
COMPARING THE VALIDITY OF 
ALTERNATIVE BELIEF LANGUAGES: 

AN EXPERIMENTAL APPROACH 

Shimon Schocken 
Department of Information Systems 

Leonard N. Stem School of Business 
New York University 

44 West 4th Street, Room 9-80 
New York, NY 10012-1 126 

(212) 998-0841 
E-mail: sschocke@stern.nyu.edu 

Revised August 199 1 

Replaces #IS-88-94 

work in^ Paper Series 
Stem #IS-9 1-3 1 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-3 1 



The problem of modeling uncertainty and inexact reasoning in 

rule-based expert systems is challenging on nonnative as well on 

cognitive grounds. First, the modular structure of the rule- 

based architecture does not lend itself to standard Bayesian 

inference techniques. Second, there is no consensus on how to 

model human (expert) judgement under uncertainty. .These factors 

have led to a proliferation of quasi-probabilistic belief calculi 

which are widely-used in practice. This paper investigates the 

descriptive and external validity of three well-known "belief 

languages:" the Bayesian, ad-hoc Bayesian, and the certainty 

factors languages. These models are implemented in many 

commercial expert system shells, and their validity is clearly an 

important issue for users and designers of expert systems. The 

methodology consists of a controlled, within-subject experiment 

designed to measure the relative performance of alternative 

belief languages. The experiment pits the judgement of human 

experts with the recommendations generated by their simulated 

expert systems, each using a different belief language. Special 

emphasis is given to the general issues of validating belief 

languages and expert systems at large. 
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1, Rule-Based Belief Languages 

Consider the following familiar problem: a faculty recruiting 

committee attempts to estimate the academic potential of a 

candidate for a junior faculty position, based on the resume and . 

recommendation letters submitted by the candidate. We will 

assume henceforth that the candidate's profile can be credibly 

encoded through a set of attributes, e-g. "has an MBA degreeIt1 

"is a foreign citizen," etc, Formally speaking, the recruiter's. 

task can be described as one of classifying a set of instantiated 

attributes (representing a particular candidate) into the two 

categories academic successw or '#academic failure, This 

inexact classification can be made continuous by assigning 

degrees of likelihood to the two alternative hypotheses. Under 

these assumptions, the recruiter's task can be formalized using 

such models as utility theory, bootstrapping, or the Analytic 

Hierarchy Process. In this paper, though, we wish to cast the 

faculty selection problem (which is just an example) in what is 

termed in artificial intelligence a "rule-based" framework, The 

resulting model is rather subjective; it is based on our own set 

of values and experience regarding the selection and promotion of 

prospective faculty members. 

We begin by describing our recruiting rationale (rule-base) and 

the candidate's profile (fact-base) in terms of hypotheses, 

pieces of evidence, and rules. Our ultimate goal is to evaluate 

the likelihood of an "academic successff hypothesis (H). We break 
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down this overall hypothesis into the three sub-hypotheses 

nresearch ability (R)," "teaching ability (T)," and "service 

potential (S).I1 These sub-hypotheses, in turn, can be linked to 

the set of attributes drawn from the candidatefs information. 

For example, if we think that "MBA degreeN (El) is related to 

Itteaching abilityt1 (T), we connect these two propositions by the 

rule <if El then T with degree of belief Bel(T,El)>. The 

resulting rule-base can be pictorially presented as an inference 

network, like the one depicted in Picture 1. 

Picture 1 

The meaning of the belief function Bel(.l.) depends on our 

choice of a belief language. According to Shafer and Tversky 

(1985), a belief language consists of syntax, calculus, and 

semantics. The syntax corresponds to the set of degrees of 

belief associated with various rules (arcs) and propositions 

(nodes). Typically, a set of atomic degrees of belief is 
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elicited from a domain expert (e.g. an experienced recruiter), 

while posterior beliefs in hypotheses are computed by a set of 

operators collectively known as a belief calculus. When a belief 

language is used in the context of an expert system, the computed 

posterior beliefs influence, if not determine, the system's 

judgement. Therefore, the semantics of the belief language can 

be viewed as a measure of the system's validity. Descriptive 

validity concerns the proximity of the system's recommendations 

to actual human judgement. External validity concerns the 

consistency of the system's judgments with the actual state of 

the world. More about that, later. 

The validity of alternative belief languages is an interesting 

question on theoretical as well as on practical grounds. Belief 

languages are typically built into expert system shells, the 

canned programs used to develop applied expert systems. Thus, 

the credibility of these languages sheds light on the integrity 

of expert systems at large. This paper investigates the 

descriptive and external validity of three well-known belief 

languages: the Bayesian, ad-hoc Bayesian, and the certainty 

factors languages. These languages are widely-used in practice, 

and versions of them are employed in most commercial expert 

systems. We now turn to present a brief review of the three 

languages, without getting into unnecessary technical clutter. 

Detailed descriptions of these models can be found elsewhere, and 

the reader will be directed to these references as we go along. 
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The normative Bavesian lancruase gives an inference network like 

the one depicted in Figure 1 a probabilistic interpretation. The 

network's nodes are viewed as a set of random variables which are 

causally interrelated. In a medical diagnosis example, the 

hypothesis H (a disease) might be viewed as the cause of the 

syndromes TI R, and S. These syndromes, in turn, may manifest 

themselves through the pieces of evidence (symptoms) (Ei). The 

strength of these causal associations may be measured through 

conditional probabilities or likelihoos ratios. For example, the 

degree of belief Bel(H,R) may be captured through P(R~H) or 

P(~lH)/P(Rlnot H), P being a probability. Going back to the 

faculty selection problem, suppose a particular candidate can be 

encoded through the instantiated attributes set E=<El,. .. ,En>. 
Given this tenuinology, evaluating the academic potential of the 

candidate E amounts to computing the posterior belief in the 

hypothesis H in light of E, P(H(E). Unfortunately, this 

computation is exponential in the number of nodes in the network, 

and , in fact, is NP-hard (Cooper, 1987) . 

If, however, the underlying joint-distribution function obeys a 

set of conditional independence assumptions, there exist 

efficient Bayesian algorithms that compute P ( H ~ E )  in time linear 

to the size of the network (e.g. Pearl, 1986). These algorithms 

hinge on the topology of the network, which, in turn, dictates 

the set of conditional independence assumptions which P is 
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assumed to possess. If these assumptions-don't hold, one can 

sometimes restructure the network in order to enforce them 

(Charniak, 1983) . 

To sum up, given that the rule-base's structure is consistent 

with a set of simplifying assumptions on PI there exist Bayesian 

belief-update algorithms which do not violate the axioms of 

probability theory. In contrast, the majority of the languages 

employed by so-called "Bayesian" expert systems like PROSPECTOR 

or AL/X are quasi-probabilistic. Like the normative case, the 

syntax of these languages consists of a set of conditional 

probabilities or likelihood-ratios, elicited from a domain 

expert. At the same time, the calculus of the Ad-Hoe Bayesian 

(AHBI lansuase is basically a heuristic version of Bayes rule, 

designed to wadjust" the computation of probabilities to the 

deductive nature of rule-based inference. This is done by 

introducing "paralleln and Hsequentialw combination functions 

which prune the inference net recursively until a set of 

posterior beliefs is computed (Duda et al, 1977). 

To illustrate, consider the application of the AHB calculus to 

the inference net depicted in Picture 1. The process begins by 

applying the parallel combination function (which is basically 

Bayes rule under the assumption of conditional independence) 

three times to compute the posterior beliefs in the sub- 

hypotheses wresearch," "teachingIW and wservice.w These 
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posterior beliefs, in turn, serve to "attenuatew the original 

degrees of belief rendered by the three sub-hypotheses to the 

"academic successm hypothesis (H). This attenuation is carried 

out by the sequential combination function. Finally, the 

attenuated degrees of belief are combined by the parallel 

combination function, yielding the overall posterior belief in 

the root hypothesis, H. 

This ad-hoc calculus is quite similar to the one employed by the 

Certaintv Factors (CF) lancruaqe. This language was first 

implemented in the MYCIN expert system (Shortliffe., 1976) and was 

subsequently incorporated in the EMYCIN and M1 (van Melle, 1984) 

expert system shells. In the CF terminology, the degree of 

belief associated with the diagnostic rule <if E then H> is the 

certainty factor CF(H~E). CF(H[E), which is elicited from a 

domain expert, measures the increased belief (or disbelief) in H 

in light of the piece of evidence E. The CF function, though, is 

not a probability. It varies from -1 to 1, corresponding to "E 

confirms not H with certaintygt and I1E confirms H with certaintytl* 

respectively. If E is irrelevant to H, the certainty factor 

CF(H~E) is set to 0. In sum, CF(H]E) measures the strength of 

the Logical entailment E->HI in the spirit of Carnapts (1954) 

confirmation function and inductive logic. Atomic CFgs are 

elicited from domain experts. If a single hypothesis is backed 

by several rules, its posterior CF is computed by the CF 

parallel combination function. If an hypothesis H is backed by 
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a reasoning chain, say, E->S->H, its posterior belief is computed 

by the CF sequential combination function. These functions are 

described in detail in (Buchanan and Shortliffe, 1984). 

The mathematical properties (and limitations) of the AHB and the 

CF languages are now well understood, and the reader is referred 

to Adams (1984), Grosof (1986), Heckerman (1986), Horvitz et a1 

(1986), and Schocken and Xleindorfer (1987) for detailed 

analyses. What emerges from this research is that the AHB and 

the CF languages are essentially special cases of the Bayesian 

language, involving implicit assumptions of conditional 

independence. Moreover, these language are mathematically 

isomorphic to each other. At the same time, this normative 

proximity does not necessarily guarantee compatibility on other, 

ex-mathematical grounds. In fact, the Bayesian, AHB, and CF 

languages involve different cognitive views of inference under 

uncertainty, different elicitation procedures, and, perhaps, 

different or incompatible posterior beliefs. To emphasize this 

point, suppose we replace the AHB language employed by a rule- 

based medical diagnosis system with a CF language. If all other 

things are held equal, including the rule-base and the patient, 

it is still possible that the system will switch its prognosis 

from one disease to another. Clearly, this potential blunder 

requires serious investigation: it implies that at least one of 

the languages under consideration must be invalid. 
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The descriptive and external validity of a belief language can be 

tested only in a controlled experiment involving a realistic 

inference problem and human experts. The posterior beliefs 

assigned by the language to various hypotheses of interest can be 

then compared to either (a) a set of likelihoods assigned by a 

human expert, or, (b) a set of probabilities generated by a 

monte-carlo simulation. Such "within-languagew experiments were 

carried out by Yu et .a1 (1984) and Yadrick et a1 (1988), 

respectively. Alternatively, one can apply several belief 

languages to the same inference problem, comparing their 

resulting recommendations to each other. Such wacross-languages~ 

experiments were undertaken by Mitchell (1986), Wise (1988), and 

Kopsco et a1 (1988). 

This paper belongs to the latter category oS comparative 

studies. It involves the application of the Bayesian, AHB, and 

CF languages to the same inference task, viz, the faculty 

selection problem. The structure of the remainder of the paper 

is as follows: Section 2 consists of an example of a simple 

inference problem designed to illustrate our approach to 

measuring the descriptive and external validity of competing 

belief languages. This discussion sets the stage for the 

experimental' design, described in Section 3. Our research 

hypotheses and results are given in Section 4. A discussion and 

conclusion sections highlight the key findings. 
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2 ,  Pitting Human and Machine Judgement 

Let El and E2 be two independent pieces of evidence supporting a 

prospective hypothesis, H. Let P be the joint distribution 

function defined over the space {ElIE2,H), and consider the 

following likelihood-ratio notation: 

L(H) = P(H)/P(H) (fl hereafter stands for "not Hw) 

R(E~(H) = P(E~~H)/P(E~/H) 

L(H~E~,E~) = P(HIE~,E~)/P(~IE~,E~) 

In the likelihood-ratio paradigm, L(H) is the prior belief in H, 

and L(H/E~,E~) is the posterior belief in H in light of the 

evidence {El,E2). R(E~~H) is the degree of belief in the 

ttsymptomw Ei occurring when H is known to be true. 'Such degrees 

of belief can be obtained from past records, textbook 

information, and expert opinions. The question of belief-update, 

simply put, is this: given L(H), a certain body of evidence 

{El,E2), and a set of degrees of belief {R(E~IH),R(E~~H)), how 

does one go about computing the posterior belief L(HIE~,E~)? 

Under the assumption that El and E2 are ratio-independent with 

respect to H (Grosof, 1986), the normative posterior belief, 

denoted %, may be derived from Bayes rule, as follows: 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-3 1 



10 

If the R(E~~H) are elicited from human experts, which is normally 

the case, we must replace them with their estimates, R'(E~~H). 

Moreover, it is well known by now that human judgement under 

uncertainty does not confonn to (1). When left to their own 

devices, people's judgement under uncertainty is prone to a 

number of systematic biases, e.g. representativeness (Tversky and 

Xahnemna, 1974). For example, if the symptom El is very 

representative of H, most humans will unduly overweight its 

diagnostic impact on the likelihood of H. This judgmental bias 

might be represented in the following descriptive model: 

The representativeness heuristic is modeled in (2) through the 

parameters { o( , (3 , 6). Any assignment of values other than 

d = (3 = P=l consists of a violation of Bayes rule. 

Interestingly, it can be shown that parameterized versions of (2) 

are isomorphic to many non-Bayesian belief languages, e-g. the 

certainty factors and the contrast-inertia languages (Einhorn and 

Hogarth, 1987) . 

One obvious way to debias human judgement is to design a 

"Bayesian machinew like (1) whose inputs consist of elicited 

degrees of belief. This prescri~tive approach can be modeled as 

follows: 
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in order to investigate the comparative validity of (I), ( 2 ) ,  

and ( 3 ) ,  we must assume that the three models are based on the 

sane human expert working on a fixed inference problem. This is 

emphasized in Picture 2. The three triangles T, D, and S 

correspond to the belief calculi (I), (2), and ( 3 ) ,  respectively. 

Each of these models takes as input the body of evidence 

E={El,E2) and goes on to compute the posterior belief in the 

hypothesis H in light of E. The notation Ri is an abbreviation 

of R(E~~H). The T triangle represents the normative belief- 

update model (1) which generates the true posterior belief, %. 

G is an elicitation operator replacing true degrees of belief, 

Rit with their human-provided estimates, Ri'. The D triangle 

represents the expert's own, abstract, decision process (model 

(2)): when presented with the body of evidence, E, the expert 

sets his posterior belief in H to LD, which may or may not 

coincide with the true posterior belief, h. The S triangle 

represents model (3) , i. e. a Bayesian "inference enginet1 
operating on human inputs. 
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Picture 2 

The preceding discussion and Picture 2 give rise to the 

following definitions of three relevant performance measures: 

ILD - ~ p )  : expert's external validity 

ILS - : system's external validity 

ILS - L ~ I  : system's descriptive validity 

The distinction between expert's and system's external validity 

was illustrated dramatically in the MXCIN experiments. In order 

to test the plausibility of MYCIN's therapeutic advice, the 

program was fed with diagnostic information regarding ten 
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patients with infectious meningitis (Yu et al, 1984). MYCIN'S 

recommended therapy (analog of LS) was then evaluated by a panel 

of leading medical experts whose opinions were taken to 

represent the truth (analog of +) . The panel judged MYCIN to be 

correct 75% of the time. Viewed in isolation, this measure of 

systemqs external validity appeared to be rather discouraging. 

However, these same cases were then presented to a group of eight 

Stanford physicians. Surprisingly, the recommended therapy of 

the human experts (analog of LD) received an external validity 

rating which was uniformally lower than 75% in view of the same 

panel of experts who evaluated MYCIN. 

In general, the external validity of an expert system might 

exceed that of its underlying expert. Indeed, the management 

science literature is rife with examples in which computer-based 

models, e.g. linear models, have been known to systematically 

outperform human experts (Dawes and Corrigan, 1974). 

Incidentally, these mechanical variance-minimizing models have no 

descriptive appeal whatsoever. This also gives rise to the 

argument that, unlike other efforts in artificial intelligence, 

descriptive validity is not necessarily a good measure of expert 

system performance: "Evidence about human reasoning including 

introspection may give us excellent ideas for devising new and 

better systems, but the criteria for judging their usefulness 

should be the quality of their performance, rather than how well 

they simulate human thought processes (Henrion, 1986). 
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Finally, note that the expert's external validity is an intrinsic 

property of the expert, At the same time, we expect that the 

external and descriptive validity of an expert system will vary 

with our choice of a belief language. In Picture 2, there is 

only one such prescriptive language, represented by the S 

triangle. More such languages may be considered, with the 

provision that all languages draw on the same expert who is 

working on a fixed inference problem. These different languages 

are likely to yield different posterior beliefs. By comparing 

these beliefs to LT and LD (which are fixed), we can make 

statements about the relative validity of the underlying 

languages. Ideally, these statements should withstand the test 

of statistical significance. This is the crux of our experiment. 

3, Experimental Design 

The experimental task involved the faculty selection problem 

discussed in the beginning of the paper. An opening of a tenure- 

track faculty position in a major university typically attracts 

dozens of candidates. Each candidate submits a resume and 

recommendation letters, which are then scrutinized by a 

recruiting committee. The committee has to decide which 

candidates should be invited to on-site interviews. This task is 

normally carried out through some sort of a "phasedf1 strategy 

consisting of screening and ranking (Bettman, 1979). First, 

inferior candidates are eliminated sequentially from 
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consideration. The remaining candidates are then compared to 

each other in a more holistic sense, For example, the first 

phase might employ an elimination by aspects strategy, in which a 

criterion is chosen, e.g, "research interests," and all the 

candidates who do not measure up are rejected. This process is 

repeated with additional criteria, until a smaller but more 

focused pool of candidates remains for further consideration. 

The process terminates when candidates can no longer be evaluated 

on the basis of a single criterion. At that stage, the decision 

maker resorts to a compensatory, holistic strategy which 

. considers several attributes simultaneously. This. latter stage 

is the general context in which our experiment took place. 

The subjects in the experiment were 12 senior Ph.D.-students and 

3 professors at a decision sciences department. Each subject 

was randomly assigned to one of two groups, Group I and Group 11. 

The experiment consisted of three stages, as follows: 

Human Rankinss: The subject was given a set of ten resumes of 

hypothetical candidates who presumably applied for a job at the 

subjectts decision sciences department. The subject was told 

that the experiment evolves around determining the potential 

academic success of these candidates. A measure of 8'academic 

successw was explicitly defined as the answer to the following 

question: what is the likelihood that a particular candidate will 

be offered tenure in the decision sciences department within 6 
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years from his or her first appointment, given all the 

information that can be extracted from the candidate's resume? 

The subject was then asked to rank-order the ten candidates in 

decreasing order of academic success. The resulting ranking, 

termed "human ranking," is denoted LH1. The subject performed 

this ranking without the interruption or assistance of any formal 

model, although he or she was allowed to use paper, pencil, and a 

calculator. 

The subject was then told that a rule-based inference system 

based on his individual preferences will now be constructed, and 

that the system-generated ranking of the ten candidates will be 

compared to his original human ranking. A financial compensation 

was offered as follows: the subject received a flat $5 

participation fee, plus a performance bonus which was 

proportional to the correlation found between the subject's 

ranking and the system's ranking. This bonus ranged from $1 to 

$50 for the worst and best correlation detected in the 

experiment, respectively. 

Knowledae Elicitation: Following the human ranking, each subject 

underwent an elaborate knowledge elicitation procedure 

administered by the experimenter, who played the role of a 

knowledge engineer. First, the general principles of rule-based 

inference were presented to the subject, who was allowed to ask 
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questions and receive further clarificatiops. The rule-base 

depicted in Picture 1 was offered as a point of departure toward 

the subject's specific rule-base. First, the experimenter 

suggested that the information extracted from the candidates1 

resumes could be encoded through a set of attributes. The 

subject was then encouraged to refine this set by deleting 

irrelevant attributes or adding new ones which he or she 

perceived important. The refined set amounted to the bottom 

tier of the inference net depicted in Picture 1. The subject was 

then asked to connect all the nodes in the network which he 

thought were causally related to each other. The topology and 

contents of the resulting network (rule-base) varied widely 

across subjects. 

Next, the experimenter proceeded to elicit the degrees of belief 

associated with each rule in the subject's rule-base. Each group 

of subjects received a different belief language "treatment:" 

subjects in Group I and I1 were asked to express their degrees of 

belief using the language of conditional probabilities and 

certainty factors, respectively. For example, let's assume that 

a subject thought that llconsulting experience1' is relevant to 

"teaching ability.' If the subject belonged to Group I, he or 

she was posed with the following pair of causal questions: 
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Assume that x is a good teacher. 

What is your belief, as a subjective probability, 
that x has consulting experience? 

Assume that x is not a good teacher. 

What is your belief, as a subjective probability, 
that x has consulting experience? 

If the subject belonged to Group 11, he or she was asked to 
answer the following pair of diaanostic questions:. 

Assume that x has consulting experience. 

To what extent does this fact increase (or decrease) your 
belief that x will become a good teacher? 

Assume that x has no consulting experience. 

To what extent does this fact increase (or decrease) your 
belief that x will become a good teacher? 

. 
A series of similar questions then ensued, one pair for each 

rule in the subject's rule-base. This completed the 

construction of a rule-base which presumably captured the 

ranking rationale of the human expert (subject). 
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Two months later, the subjects were recalled, and the very same 

sequel ensued: first, the subject was given the resumes of the 

very same ten candidates that he or she has evaluated two months 

earlier. Each subject then generated a second ranking of the 

candidates, denoted LH~. Next, each subject was presented with 

exactly the same rule-base that he or she has constructed 

originally, with one,exception: the degrees of belief which 

parameterized the rules were omitted- Finally, the elicitation 

treatment was switched: subjects from group I were asked to 

express their degrees of belief in each rule usinythe certainty 

factors language, while group I1 subjects expressed their belief 

in terms of conditional probabilities. This completed the 

subject's participation in the experiment. 

Machine rankinss: Using the inputs provided by the subjects, 

three expert systems (per subject) were constructed. These 

systems were implemented through a Prolog-based inference engine 

designed specifically to take a belief language as an external 

parameter (Schocken and Finin, 1987). The three systems, which 

operated on the same rule-base, varied only in their dependance 

on a CF, Bayesian, and ad-hoc ~ayesian belief calculi. The three 

systems were then fed with the ten encoded resumes, and went on 

to generate three candidate rankings in terms of posterior 

probabilities, ad-hoc posterior probabilities, and certainty 

factors. These rankings are denoted LB,  LA^^, and L C ~ ,  
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respectively. Note that the three systems were identical in 

their reliance on the same rule-base, fact-base, and expert. 

These factors were tightly controlled, varying only the belief 

calculus "treatment. ff 

FIRST 

HUMAN RANKING > L n i  

ELICITATlON 

BAYESIAN 

RANKING > L B  

RANKING > ,B 

m MONTHS LATER 

HUMAN RANKING 

C F  

RANKING 

Picture 3 

Picture 3 is a summary of the experiment, describing the various 

stages undertaken by Group I subjects (for Group I1 subjects, 

replace the order of the Bayesian and the CF treatments). 

Altogether, each subject generated two direct human rankings (LH1 
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and k) and three indirect machine-based rankings (LB, LAHB, 

LC*). The correlations among these rankings were used as 

measures of subject's reliability and system's descriptive and 
' 

external validity. These measures are discussed in the next 

section. 

4, Hypotheses and Results 

Picture 4 depicts the various rankings and correlations 

investigated in the experiment. Each node (excluding k, which 

will be discussed shortly) represents a ranking of the ten 

resumes, generated either by a human subject or by an expert 

system simulating the same subject. and L H ~  are the two 

human rankings, spaced two months apart. The remaining three 

nodes correspond to the rankings generated by the three expert 

systems. All three systems drew on the same rule-base of the 

subject that generated and %2, and all operated on the same 

fact-base (i.e. the ten resumes). 

L ~ B  L T 

Picture 4 
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(This figure depicts the comparisons made within Group I (Bayes 
first, then CF). For Group I1 comparisons (CF first, then 
Bayes), replace LH1 with LH2). 

% represents the *vtrue,'v ex-post ranking of the ten resumes. 

That is, assuming that we have a crystal ball, % gives the 

actual, rather than the predicted academic performance of the ten 

candidates. In the context of medical diagnosis, % would 

represent the actual physical state of the patient, which, 

unfortunately, can often be determined only through a radical 

procedure such as autopsy or surgery. The need for a "gold 

standardw and the realization that such standard is not 

necessarily subject to observation was addressed by Buchanan and 

Shortliffe (1984): "In general there are two views of how to 

define a gold standard for an expert system's domain: (1) what 

eventually turns out to be the wcorrect" answer for a problem, 

and (2) what a human expert says is the correct answer when 

presented with the same information as is available to the 

program. It is unfortunate that for many kinds of problems with 

which expert systems are designed to assist, the first of these 

questions cannot be answered or is irrelevant.!: 

In the MYCIN experiments, absolute truth was approximated by the 

opinion of a distinguished panel of internists. A similar 

approach was taken here. The true ranking of the ten candidates, 

Lpr was estimated by the pooled human rankings of the three 

subjects in the experiment who were professors in the decision 
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sciences department. These professors are actively involved in 

faculty recruiting and promotion decisions; In reality, they 

(among other professors) would be responsible for judging the 

actual academic performance of the ten candidates, had they been 

hired. Thus, given the experiment's context, this pooled ranking 

seemed to be a reasonable approximation of the actual tenure 

prospects of the ten hypothetical candidates. 

The arcs in Picture 4 represent estimates of reliability and 

validity. In particular, the arc (LifLj) represents the Spearman 

rank-correlation coefficient R(Li,Lj). A subject is said to be 

reliable if R(LH1,LH2) is close to 1, indicating that the subject 

did not change his preferences over a period of two months. This 

hypothesis was confirmed informally by inspection: in 80% of the 

subjects, R was greater than 0.794, the critical value above 

which the population correlation coefficient is significant at 

the 0.005 level. All the subjects had significant reliability 

coefficients at the 0.10 level. 

Within a particular (group I) subject, the Bayesian language is 

said to exhibit a higher descriptive validitv than the CF 

language if R(LB,LH1) is significantly greater than R(LCFfLH2) 

(for Group I1 subjects, replace L H ~  and LH2). Of course, this 

statement gains extra strength if the subject is highly reliable. 

Similarly, within a particular subject, the Bayesian language is 

said to exhibit a higher external validitv than the CF language 
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if R(LB,%)>R(LCF,$)- similar hypotheses can be formulated 

regarding the AHB language. Finally, the Bayesian model is said 

to outperform its corresponding human subject (Group I) if 

R ( L B I % ) > R ( ~ l , ~ ) .  Similar statements can be made with regard 

to the CF and the AHB languages. 

The above hypotheses are all within-subject, In order to test 

their significance across the 15 subjects, a sign test was. 

administered. For example, we say that the Bayesian language 

outperformed the CF language in terms of descriptive validity if 

the relationship R (LB, LH1) >R (LC*, Lg2) was found to. be significant 

in a sign-test applied to the 15 pairs <Ri(LBILH1),Ri(LCF,LH2)>r 

i=1,15, i being the subjects index. 

The results of the sign tests are given in Table 1. The 

notation BAYES>>CF stands for "the Bayesian language outperformed 

the CF languagew in the category indicated by the columnfs 

heading. For example, the first entry reads as follows: in terms 

of descriptive validity, the Bayesian model outperformed the CF 

model in 60% of the subjects. The remainder of the entries read 

similarly. 
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Hypothesis Descriptive 
Validity ---------- ----------- 

BAYES>>CF 60% 

External 
Validity -------- 

73% (*) 

( * ) :  significant at p=0.059 (single-tailed) 
(**) :  significant at p=0.017 (single-tailed) 

Table 1 

We see that the Bayesian and the AHB languages outperformed the 

CF language in terms of descriptive as well as external validity. 

However, only the external validity results are statistically 

significant. No statistical difference was detected between the 

Bayesian and the AHB languages. A more elaborate discussion of 

the experiment's results is given in the next section. 

Our choice of a non-parametric test was based on a reluctance to 

make any assumptions regarding the underlying distribution of 

the experimental observations, i.e. the calculated rank- 

correlation coefficients. In addition, it was felt that although 

these coefficients were suspectable to ordering, their absolute 

values were quite meaningless. Under such circumstances, the 

sign-test is a powerful device in detecting populations 

differences. In the case of n=15 observations, QC -0.1, and an 

expected large size effect, the power of a bidirectional 
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sign-test is 0.69, meaning that there are 69% chances of 

detecting a population difference, if such exists. ~ccording to 

Cohen (1965, p. 98), this power is consistent with the 

convention that Type I errors be guarded against about four times 

as stringently as Type I1 errors. 

5 ,  Discussion 

Any empirical study involving the elicitation of subjective 

degrees of belief is prone to the problems of unreliabilitv and 

inconsistencv. As Fischhoff, Slovic, and Lichtenstein (1980) 

indicate, it would be inappropriate to think of a-person's 

opinion about a set of events as existing within that person in a 

precise, fixed fashion, just waiting to be measured. Unreliable 

humans exhibit temporal changes in their beliefs with no apparent 

reason. Consequently, reliability can be measured in terms of 

correlations between two different encodings of the same set of 

events by the same subject at different times. Needless to say, 

this test is based on the premise that the subject did not have 

any (non-noise) reason to change his preferences and beliefs over 

this time period. 

Inconsistency occurs when elicited degrees of belief do not 

respect the axioms (or "grammarw) of the underlying language. 

One major source of unreliability and inconsistency is low 

motivation: subjects are often eager to "get donew with the 

experiment, and, as a result, the input that they provide does 
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not necessarily reflect their true preferences and beliefs. This 

attitude is quite distracting when students assume the role of 

domain experts. While the former are typically indifferent to 

the task at hand, the latter are highly motivated and genuinely 

concerned about the accuracy and validity of their inferential 

procedures. 

Subiect Reliability: Subject's reliability was controlled by 

asking the subjects to rank-order the same set of ten resumes 

twice, with the second ranking being done two months after the 

first. From a cognitive standpoint, the faculty selection 

problem was rather challenging: the academic credentials of the 

ten candidates were arranged in such a way that there were 

neither clear cut winners nor downright losers. Therefore, the 

subjects had to deal with a multi-attribute choice problem with 

no dominating alternatives. During the human rankings stage, the 

subjects employed a variety of heuristic compensatory decision 

rules as well as sheer intuitive judgment. The quickest and 

slowest (or most diligent) subjects required 30 and 85 minutes to 

complete the ranking, respectively. Average completion time was 

55 minutes. 

With that in mind, it was rather encouraging to find that the 

two human rankings of most of the subjects were highly 

correlated. Although no subject succeeded to reproduce his first 

ranking entirely, 80% of the subjects exhibited a highly 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-3 1 



significant correlation (R>0.745) between the two human rankings. 

This high degree of reliability might be attributed to two 

factors. First, the subjects were promised a substantial 

financial award (as much as $55) that was proportional to the 

correlations found in the experiment. This also generated a 

positive contest spirit that motivated the subjects to outperform 

their peers. 

Second, the experiment's context, which was directly related to 

the subjectsf career interests, proved to be rather lively. Any 

senior Ph.D. student has a strong position regarding the 

relative importance of teaching, research, and service in 

promoting professors. The experiment gave the subjects an 

opportunity to formulate these preferences and express them in a 

systematic fashion. This provoked some interesting responses. 

For example, one subject argued that evidence of good teaching 

skills discounts the likelihood of a promotion, as devoted 

teachers are likely to spend less time on research, which is far 

more important in tenure decisions. Indeed, the three 

machine-based rankings of this subject tended to favor candidates 

with no teaching credentials, as did his two human rankings. 

Subiect Consistency: Consistency checks may be introduced in 

order to adjust subject's response to a certain standard. For 

example, a Bayesian elicitation procedure might force subjects to 

revise their judgment once a violation of the axioms of 
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subjective probabilities is detected. This practice was avoided 

here for two reasons. First, the merit of forced normalizations 

is still under debate. For example, Robinson and Hastie (1985) 

demonstrated that when subjects were forced to normalize their 

responses, the responses became more error-prone. Second, it is 

unclear how to perform consistency checks on certainty factors, 

short of translating them to probabilities and normalizing their 

Bayesian images. Consequently, any attempt to employ a 

language-dependant normalization scheme would introduce an unfair 

advantage or disadvantage to this particular trtreatment.tv Since 

the experiment was concerned primarily with the relative, rather 

than the absolute, performance of various belief languages, it 

was felt that such practice should be avoided. 

Descriptive validitv: There is by now an overwhelming body of 

psychological evidence indicating that human judgment under 

uncertainty is not governed by, and often violates, the axioms of 

subjective probability. This realization was partially 

responsible for the original development of the CF calculus, 

which was supposed to be a better descriptive model than the 

Bayesian belief-update procedure, Nonetheless, the superior 

descriptive power of the CF language, if it indeed exists, did 

not manifest itself in this experiment. In particular, the sign 

tests detected no significant differences between the 

descriptive validity of the Bayesian and the CF languages, with 

the former outperforming the latter in 60% of the subjects. In 
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addition, no significant differences between the CF and the AHB 

and the AHB and the Bayesian languages were detected in terms of 

descriptive validity. 

The normative Bayesian calculus is based on a mechanical 

integration of probabilities which, in our judgment, appears to 

have little if any descriptive appeal. Therefore, we expected 

ex-ante that the Bayesian language will perform poorly on 

descriptive grounds. The fact that the Bayesian language 

performed as well as the CF and AHB languages in this regard may 

be attributed to lack of statistical power. At the same time, 

this is indeed a preliminary indication that the Bayesian 

approach to rule-based inference should not be written off on the 

basis of a weak descriptive appeal. 

External Validitv: the hypotheses on external validity were based 

on the premise that the pooled ranking, LI(, can be credibly 

viewed as a measure of the ex-post, actual academic performance 

of the ten hypothetical candidates. In what follows, we defend 

this assumption and argue that it is indeed reasonable under the 

experiment's circumstances. 

First, recall that the subjects were explicitly asked to asses 

the likelihood that the candidates will be offered tenure not on 

the basis of an abstract measure of divine academic justice, but, 

rather, on the basis of their expected performance in a specific 
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decision sciences department which the subjects knew very well, 

Tenure recommendations in this department are normally made by a 

group of professors. Three members of this group participated in 

the experiment as subjects. Hence, the opinions of these 

professors reflect closely what would have taken place if the 

candidates were actually evaluated by decision sciences faculty 

members, 

Second, the literature on encoding subjective probabilities, an 

area which is closely related to our present concern, includes 

several examples in which synthetically (mathematically) 

determined consensus groups did much better than the average 

individual in terms of external validity (Huber, 1974)- This 

finding was also reported by Stael Von Holstein (1972) who had 

groups of financial experts estimate the next 14-days stock 

prices. In a similar vein, Winkler (1968) had reported that 

consensus groups outperformed almost all individuals, regardless 

of the various weighing schemes used to generate their pooled 

judgments. 

Given that the pooled ranking, k, is indeed a reasonable 

yardstick for actual performance, it was hypothesized that its 

correlation with the Bayesian-based ranking will be greater than 

the corresponding correlation with the ad-hoc CF-based ranking. 

Indeed, this relationship held for 73% of the subjects, a 

significant dominance at the (single-tailed) 0.059 level. This 
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result makes sense: notwithstanding the poor intuitive appeal of 

the Bayesian calculus, one would hope that its normative rigor 

would produce more accurate predictions than its ad-hoc 

counterparts. Incidentally, the high external validity , of the 

Bayesian calculus was demonstrated in a number of other, 

unrelated empirical studies. For example, Gustafson (1969) had 

physicians assess Bayesian likelihood-ratios regarding various 

clues that explain the length of hospital stay of potential 

patients. After aggregating these assessments using Bayes rule, 

he found that the resulting estimates were far closer to the 

truth than the predictions made by a linear regression model 

employing actuarial data. 

One peculiar result of the present study is the strong external 

validity of the ad-hoc Bayesian (AHB) language. A possible 

explanation might be that the AHB syntax, consisting of 

conditional probabilities, is identical to the normative Bayesian 

syntax. At the same time, the naive AHB sequential combination 

function (used to propagate posterior beliefs "upwardsat the 

network) is at least as ad-hoc as the CF sequential combination 

function. Therefore, one would expect, ex ante, that the AHB 

language, like the CF language, would perform poorly in terms of 

external validity. In practice, though, the AHB and the Bayesian 

rankings turned to be very similar. 
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In the Yadrick et a1 (1988) simulation study, the AHB language 

(restricted to what they called "independent rule setsm) was 

generally very accurate, with an overall average error (the 

absolute value of PROSPECTORss estimate minus the true 

probability) as low as 0.014. At the same time, the inference 

trees that Yadrick et a1 simulated were single-leveled, meaning 

that the problematic AHB sequential combination function was not 

to a test. theref ore encouraging to report that the 

AHB language performs well in a two-level network, such as the 

one used in the present experiment. Whether or not the AHB 

language is externally valid in more complicated inference 

. networks is remained to be seen in future research. 

6. Conclusion 

The major findings obtained in the limited context of this 

experiment are as follows. First, contrary to certain claims, 

the CF language is not a better descriptive model than the 

Bayesian language. Second, in terms of external validity, the 

Bayesian and the ad-hoc Bayesian languages dominate the CF 

language. The reader is encouraged to qualify these results with 

the fact that the experiment consisted of 15 subjects, and, 

consequently, the descriptive power of the CF language, if it 

indeed exists, may have gone undetected due to lack of 

statistical power. 
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So the question remains -- which belief language should a 
knowledge engineer employ in the next expert system that he or 

she is developing? It seems safe to suggest that, in spite of 

its vast popularity, the CF * language scores low in all respects, 

namely normative f ouhdat ion, descriptive validity, and external 

validity. The AHB language performed quite well in our 

experiment, but there seems to be no clear explanation why. The 

Bayesian language thus emerges as the only language of choice in 

non-deterministic, rule-based, expert systems. 

It is important to remember, though, that Bayesian inference in 

complex belief networks is generally NP-hard (Cooper, 1987). If, 

however, the joint distribution function underlying the rule- 

base obeys certain assumptions of conditional independence, one 

can credibly employ the new Bayesian inference algorithms 

developed by Pearl (1986) and his colleagues. Computational 

complexity was not a problem in our experiment, due to the 

relatively small networks that we have used. More complicated 

. networks might require restructuring and addition of extra nodes 

in order to remove dependencies and make the underlying joint 

distribution function amenable to efficient Bayesian algorithms. 
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