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MONITORING THE SOFTWARE ASSET: 

REPOSITORY EVALUATION OF SOFTWARE REUSE 

ABSTRACT 

Traditionally, software management has focused primarily upon cost control. 
Today, with the emerging capabilities of computer aided software engineering (CASE) 
and corresponding changes in the development process, the opportunity exists to view 
software development as an activity that creates reusable software assets, rather than just 
expenses, for the corporation. With this opportunity comes the need to monitor software 
at the corporate level, as well as at that of the individual software development project. 
Integrated CASE environments can support such monitoring. In this paper we propose 
the use of a new approach called repository evaluation, and illustrate it in an analysis of 
the evolving repository-based software assets of two large firms that have implemented 
integrated CASE development tools. The analysis shows that these tools have supported 
high levels of software reuse, but it also suggests that there remains considerable 
unexploited reuse potential. Our findings indicate that organizational changes will be 
required before the full potential of the new technology can be realized. 
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Traditionally, the management of software development has focused upon 

controlling its expense. The predicted benefits of a software development project may 

seem remote or speculative, but its costs are immediate, and highly visible. The resulting 

tendency to focus management attention on cost reduction is reinforced by the generally 

accepted practice of reporting software development as an expense, rather than as an 

investment (Boehm and Pappacio, 1988). As a result, the prime concern of senior 

management has been to limit current software development costs, and to control those 

that are likely to occur in the future when current systems are maintained and enhanced 

(Bailey and Basili, 1981; Grammas and Klein, 1985). 

1.1. Monitoring Software Expenses 

Following the time-worn epithet "You can't manage what you can't measure," it is 

clear that if management efforts are to focus on controlling software costs, then 

measurement efforts similarly must focus on: 

* gauging a variety of dimensions of development costs and the resulting software 
outputs; and, 

* determining the levers that can be used by management to improve cost efficiency. 

To date, the bulk of management efforts to improve cost efficiency in software 

development have centered on improving software development project management. 
I 

Much of this has been accomplished through the establishment of measurement and 

metrics programs that gauge project-level development productivity, for example, in 

terms of function points delivered per person month of development, or performance in 

terms of development cost overruns as a percentage of budgeted project costs. 

We can take an alternative perspective, as well. This perspective involves thinking 

of software development as a process that leads to the creation of corporate assets that 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-91-32 



will produce value for the firm over an extended lifetime of use. In this view, emerging 

computer-aided software engineering (CASE) tools that emphasize software reusability 

(Lenz, Schmid and Wolfe, 1987; Pollack, 1990; Rombach, 1991) can mean that much of 

the real value of modular "software assets" will be derived from the extent to which they 

can: 

* defray the costs of the construction and testing, and raise the overall level of 
perceived quality and reliability of systems that are delivered; 

* speed the implementation of new systems while first-mover competitive advantage 
opportunities still exist in the business areas that the software is meant to support; 

* be leveraged across projects and areas of the f k n  in support of multiple 
businesses. 

1.2. Repository Evaluation: A New Measurement Paradigm for Software Asset 
Management 

The software asset management view was recently articulated by Banker and 

Kauffman (1991a) and Karimi (1990) and related issues are under scrutiny by a number 

of research groups (see for example, Apte, Sankar, Thakur, and Turner, 1990; Banker, 

Kauffman and Zweig, 1990; Barnes and Bollinger, 1991; Basili, 1991; Chen and Sibley, 

1991; Nunamaker and Chen, 1989), whose investigations focus on how CASE tools 

change the software development process through software reusability in the design, 

construction, testing, and maintenance phases of the software development life cycle. 

Where should measurement of software as an asset occur? Monitoring a system 

as it is built will answer many questions, especially questions concerning the factors 

affecting the cost of building it. To manage it as a contributing part of the software asset 

requires that we also be able to monitor it at the level of the organization or enterprise. 

Even relatively simple metrics, collected at that level, can answer key questions for senior 

managers -- questions that are important to long-term firm performance, but that have 

not been well articulated or that have been ignored altogether. 
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This paper develops empirical results based on a new software engineering 

measurement paradigm: repository evaluation. An integrated CASE environment 

maintains all of its software and, more importantly, all of its information about that 

software (its design, its history, its interactions with other system elements) in a single 

structured repository. Much of this information is precisely the information that can 

support the management of those software assets. 

The next section explores more deeply the issues that have led us to this 

perspective, and the kinds of questions that it will enable management to answer. 

Section 3 illustrates the measurement paradigm using data obtained from two large firms 

that have implemented repository-based integrated CASE tools. On the basis of an 

intuitively appealing model of software reuse, an analysis of the firms' repositories is used 

as a basis for evaluating their software reuse efforts. Section 4 presents additional 

discussion of software reuse within those firms, and uses the results of the analysis to 

examine the model in greater depth. The paper concludes by outlining our broadened 

understanding of software reuse, and by identifying new questions raised by our 

repository evaluation. 

2. SOFTWARE ASSET MANAGEMENT AND REPOSITORY EVALUATION: THE 
1 NEED FOR NEW PARADIGMS 

Our call for a new measurement paradigm is based on three related elements. 

First, there are important questions related to a firm's software development activities, 

which project-level analysis cannot adequately address, but that need to be examined 

more closely. Second, new software design paradigms are emerging -- object-based and 

object-oriented design in particular (Booch, 1989; Meyer, 1988) -- whose full benefits can 

only be realized through enterprise-level software management. Third, CASE technology, 

and especially repository-based integrated CASE, offers a mechanism for automating 

measurement so that more frequent and detailed data collection is feasible, without 

forcing management to shift labor away from development and into the manual collection 

of project performance metrics. This creates significant opportunities to study software 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-91-32 



reusability. 

2.1. Why Measure at Levels Other Than the Project Level? 

At the core of our perspective is the argument that measurement at the project 

level provides too narrow a focus for those who are responsible for multiple systems on 

an ongoing basis. Those managers want to know not only whether a system is right for 

its task, but also whether it is right for the other systems, and the future systems, of the 

organization. Their questions include: 

* Does the application "fit" the overall architecture of the firm's systems? Or is it 
different in ways that would explain variances in development performance and 
subsequent contributions to firm-wide reusability? 

* Does the application contribute a fair share to software reuse at the organizational 
level? Or does it fail to meet targets for software reuse? If so, does it contribute 
to reuse in subsequent development efforts to a greater extent than other 
projects? 

* How large a portion of the software asset does a given system represent? How 
large a portion of the software liability did the system create? How do the two 
relate to each other? 

It is no failing of project level metrics that they do not answer questions about 

software assets; they were never meant to answer them. Such questions become 

meaningful in the context of multiple systems. 

2.2. Towards Software Asset Management: Recent Industry Experience 

A number of organizations have begun to implement measurement programs 

directed at the management of the software asset. They are attempting to assess the 

leverage on development costs created by reusable software, the growth and evolution of 

repository-based software, and the extent and distribution of software assets as they exist 

at the enterprise level. 

For example, Apte, Sankur, Thakur and Turner (1990) reported on the effects of 
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the successful implementation of a firm-wide software reusability strategy at Mellon 

Bank, a large regional commercial bank. This work was undertaken by a firm that 

already had significant experience with implementing programs to gauge the productivity 

of its traditional development and maintenance activities. 

The First Boston Corporation, a large New York City-based investment banking 

firm, has examined its CASE-based development activities with an emphasis on the cross- 

application business value of software reusability. Banker and Kauffnnan (1991b) 

reported on order-of-magnitude productivity gains attributable to the firm's CASE 

technology and its software reusability strategy in a multi-year systems development effort 

that led to wholesale replacement of the firm's core trades processing systems. In this 

research, the authors found that it was necessary to extend current evaluative models in 

the software engineering economics literature to capture the effects of software 

reusability as a cost driver in CASE-based software development. An important ancillary 

finding of the research was that the resulting functionality of the software was perhaps 

even more important to the bank in sustaining its competitive position in a rapidly 

changing world of global electronic trading. (Clemons (1991) reinforces this point by 

indicating that an inability to rapidly deliver software in support of new business 

opportunities poses a "functionality risk" for software asset development.) 

Subsequently, the senior management of the firm's software development 

organization moved to implement a program to measure the extent to which reuse was 

occurring at the project and the repository levels. The firm's CASE software has been 

enhanced to automatically compute function points, reuse levels, and other useful 

metrics, at both levels. 

In each case, manual measurement of the software metrics that were collected 

would have been a difficult, time-consuming and expensive task. Yet without this 

information, management would be hard pressed to monitor the extent to which reuse 

creates leverage in software development. Fortunately, object- and repository-based 
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CASE does much to change that. 

3. SOIWWARE REUSE: AN APPLICATION OF REPOSITORY EVALUATION 

Some of the most interesting questions for firms that have invested in CASE 

technology center on the issue of software reusability; this is an area in which CASE- 

based development has the potential to create extraordinary value (Bouldin, 1989; 

McNurlin, 1989; Moad, 1990; Pollack, 1990; Sentry, 1990). However, this promise has 

not been broadly substantiated in industry, since the technology has only recently been 

deployed, nor in software development performance research, which has only recently 

begun to examine CASE-based development platforms (Kemerer, 1989; Norman and 

Nunamaker, 1989; Nunamaker and Chen, 1989; Scacchi and Kintala, 1989; Senn and 

Wynekoop, 1990).' 

The success of a strategy that emphasizes software reusability can only partly be 

evaluated at the level of the software development project. Project-level statistics can tell 

us how successful a project is at reusing existing code, but cannot differentiate between 

projects whose new code is reused by subsequent projects and those whose code is 

destined for only a single use. The former software represents a corporate asset in a 

sense that the latter does not. A program of repository-level monitoring can identify, and 

help to control, such projects. Of potentially greater importance is the ability of such 

measurement to answer enterprise-level questions. For example: 

* Is most of the observed reuse limited to a small proportion of the software? 
What are the observed characteristics of reused software? Can reuse levels be 
increased by imparting these characteristics to software intended for reuse? 

'The reader interested in obtaining additional background on software reuse would 
benefit from looking at three recent papers which bring the literature up to date: K a W  
(1990), Kim and Stohr (1991), and Banker, Kauffman, Wright and Zweig (1990). For an 
older, but still useful examination of the state-of-the-art in software reusability, see the 
Special Issue on Software Reusability of the IEEE Transactions on Software Engineering, 
September 1984. This issue contains articles with an overview of the statistics available at 
that time on reuse and then-current technical strategies to promote reuse. 
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* What is the CASE technology's contribution to reuse? How much depends upon 
I the way the technology is managed? 

* Do expert programmers exhibit much higher levels of reuse than novices? Is 
reuse a skill that can be taught? 

* How effective are efforts to design for reuse? Do objects specifically designed to 
be reusable show significantly higher levels of reuse? 

These questions presuppose the existence of robust and readily implemented 

metrics that provide the right information. (Researchers have just begun to understand 

how to measure and interpret metrics for software reusability (Banker, Kauffman and 

Zweig, 1990; Gaffhey and Durek, 1989).) This is not to say that organization-wide 

software reusability monitoring cannot be carried out in a traditional software 

environment. On the contrary, such monitoring is not only possible, but eminently 

worthwhile. 

It is difficult, however -- sufficiently difficult that it is rarely done. And because 

the development environment does not support such measurement, when it is done, it 

tends to be a one-time occurrence, rather than part of an ongoing program. An 

integrated CASE tool, by maintaining a database of information about all the elements of 

a system in a single uniform repository, makes it practical to monitor the system 

continuously. 

3.1. An Integrated CASE Environment (ICE) 

We next discuss the use of repository-level measurement to assess the attempts of 

two organizations to realize high levels of software reuse through the adoption of CASE 

technology. The CASE technology implemented at both research sites was ICE (an 

acronym for Integrated CASE Environment -- not its actual name), which was 
I 

deliberately designed with reusability as an objective. 
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ICE is an integrated CASE environment of object-based design. Its objects 

include Screen Definitions, Report Definitions, Files, Data Domains, Fields, and 

Database Views, each class having its own procedures and semantics. Most of the 

procedural functionality of this language is embodied in high-level Rule Sets. Rule Sets 

are written in a fourth-generation programming language from which code is generated 

automatically and later compiled for the target machine. All interactions between objects 

are mediated by Database Views: If a Rule Set invokes a Screen Definition, for 

example, it will typically use one output View to send data to the terminal and one input 

View to receive data from the terminal. A Rule Set may also call an existing 3GL 

module. (It should be noted that ICE'S objects are objects of the CASE environment 

rather than objects of the application environment. The 4GL is not an object-oriented 

programming language, though ICE can, and does, support object-based design.) 

All the objects of the application systems are stored in a single repository. All 

calling relationships between objects are also maintained in this repository, in the form of 

entries to database tables. An overview of the contents of the repository of the research 

site is given in Table 1. Site One is the larger of the two, but Site Two's applications are 

more data-intensive, as may be inferred from the relatively large number of data objects. 

Neither site has created many 3GL modules for its new systems, but Site One is making 
I use of a large inventory of 3GL modules (primarily modules which carry out highly 

specialized computations) from older systems which are being replaced. 

Insert Table 1 about here 

ICE implements software reuse by adding a calling relationship between a new 

object and one that is already in the repository. Beyond the obvious role this capability 

plays in facilitating reuse, it also makes it practical to monitor reuse, without having to 

examine individual programs, by analyzing the repository's database of calling 
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relationships. 

3.2. Measurement of Software Reuse 

The structure of the repository makes it practical to automate reuse analysis. An 

application system consists of a high-level Rule Set, designated as the root of that system, 

all the objects (mostly other Rule Sets) which it calls, and all the objects which they call, 

directly or indirectly. Collectively, these objects are structured as a hierarchy that defines 

the application. Since all these calls are stored in the repository in a uniform manner, an 

automated analyzer can use this data directly to determine which objects are called by, 

and thus belong to, which systems, and how many times each object is called. 

The analyzer is used by designating a repository object as the root of a query. 

Depending on where this object resides in the hierarchy, the output could be an analysis 

of a subsystem, a system, or even the entire repository. The analyzer uses the 

information in the repository to navigate the calling hierarchy and identify all the objects 

called, directly or indirectly, by the root object, and to determine how many times each 

object is called. 

Since the repository contains complete histories of each object (as well as the 

objects themselves) the analyzer has access to descriptive information about the objects, 

such as their age, the identities of their developers, and the systems for which they were 

originally created. (Note that it is imprecise to speak of an object as 'belonging' to any 

one application system. An object is part of any system which calls it.) 

A number of measures of software reuse may be computed, depending on the 

purpose of the query. For the discussion that follows, reuse will be measured in terms of 

reuse percentage, which we define as the proportion of objects that were taken of£ the 

shelf, rather than programmed from scratch (Banker, Kauffman, Wright, Zweig, 1990; 

Gaffney and Durek, 1989). That is, 
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REUSE-PERCENTAGE = 10 0 * ( 1 - NUMBER-OF- UNIQUE-OBJECTS ) 
NUMBER- OF- OB JECT- CALLS 

In the absence of reuse, each unique object would be called only once, and the 

reuse percentage would be 0. In the example portrayed in Figure 1, there are four 

unique objects: A, B, C and D. But there are five object calls (counting the original 

invocation of A), as B and C each call D. In the absence of reuse, D would have to be 

replaced with two unique objects Dl  and D2. Given Rule Set A as the root of this 

query, the analyzer would identify B and C as the objects called by A, and would identify 

D as being called by B and by C. This subsystem, then, has five calls for four unique 

objects: Reuse percentage is 100 * (1 - 419, or 20%. 

Insert Figure 1 about here 

A further distinction may be made between internal reuse and external reuse. 

Internal reuse is the multiple use of an object (or subroutine, or procedure, or module) 

within the project or application system for which it was originally written. External reuse, 

the use of an object originally written for another system, is more difficult to achieve, 

since it requires compatibility (planned or accidental) of design (Allen, Krutz and Olivier, 

1990; Cohen, 1990) but it is, by that token, the source of the greatest potential gains. 

Ekternal reuse makes it possible to take advantage of the design efforts of previously 

developed software assets. 

By measuring reuse over time, we can assess the success of the research sites in 

implementing a software reuse strategy through the adoption of ICE. We can also begin 

to open the black box of software reuse and what factors -- technological and otherwise 

-- determine the success of the reuse effort. 
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Figure 2 presents a simple model of reuse that might motivate the design of a 

CASE-based tool to support reuse. The chance of reusing an existing object rather than 

writing a new one is seen to depend upon the availability of potentially reusable software, 

and upon the programmer's ability to find it. ICE supports reuse by maintaining a 

growing pool of reuse candidates within a single repository, by providing a keyword 

search mechanism for locating appropriate objects, and by automating the mechanics of 

reuse. 

Insert Figure 2 about here 

This view of the reuse process suggests a number of predictions: 

1. l'he pool of reusable objects will increase over time with the size of the repository, 
and so, therefore, will the level of reuse. 

2a. Object belonging to the system currently being programmed are more likely to be 
known to the programmer, so there will be a high level of internal reuse. 

2b. By a similar token, we expect programmers to exhibit high leveb of reuse of objects 
that they wrote themselves. Both these familiariq eflects may be mitigated by the 
presence of a good search mechanism. 

3. Given a high level of reuse of familiar objects, we may expect reuse leveb to be higher 
for larger systems, since they represent a larger pool of reusable objects and reuse 
opportunities. 

4. Programmers with more experience at the site will be familiar with more of the 
sofhare, and will therefoe experience higher leveki. of reuse. 

33. Repository Growth and Software Reuse 

Reuse levels were tracked at both research sites over the first two years of 
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application systems de~elopment.~ Figure 3 presents the growth in Rule Set population 

and reuse during that time.3 

Insert Figure 3a and 3b about here 

It is immediately clear that our first prediction was incorrect: The repository grew 

steadily during this period. So did the experience of the programmers, since this was 

their first experience with ICE. Reuse percentage, however, achieved a strong initial 

value and never bettered it. The level of reuse did not grow as the pool of reuse 

candidates grew. Our second prediction, however, which was based on the belief that 

familiar objects were more likely to be reused, was borne out more strongly than 

expected -- sufficiently strongly, in fact, to offer an explanation for the failure of our first 

prediction. 

3.4. Reuse of Familiar Objects 

We predicted that programmers would be most likely to reuse objects from the 

system upon which they were currently working, as those would be the most easily 

identified as being appropriate for the task on hand. We also predicted, on the basis of 

the belief that familiarity was an important reuse factor, that programmers would exhibit 

a strong propensity to reuse software written by themselves. What we did not expect was 

the degree to which this would be true. 

2The two sites had very different startup experiences. The data presented here is for the 
twenty-month period following the first development successes. 

3Rule Sets are the 'backbone' of ICE application systems. They are also the most time- 
consuming objects to write. (3GL Modules could be more time-consuming, except that they 
are typically used in cases where special-purpose routines are already "on the shelf.") For 
these reasons, we concentrate upon Rule Sets for this analysis of software reusability. 
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Figure 4a shows the relationship between internal and external reuse: 85% of all 

observed instances of reuse were internal. That is, if use was made of a previously 

written rule, that rule was almost always one that had been written for the same system. 

Insert Figures 4a and 4b about here 

This offers a potential explanation of the levelling off of reuse over time. Reuse 

appears to be driven by the pool of familiar code, rather than by the entire pool of reuse 

candidates. Each project is a self-contained universe (we assume that programmers will 

be most familiar with the code with which they are currently working than with that upon 

which other programming teams are working) and new projects derive little benefit from 

previous projects. 

The propensity to reuse objects from the same application system could have a 

I second explanation, as well: In the absence of an organization-wide effort to design for 

cross-application reuse, a system's own objects might naturally exhibit a better 'fit'. Our 

examination of the propensity of programmers to reuse their own software suggests that 

familiarity is indeed the driving force behind our observation. 

Figures 4b shows the prevalence of self-reuse. Despite the presence of over 250 

other programmers at Site One and over 100 other programmers at Site Two, over 60% 

of the reuse consisted of programmers reusing their own software. 

If reuse is driven by the availability of familiar objects, we would expect to find, as 

we also predicted, that larger projects exhibit higher levels of reuse -- since they provide 

larger pools of familiar reuse candidates. This prediction was moderately supported. 

Figure 5 shows the relationship between system size and reuse. The correlation between 

these two factors was 37% (p=0.09) for twenty-two application systems at Site One and 
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58% (p=0.04) for thirteen application systems at Site 

Insert Figure 5 about here 

3.5. Individual Programmer Differences 

As with so many software-related activities, a small number of outstanding 

programmers appear to account for a disproportionate amount of the reuse achieved. 

Figure 6 shows the distribution of programmer productivity and reuse. The top 5% of 

the programmers accounted for over 20% of the code and for over 50% of the reuse, 

with the top reusers achieving average reuse percentages as high as 75%. 

Insert Figure 6 about here 

It appears that reuse is learned: Reuse levels were consistently higher for 

programmers with larger total outputs. The correlation between these factors is 50% 

(p=0.03 for n= 19) at Site One and 60% (p=0.0001 for n='76) at Site Two.* We 

considered the possibility that we were observing an attitude change over time, rather 

than the learning of a skill, with the high-reuse programmers simply being the ones who 

had been using ICE the longest, and had absorbed the reuse 'message'. The data did not 

4Figure 5 uses a logarithmic scale to display system size, because order-of-magnitude 
differences between systems make a linear display difficult to interpret. In fact, though, the 
correlations between reuse and the log of system size at the two sites is exactly the same as 
that between reuse and system size: 37% and 58%, respectively. 

SOf the 110 programmers at Site Two, only the '76 who wrote at least one Rule Set were 
included in this analysis. Our data for Site One represents a sample of 19 programmers out 
of 250. 
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bear this out: The partial correlations, controlling for months of ICE experience, were 

I within 1% of the raw correlations. 

In summary, it appears that ICE provides capabilities which allow programmers to 

achieve high levels of reuse. Further, achieving reuse appears to be a skill which can be 

learned over time. However, the pattern of reuse suggests that there remains 

considerable unexploited reuse potential. Programmers are writing new objects rather 

than searching for reuse opportunities. 

4. REPOSITORY EVALUATION: FACTORS AFFECTING SOFTWARE 

REUSABILITY 

We interviewed developers to learn about the practice of software reuse from the 

perspective of the users of the CASE tools. These interviews revealed some technical 

barriers to the realization of code reuse opportunities. More serious, however, were the 

organizational barriers and disincentives to reusing software. 

4.1. Search for Reusable Software 

ICE makes the invocation of a previously written object trivial. All objects reside 

in the same repository, and are available for reuse. The main formal mechanism for 

identlfylng such an object, however, is a keyword search mechanism, the use of which 

often turns out to require more effort than programmers are willing to expend. (We 

found no indication that developers are failing to enter keywords into the index. It 

appears to be the case, though, that such keywords do not provide an efficient search 

mechanism. Given the relative ease of writing any single object, programmers are often 

reluctant to bother with an extended search.) This accords with the observations of other 

researchers (Banker and Kauffman, 1991; Palmer, 1991; Vassiliou, 1991) who suggest 

that search costs are one of the main barriers to software reuse. 

4.2. Organizational Incentives 

The more serious problem we identified revolves around incentives. The incentive 
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for programmers to reuse code is moderately weak. Reuse is viewed in a positive light at 

these sites, but it is not rewarded. There is little managerial monitoring of reuse levels, 

and programmers are valued -- as is usually the case -- for their ability to meet deadlines, 

rather than for their ability to match technical benchmarks. On the other hand, there 

are strong informal incentives for a programmer to prevent others from reusing his or her 

code. 

The creator of an object is its 'owner,' and every reuse of that object is a potential 

call upon that owner to maintain the object in case of trouble -- most likely trouble 

arising from its use within an application for which it was not originally tuned and tested. 

Every reuse is also a constraint on the owner's subsequent ability to modify that object, 

since any modification must meet the requirements of all users of the object. (Incentives 

were not in place to motivate programmers to make their objects as reusable as possible 

in the first place. A strong change-control mechanism that could protect programmers 

was also lacking.) 

In practice, programmers who wish to use an object from another application are 

strongly encouraged (by the other programmers, not by management) to copy the object 

in question, to rename it, and to use it as though it were a new object. We refer to this 
I 

practice as "hidden reuse," a form of reuse which is not captured by the monitoring 

mechanism. (The related practice of "templating" is the dominant form of reuse in 

traditional application environments.) Hidden reuse achieves only some of the goals of 

software reuse: Coding effort and unit testing are reduced, but subsequent life cycle 

savings, particularly in maintenance, are not realized. 

43. Preliminary Conclusions about Reusable Software 

The initial drive for reuse at the research sites was premised upon the assumption 

that the primary determinants of reuse were technical -- that reuse could be achieved to 

the extent that we had a large pool of reusable objects, and that we had good tools for 

locating and using them. These expectations were correct, as far as they went, but they 
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did not go far enough. In particular, they did not consider the organizational 

prerequisites for successful reuse. The exceptionally high levels of internal reuse further 

suggested that design compatibility might have a strong effect upon reusability. 

Figure 7 presents a revised model of software reuse, in light of the repository 

evaluation results presented in Section 3. The mostly technical factors which the earlier 

model presented as drivers of software reuse are still in place. And we note that the 

research sites did achieve strong initial levels of software reuse, with reuse percentages of 

about 35% at both sites, with the aid of the technical support provided by ICE. At this 

point, however, reuse appears to have reached a plateau. 

Insert Figure 7 about here 

The immediate barriers to higher reuse levels appear to be organizational. Reuse 

is encouraged, but it is not rewarded. What we have observed here is essentially 

unmanaged software reuse. Software reuse is encouraged to happen, but no organized 

effort is underway to make sure that it does happen. Programmers are not trained in 

reuse, programmers are not rewarded for reuse, and effort is made to monitor and 

manage reuse levels. 

The weakest technical aspect of ICE with respect to software reuse is the keyword 

search mechanism, which appears to be unequal to its task. This weakness may also be 
I related to the lack of architectural support for reuse. Although programmers are 

encouraged to take advantage of reuse opportunities as they arise, the various systems 

are not specifically designed for reuse; when reuse opportunities do arise, it is by 
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The findings reflected in our repository evaluation and in our model suggest that 

integrated CASE technology can indeed contribute to high levels of software reuse, but 

that their full benefits can only be realized when corresponding changes are made in the 

way software development is planned and managed. 

5. CONCLUSION 

CASE technology promises to support the realization of the asset value of 

software in the most direct way, by supporting its reuse in subsequent development 

efforts. By definition, the fulfillment of this promise can only be evaluated by monitoring 

the organization's entire software asset. The repository-based design of integrated CASE 

systems makes it practical to automate such analysis. While such automation is not 

necessary in principle, an organization without it is unlikely to spare the resources to 

monitor its software assets on an ongoing basis. Management resources will be devoted 

to the more urgent priority of monitoring current projects. 

This paper presents a new measurement paradigm, repository evaluation, that - 

takes advantage of the facilities of the CASE environment in order to assess the extent to 

which a software reusability strategy is supported by that environment. The paradigm is 

illustrated through an analysis of reuse at two sites which are pursuing reuse by means of 

the same CASE tool. 

Repository evaluation allowed us to critique a simple model of software reuse, and 

to suggest a richer one. It gave us preliminary answers to our original questions, and 

suggested a more focused set of questions whose answers we are in the process of 

pursuing: 

%e kind of domain analysis that such design would require would also be likely to 
result in a vocabulary of keywords which would make the search mechanism more effective. 
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* We asked whether a small proportion of the software accounted for most of the 
reuse, and found that it did: Approximately 15% of all Rule Sets are reused at 
least once. 15% of those, or under 3% of the total, account for half of the 
observed instances of reuse. We are now investigating the characteristics of 
heavily reused objects, to determine whether they can be used in the development 
of design guidelines. 

* We investigated the extent to which the CASE technology supported reuse, and 
found that it enabled both sites to achieve steady-state reuse percentages of 
approximately 35%, but that higher levels probably depended on non-technical 
factors. We are now attempting to estimate the degree of unexploited reuse 
potential, and the costs of achieving it. 

* We asked whether expert programmers were also better at reuse, and found that 
the highest levels of reuse were achieved by the most productive programmers. 
We have seen evidence that reuse is, at least in part, a learned skill. We are 
investigating the question of whether it is one that can be taught. 

Such study can help us to further refine our understanding of software reuse. For 

example, in our presentation we have treated all objects as being equal in potential 

reusability and in value. In fact, the reuse of complex objects may yield far greater gains 

than that of easily-constructed objects. The same repository capabilities that allowed us 

to automate the analysis of reuse also enable us to automate a more detailed analysis of 

the objects of reuse, and to answer questions such as: 

* What proportion of the$nctionality of a system and of its development cost does 
the reuse represent? Monitoring this offers the promise of allowing an 
organization to directly estimate the value of its reuse activities.) 

* A high degree of software complexity in existing software makes it sigmficantly 
more expensive to adapt (Banker, Datar, Kemerer and Zweig, 1991). Does it 
have a similar effect in a 4GL/CASE setting? 

* Most systems have high levels of software redundancy, with overlooked reuse 
opportunities adding to ongoing development and maintenance costs. How can 
we measure this? 

Function points, software complexity and redundancy are among the metrics which can 
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be automated in integrated CASE environments (Banker, Kauffman, Wright and Zweig, 

1991), and which can provide additional repository evaluation tools. 

The tools that enabIe us to address these questions can also aid managers in 

examining a broad range of software asset management issues which some organizations 

are just beginning to address (Miller, 1990) such as: 

* The balance between the distribution of functionality in an organization, and the 
distribution of software investment dollars and of the software maintenance 
burden, measured in dollars per function point. 

* The relative amounts of software functionality required to support various business 
areas. 

* The relative productivity rates for continuing maintenance of aging systems. 

The measurement of software assets at the repository level, and the potential for 

automating that measurement, makes such questions practical ones for managers to 

pursue. 
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Object Type Number of Object8 

Rule Sets 8892 
Screen8 7230 
Domain8 4200 
Filer 4236 
3QL Module8 6062 
Field8 6266 
View8 6766 

Table 1: An Overview of the ICE Repository 
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a) No Reuse: Five calls for five unique objects 
Reuse percentage is 100 * (1 - 6/51, or 0% 

Rule A a 
b) Rule D is reused: Five calls for four unique objects 

Reuse percentage is 100 * (1 - 4/51, or 20% 

Rule A 

I Rule B 

Figure 1: An Illustration of Reuse Measurement 
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Figure 2: A Preliminary Model of Reuse 
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Figwe 3a: Reuse and Repository Growth 
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Figure 3b: Reuse and Repository Growth 
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Figure 7: A Revised Model of Reuse 
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