
MONITORING THE SOFTWARE ASSET:

REPOSITORY EVALUATION OF SOFTWARE REUSE

Rajiv D. Banker

Robert J. Kauffman

Dani Zweig

Department of Information, Operations, and Management Sciences

Leonard N. Stern School of Business, New York University

44 West 4th Street, New York, NY 10012

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-32

MONITORING THE SOFTWARE ASSET:
REPOSITORY EVALUATION OF SOFTWARE REUSE

by

Rajiv D. Banker
Arthur Andersen Professor of Accounting and Information Systems

Carlson School of Business
University of Minnesota

Robert J. Kauffman
Assistant Professor of Information Systems

Leonard N. Stern School of Business
New York University

and

Dani Zweig
Assistant Professor of Information Systems

Naval Postgraduate School

October, 1991

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Working Paper Series

STERN IS-91-32

The authors wish to acknowledge Mark Baric, Gene Bedell, Gig Graham, Norm Leibson, Tom Lewis, Bob
Menar, Vivek Wadhwa, and Jim Yent for the access they provided us to data on software development
projects and managers' time throughout our field study of CASE development at Carter Hawley Hale, the
First Boston Corporation and SEER Technologies. We also thank Michael Oara and Rachna Kumar for
their assistance with the development and implementation of the repository evaluation queries. All errors
in this paper are the responsibility of the authors.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-32

MONITORING THE SOFTWARE ASSET:

REPOSITORY EVALUATION OF SOFTWARE REUSE

ABSTRACT

Traditionally, software management has focused primarily upon cost control.
Today, with the emerging capabilities of computer aided software engineering (CASE)
and corresponding changes in the development process, the opportunity exists to view
software development as an activity that creates reusable software assets, rather than just
expenses, for the corporation. With this opportunity comes the need to monitor software
at the corporate level, as well as at that of the individual software development project.
Integrated CASE environments can support such monitoring. In this paper we propose
the use of a new approach called repository evaluation, and illustrate it in an analysis of
the evolving repository-based software assets of two large firms that have implemented
integrated CASE development tools. The analysis shows that these tools have supported
high levels of software reuse, but it also suggests that there remains considerable
unexploited reuse potential. Our findings indicate that organizational changes will be
required before the full potential of the new technology can be realized.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-32

Traditionally, the management of software development has focused upon

controlling its expense. The predicted benefits of a software development project may

seem remote or speculative, but its costs are immediate, and highly visible. The resulting

tendency to focus management attention on cost reduction is reinforced by the generally

accepted practice of reporting software development as an expense, rather than as an

investment (Boehm and Pappacio, 1988). As a result, the prime concern of senior

management has been to limit current software development costs, and to control those

that are likely to occur in the future when current systems are maintained and enhanced

(Bailey and Basili, 1981; Grammas and Klein, 1985).

1.1. Monitoring Software Expenses

Following the time-worn epithet "You can't manage what you can't measure," it is

clear that if management efforts are to focus on controlling software costs, then

measurement efforts similarly must focus on:

* gauging a variety of dimensions of development costs and the resulting software
outputs; and,

* determining the levers that can be used by management to improve cost efficiency.

To date, the bulk of management efforts to improve cost efficiency in software

development have centered on improving software development project management.
I

Much of this has been accomplished through the establishment of measurement and

metrics programs that gauge project-level development productivity, for example, in

terms of function points delivered per person month of development, or performance in

terms of development cost overruns as a percentage of budgeted project costs.

We can take an alternative perspective, as well. This perspective involves thinking

of software development as a process that leads to the creation of corporate assets that

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-32

will produce value for the firm over an extended lifetime of use. In this view, emerging

computer-aided software engineering (CASE) tools that emphasize software reusability

(Lenz, Schmid and Wolfe, 1987; Pollack, 1990; Rombach, 1991) can mean that much of

the real value of modular "software assets" will be derived from the extent to which they

can:

* defray the costs of the construction and testing, and raise the overall level of
perceived quality and reliability of systems that are delivered;

* speed the implementation of new systems while first-mover competitive advantage
opportunities still exist in the business areas that the software is meant to support;

* be leveraged across projects and areas of the f k n in support of multiple
businesses.

1.2. Repository Evaluation: A New Measurement Paradigm for Software Asset
Management

The software asset management view was recently articulated by Banker and

Kauffman (1991a) and Karimi (1990) and related issues are under scrutiny by a number

of research groups (see for example, Apte, Sankar, Thakur, and Turner, 1990; Banker,

Kauffman and Zweig, 1990; Barnes and Bollinger, 1991; Basili, 1991; Chen and Sibley,

1991; Nunamaker and Chen, 1989), whose investigations focus on how CASE tools

change the software development process through software reusability in the design,

construction, testing, and maintenance phases of the software development life cycle.

Where should measurement of software as an asset occur? Monitoring a system

as it is built will answer many questions, especially questions concerning the factors

affecting the cost of building it. To manage it as a contributing part of the software asset

requires that we also be able to monitor it at the level of the organization or enterprise.

Even relatively simple metrics, collected at that level, can answer key questions for senior

managers -- questions that are important to long-term firm performance, but that have

not been well articulated or that have been ignored altogether.

Center for Digital Economy Research
Stem School of Businers
IVorking Paper IS-91-32

This paper develops empirical results based on a new software engineering

measurement paradigm: repository evaluation. An integrated CASE environment

maintains all of its software and, more importantly, all of its information about that

software (its design, its history, its interactions with other system elements) in a single

structured repository. Much of this information is precisely the information that can

support the management of those software assets.

The next section explores more deeply the issues that have led us to this

perspective, and the kinds of questions that it will enable management to answer.

Section 3 illustrates the measurement paradigm using data obtained from two large firms

that have implemented repository-based integrated CASE tools. On the basis of an

intuitively appealing model of software reuse, an analysis of the firms' repositories is used

as a basis for evaluating their software reuse efforts. Section 4 presents additional

discussion of software reuse within those firms, and uses the results of the analysis to

examine the model in greater depth. The paper concludes by outlining our broadened

understanding of software reuse, and by identifying new questions raised by our

repository evaluation.

2. SOFTWARE ASSET MANAGEMENT AND REPOSITORY EVALUATION: THE
1 NEED FOR NEW PARADIGMS

Our call for a new measurement paradigm is based on three related elements.

First, there are important questions related to a firm's software development activities,

which project-level analysis cannot adequately address, but that need to be examined

more closely. Second, new software design paradigms are emerging -- object-based and

object-oriented design in particular (Booch, 1989; Meyer, 1988) -- whose full benefits can

only be realized through enterprise-level software management. Third, CASE technology,

and especially repository-based integrated CASE, offers a mechanism for automating

measurement so that more frequent and detailed data collection is feasible, without

forcing management to shift labor away from development and into the manual collection

of project performance metrics. This creates significant opportunities to study software

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-32

reusability.

2.1. Why Measure at Levels Other Than the Project Level?

At the core of our perspective is the argument that measurement at the project

level provides too narrow a focus for those who are responsible for multiple systems on

an ongoing basis. Those managers want to know not only whether a system is right for

its task, but also whether it is right for the other systems, and the future systems, of the

organization. Their questions include:

* Does the application "fit" the overall architecture of the firm's systems? Or is it
different in ways that would explain variances in development performance and
subsequent contributions to firm-wide reusability?

* Does the application contribute a fair share to software reuse at the organizational
level? Or does it fail to meet targets for software reuse? If so, does it contribute
to reuse in subsequent development efforts to a greater extent than other
projects?

* How large a portion of the software asset does a given system represent? How
large a portion of the software liability did the system create? How do the two
relate to each other?

It is no failing of project level metrics that they do not answer questions about

software assets; they were never meant to answer them. Such questions become

meaningful in the context of multiple systems.

2.2. Towards Software Asset Management: Recent Industry Experience

A number of organizations have begun to implement measurement programs

directed at the management of the software asset. They are attempting to assess the

leverage on development costs created by reusable software, the growth and evolution of

repository-based software, and the extent and distribution of software assets as they exist

at the enterprise level.

For example, Apte, Sankur, Thakur and Turner (1990) reported on the effects of

Center for Digital Economy Research
Stem School of Businers
IVorking Paper IS-91-32

the successful implementation of a firm-wide software reusability strategy at Mellon

Bank, a large regional commercial bank. This work was undertaken by a firm that

already had significant experience with implementing programs to gauge the productivity

of its traditional development and maintenance activities.

The First Boston Corporation, a large New York City-based investment banking

firm, has examined its CASE-based development activities with an emphasis on the cross-

application business value of software reusability. Banker and Kauffnnan (1991b)

reported on order-of-magnitude productivity gains attributable to the firm's CASE

technology and its software reusability strategy in a multi-year systems development effort

that led to wholesale replacement of the firm's core trades processing systems. In this

research, the authors found that it was necessary to extend current evaluative models in

the software engineering economics literature to capture the effects of software

reusability as a cost driver in CASE-based software development. An important ancillary

finding of the research was that the resulting functionality of the software was perhaps

even more important to the bank in sustaining its competitive position in a rapidly

changing world of global electronic trading. (Clemons (1991) reinforces this point by

indicating that an inability to rapidly deliver software in support of new business

opportunities poses a "functionality risk" for software asset development.)

Subsequently, the senior management of the firm's software development

organization moved to implement a program to measure the extent to which reuse was

occurring at the project and the repository levels. The firm's CASE software has been

enhanced to automatically compute function points, reuse levels, and other useful

metrics, at both levels.

In each case, manual measurement of the software metrics that were collected

would have been a difficult, time-consuming and expensive task. Yet without this

information, management would be hard pressed to monitor the extent to which reuse

creates leverage in software development. Fortunately, object- and repository-based

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-32

CASE does much to change that.

3. SOIWWARE REUSE: AN APPLICATION OF REPOSITORY EVALUATION

Some of the most interesting questions for firms that have invested in CASE

technology center on the issue of software reusability; this is an area in which CASE-

based development has the potential to create extraordinary value (Bouldin, 1989;

McNurlin, 1989; Moad, 1990; Pollack, 1990; Sentry, 1990). However, this promise has

not been broadly substantiated in industry, since the technology has only recently been

deployed, nor in software development performance research, which has only recently

begun to examine CASE-based development platforms (Kemerer, 1989; Norman and

Nunamaker, 1989; Nunamaker and Chen, 1989; Scacchi and Kintala, 1989; Senn and

Wynekoop, 1990).'

The success of a strategy that emphasizes software reusability can only partly be

evaluated at the level of the software development project. Project-level statistics can tell

us how successful a project is at reusing existing code, but cannot differentiate between

projects whose new code is reused by subsequent projects and those whose code is

destined for only a single use. The former software represents a corporate asset in a

sense that the latter does not. A program of repository-level monitoring can identify, and

help to control, such projects. Of potentially greater importance is the ability of such

measurement to answer enterprise-level questions. For example:

* Is most of the observed reuse limited to a small proportion of the software?
What are the observed characteristics of reused software? Can reuse levels be
increased by imparting these characteristics to software intended for reuse?

'The reader interested in obtaining additional background on software reuse would
benefit from looking at three recent papers which bring the literature up to date: K a W
(1990), Kim and Stohr (1991), and Banker, Kauffman, Wright and Zweig (1990). For an
older, but still useful examination of the state-of-the-art in software reusability, see the
Special Issue on Software Reusability of the IEEE Transactions on Software Engineering,
September 1984. This issue contains articles with an overview of the statistics available at
that time on reuse and then-current technical strategies to promote reuse.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-32

* What is the CASE technology's contribution to reuse? How much depends upon
I the way the technology is managed?

* Do expert programmers exhibit much higher levels of reuse than novices? Is
reuse a skill that can be taught?

* How effective are efforts to design for reuse? Do objects specifically designed to
be reusable show significantly higher levels of reuse?

These questions presuppose the existence of robust and readily implemented

metrics that provide the right information. (Researchers have just begun to understand

how to measure and interpret metrics for software reusability (Banker, Kauffman and

Zweig, 1990; Gaffhey and Durek, 1989).) This is not to say that organization-wide

software reusability monitoring cannot be carried out in a traditional software

environment. On the contrary, such monitoring is not only possible, but eminently

worthwhile.

It is difficult, however -- sufficiently difficult that it is rarely done. And because

the development environment does not support such measurement, when it is done, it

tends to be a one-time occurrence, rather than part of an ongoing program. An

integrated CASE tool, by maintaining a database of information about all the elements of

a system in a single uniform repository, makes it practical to monitor the system

continuously.

3.1. An Integrated CASE Environment (ICE)

We next discuss the use of repository-level measurement to assess the attempts of

two organizations to realize high levels of software reuse through the adoption of CASE

technology. The CASE technology implemented at both research sites was ICE (an

acronym for Integrated CASE Environment -- not its actual name), which was
I

deliberately designed with reusability as an objective.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-32

ICE is an integrated CASE environment of object-based design. Its objects

include Screen Definitions, Report Definitions, Files, Data Domains, Fields, and

Database Views, each class having its own procedures and semantics. Most of the

procedural functionality of this language is embodied in high-level Rule Sets. Rule Sets

are written in a fourth-generation programming language from which code is generated

automatically and later compiled for the target machine. All interactions between objects

are mediated by Database Views: If a Rule Set invokes a Screen Definition, for

example, it will typically use one output View to send data to the terminal and one input

View to receive data from the terminal. A Rule Set may also call an existing 3GL

module. (It should be noted that ICE'S objects are objects of the CASE environment

rather than objects of the application environment. The 4GL is not an object-oriented

programming language, though ICE can, and does, support object-based design.)

All the objects of the application systems are stored in a single repository. All

calling relationships between objects are also maintained in this repository, in the form of

entries to database tables. An overview of the contents of the repository of the research

site is given in Table 1. Site One is the larger of the two, but Site Two's applications are

more data-intensive, as may be inferred from the relatively large number of data objects.

Neither site has created many 3GL modules for its new systems, but Site One is making
I use of a large inventory of 3GL modules (primarily modules which carry out highly

specialized computations) from older systems which are being replaced.

Insert Table 1 about here

ICE implements software reuse by adding a calling relationship between a new

object and one that is already in the repository. Beyond the obvious role this capability

plays in facilitating reuse, it also makes it practical to monitor reuse, without having to

examine individual programs, by analyzing the repository's database of calling

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-32

relationships.

3.2. Measurement of Software Reuse

The structure of the repository makes it practical to automate reuse analysis. An

application system consists of a high-level Rule Set, designated as the root of that system,

all the objects (mostly other Rule Sets) which it calls, and all the objects which they call,

directly or indirectly. Collectively, these objects are structured as a hierarchy that defines

the application. Since all these calls are stored in the repository in a uniform manner, an

automated analyzer can use this data directly to determine which objects are called by,

and thus belong to, which systems, and how many times each object is called.

The analyzer is used by designating a repository object as the root of a query.

Depending on where this object resides in the hierarchy, the output could be an analysis

of a subsystem, a system, or even the entire repository. The analyzer uses the

information in the repository to navigate the calling hierarchy and identify all the objects

called, directly or indirectly, by the root object, and to determine how many times each

object is called.

Since the repository contains complete histories of each object (as well as the

objects themselves) the analyzer has access to descriptive information about the objects,

such as their age, the identities of their developers, and the systems for which they were

originally created. (Note that it is imprecise to speak of an object as 'belonging' to any

one application system. An object is part of any system which calls it.)

A number of measures of software reuse may be computed, depending on the

purpose of the query. For the discussion that follows, reuse will be measured in terms of

reuse percentage, which we define as the proportion of objects that were taken of£ the

shelf, rather than programmed from scratch (Banker, Kauffman, Wright, Zweig, 1990;

Gaffney and Durek, 1989). That is,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-32

REUSE-PERCENTAGE = 10 0 * (1 - NUMBER-OF- UNIQUE-OBJECTS)
NUMBER- OF- OB JECT- CALLS

In the absence of reuse, each unique object would be called only once, and the

reuse percentage would be 0. In the example portrayed in Figure 1, there are four

unique objects: A, B, C and D. But there are five object calls (counting the original

invocation of A), as B and C each call D. In the absence of reuse, D would have to be

replaced with two unique objects Dl and D2. Given Rule Set A as the root of this

query, the analyzer would identify B and C as the objects called by A, and would identify

D as being called by B and by C. This subsystem, then, has five calls for four unique

objects: Reuse percentage is 100 * (1 - 419, or 20%.

Insert Figure 1 about here

A further distinction may be made between internal reuse and external reuse.

Internal reuse is the multiple use of an object (or subroutine, or procedure, or module)

within the project or application system for which it was originally written. External reuse,

the use of an object originally written for another system, is more difficult to achieve,

since it requires compatibility (planned or accidental) of design (Allen, Krutz and Olivier,

1990; Cohen, 1990) but it is, by that token, the source of the greatest potential gains.

Ekternal reuse makes it possible to take advantage of the design efforts of previously

developed software assets.

By measuring reuse over time, we can assess the success of the research sites in

implementing a software reuse strategy through the adoption of ICE. We can also begin

to open the black box of software reuse and what factors -- technological and otherwise

-- determine the success of the reuse effort.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-32

11

Figure 2 presents a simple model of reuse that might motivate the design of a

CASE-based tool to support reuse. The chance of reusing an existing object rather than

writing a new one is seen to depend upon the availability of potentially reusable software,

and upon the programmer's ability to find it. ICE supports reuse by maintaining a

growing pool of reuse candidates within a single repository, by providing a keyword

search mechanism for locating appropriate objects, and by automating the mechanics of

reuse.

Insert Figure 2 about here

This view of the reuse process suggests a number of predictions:

1. l'he pool of reusable objects will increase over time with the size of the repository,
and so, therefore, will the level of reuse.

2a. Object belonging to the system currently being programmed are more likely to be
known to the programmer, so there will be a high level of internal reuse.

2b. By a similar token, we expect programmers to exhibit high leveb of reuse of objects
that they wrote themselves. Both these familiariq eflects may be mitigated by the
presence of a good search mechanism.

3. Given a high level of reuse of familiar objects, we may expect reuse leveb to be higher
for larger systems, since they represent a larger pool of reusable objects and reuse
opportunities.

4. Programmers with more experience at the site will be familiar with more of the
sofhare, and will therefoe experience higher leveki. of reuse.

33. Repository Growth and Software Reuse

Reuse levels were tracked at both research sites over the first two years of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-32

application systems de~elopment.~ Figure 3 presents the growth in Rule Set population

and reuse during that time.3

Insert Figure 3a and 3b about here

It is immediately clear that our first prediction was incorrect: The repository grew

steadily during this period. So did the experience of the programmers, since this was

their first experience with ICE. Reuse percentage, however, achieved a strong initial

value and never bettered it. The level of reuse did not grow as the pool of reuse

candidates grew. Our second prediction, however, which was based on the belief that

familiar objects were more likely to be reused, was borne out more strongly than

expected -- sufficiently strongly, in fact, to offer an explanation for the failure of our first

prediction.

3.4. Reuse of Familiar Objects

We predicted that programmers would be most likely to reuse objects from the

system upon which they were currently working, as those would be the most easily

identified as being appropriate for the task on hand. We also predicted, on the basis of

the belief that familiarity was an important reuse factor, that programmers would exhibit

a strong propensity to reuse software written by themselves. What we did not expect was

the degree to which this would be true.

2The two sites had very different startup experiences. The data presented here is for the
twenty-month period following the first development successes.

3Rule Sets are the 'backbone' of ICE application systems. They are also the most time-
consuming objects to write. (3GL Modules could be more time-consuming, except that they
are typically used in cases where special-purpose routines are already "on the shelf.") For
these reasons, we concentrate upon Rule Sets for this analysis of software reusability.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-32

13

Figure 4a shows the relationship between internal and external reuse: 85% of all

observed instances of reuse were internal. That is, if use was made of a previously

written rule, that rule was almost always one that had been written for the same system.

Insert Figures 4a and 4b about here

This offers a potential explanation of the levelling off of reuse over time. Reuse

appears to be driven by the pool of familiar code, rather than by the entire pool of reuse

candidates. Each project is a self-contained universe (we assume that programmers will

be most familiar with the code with which they are currently working than with that upon

which other programming teams are working) and new projects derive little benefit from

previous projects.

The propensity to reuse objects from the same application system could have a

I second explanation, as well: In the absence of an organization-wide effort to design for

cross-application reuse, a system's own objects might naturally exhibit a better 'fit'. Our

examination of the propensity of programmers to reuse their own software suggests that

familiarity is indeed the driving force behind our observation.

Figures 4b shows the prevalence of self-reuse. Despite the presence of over 250

other programmers at Site One and over 100 other programmers at Site Two, over 60%

of the reuse consisted of programmers reusing their own software.

If reuse is driven by the availability of familiar objects, we would expect to find, as

we also predicted, that larger projects exhibit higher levels of reuse -- since they provide

larger pools of familiar reuse candidates. This prediction was moderately supported.

Figure 5 shows the relationship between system size and reuse. The correlation between

these two factors was 37% (p=0.09) for twenty-two application systems at Site One and

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-32

58% (p=0.04) for thirteen application systems at Site

Insert Figure 5 about here

3.5. Individual Programmer Differences

As with so many software-related activities, a small number of outstanding

programmers appear to account for a disproportionate amount of the reuse achieved.

Figure 6 shows the distribution of programmer productivity and reuse. The top 5% of

the programmers accounted for over 20% of the code and for over 50% of the reuse,

with the top reusers achieving average reuse percentages as high as 75%.

Insert Figure 6 about here

It appears that reuse is learned: Reuse levels were consistently higher for

programmers with larger total outputs. The correlation between these factors is 50%

(p=0.03 for n= 19) at Site One and 60% (p=0.0001 for n='76) at Site Two.* We

considered the possibility that we were observing an attitude change over time, rather

than the learning of a skill, with the high-reuse programmers simply being the ones who

had been using ICE the longest, and had absorbed the reuse 'message'. The data did not

4Figure 5 uses a logarithmic scale to display system size, because order-of-magnitude
differences between systems make a linear display difficult to interpret. In fact, though, the
correlations between reuse and the log of system size at the two sites is exactly the same as
that between reuse and system size: 37% and 58%, respectively.

SOf the 110 programmers at Site Two, only the '76 who wrote at least one Rule Set were
included in this analysis. Our data for Site One represents a sample of 19 programmers out
of 250.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-32

bear this out: The partial correlations, controlling for months of ICE experience, were

I within 1% of the raw correlations.

In summary, it appears that ICE provides capabilities which allow programmers to

achieve high levels of reuse. Further, achieving reuse appears to be a skill which can be

learned over time. However, the pattern of reuse suggests that there remains

considerable unexploited reuse potential. Programmers are writing new objects rather

than searching for reuse opportunities.

4. REPOSITORY EVALUATION: FACTORS AFFECTING SOFTWARE

REUSABILITY

We interviewed developers to learn about the practice of software reuse from the

perspective of the users of the CASE tools. These interviews revealed some technical

barriers to the realization of code reuse opportunities. More serious, however, were the

organizational barriers and disincentives to reusing software.

4.1. Search for Reusable Software

ICE makes the invocation of a previously written object trivial. All objects reside

in the same repository, and are available for reuse. The main formal mechanism for

identlfylng such an object, however, is a keyword search mechanism, the use of which

often turns out to require more effort than programmers are willing to expend. (We

found no indication that developers are failing to enter keywords into the index. It

appears to be the case, though, that such keywords do not provide an efficient search

mechanism. Given the relative ease of writing any single object, programmers are often

reluctant to bother with an extended search.) This accords with the observations of other

researchers (Banker and Kauffman, 1991; Palmer, 1991; Vassiliou, 1991) who suggest

that search costs are one of the main barriers to software reuse.

4.2. Organizational Incentives

The more serious problem we identified revolves around incentives. The incentive

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-32

for programmers to reuse code is moderately weak. Reuse is viewed in a positive light at

these sites, but it is not rewarded. There is little managerial monitoring of reuse levels,

and programmers are valued -- as is usually the case -- for their ability to meet deadlines,

rather than for their ability to match technical benchmarks. On the other hand, there

are strong informal incentives for a programmer to prevent others from reusing his or her

code.

The creator of an object is its 'owner,' and every reuse of that object is a potential

call upon that owner to maintain the object in case of trouble -- most likely trouble

arising from its use within an application for which it was not originally tuned and tested.

Every reuse is also a constraint on the owner's subsequent ability to modify that object,

since any modification must meet the requirements of all users of the object. (Incentives

were not in place to motivate programmers to make their objects as reusable as possible

in the first place. A strong change-control mechanism that could protect programmers

was also lacking.)

In practice, programmers who wish to use an object from another application are

strongly encouraged (by the other programmers, not by management) to copy the object

in question, to rename it, and to use it as though it were a new object. We refer to this
I

practice as "hidden reuse," a form of reuse which is not captured by the monitoring

mechanism. (The related practice of "templating" is the dominant form of reuse in

traditional application environments.) Hidden reuse achieves only some of the goals of

software reuse: Coding effort and unit testing are reduced, but subsequent life cycle

savings, particularly in maintenance, are not realized.

43. Preliminary Conclusions about Reusable Software

The initial drive for reuse at the research sites was premised upon the assumption

that the primary determinants of reuse were technical -- that reuse could be achieved to

the extent that we had a large pool of reusable objects, and that we had good tools for

locating and using them. These expectations were correct, as far as they went, but they

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-32

17

did not go far enough. In particular, they did not consider the organizational

prerequisites for successful reuse. The exceptionally high levels of internal reuse further

suggested that design compatibility might have a strong effect upon reusability.

Figure 7 presents a revised model of software reuse, in light of the repository

evaluation results presented in Section 3. The mostly technical factors which the earlier

model presented as drivers of software reuse are still in place. And we note that the

research sites did achieve strong initial levels of software reuse, with reuse percentages of

about 35% at both sites, with the aid of the technical support provided by ICE. At this

point, however, reuse appears to have reached a plateau.

Insert Figure 7 about here

The immediate barriers to higher reuse levels appear to be organizational. Reuse

is encouraged, but it is not rewarded. What we have observed here is essentially

unmanaged software reuse. Software reuse is encouraged to happen, but no organized

effort is underway to make sure that it does happen. Programmers are not trained in

reuse, programmers are not rewarded for reuse, and effort is made to monitor and

manage reuse levels.

The weakest technical aspect of ICE with respect to software reuse is the keyword

search mechanism, which appears to be unequal to its task. This weakness may also be
I related to the lack of architectural support for reuse. Although programmers are

encouraged to take advantage of reuse opportunities as they arise, the various systems

are not specifically designed for reuse; when reuse opportunities do arise, it is by

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-32

The findings reflected in our repository evaluation and in our model suggest that

integrated CASE technology can indeed contribute to high levels of software reuse, but

that their full benefits can only be realized when corresponding changes are made in the

way software development is planned and managed.

5. CONCLUSION

CASE technology promises to support the realization of the asset value of

software in the most direct way, by supporting its reuse in subsequent development

efforts. By definition, the fulfillment of this promise can only be evaluated by monitoring

the organization's entire software asset. The repository-based design of integrated CASE

systems makes it practical to automate such analysis. While such automation is not

necessary in principle, an organization without it is unlikely to spare the resources to

monitor its software assets on an ongoing basis. Management resources will be devoted

to the more urgent priority of monitoring current projects.

This paper presents a new measurement paradigm, repository evaluation, that -

takes advantage of the facilities of the CASE environment in order to assess the extent to

which a software reusability strategy is supported by that environment. The paradigm is

illustrated through an analysis of reuse at two sites which are pursuing reuse by means of

the same CASE tool.

Repository evaluation allowed us to critique a simple model of software reuse, and

to suggest a richer one. It gave us preliminary answers to our original questions, and

suggested a more focused set of questions whose answers we are in the process of

pursuing:

%e kind of domain analysis that such design would require would also be likely to
result in a vocabulary of keywords which would make the search mechanism more effective.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-32

* We asked whether a small proportion of the software accounted for most of the
reuse, and found that it did: Approximately 15% of all Rule Sets are reused at
least once. 15% of those, or under 3% of the total, account for half of the
observed instances of reuse. We are now investigating the characteristics of
heavily reused objects, to determine whether they can be used in the development
of design guidelines.

* We investigated the extent to which the CASE technology supported reuse, and
found that it enabled both sites to achieve steady-state reuse percentages of
approximately 35%, but that higher levels probably depended on non-technical
factors. We are now attempting to estimate the degree of unexploited reuse
potential, and the costs of achieving it.

* We asked whether expert programmers were also better at reuse, and found that
the highest levels of reuse were achieved by the most productive programmers.
We have seen evidence that reuse is, at least in part, a learned skill. We are
investigating the question of whether it is one that can be taught.

Such study can help us to further refine our understanding of software reuse. For

example, in our presentation we have treated all objects as being equal in potential

reusability and in value. In fact, the reuse of complex objects may yield far greater gains

than that of easily-constructed objects. The same repository capabilities that allowed us

to automate the analysis of reuse also enable us to automate a more detailed analysis of

the objects of reuse, and to answer questions such as:

* What proportion of the$nctionality of a system and of its development cost does
the reuse represent? Monitoring this offers the promise of allowing an
organization to directly estimate the value of its reuse activities.)

* A high degree of software complexity in existing software makes it sigmficantly
more expensive to adapt (Banker, Datar, Kemerer and Zweig, 1991). Does it
have a similar effect in a 4GL/CASE setting?

* Most systems have high levels of software redundancy, with overlooked reuse
opportunities adding to ongoing development and maintenance costs. How can
we measure this?

Function points, software complexity and redundancy are among the metrics which can

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-32

20

be automated in integrated CASE environments (Banker, Kauffman, Wright and Zweig,

1991), and which can provide additional repository evaluation tools.

The tools that enabIe us to address these questions can also aid managers in

examining a broad range of software asset management issues which some organizations

are just beginning to address (Miller, 1990) such as:

* The balance between the distribution of functionality in an organization, and the
distribution of software investment dollars and of the software maintenance
burden, measured in dollars per function point.

* The relative amounts of software functionality required to support various business
areas.

* The relative productivity rates for continuing maintenance of aging systems.

The measurement of software assets at the repository level, and the potential for

automating that measurement, makes such questions practical ones for managers to

pursue.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-32

REFERENCES

Allen, K, Krutz, W., and Olivier, D. "Software Reuse: Mining Refining, and
Designing," in TRT-Ada '90 Proceedings, December, 1990, pp. 222-226.

Apte, U., Sankar, C. S., Thakur, M., and Turner, J. "Reusability Strategy for
Development of Information Systems: Implementation Experience of a Bank," MIS
Quarterly, December 1990, pp 421-431.

Bailey, J. W., and Basili, V. R. "A Meta-model for Software Development Resource
Expenditures," in Proceedings of the 5th International Conference on Software Engineering,
1981, pp. 107-116.

Banker, R. D., Datar, S., Kemerer, C. F., and Zweig, D. "Software Complexity and
Software Maintenance Costs," Working paper #208, Center for Information Systems
Research, Sloan School of Management, MIT, 1991.

Banker, R. D., and Kauffman, R. J. "Reuse and Functionality: An Empirical Assessment
of Integrated Computer Aided Software Engineering (CASE) Technology at the First
Boston Corporation." MIS Quarterly, Fall 1991.

Banker, R. D., and Kauffman, R. J. "Automated Software Metrics, Repository
Evaluation and the Software Asset Management Perspective," Working Paper, Center for
Information Systems, Stern School of Business, New York University, 1991.

Banker, R. D., Kauffman, R. J., Wright, C. and Zweig, D. "Automating Software Metrics
for Repository-Based Integrated Computer Aided Software Engineering (ICASE)
Performance Evaluation," Working Paper, Center for Research on Information Systems,
Stern School of Business, New York University, 1990.

Banker, R. D., Kauffinan, R. J. and Zweig, D. Factors Affecting Code Reuse. Working
paper, Stem School of Business, New York University, December 1990.

Barnes, H. B, and Bollinger, T. "Making Software Reuse Cost Effective," IEEE Software,
8: 1, January 1991.

Basili, V. "Viewing Maintenance as Reuse-Oriented Software Development," IEEE
SofhYare, 7:1, January 1990, pp. 19-25.

Boehm, B., and Papaccio, P. N. "Understanding and Controlling Software Costs," IEEE
Transactions on Software Engineering, 1410, October 1988, pp. 1462-1477.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-32

Booch, G., "What is and What Isn't Object-Oriented Design." Ed Yourdon's Software
Journal, 27-8, pp. 14-21, Summer 1989.

Bouldin, B. M. "CASE: Measuring Productivity -- What Are You Measuring? Why Are
You Measuring It?" Software Magazine, 9: 10, August 1989, pp. 30-39.

Chen, M., and Sibley, E. H. "Using a CASE-Based Repository for Systems Integration,"
in Proceedings of the 1991 Hawaii International Conference on Systems Sciences, Hawaii,
IEEE, January 1991, pp. 5 78-587.

Clemons, E. "Evaluating Investments in Strategic Information Technologies,"
Communications of the ACM, January 1991.

Cohen, S., "Process and Products for Software Reuse in Ada," in TRI-Ada '90
Proceedings, December, 1990, pp. 227-239.

1
Gaffney, J. E., Jr., and Durek, T. A. "Software Reuse -- Key to Enhanced Productivity:
Some Quantitative Models," Information and Somare Technology, 315, June 1989, pp.
258-267.

Gramas , G. W., and Klein, J. R. "Software Productivity as a Strategic Variable,"
Inte$aces, 15: 3, May-June 1985, pp. 116-126.

Karimi, J. "An Asset-Based Systems Development Approach to Software Reusability."
MIS Quarterly, June 1990, pp. 179-198.

Kemerer, C. F. "An Agenda For Research in the Managerial Evaluation of
Computer-Aided Software Engineering (CASE) Tool Impacts," Proceedings of the 22nd
Hawaii International Conference on Systems Sciences, Hawaii, IEEE, January 1989.

Kim, Y., and Stohr, E. A. "Software Reuse: Issues and Research Directions," Proceedings
of the 25th Hawaii International Conference on Systems Sciences, Hawaii, IEEE, January
1992, forthcoming.

Lenz, M., Schmid, H. A, and Wolfe, P. F. "Software Reuse Through Building Blocks,"
IEEE Sojhare, 4:4, July 1987, pp. 34-42.

1

McNurlin, B. "Building More Flexible Systems", I/S Analyzer, October 1989.

Meyer, B. "Object-Oriented Software Construction." Prentice Hall, New York, 1988.

Miller, J.C. "Software Metrics at the General Electric Corporation", presented at
Strategic Information Architecture Workshop, SEI Center, Wharton School of Business,
University of Pennsylvania, June 22 1990.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-32

Moad, J. "The Software Revolution," Datamation, February 15, 1990, pp. 22-30.

Norman, R. S., and Nunamaker, J. F. Jr. "CASE Productivity Perceptions of Software
Engineering Professionals," Communications of the ACM, 329, September 1989, pp.
1102-1108.

Nunamaker, J. F. Jr., and Chen, M. "Software Productivity: A Framework of Study and
an Approach to Reusable Components," Proceedings of the 22nd Hawaii International
Conference System Sciences, Hawaii, IEEE, January 1989a, pp. 959-968.

I

Nunamaker, J. F. Jr., and Chen, M. "Software Productivity: Gaining Competitive Edges
in an Information Society," Proceedings of the 22nd Hawaii International Conference on
System Sciences, Hawaii, IEEE, January 1989b, pp. 957-958.

Palmer, C., "Software Reuse -- More than Just a Coding Issue," presented at the
USAF/STSC - HQ USAFBC Joint Software Conference, Salt Lake City, Utah, April 17,
1991.

Pollack, A. The Move to Modular Software. New York Times, April 23, 1990, pp. Dl-2.

Rombach, H. D. "Software Reuse: A Key to the Maintenance Problem," Information and
Software Technology, 33: 1, JanuarylFebruary 1991.

Scacchi, W. "Understanding Software Productivity: A Comparative Empirical Review,"
in Proceedings of the 22nd Hawaii International Conference on system Sciences, Hawaii,
IEEE, January 1989, pp. 969-977.

Senn, J. A, and Wynekoop, J. L "Computer Aided Software Engineering (CASE) in
I

Perspective." Working Paper, Information Technology Management Center, College of
Business Administration, Georgia State University, 1990.

Sentry Market Research, CASE Research Report, Westborough, MA, 1990.

Vassiliou, Y., Personal communication, April, 1990.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-32

Object Type Number of Object8

Rule Sets 8892
Screen8 7230
Domain8 4200
Filer 4236
3QL Module8 6062
Field8 6266
View8 6766

Table 1: An Overview of the ICE Repository

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-32

a) No Reuse: Five calls for five unique objects
Reuse percentage is 100 * (1 - 6/51, or 0%

Rule A a
b) Rule D is reused: Five calls for four unique objects

Reuse percentage is 100 * (1 - 4/51, or 20%

Rule A

I Rule B

Figure 1: An Illustration of Reuse Measurement

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-32

Software Derign
for Reuse -
Sirs of Pool
of Reure -
Candidate8

Exlrtence
of Reusable

Objects

Level of
Software

Reure

Familiarity -
Abillty

Indexing, - To Find
Keyword8 Approprfate

ObJeotr

Automatic ,-.
Search

Figure 2: A Preliminary Model of Reuse

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-32

-
Site One

..................................

....................

.............................

O l 4 8 8 * a U * I m

-8ia -+Raue*

Figwe 3a: Reuse and Repository Growth

Site Two

O P 4 8 8 * l a U * 1 2 0

- -Rewe

Figure 3b: Reuse and Repository Growth

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-32

[Za lnkmnd lkorr Cr]D lxtrmclt Rluu

Figure 4a: Internal and External Rewe

CZZown~)ott*.cr CrjlOUm-

Flgwe 4b: Reuse of Own Software

.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-32

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-32

Repository Size

@-CASE Support

Search Tool8

Technical
Factor8 -

Training b

Ownerehip b

Object Administration -
Team Size b

Reuse incentive8 -
Organizational

Factor8

Level of
Sof tware

Reuse

Software Deeigned
For Reuae l----J

Application Slre -
Synergy Acrors -
Burinens Areas

Figure 7: A Revised Model of Reuse

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-32

Architectural
Factor8

J

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-32

