. IEEE Softulnre, pages 6-26, J a n ~ ~ a r y 1985.

[MNP+91] P. McBrien, M. Niezette, D. Pantazis, A. H. Seltveit, U. Sundin, l3. Tlzeodoulidis,
G. Tziallas, and R. Wohed. A rule language t o capture and model business policy
specifications. Tn Proceedings of the Third Conference on Advanced Infornzution ,Systems
Engineering, Trondheim, Norway, May 1991.

[Mos86] B. Moszkowski. Executing Temporal Logic Programs. Cambridge Uiziversity Press,
Cambridge, England, 1986.

[NicS2] J.-M. Nicolas. Logic for irnpoving integrity checking in relational data bases. Acta
Informatica, 18:227-253, 1982.

[OHM+88] T. W. Olle, J . Ilagelstein, I. G. RilacDonald, C. Rolland, II. G. Sol, F. J . M. Van Ass-
che, and A. A. Verrijn-Stuart. Information Systems Afcthodologies: A Framework for
Understanding. Addison-\lTesley, 1988.

[0U82] T. W. Olle. Comparative review of information systems design methodologies, stage 1:
Taking stock. In T. \TI. Olle, TI. G, Sol, and A. A. Verrijn-Stuart, editors, I~zforrnation
Systems Design Methodologies: A Comparative Revieul, pages 1 - 14. Norlh-EIolland,
1982.

[RBPEgl] J. Rumbaugh, M. Rlaha, Mi. Premerlalzi, and F. Eddy. Object-Orientccl ilJocleling and
Design. Prentice-Hall, 1991.

[RU71] N. Rescher and A. Urquhart . Temporal Logic. Springer-Verlag, 1971.

[SJGPSO] M. Stonebraker, A. .Thingran, J. Goh, and S. Potamianos. On rules, procedures, cashing
and views in database systems. In Proceedings of ACAP SIGMOD Conference, pages
281 - 290, 1990.

[TL82] D. C. Tsichritzis and F. H. Lochovsky. Data AIodeb. Prentice-Hall, 1982.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

[Tuzgla] A. Tuzhilin. Templar: A knowledge representation language for requirements specifi-
cations. Working Paper IS-91-27, Stern School of Business, NYU, 1991.

[Tuzglb] A. Tuzhilin. Temporal logic as a simulation language. In Proceedings of fhe International
Conference on Artificial Intelligence and Simulation, New Orleans, Louisiana, April
1991.

[TWL9O] C. Theodoulidis, B. Wangler, and P. Loucopoulos. Requirements specification in TEM-
PORA. In Proceedings of the Second Conference on Advanced Information Systems
Engineering, Lecture Notes in Computer Science 436, pages 264 - 282, 1990.

[Ull88] J. Ullman. Principles of Database and Knowledge-Rase Systems, volttme 1. Computer
Science Press, 1988.

[WF90] J. Widom and S. J. Finkelstein. Set-oriented production rules in relational database
systems. In Proceedings of ACAl SIGMOD Conference, pages 259 - 270, 1990.

[You891 E. Yourdon. Modern Structured Analysis. Yourdon Press, 1989.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-28

