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Neural Networks for Decision Support: 
Problems and Opportunities 

Neural networks offer an approach to computing which - unlike conventional 
programming - does not necessitate a complete algorithmic specification. Fur- 
thermore, neural networks provide inductive means for gathering, storing, and 
using, experiential knowledge. Incidentally, these have also been some of the 
fundamental motivations for the development of decision support systems in 
general. Thus, the interest in neural networks for decision support is immedi- 
ate and obvious. In this paper, we analyze the potential contribution of neural 
networks for decision support, on one hand, and point out at some inherent con- 
straints that might inhibit their use, on the other. For the sake of completeness 
and organization, the analysis is carried out in the context of a general-purpose 
DSS framework that examines all the key factors that come into play in the 
design of any decision support system. 

Keywords: Decision Support Systems, Neural Networks, Applications. 
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1 Introduction 

The term "neural networks" means different things to different people. Neural 
networks are popularly perceived as descriptive models, designed to emulate 
low-level operations in the human brain. Yet most computer scientists view 
the similarity of artificial neural architectures to the brain circuitry as no more 
than a useful analogy. This is because neural networks have proven to be 
powerful computational models in their own right, regardless of their biological 
justification. They offer novel solutions to many problems which defy standard 
algorithmic techniques, and they lend themselves nicely to new developments 
in parallel and optical hardware. 

Since the inception of artificial neural networks in the mid 19407s, the area has 
attracted scores of researchers from computer science, psychology, mathemat- 
ics, physics, and statistics. During the past decade, in particular, numerous 
networks were constructed to carry out a wide variety of computational tasks, 
primarily in scientific and in engineering applications. Most of this research, 
however, has been largely experimental [I]; It remains to be seen whether or not 
neural networks will become a widely-used computational paradigm, as some 
proponents of the area claim. 

Several hardware and software vendors now offer off-the-shelf products that en- 
able end-users to develop and test neural networks with minimal programming. 
Is it possible that these programs will eventually become popular business tools, 
like statistical packages and spreadsheet programs? The answer seems to go far 
beyond user-interface and performance considerations; It is related to deeper 
issues regarding the appropriateness of neural computing to the special nature 
of business applications, in general, and decision support systems, in partic- 
ular. Hence, we take the position that neural networks offer a great deal of 
promise, on the one hand, and a great degree of uncertainty, on the other; In 
this paper, we wish to systematically explore the limitations and potential of 
this technology to decision support applications. 

By and large, there are three different ways to think about neural networks: 
descriptive, computational, and normative. The descriptive line of thought, 
popular among neuroscientists and psychologists, is concerned with the prox- 
imity of the artificial model to biological systems. Indeed, the "hardware" of 
neural networks was much inspired by the architecture and behavior of the brain 
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circuitry, to the extent that we presently (don't) understand it. For example, a 
real neuron tends to fire only when its combined input exceeds a certain thresh- 
old value. This non-linear firing pattern is simulated in the artificial neuron by 
a numeric activation function which behaves in a similar way. 

The computational approach to neural networks, popular among computer sci- 
entists, views this model as a novel computational paradigm, akin to a Von- 
Neumann or a Turing machine. Over the last decade, numerous experiments 
have indicated that neural "machines" can efficiently solve many problems 
that defeat standard sequential algorithms. This led to the pragmatic conclu- 
sion that neural networks have an important computational merit independent 
of their controversial biological interpretation. Hence, the computational ap- 
proach to neural network focuses more on the functionality and limitations of 
the model, and less on its external validity. 

Finally, there is the normative view of neural networks, which examines the 
mathematical and statistical backdrop of neural architectures and "learning" 
algorithms. This approach attempts to cut through the esoteric terminology 
of the field, and elucidate what neural networks really do in the way of data- 
analysis. The normative interpretation of neural networks is critically impor- 
tant; First, it shows where neural networks are isomorphic to related techniques 
like linear regression and cluster analysis. Second, it puts the finger on where 
neural networks either violate or extend what can be already done with other, 
more traditional models. 

In this paper we adopt the computational view of the field, perceiving neural 
networks as a resource that can be used to augment decision support systems. 
With this pragmatic perspective, we wish to answer such questions as: how do 
neural networks affect the structural aspects of a DSS? What kind of decision 
problems lend themselves to neural networks? What are the contingent rela- 
tionships between the structure (or lack of) the underlying decision problem 
and alternative neural architectures? 

Following Ariav and Ginzberg [6] ,  we observe that the building blocks of any 
DSS are environment, components, and resources. This LLDSS framework" pro- 
vides the applied context in which the above questions will be answered. In par- 
ticular, the plan of the paper is as follows. Section 2 provides a brief overview 
of key neural network concepts. Section 3 describes the DSS framework. This 
sets the stage for the next three sections, which survey the typical environ- 
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m e n t  of neural network applications (section 4), the components that make up 
a neural networks-based DSS, (section 5 ) ,  and the software and hardware re- 
sources which are presently available to designers of neural networks (section 
6). Section 7 discusses several decision support themes which are relevant to 
neural networks, and section 8 provides concluding remarks. Readers who are 
not interested in the technical aspects of neural networks may skip sections 
2.1-2.3 without losing the main thread of the paper. All the same, we feel that 
this material is quite readable to those who are willing to endure some minimal 
mathematical notation. 

An Overview of Neural Networks 

The computer science literature offers several comprehensive reviews of neural 
networks, and the interested reader is referred to Lippmann [43], Wasserman 
[61], and Feldman et a1 [19] for a sample of highly readable surveys/tutorials 
of the subject. This section attempts to pack such a survey into a few pages, 
with the objective of equipping the reader with some essential terminology and 
conceptual understanding of how neural networks are constructed, trained, and 
used, in the field. In particular, we'll focus on feedforward neural architectures 
and learning algorithms, as they unfold in the context of a typical business 
classification problem. For the sake of clarity, we'll begin with the simplest 
neural model - consisting of a single neuron - and gradually extend it to a 
multi-layered, feedforward network of neurons. This model is by far the most 
widely-used neural architecture in business applications. A neural net work is 
a collection of many independent processing elements, also called "neurons" 
or "units." Each unit (except those at the network's boundary) is linked to a 
set of input-units, from one end, and to a single output-unit, from the other. 
The inter-unit connections are parameterized by a set of numeric weights which 
modulate the intensity of the messages that go through the network. When 
a unit receives a set of messages (encoded as numeric values) via its incoming 
connections, it multiplies them by their respective weights, sums up the result, 
and passes it to a sigmoidal activation function which determines the unit's 
output. The simplest activation function is the signum function, which acts 
as follows. If the weighted sum exceeds a certain threshold value, the function 
outputs 1. Otherwise, it outputs -1. This non-linear transformation serves 
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to either cancel out a weak message (if it falls short of the threshold), or, 
alternatively, amplify it to an upper-bound (if it exceeds the threshold). The 
resulting message is transmitted via the unit's outgoing connection to another 
unit, and so on and so forth. 

Neural networks are an old emerging technology. Versions of the basic model 
- also called the perceptron machine - were first articulated by McCulloch and 
Pitts [45] and by Widrow and Hoff [63]. Rosenblatt developed the first per- 
ceptron learning algorithm [49], and Minsky and Pappert provided a brilliant 
analysis of their mathematical properties [46]. This early work evolved into a va- 
riety of neural network "sub-species" like backpropagation networks [51], coun- 
terpropagation networks 1391 [29], Hopfield networks 1321, associative memories 
[41], and adaptive resonance networks [ll], to mention some leading paradigms. 
These models differ from each other in terms of their connectivity pattern (e.g., 
full or partial), topology (free-form or layered), data-flow (cyclical or acyclical) , 
data-type (discrete, binary, or real), output representation (localized or dis- 
tributed), and learning algorithms (autonomous or feedback). In spite of these 
differences, though, all neural models are basically different variations on the 
same theme: a connected collection of many independent processors, working 
in tandem to carry out a global computational task. 

With that in mind, it's important to understand that different neural models 
don't compete with each other; Rather, they represent different specializations 
designed to solve different types of problems. In this paper we focus on one 
specific model which lurks behind most if not all business applications of neural 
computing: feedforward networks (also called backpropagation networks). This 
model, which resulted from the seminal work of the PDP Research Group [51], is 
widely-used in practice for a number of reasons. First, many important business 
problems can be cast in terms of classification, a generic task which lends itself 
nicely to feedforward networks. Second, the training algorithm of feedforward 
networks, known as backpropagation learning, is relatively established and well- 
understood. Finally, and perhaps most importantly, there exist by now many 
software shells that enable users to build and train feedforward networks with 
minimal programming. 

The extension of feedforward networks from a single-neuron machine to a multi- 
layered architecture is outlined in figure 1. The simplest model consists of a 
single neuron designed to classify n-dimensional objects into 2 classes. This 
basic model can be extended in two different ways. First, in order to clas- 
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Figure 1: Three successive architectures of feedforward networks 

sify objects into m > 2 classes, one adds more neurons to the network, each 
representing a different class (Figure 1-b). Second, in order to classify objects 
which are not linearly separable, one'adds more layers of neurons between the 
n-ary input-layer and the rn-ary output-layer (Figure 1-c). The "hidden layers" 
are designed to model non-linear boundaries in the objects-space, as will be 
explained shortly. 

Hence, feedforward networks represent an elegant ascent from simple to complex 
architectures. The extensions from one architecture to another are straightfor- 
ward, a complex network being a union of simpler networks, all the way down 
to the level of individual neurons. In other words, all feedforward networks 
are made up of the same atomic material - independent neurons - arranged in 
different pat terns of connectivity. Therefore, the computational behavior of the 
single neuron holds the key to the behavior of the entire network. 

2.1 The Single-Neuron Model 

Consider the following problem, taken from the domain of direct-mail market- 
ing. A consumer-products company plans to promote a new product through a 
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fancy (and expensive) mailing kit. In order to cut cost and maximize yield, the 
company seeks to approach only those customers who are likely to purchase the 
new product. Strictly speaking, the company wishes to partition its customers- 
base into two categories: "targets" (q) and '"on-targets" (cz). This, of course, 
is a generic classification problem: the objective is to sort n-dimensional entities 
(customers) into m classes (here m = 2). 

We assume that the company maintains a customers file and a transactions 
file. The first file keeps track of n customer attributes, denoted XI,. . . , X,, e.g. 
age, income, zip-code, etc. With this notation, the universe of all possible 
customers is the cartesian product X = XI x . . . x X,, a specific customer is 
denoted x = < XI ,  . . . , x, > E X, and the company's customers file is denoted 
Xf c X1. The t ransact ions file specifies which customer purchased what 
product, and when. We also assume that there is a certain metric or a domain 
expert who can partition the company's products into two sets: products that 
are "related" to the promoted product, and products that are "unrelated." 
Based on these assumptions, the company's files can be reprocessed to generate 
two data-sets, as follows: Xl = {xlx E- Xi purchased a re la ted  product), 
and X2 = Xf\Xl.  The first set contains examples of customers who might 
be interested in the promoted product, whereas the second set contains all the 
other customers. To complete the problem's setting, suppose now that the 
company has access to a mailing list, denoted X3 C X, consisting of potential 
adopters of the product whose buying behavior is unknown. Can we use XI and 
Xz and a neural network to predict which X3 customers are likely to purchase 
the new product? 

We begin with a simple network, consisting of n input-units and a single 
processing-unit (figure 2). The input-units are connected to the processing- 
unit by n "wires" whose "widths" are represented by a set of numeric weights, 
denoted wl, . . . w,, or w. The input-units store the descriptor values (customer 
attributes), denoted xl, . . . x,, or x. The processing-unit is characterized by 
two mathematical operations: a fixed weighted-sum operator which computes 
the inner-product wx = C7 w;x;, and a fixed activation function, denoted g ( * ) ,  
which maps wx on [-l,l]. If the network "thinks" that the customer in ques- 
tion should be classified as "target," it will output 1. Otherwise, it will output 
-1. 

lThroughout this section, slanted letters (x), bold-face letters (x), and upper-case letters (X) represent 
scalars, vectors, and sets of vectors, respectively. 
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Figure 2: The generic structure of a neuron 

The training data consists of the sets Xl and X2, whose member vectors are 
known ex-post to be targets and non-targets, respectively. The training phase is 
a cyclical process in which a "teacher" (which is actually a computer program) 
repetitively samples objects form Xl and Xz and hands them over to the net- 
work for classification. After comparing the network's response to the correct 
classification, an error-minimizing procedure adjusts the network's weights in 
an attempt to correct wrong classification decisions. Next, the network is fed 
with another object, and the process continues. The details are as follows: 

1. Initialize w and 6 to small random values. 
2. Select at random one of the training sets X I  or Xz and sample an 

object x from it. If x f XI, set d = 1. Otherwise, set d = - 1. 
3. Compute the classification of x as follows: 

If g(wx - 8) > 0, set y=l. Otherwise, set y=-1. 
4. If x was misclassified, compute a new set of weights w' as follows: 

W: = W; + 77 - ( d  - y) -5;. 

5. Set w = w f  and go to 2. 

The output of the model, which is determined in (3), is denoted y. The param- 
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eter 7 in (4) is a gain-factor between 0 and 1 which determines the rate at which 
the model converges to a stable set of weights. The threshold value 6 appears 
to be fixed in (1-5), but this is done only for the sake of clear exposition. In 
most models the threshold is made a learnable parameter through the following 
modification of (1-5): (a) add a new input-unit x0 to the model and clamp its 
value to -1; and (b) replace g(wx - 6) in step 3 with g(wx) (w and x are now 
(n $ 1)-ary vectors); This way, 6 becomes yet another weight (wo) which is 
adjusted by (1-5) like all the other weights in the model. 

In general, the model is a symmetric implementation of Hebb7s rule of learning 
[28]: a connection between two neurons should be strengthened whenever both 
neurons fire. In the present model, when x is misclassified, step (4) serves to 
either increment, or decrement, the weights along the active connections (where 
x; # 0), according to the direction of the classification error. Hence, the weights 
are continuously modified to promote improved network performance. In fact, 
the data-driven weights constitute the only "moving parts" of the network's 
machinery; All the other features of the network, namely the units topology 
and the functions w - x and g(.), remain constant throughout the network's 
operations. 

The termination condition of (1-5) is pragmatic. If the objects space X is 
linearly separable, the procedure is guaranteed to converge to a stable set of 
weights (this result is know as Rosenblatt theorem). In other cases the process 
is halted when all the examples have been exhausted. The entire procedure is 
the computational reality behind the popular claim that neural networks can 
"train themselves" or "learn from experience." We see that these anthropornor- 
phic phrases should not be taken at face value: neural learning algorithms are 
based on blind error-minimizing procedures which are far-fetched from what 
we normally construe as human learning. It is possible that human learning at 
its lowest level, namely at the neuron's level, is somewhat similar to (1-5), but 
there is absolutely no biological evidence that this is indeed the case [14]. 

2.2 First Extension: More Neurons 

Suppose now that instead of classifying the customers into two categories, 
the company wishes to discern three categories, as follows: prime-targets, 
secondary-targets, and non-targets, denoted cl,cz and CQ, respectively. 
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(This will make sense if, for example, the company has two types of mailing 
kits which vary in production and mailing cost .) 

In order to represent the three categories, we extend the single processing- 
unit model as follows. First, the input-layer of the network remains the same, 
with n input-units, one for each customer attribute. This layer however will 
be connected not to a single processing-unit, as before, but rather to three 
processing-units, denoted yj, j = 1,2,3. Each of these units will be connected 
to the same n input lines by a separate weight vector wj =< wlj , .  . . , w,j > 
, j = 1,2,3 (see figure 1-b, and note that for a fixed j the model reduces to the 
single-unit model depicted in figure 1-a). 

When a new customer's profile x =< XI,. . . , x, > is fed to the network, the 
three processing-units compute (in parallel) the three inner-products wjx, j = 
1,2,3. The output-unit with the largest inner-product is then selected as the 
most promising category of the classified object. The rationale behind this 
procedure is as follows. As the network sees more and more examples, the 
learning algorithm continuously adjusts the three weight vectors. If learning is 
successful, the weight vector wj will eventually store the "average" character- 
istics (features) of the vectors who are known to belong to the class cJ .  With 
that in mind, the inner-products wjx, j = 1,2,3 measure the three vectorial 
similarities (akin to correlations) between the new vector, x, and the up-to-date 
average characteristics of the three classes cj, j = 1,2,3. Leaving the question 
of whether or not this procedure will work to the next section, we note that the 
extension of a single processing-unit to a layer of multiple units is straightfor- 
ward. A single unit is a binary classifier. A layer of m units acts as a slab of m 
competing classifiers, each measuring the vectorial similarity between its own 
set of weights and the input vector. 

2.3 Second Extension: More Layers 

The network described in the previous section will not work for two reasons. 
First, the network lacks a neural solution to the problem of identifying the 
output-unit which attained the largest value. This, however, is not a major 
problem: a second neural network, denoted maxnet, can be trained to identify 
which of m input-units contains the greatest value. The two networks can then 
be merged, connecting the first network's output-units to the input lines of 
maxnet . 
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However, it may well be that the resulting network will still fail to classify 
customers correctly. This is because the objects-space (the world of customer 
characteristics) is probably not linearly separable, whereas the network, in its 
present form, can carry out only linear classification. In order to visualize this 
limitation, picture a two-dimensional objects-space in which each object (cus- 
tomer) is represented by a fixed point (xl, 2 2 )  in the (XI, X2) plane (e.g. income 
and age values). Furthermore, assume that the customers are partitioned into 
three classes, i.e. that some points (xl, 2 2 )  are labeled cl, others c2, yet others 
c3. Finally, assume that even though the points exist, you still don't get to see 
them. At that point you are staring at en empty (XI, X2) plane on which three 
lines are randomly drawn. 

Suppose now that you are provided with a ruler and a pencil and you are asked 
to go through the following iterative exercise: in each step, one point (x17 x2) 
will be exposed, along with its label (one of the three cj's). Your job (in each 
iteration) is to separate the three sets of already visible points by adjusting the 
three straight lines. If at some step you'll fail to separate the points correctly, 
so will the network. To complete the analogy, denote the slopes and offsets of 
the three lines in step k by the three pairs (< wl/w2,8 >j, j = 1,2,3)k. Note 
that the entire setting corresponds exactly to the network's learning procedure, 
in which the set of weights and threshold values are continuously adjusted to 
achieve better classification. If the objects-space is not linearly separable, the 
network will fail to converge to a stable set of weights: the ruler will continue 
to oscillate, indefinitely. 

As it turns out, most interesting classification problems are not linearly sep- 
arable. For example, consider the customers space spanned by the attributes 
XI, .  . . , X,. In general, it will be naive to assume that the factors that de- 
termine a purchase likelihood of a new product are simple linear functions of 
customer attributes. Rather, it is entirely possible that a customer should be 
classified into, say, cl, only if, say, XI + 2 2  is greater than, say, x2 + x3. TO make 
matters worse, it might be that the boundaries of the class cl in the object 
space cannot be expressed in the languages of mathematical functions at all. 
In other words, in the worst case (which is unfortunately quite common) we 
are facing an opaque classification problem f : XI x . . . x X, -+ {cl, . . . c,) 
in which f may be not only unknown, but also non-descript in mathematical 
terms. 

However, although we may never know the underlying structure of the elusive 
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f ,  we still may have access to many examples of its "operation," namely to 
vectors x and their correct classifications f (x). Can we use this raw information 
to build a machine that simulates f without making any assumptions on its 
underlying structure? This is precisely what multi-layered feedforward networks 
are supposed to do. In a multi-layered network architecture, the input and the 
output layers are separated by one or more "hidden7' layers of intermediate 
neurons (see figure 1-c). If the network's topology is well-constructed, some 
hidden neurons will "learn" to recognize subtle (read: non-linear) interaction 
effects among the input neurons (the object attributes) and the target classes. 

To illustrate the role of the hidden units, consider the quintessential example 
of using a neural network to map fuzzy hand-written letters on the 22 letters 
of the English alphabet (e.g. [I?] and [48]). Although the following description 
is a simplification of the actual solution, it does capture its main spirit. The 
basic network consists of three layers of neurons. The neurons of the input- 
layer are linked to the pixels of a bit-mapped retina, on which the hand-written 
images are laid. The output-layer consists of 22 mutually-inhibiting neurons, 
each representing a different letter in the alphabet. The key player however is an 
intermediate hidden layer whose neurons are designed to capture distinguishing 
features in the input images. After seeing many examples of images and their 
correct classifications, the network will learn, for example, that hand-writ ten 
versions of A, 'If, and F,  have one thing in common: a (more or less) horizontal 
line positioned (more or less) in the center of the retina. This will cause a certain 
hidden neuron to fire whenever an image with a center horizontal line is laid 
on the retina. Through interaction with other hidden neurons (e.g. detectors 
of vertical and diagonal lines), the network will learn, from experience alone, 
which are the distinguishing features of the target classes. 

Thus, when a certain image, say C, is fed to the network, the hidden neuron 
that detects a left-sided vertical line will cast parallel "votes" in favor of such 
candidates as L, H, and K, whereas the detector of a bottom horizontal line will 
vote for L, B, E, and D. The votes will be "tallied" (via inner-product computa- 
tions) by the output neurons that represent the 22 candidates, and the output 
neuron with the highest vote will emerge as the winning letter. The process is a 
bit more complicated, since the hidden neurons also cast negative votes against 
unlikely targets, and in the final tally those negative votes are as important as 
the positive ones. 

In fact, it has been proven mathematically that any classification problem, 
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no matter how complex (barring some exceptions that generally don't inhibit 
practical applications), can be simulated by a neural network with only one 
hidden layer of neurons [34] [33]. Yet the mathematical proofs are strictly 
existential: they don't tell us how many neurons the hidden layer should include, 
what activation functions they should invoke, and what learning algorithm could 
be used to train them. These questions are at the forefront of today's neural 
networks research. Although the construction of an effective topology is still 
more art than science, network construction guidelines are now beginning to 
emerge 1261 [7] [31] [59]. 

Another open question regards the meaning of the network. Given that a certain 
network topology is indeed a successful classifier, how can we credibly justify 
the network's operations, short of pointing out at an impressive empirical track 
record? If the network is supposed to serve as a decision support system, it must 
offer a certain degree of intuitive face validity and analytic account ability. We'll 
return to this critical issue later in the paper, when we discuss the potential use 
of neural networks in the context of strategic decision making. 

3 The DSS Framework 

Having described the basic building blocks of feedforward networks and learning 
algorithms, we now turn to explore their potential use and limitations in sup- 
porting a variety of decision making activities. The discussion will be organized 
along the DSS framework of Ariav and Ginzberg, a description of which can 
be found in [6]. The DSS framework was designed with one objective in mind: 
help researchers and practitioners think systematically about the many factors 
that come to play in the design and use of decision support systems. Inspired 
by Churchman's approach [12] to analyzing general systems, the framework is 
organized around three themes: environment, components, and resources. The 
basic premise is that under ideal circumstances, the external characteristics of 
the system's environment have to be reflected in its internal components, which, 
in turn, determine the relevant resources required to realize the system. In re- 
ality, the linkage often flows backwards: the resources that are actually used 
determine the system's architecture, which, in turn, determines the system's 
ability to effect its designated environment. This view is mirrored in sections 
4, 5, and 6, where we explore, respectively, the environment, components, and 
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resources that either enhance or inhibit the use of neural networks in decision 
support applications. 

4 Environment 

Decision processes are seldom conducted in a vacuum; Therefore, the charac- 
teristics of the system's environment must be taken into consideration by the 
system designer. By "environment" we refer to a host of external factors that 
are relevant to the system's operation, but nonetheless are not under the control 
of the system's designer. Ariav and Ginzberg partitioned the environment into 
two major categories: task characteristics, and access pattern. Table 1 gives a 
more detailed description of these categories. 

The task characteristic that affects decision support most critically is structura- 
bility, i.e., the degree to which the decision maker can apply a single predefined 
model to bear on the underlying problem (Ginzberg and Stohr, 1241). The sec- 
ond characteristic is the managerial level at which the system is supposed to 
intervene in the decision process (Anthony, [5]). The third characteristic is the 
cognitive phase that the system is intended to support (Simon, [56]).  Finally, 
the fourth characteristic is the functional area of the supported application. It 
goes without saying that different decision problem vary greatly in terms of their 
underlying structurability, managerial level, phase, and functional area. Each 
of these variations implies a different set of constraints and design guidelines 
on the type of decision support which is called for. 

4.1 Structurability 

As was pointed out earlier in the paper, numerous experiments have indicated 
that feedforward networks are especially good at classifying fuzzy objects into 
concrete categories. As it turns out, many important business problems can be 
cast in terms of classification: assigning people to jobs, placing customers in 
different mailing lists, determining the risk ratings of commercial loans, and, 
in general, mapping different objects onto different categories that then merit 
different treatments from the decision maker. 
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Dimension Characteristics 

Task 
Characteristics 

Access Pattern 

structur- / * low 

ability / i 

managerial 
level 

* operational 
* control 

decision 

functional 
area 

* strategic 
* intelligence 

process 
whase 

* finance 

* design 
* choice 

* marketing 
* production 

* intensive, online 

* slow, intermittent 
* size P 

user I * domain expertise 
community I * computer literacy 

systems I * models 
neighboring 

Table 1: The DSS Environment (summary) 

* role 
* databases 
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In general terms, then, the generic structure of problems that lend themselves 
to feedforward networks is mapping, i.e. f : X -+ C. Going back to section 
2.1, recall that X is a cartesian product Xl x . . . x Xn of object attributes, e.g. 
financial ratios or customer characteristics, whereas C = {cl, . . . , c,) represents 
a set of classes, e.g. credit ratings or customer categories, respectively. The 
decision rule f represents an unknown mapping that assigns vectors in X to 
classes in C. In general, f can be approximated deductively, if there is some 
explicit knowledge about the classification's rationale, or inductively, if there 
is a good sample {< x, f(x) > I x E X )  of representative objects and their 
ex-post classifications. 

Complexity - the "unstructurability" of a decision task - can arise in this con- 
text from three sources. First, it may be difficult to discern a good set of at- 
tributes, as the object descriptors may be redundant, correlated, or downright 
unmeasurable. Second, the set of target classes may be partially unknown, as 
in the case of mapping new products on a set of standard categories that has 
to be periodically updated. Finally, and perhaps most critically, the decision 
rule f may defy simplistic interpretations. In such cases, traditional models like 
linear discrimination rules and Bayesian classifiers will fail to provide a good 
approximation of f .  

In general, statistical classifiers as well as rule-based classifiers (e.g. diagnostic 
expert systems) make strong assumptions on the structure of X, C, and f .  For 
example, linear discrimination models require that (a) the attributes (explain- 
ing variables) xl, . . . , xn be independent; (b) the training sets {< x, f (x) >) be 
drawn from populations that have multivariate normal distributions and identi- 
cal covariance matrices; and (c) the objects-space be linearly separable. Models 
for rule-based inference under uncertainty (e.g. EMYCIN-type systems (601) 
seem to be less restrictive, although an analysis of their underlying "belief lan- 
guages" reveals that they also make strong (although implicit) assumptions on 
attributes independence [2] [53]. In addition, rule-based systems require at least 
a partial specification of f - in this case the rule-base elicited from a human 
domain expert. 

In a rather dramatic contrast, neural networks don't have to make any a-priori 
assumptions on the structure of f .  In order to build a neural solution to the 
classification problem f : XI x . . . x X, --+ {cl, . . . c,), one builds a network 
in which some units represent the n input values, some units represent the rn 
classes, and the remaining units implement the decision rule f .  The key point 
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here is that f need not be explicitly specified; Instead, the neural implemen- 
tation of f will evolve "automatically:" as the network sees more and more 
examples of < XI, . . . z, > and their correct classifications f (< XI, . . . x, >), it 
will adjust the definition off in a direction which minimize its own classification 
errors. 

Hence, compared with traditional classifiers which are widely used in decision 
support, neural networks are marked by their minimal requirements with re- 
spect to problem structure. This makes neural networks particularly suit able 
to support complex classification problems in which the mapping rationale is 
either fuzzy, inconsistent, or completely unknown. We conclude that feedfor- 
ward networks represent a mixed case with respect to structurability; On the 
one hand, they require that the underlying problem be modeled along the form 
f : X -+ C. On the other hand, once this minimal structural requirement 
has been satisfied, the problems themselves can be quite unstructured, because 
no apriori knowledge on f is necessary. Needless to say, under-specified or 
partially-specifiable models were the raison d'etre of decision support systems 
in the first place [20]. 

4.2 Task Level 

In his analysis of decision making activities in complex organizations, Anthony 
described a "pyramid" of managerial tasks consisting of three levels (from bot- 
tom to top): operational, control, and strategic [5] .  Although it was tradition- 
ally argued that decision support systems are mostly needed at the control level, 
experience has shown that DSS can be used successfully at any task level (e.g. 
[23] 1571 [27]). All the same, the task level still plays a major role in determining 
the nature of the systems that should support various levels of decision making 
in the organization. 

Operational tasks are characterized by routine decisions, automatic transaction 
processing, and minimal need for human judgment. neural networks are hardly 
used in this level, with one notable exception: companies whose basic business 
consists of massive data interpretation, in one way or another. For example, 
we've already mentioned the possibility of applying neural networks to classify 
new products into standard categories, based on known classifications of related 
products. In a similar vein, some organizations use neural networks to index 
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press clips and cross-reference them with existing news databases [3]. Since 
neural networks are especially effective when there are plenty of examples to 
work with, such transaction-processing applications lend themselves nicely to 
neural networks support. 

A survey of business applications of neural networks reveals however that the 
technology is mostly used in the controk level of management, where it sup- 
ports decisions that concern resource allocation. Whet her they deal with credit 
rating, scheduling flight crews, or targeting customers, neural networks are typ- 
ically designed to optimize the use of capital, people, information, and other 
corporate resources. (Incidentally, resource allocation problems have always 
attracted decision support systems in general). One obstacle to a widespread 
use of neural networks at the control level is the need for a technical liaison, 
namely a network designer. If and when neural network shells will become as 
easy to use as spreadsheet programs, line managers like credit analysts, factory 
supervisors, etc., will undoubtedly discover new and creative ways to exploit 
them in supporting day-to-day decision tasks at the control level. 

Strategic decision making, which focuses on such decisions as introducing new 
products or moving into new markets, can effect the very survival of an en- 
terprise. Technically speaking, much of strategic decision making consists of 
evaluating and then selecting alternative courses of action. Neural net works 
have two inherent limitations that inhibit their use in that level of decision 
making. First, neural learning algorithms are inductive, requiring masses of 
data and repetitive examples, whereas st rat egic decision making deals with 
one-of-a- kind, ad-hoc, type of decisions. Second, neural computing is extremely 
convoluted, and therefore it is difficult to explain or defend the system's "ra- 
tionale'' (unlike expert systems, where one can trace reasoning chains or invoke 
some sort of a belief calculus). Therefore, neural networks suffer from low face 
validity: since their decisions are supported by neither significance tests nor 
by deductive knowledge, they lack the kind of accountably that is critical in 
supporting decisions at the strategic level. 

4.3 Phase 

In his classical research of chess playing strategies and their analogy to human 
reasoning, Simon 1561 identified three generic phases in decision making: in- 
telligence (information gathering), design (solution construction), and choice 
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(solution selection) [56]. DSS researchers used this taxonomy to point out that 
each phase requires a different set of support services. Traditionally, decision 
support systems have been employed primarily in the design and choice phases, 
with the intelligence phase being supported to a much lesser extent. Inciden- 
tally, the latter area is precisely where neural networks can prove to be quite 
useful, thus filling a gap in the range of services provided by other types of 
decision support technologies. 

In business, the intelligence phase consists of an on-going search for problems 
and opportunities. For example, consider the managerial activities that take 
place in a mutual funds company. The portfolio manager monitors his positions 
continuously for non-performing stocks (problems), whereas stock analysts are 
combing the markets for unknown but promising companies (opportunities). 
Both search processes are not straightforward, because the factors that make 
a stock expensive or undervalued are beyond the bounded rationality of most 
analysts (otherwise the market would have priced the stock correctly). Also, 
the factors that determine long-term success interact in subtle ways that might 
go unnoticed by standard analysis. This lack of deductive knowledge, however, 
can be sometimes compensated by a generous supply of inductive experience. 
Indeed, most mutual fund companies have amassed an abundance of examples 
of good and bad investments. In some cases, a neural network can be trained 
to harvest this resource and make investment recornmendations based on past 
experience with related companies, industries, and economic climates. 

In contrast, the design and choice phases of decision making don't lend them- 
selves naturally to neural networks support. These phases focus on planning 
and selecting, respectively, alternative courses of action. Since artificial neural 
networks are not very good in constructing and evaluating solutions, they don't 
lend themselves to such decision activities. An exception to this statement 
is the novel use of Hopfield networks in solving hard combinatorial problems 
(such as integer programming) [32] [36]. Since combinatorial optimization plays 
a critical role in supporting the choice phase of many decision problems, neural 
networks can help here also, although indirectly. 

4.4 Functional Area 

For obvious reasons, the business function of the underlying task places spe- 
cific demands and constraints on the type of decision support which is called 
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/ Area I Typical Applications 

Finance bankruptcy prediction, customer credit scoring, 
credit approval, mortgage underwriting, bonds rating, 
stock and commodity advisory systems, currency trading 

marketing 

Table 2: A sample of business applications of neural networks 

new product analysis, customer characterization, 
sales forecasting, airline fare management, direct 
mail optimization 

operations 

for. Table 2 lists representative examples of business applications of neural 
networks, broken by the functional areas of finance, marketing, and opera- 
tions management. With the exception of the latter category, neural networks 
are used primarily in applications that involve forecasting, credit analysis, and 
customer- or product- classification. 

jet engine diagnostic systems, fan motor inspection, 
assembly and packaged goods inspection, real-time 31) 
object classification, fabrication plan development, 
VLSI chip layout, process control, vehicle routing, 
airline crew scheduling, facility location 

The use of neural networks in economic forecasting is novel, and recent experi- 
ments are quite encouraging. Most studies focused on stock market predictions 
(e.g. [38] and [37]) and on predicting the behavior of individual stocks (e.g. 
[62]). These studies seem to suggest that when it comes to analyzing time- 
series, neural networks may have an edge on standard econometric methods 
because they are capable of picking up and then simulating non-linear relation- 
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ships in the data set. 

Credit rating, a pervasive problem in financial analysis, has attracted numerous 
neural solutions (e.g. [59] [22] [15] 1161 [13]). Since the financial rewards of 
correct risk analysis are high, financial institutions are constantly on the search 
for new risk assessment technologies. Indeed, there is a long going tradition in 
American business of using quantitative methods to analyze risk and forecast 
defaults, with the practice of bond rating going back to 1919. There is by 
now a great deal of domain knowledge on the key attributes that determine the 
financial strength of prospective borrowers, and the historical files of commercial 
banks contain thousands of examples of good and bad loans. All these factors 
make credit analysis an attractive application of feedforward neural networks. 

In marketing, most business applications of neural networks focus on market 
segmentation and on targeting customers (e.g. [35] [lo]). These, again, are 
problems that can be cast in terms of fuzzy classification. Given the financial 
and demographic characteristics of millions of potential adopters, on the one 
hand, and the attributes of a new product or service, on the other, the problem 
is to identify the customers who are most likely to make a purchase decision (this 
application was discussed in section 2.1). If the company has access to many 
examples of past purchase decisions (in the form transaction files or warranty 
registration records), a neural network can be trained to classify customers into 
prime targets, secondary targets, etc. Needless to say, effective targeting holds 
the key for running eEcient direct-mail campaigns, where saving a few cents on 
each customer can translate to huge savings at the global level. 

4.5 Access Pattern 

Continuing to follow the DSS framework (table l), we now turn to discuss an- 
other environmental aspect of decision support systems: access pattern. Access 
pattern encompasses three key characteristics of system's usage: (a) the pace, 
or the intensity, of the supported decision process; (b) the given features of the 
system's users community; and (c) the relationship between the system and its 
neighboring systems. 

Pace The intensity of decision processes varies from intensive and online (as 
in crisis management, for example), to slow, evolving, and intermittent (as in 
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strategic planning). Apart from the "natural pace" of the underlying decision 
process, some DSS resources impose long response times, as in the case of 
lengthy database searches or step-wise optimizations. In the case of neural 
networks, the training phase is a prolonged process that might require days 
of uninterrupted CPU-time. However, once training is over and the network 
is used in the field, response-time is excellent. Hence, neural networks are 
adequate in situations where a relatively long setup time is available, and a fast 
response during normal execution is considered an advantage. Many business 
applications seem to fit this description. For example, the ability to quickly 
confirm a loan application is an important competitive advantage in the banking 
industry. This is at least one reason why several banks are presently studying 
the potential use of neural networks in supporting the work of loan officers. 

User community As was pointed out elsewhere in the paper, neural net- 
works are unique in their inability to "explain" their own decisions to their 
users. This limitation, coupled with lack of intuitive face validity, places cer- 
tain constraints on the users community of neural networks. In particular, the 
network's behavior should be scrutinized by a domain expert, especially in the 
network's design and learning phases. Furthermore, a network that exhibits 
excellent average performance during its operational phase can still generate 
freak individual decisions that can go unnoticed without human monitoring. 
Therefore, users of neural networks should be trained to identify exceptional 
outputs and decisions which seem to be off-target, in which case a domain ex- 
pert must be consulted. In that sense neural networks is essentially a decision 
support technology, as final judgment should be reserved to human operators 
(at least in critical applications). 

Neighboring information systems: Since decision processes are never con- 
ducted in a vacuum, the presence of neighboring information systems must be 
recognized by the DSS designer. Indeed, we observe that stand-alone DSS's 
with indirect or no access to other information systems are gradually being 
phased out in favor of systems which tap directly into corporate databases and 
information resources [42]. On the other end of this link, most DSS's are now 
expected to be able to pipe their modeling outputs into neighboring systems. In 
order to facilitate such an interaction, most neural network shells now provide 
effective means for incorporating data from standard database and spreadsheet 
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files. This allows users to build and edit training data sets using familiar envi- 
ronments like dBASE and Lotus, and then use the staging function of the shell 
to import the data into the learning schedule of the network. 

5 Components 

According to the DSS design literature (e.g., [9] and [57]), a decision support 
system consists of three functional components: model management, data man- 
agement, and dialog management. The three components interact with each 
other in a pattern that makes up the system's arrangement. In the DSS frame- 
work, the components are treated at a conceptual level which is kept separate 
from their actual implementations, the argument being that the DSS design 
process should not be biased by resource availability. 

For example, the designer of a trading DSS need not be constrained from the 
outset by the presumption that the DSS will be eventually implemented on a 
spreadsheet program. Starting from the user's view of the trader's job, the 
designer must think in broad terms about the model-, dialog-, and data man- 
agement, functions which are called for by the application. Only then, the 
designer must seek the best resources to realize his conceptual design. We fol- 
low this notion by separating the treatment of components and resources into 
two independent sections. 

Dialog management: During the last decade neural networks have proven 
to be quite useful in several applications related to user interface design: hand- 
writing recognition, speech recognition, and speech synthesis. For example, 
Sejnowski and Rosenberg have built a network, called NetTalk, which is capa- 
ble of correctly pronouncing written text [55j. In a similar vein, Lippmann and 
his colleagues have shown that neural networks are generally better than other 
traditional classifiers in the reverse task of speech recognition 1441. These en- 
couraging results should be qualified by the fact that, unlike human speech 
recognition and synthesis, artificial networks underst and nothing about the 
meaning of the underlying text. Nonetheless, they clearly hold promise for 
enhancing the dialog management function of decision support systems. 
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Component 

Dialog 

Characteristics 

dialog 

I control i I 
* user-led 

/ Management I interface I i I 
user 

* system-led 
* menu-driven 

I I constructor I data + model I 
request 

* command-driven 
interface to 

data 

management 
* files 
* databases 

depository 
data 

* spreadsheets 
data descriptions 

Data 
Management 

directory 
query 

st aging 

MBMS 

I I execution I i I 

and definitions 
interface to dialog 

facility 

* automatic 
* scattered models 

model 

and model management 
* manual 

* model-base 
+ invoking 

I I command I dialog I 

Model 
Management 

I interface / data management 

modeling 

processor 
data 

Table 3: DSS components and their parts (summary) 
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Data management: The potential use of neural networks in data manage- 
ment for decision support is significant. A great deal of business practice and 
education focuses on the benefits that managers can reap from searching infor- 
mation about similar companies, related products, and relevant strategies (see 
for example the PIMS project, case-based reasoning, and hypertext). The fan- 
tastic amounts of available data, the absence of a unifying data structure, and 
the lack of indexing mechanisms, all make "strategic search" a prime target for 
computer-based decision support. 

Indeed, several experiments have indicated that neural networks are well-suited 
to support a free-form quest for information, using a distributed memory orga- 
nization and associative recall algorithms 1501 [58] 181. In a neural database (for 
lack of a better term) such as the Hamming network, the data is not organized 
in the conventional linear format of files and databases. In fact, the concept 
of functional dependency, which is central in ordinary data models, does not 
exist in the neural representation of data. Instead, the data is spread across 
the network in a distributed format that does not lend itself to supporting any 
one particular query, and allows retrieval of information through inexact or in- 
complete keys. As a result, users can venture freely in a web of facts and rules, 
using pattern recognition, rather than rigid indexing schemes, to retrieve data. 
In the context of a business application, this flexibility will enable managers 
and analysts to trace chains of associations and recognize patterns in surprising 
and unpredictable ways. With that in mind, we anticipate that neural networks 
will play an important role in the data management function of future decision 
support systems. 

Model management: The explicit management of models and the support 
of modeling activity are the most distinguishing aspects of DSS among all other 
information processing systems. Correspondingly, the ability to specify, in- 
voke, run, change, combine, and inspect, models is a key capability in decision 
support platforms. Ideally, the model management functionality should be 
achieved through a modelbase to store models and a modelbase management 
system (MBMS) to handle them [40]. 

If the DSS platform is intended to support classification tasks, the MBMS 
should offer access to a variety of alternative models like cluster analysis, dis- 
criminant analysis, and induction, using the same terminology and user-interface 
across the board. Since the feedforward network paradigm can be viewed as 
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yet another data analysis model, its inclusion is a generalized DSS environ- 
ment should pose no difficulties from the standpoint of software engineering. 
Once incorporated in the environment, the MBMS should allow users of neu- 
ral networks to accept inputs from, and pipe outputs to, other models in the 
model-base. 

6 Resources 

It is only after the DSS has been designed - after the desired architecture has 
been logically developed - that resources should be taken into consideration. At 
this point the key questions are: How can the proposed system best be realized 
by the available technology? How close to the ideal can a feasible system come? 
Which specific resources should be used to build the system? In this section we 
are primarily interested in the latter question. Following the DSS framework, 
we discern four categories of DSS resources, as follows: hardware, software, 
people, and data (see Table 4). 

Hardware resources were critical in the 70's, when DSS7s required specialized 
input/output devices. With the advent of desktop computing in the last decade, 
the hardware resource are no longer a binding constraint in DSS design. Soft- 
ware resources, on the other hand, still play a prominent role in the design 
process. Even though any system can be written in any general-purpose pro- 
g ramming  language, most DSS designers augment this basic resource with a 
variety of tools like screen generators, data dictionaries, specialized editors, et c. 
These resources support at least one of the three major DSS functions - dialog, 
data, or model management - providing building blocks that speed up the DSS 
design process. 

In addition to hardware and software, the two other resources that come into 
play in the DSS design process are people and data. The four resources interact 
with each other in a number of different ways. Whereas the tradeoff between 
hardware and software is obvious, there are other tradeoffs as well. For exam- 
ple, the people resource (in the form of inexpensive personnel) can sometime 
substitute the need for an expensive data  resource (e.g. a computerized news 
clipping service). In a similar vein, the availability of a sopware  resource (e.g. 
an auditing expert system) can compensate for a scarce people resource (e.g. 
experienced auditors). 
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Table 4: DSS Resources and some of their characteristics (summary) 

Hardware 

Software 

People 

Data 
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* workstations 
* mainframes 
* storage media 
* data communication 
* languages 
* tools 
* generators 
* environments 
* designers 
* operators 
* "chauffeurs7' 
* internal 
* operational 
* external 



Of course, the final architecture of a DSS is always a compromise between ideal 
design and available resources. If a DSS is implemented on a DBMS platform, it 
will typically provide good data management support, but little if any support 
in the way of model management. Conversely, a spreadsheet-based DSS will 
exhibit opposite strengths and limitations. Although several "integrated" soft- 
ware resources claim to support data, dialog, and model, management equally 
well, they typically excel in at most one function. Hence, once we commit our- 
selves to a certain resource, we typically compromise one DSS functionality in 
lieu of another. 

6.1 Hardware 

In general there is a sequence of hardware configurations which offer increas- 
ingly powerful capabilities for neural computing. The simplest configuration is 
an ordinary personal computer loaded with a neural networks software simula- 
tor (to be discussed shortly). The next step is an ordinary PC or a workstation 
equipped with an accelerator board which offers parallel processing capabilities 
(e.g. SAIC7s Delta I1 board, ANZA7s Plus board). Finally there are "true" 
parallel processors like connectionist machines which lend themselves nicely to 
neural applications. Of particular interest in the future will be optical com- 
puters with programmable memory buses. Data transfer in these machines is 
carried out by laser beams, which, unlike physical circuits (and human synapse) 
can criss-cross without losing information. As of this writing, optical architec- 
tures are beginning to enable the implementation of complex network topologies 
which are unfeasible on conventional, hard-wired machines. 

With respect to processing speed, it's important to reiterate that neural net- 
works are CPU-intensive only in their training phase, when thousands of weights 
have to be continuously adjusted as the system learns how to classify historical 
objects, or "cases." Once training is over, however, the network's operation 
(in the way of classifying new objects) is reduced to computing many inner- 
products - a straightforward calculation that can be efficiently done by any 
computer. Therefore, the use of parallel processing and accelerator boards is 
critical only during the network's design phase. Once the network has been de- 
ployed in the field, it can run on practically any machine. This is especially true 
in business applications of neural networks, where network sizes rarely exceeds 
several dozen neurons and several hundred connections. 
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6.2 Software 

The DSS framework distinguishes among four types of software resources: pro- 
gramming languages, DSS tools, DSS generators, and DSS environment s. Whereas 
a DSS tool is similar to a general-purpose subroutine, a DSS generator is es- 
sentially a streamlined collection of DSS tools. DSS generators attempt to 
address all three functions of DSS (at least to some extent). Therefore, they 
can be used to construct - quite easily - a wide variety of specialized systems 
in diverse and unrelated areas of application. The fourth software resource - 
a DSS environment, differs from a DSS generator in that it supports a specific 
class of problems. For example, a scheduling DSS environment can be used 
to assign professors to classes, operators to shifts, or specialists to projects. 
These scheduling decisions share a similar structure, and, furthermore, a com- 
mon model-base. Therefore, the same generic DSS environment can be used to 
support them. 

When it comes to constructing neural networks, there are essentially three al- 
ternatives design approaches. At one extreme, a specific network can be "hard- 
wired" in software using a conventional language like Pascal or C. Indeed, since 
the backpropagation learning algorithm was published in 1986, [51] feedforward 
networks were implemented by numerous researchers, especially those who were 
interested in studying only one aspect of neural computing. At the other ex- 
treme of "canned support" one finds neural network shells like Nestor's "NDS" 
and Neuralwork's "Professional" - stand-alone software packages that enable 
the definition, training, and execution, of a wide spectrum of neural network 
models. In terms of table 4, neural network shells correspond to DSS genera- 
tors: software environments which can be used to custom-tailor neural solutions 
to specific problems with minimal programming. 

The design process of a new network begins by choosing a particular neural 
architecture from a library of several dozen candidate architectures (p ercep- 
trons, feedforward, autoassociative, etc.). Once a specific architecture has been 
chosen, the shell invokes a template topology which is placed in a graphical edi- 
tor. This enables the designer to create arrays of neurons and connections with 
minimal effort, moving the mouse around and manipulating graphical objects 
and pull-down menus. Once the network has been constructed, the designer 
can select a learning algorithm and a training schedule that will best fit the 
problem at hand. Although training does not require human supervision, some 
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shells allow the designer to intervene in the process and exercise partial control 
(as in clamping weights) during the network's training phase. 

The designer-interface of the shell is important because the construction and 
training of a neural networks can benefit greatly from graphical insights. For 
example, some shells feature Hinton Diagrams 1301 - a chart that packs, in a 
simple to read format, a great deal of real-time information about the network's 
behavior during learning. Such graphical tools enable the designer to debug the 
network structure in real-time, as well as pinpoint subtle relationships between 
the objects-space and the target categories - relationships that might go unde- 
tected in a non-graphical interface. 

Hence, the shells provide an integrated solution to the tasks of constructing, 
training, and executing, a wide family of neural network models. The networks 
that the shells produce can run either on dedicated hardware, or on general- 
purpose PC's through software simulation. In both cases the shells do all the 
necessary mappings from user-defined definitions of neurons and connections 
to the corresponding hardware processing elements (or to their counterpart 
elements in software simulations). 

Aside of the two design extremes - building a network from scratch through 
programming versus customizing a template network with a shell - there is 
also the interim alternative of using a library of neural utilities that can be 
compiled with conventional languages. For example, the Axon language (by 
Hecht-Nielsen Neurocomputers) allows users to build networks via an object- 
oriented definition language that can be compiled with regular C code. In a 
similar vein, the Rochester Connectionist Simulator 1251 [19] offers an elabo- 
rate library of procedures that can be compiled with C source code to produce 
custom-made neural architectures. The library contains procedures for setting 
up arrays of neurons and connections, selecting (and even defining) activation 
functions, and controlling learning parameters. In addition, the simulator fea- 
tures a programmable user-interface in which networks can be displayed and 
tested in real-time. Using programming, the designer can determine which 
neurons and connections will be displayed, what shapes and sizes they should 
attain, and what frequency should govern the display process (continuous, only 
when the neuron fires, only when the neuron's output changes, etc.) Whereas 
neural network shells conform to the definition of DSS generators, neural li- 
braries are essentially DSS tools. As tools, they don't provide a complete design 
solution, but rather a set of building blocks that speeds up and streamlines the 
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network design process. 

We see that contrary to common belief, the task of building a neural network is 
technically straightforward; The hard part is the logical design of the network, 
namely selecting the appropriate architecture at the outset and constructing 
an effective network topology (effective in terms of classification). Once these 
questions are resolved, the actual implementation of the network is a straight- 
forward technical exercise that can be assisted by a variety of software design 
aids. 

6.3 Data 

Unlike the deductive nature of expert systems, neural networks learn to per- 
form their designated tasks by example, using inductive learning algorithms. In 
the absence of a fixed inferenecing mechanism, neural networks require massive 
data sets in order to achieve meaningful learning. In the case of classification, 
the data sets consist of examples of historical objects (e.g. companies) whose 
class-memberships (e.g. bond-ratings) are known ex post facto. The goal of 
the learning algorithm is to use these data to teach the network how to cor- 
rectly classify new objects (e.g. assign credible bond-ratings to new prospective 
borrowers). 

Due to the centrality of data in the learning process, special attention must 
be paid to the data's structure, quality, and quantity. As with many other 
data analysis models, the main challenge is to reduce wholistic objects (like 
companies) to structured tuples of at tributes, or "descriptors." The chosen 
at tributes must be complete, relevant, measurable, and independent 1541. Once 
a data structure has been built, a mechanism has to be designed to filter data 
into it from historical files. In business applications, external data sources (like 
industry and trade databases) are typically used to supplement internal data 
sources. 

The critical role that data plays in neural applications implies that DSS that 
include, or are based on, neural models, must be equipped with powerful data 
staging mechanisms. In the DSS framework, "staging7' refers to importing data 
from operational and historical databases, preprocessing data in a variety of 
different ways, and piping data into specific DSS modules. The designer of neu- 
ral networks can use these services to eliminate irrelevant attributes, aggregate 
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other attributes in order to counter multi-colinearity, and translate attributes 
from one data-type to another, as dictated by the network architecture. In 
addition, staging services might include access to a variety of sampling retrieval 
techniques, in which an algorithm methodically selects training objects 
from a relatively small sample of data. (Lack of data is a notorious problem in 
neural networks training, and modern sampling techniques like those described 
in [18] are likely to play a major role in alleviating this shortcoming.) 

6.4 People 

Since the operation of a neural network is not based on explicit reasoning and 
textbook knowledge, there is a no need for knowledge engineering in the con- 
ventional sense of the word. Rather, the network design process draws on the 
expertise of three individuals: a network designer, a domain expert, and a data 
specialist. Instead of eliciting rules, the designer and the domain expert focus 
on defining attributes, discerning classes, and formulating a network topology. 
To a large extent, the topology is based on assumptions about attributes in- 
teraction, on the one hand, and on the separability of the objects-space (the 
geometry of the decision boundaries), on the other. These assumptions are ar- 
ticulated and then tested through a dialog between the network designer and 
the domain expert. 

Once the network has been set up, the learning process must be fueled with 
massive amounts of data. Since the data must conform to the topology and 
typology of the input neurons, preprocessing and staging are inevitable. This 
is where the data specialist, e.g. a database administrator, enters the picture. 
In many cases, one needs to pool data from multiple sources like transaction 
files, historical databases, and spreadsheets. This, in turn, opens the door to 
the perils of data redundancy and inconsistency. Hence, access to raw data is 
a necessary, but insufficient, condition for proper learning. A corporate data 
dictionary and a cooperative database administrator are essential ingredients 
as well. 
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7 Decision Support Themes 

We conclude the paper with a brief discussion of three critical subjects for 
prospective adopters and educators of neural networks: face validity consider- 
ations, the interplay of neural networks and expert systems, and the teaching 
of a neural networks course or module in academic institutions and in industry 
training programs. 

7.1 Face Validity 

Neural networks are constructed in a step-wise fashion. First, a general archi- 
tecture is chosen, and a specific network topology is laid out. The number of 
neurons and layers are determined according to LLgenerally-accepted" construc- 
tion rules, but the actual topology of the network evolves more or less through 
what may be termed an educated trial and error process. More often than not, 
a certain topology will prove to be an effective classifier, but the designer will 
not be able to explain why this network is better than others. Also, the weights 
that emerge from the learning process are not easily labeled, and their meaning 
with respect to the features of the classified objects is not directly discernable. 

Recalling the complex non-linear computations that neural networks perform, 
It is not surprising that their structure and operations defeat simplistic expla- 
nations. When it comes to real brian circuitry, there is a similar phenomenon: 
most cognitive processes are hard to explain, and yet we tend to rely on them 
almost blindly, without ever stopping to question their validity. For example, 
although it is hard to justify formally why we prefer a certain person to a cer- 
tain job, we don't hesitate to use our judgement and make a hiring decision. 
The reason for our confidence is twofold. First, we are dealing with a famil- 
iar classifier - our own brain. Knowing that we've already used this classifier 
(whichever form it might have) to make many good hiring decisions in the past, 
we are willing to give it another try. Second, we typically entertain the belief 
that even though we might err, we'll never err big. For example, although we 
might end up hiring a lazy secretary, it's unlikely that he or she will shred all 
the company's files or set the office on fire. 

Unfortunately, the same sense of confidence does not translate well to artificial 
neural networks. Even though we can confirm empirically that a particular 
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network performs well on a large training set, we often can't explain this suc- 
cess analytically. Therefore, we can't guarantee that a network will not make 
freak decisions at some point in the future, and we can't justify its analytic 
rationale. This problem places neural networks is an disadvantage, compared 
to other, more traditional classifiers. For example, statistical models offer sig- 
nificance tests that enable the user to assess with precision the statistical power 
of the model's predictions; Diagnostic expert systems offer another form of ac- 
countability: they allow the user to trace reasoning chains and understand the 
rationale that led to a certain recommendation. 

Unlike statistical models and rule-based classifiers, neural networks offer no 
simple and convincing means to assess the credibility of their outputs. Fur- 
thermore, it is difficult, and often impossible, to make sense of intermediate 
network constructs and "revealed" features. Hence, it is not clear to what ex- 
tent the application of a neural network can contribute reliably to a deeper 
understanding of the underlying problem. This might present problems in the 
context of decision support systems, as the facilitation of learning is cited by 
some researchers as the main source of DSS value 1471). 

At present, the only way to "sell" a neural solution to a decision maker is to 
point at an impressive empirical track record, which is typically better than 
those of linear regression, discriminant analysis, induction, and diagnostic rule- 
based algorithms. This poses an interesting dilemma to prospective clients 
of neural networks: should they use a classifier with, say, 90% hit-rate but 
vague accountability, or, rather, one that offers 70% hit-rate and excellent 
accountability2? We believe that this dilemma has caused many DSS prac- 
titioners to shun away from neural networks for business applications, where 
one has to be accountable to one's decisions. Clearly, "teaching" a network to 
explain its own operations is going to be a major research challenge in the next 
few years. 

7.2 Neural Networks and Expert Systems 

neural networks are related to expert systems in a number of ways. First, neural 
algorithms can be used to extract a set of rules that specify how an expert has 
reached past decisions in a certain domain. [21] [52]. This application of neural 

'By "accountability'' we refer to some form of analytic, normative, or logical, justification. 
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networks is somewhat similar to the use of the ID3 algorithm in knowledge 
elicitation. Both methods rely on massive amounts of data (examples), and 
both involve an optimization process: minimizing classification error in the 
case of neural networks, maximizing entropy in the case of ID3. 

Second, a set of rules can be used to override or modify the training schedule 
of a neural network. Instead of invoking an unattended learning algorithm that 
walks the network through thousands of examples in a blind fashion, a domain 
expert (who is also trained in neural computing) can be assigned to oversee 
the learning process. Monitoring the classification behavior of the network as 
it "sees" new examples, the expert can intervene in the learning process by 
forcing certain neurons to certain outputs, clamping weights to fixed values, 
and fine-tuning the network's topology. 

Finally, it is feasible that future systems will be based on hybrid architectures 
that incorporate elements of both inductive and deductive reasoning [4] [I]. 
When one extracts rules from a domain expert, one often hears statements 
like: at this point I would make this or that decision, but I can't explain exactly 
why. If the expert will be able to provide many examples of such intuitive 
judgements, a neural networks could be trained to simulate his local decisions, 
without attempting to explain them. The inputs and outputs of the network 
can then be linked to the heads and tails, respectively, of standard IF . . . 
THEN . . . rules. This, again, is a promising and open area of future research. 

7.3 Teaching Neural Networks 

The introduction of a new topic to an education program is always constrained 
by the availability of three resources: established course curricula, textbooks, 
and software. This is particularly true in the case of neural networks, a sub- 
ject which is relatively unknown to most instructors, and yet can be covered 
effectively in many different ways and styles. We conclude this section with a 
few ideas on how neural networks can be taught in academic courses and in 
corporate training programs. 

In a computer science department, the study of neural networks can easily fill a 
one-semester or even a two-semester graduate-level elective course. The theoret- 
ical part of the course will focus on the mathematical and statistical backdrops 
of neural architectures and algorithms, whereas the applied part might consists 
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of student presentations of key applications and applied term projects. In busi- 
ness information systems departments, the subject does not seem to merit an 
entire course. Instead, a more balanced treatment would be a neural networks 
module (of, say, 2 to 6 class meetings) within an elective course on expert 
systems, A1 applications, or decision support systems. In order to minimize 
confusion and avoid technical clutter, it is recomended that this module will 
expose the students to no more than a single neural paradigm, feedforward 
networks being a natural candidate. In industry, the need for neural networks 
education arises when companies wish to either see "what this technology is all 
about" or train systems analysts and knowledge engineers to apply the tech- 
nology to business applications. For this purpose, several companies now offer 
a 3-days or a one week workshop of intense training. All vendors of neural 
networks products also offer such workshops, but for obvious reasons their own 
products often take the center stage in these programs. 

As regards literature, there are by now several excellent neural networks sur- 
vey/ tutorial books. In this rapidly developing field, "Parallel Distributed Pro- 
cessing" by Rumelhart et al. [51], a 1986 publication, is now considered a 
classic. This two-volume book gives a comprehensive review of all the key ideas 
that led to the development of feedforward networks and backpropagation al- 
gorithms, along with a series of articles on theory and applications written by 
some of the top researchers in the field. As such, it can be used to support 
a full-semester graduate-level course on neural networks in a computer science 
department. On the lighter side of the literature, there are several introduc- 
tory books which vary in quality and focus. Some authors have managed to 
give an accurate and compact view of the field without getting into too much 
technical clutter; Wasserman7s "Neural Computing: Theory and Practice" [61] 
and Alexander and Morton's "Introduction to Neural Computing" [4] are good 
examples. These books are very readable, and they can be best utilized in 
supporting elective courses in information systems programs. 

In addition to literature, there is by now a good selection of reasonably priced 
and quite powerful neural network software shells. These shells can be easily 
installed on personal computers and thus in academic PC labs. Most software 
vendors, like Nestor and KnowledgeWare, offer educational versions of their 
shells for significant discounts. Shells that originated from academic institu- 
tions, like the Rochester Connectionist Simulator, can be also obtained (by 
other universities) for nominal fees. In short, instructors who wish to teach a 
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course or a module on neural networks will find a good selection of books and 
software to choose from. 

As a rule, it is our belief that instructors should avoid the trap of building their 
curricula around specific commercial tools. Instead, the tools should be used 
chiefly in the way of demonstrating fundamental ideas and making the students 
educated consumers of neural network products. This can be done by arranging 
the curriculum around the sequence of (a) analyzing a real problem that calls for 
decision support; (b) developing an "idealized" system design; and (c) assessing 
and critically examining which neural (as well as conventional) resources will 
best realize the ideal design. 

8 Conclusion 

During the last decade, neural networks have proliferated to so many directions 
that it is no longer clear what the term "neural networks" stand for. In order 
to keep track of the field, one has to monitor several journals in neuroscience, 
computer science, psychology, mathematics, physics, and statistics. Worse yet, 
it is entirely possible that the solution to a certain marketing problem is buried 
in a physics journal, where is applied to analyzing spin glass. Hence, potential 
adopters of the technology are quite confused by the overwhelming gamut and 
esoteric terminology of neural computing. The situation is not helped by the 
multitude of hyperbolic articles on neural networks which appear in an alarming 
rate in popular journals and in conference proceedings. 

For this reason, DSS designers and practitioners often find it difficult to map the 
essential features of the technology on their actual decision support needs. With 
that in mind, we've taken in this paper a different stance, one that assumes 
that the acceptability (or the lack of it) of any new DSS resource must be 
examined in the functional context of its potential use. Hence, rather than 
focusing on the technology itself, we gave a systemic description of the various 
components and features that characterize the development of any decision 
support system. Only then we proceeded to map the capabilities and limitations 
of neural networks on DSS design and application. We believe that this view 
might will help researchers and practitioners realize the exciting possibilities 
that neural networks entail, without losing sight of the limitations that still 
inhibit their use in decision support applications. 
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