
NEURAL NETWORKS FOR DECISION SUPPORT:
PROBLEMS AND OPPORTUNITIES

by

Shirnon Schocken

Gad Ariav

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

NEURAL NETWORKS FOR DECISION SUPPORT:
PROBLEMS AND OPPORTUNITIES

Shirnon Schocken
The Leonard N. Stern School of Business

New York University
New York, NY 10003

and

Gad Ariav
The Leon Recanati Graduate School of Business Administration

Tel Aviv University
Tel Aviv, Israel 69978

November 1991

Center for Research on Information Systems
Information Systems Department

Lconarcl N. Stcrn School of l3usincss
New York University

Working P a ~ e r Series

STERN IS-91-35

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

Neural Networks for Decision Support:
Problems and Opportunities

Neural networks offer an approach to computing which - unlike conventional
programming - does not necessitate a complete algorithmic specification. Fur-
thermore, neural networks provide inductive means for gathering, storing, and
using, experiential knowledge. Incidentally, these have also been some of the
fundamental motivations for the development of decision support systems in
general. Thus, the interest in neural networks for decision support is immedi-
ate and obvious. In this paper, we analyze the potential contribution of neural
networks for decision support, on one hand, and point out at some inherent con-
straints that might inhibit their use, on the other. For the sake of completeness
and organization, the analysis is carried out in the context of a general-purpose
DSS framework that examines all the key factors that come into play in the
design of any decision support system.

Keywords: Decision Support Systems, Neural Networks, Applications.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-35

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

1 Introduction

The term "neural networks" means different things to different people. Neural
networks are popularly perceived as descriptive models, designed to emulate
low-level operations in the human brain. Yet most computer scientists view
the similarity of artificial neural architectures to the brain circuitry as no more
than a useful analogy. This is because neural networks have proven to be
powerful computational models in their own right, regardless of their biological
justification. They offer novel solutions to many problems which defy standard
algorithmic techniques, and they lend themselves nicely to new developments
in parallel and optical hardware.

Since the inception of artificial neural networks in the mid 19407s, the area has
attracted scores of researchers from computer science, psychology, mathemat-
ics, physics, and statistics. During the past decade, in particular, numerous
networks were constructed to carry out a wide variety of computational tasks,
primarily in scientific and in engineering applications. Most of this research,
however, has been largely experimental [I]; It remains to be seen whether or not
neural networks will become a widely-used computational paradigm, as some
proponents of the area claim.

Several hardware and software vendors now offer off-the-shelf products that en-
able end-users to develop and test neural networks with minimal programming.
Is it possible that these programs will eventually become popular business tools,
like statistical packages and spreadsheet programs? The answer seems to go far
beyond user-interface and performance considerations; It is related to deeper
issues regarding the appropriateness of neural computing to the special nature
of business applications, in general, and decision support systems, in partic-
ular. Hence, we take the position that neural networks offer a great deal of
promise, on the one hand, and a great degree of uncertainty, on the other; In
this paper, we wish to systematically explore the limitations and potential of
this technology to decision support applications.

By and large, there are three different ways to think about neural networks:
descriptive, computational, and normative. The descriptive line of thought,
popular among neuroscientists and psychologists, is concerned with the prox-
imity of the artificial model to biological systems. Indeed, the "hardware" of
neural networks was much inspired by the architecture and behavior of the brain

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

circuitry, to the extent that we presently (don't) understand it. For example, a
real neuron tends to fire only when its combined input exceeds a certain thresh-
old value. This non-linear firing pattern is simulated in the artificial neuron by
a numeric activation function which behaves in a similar way.

The computational approach to neural networks, popular among computer sci-
entists, views this model as a novel computational paradigm, akin to a Von-
Neumann or a Turing machine. Over the last decade, numerous experiments
have indicated that neural "machines" can efficiently solve many problems
that defeat standard sequential algorithms. This led to the pragmatic conclu-
sion that neural networks have an important computational merit independent
of their controversial biological interpretation. Hence, the computational ap-
proach to neural network focuses more on the functionality and limitations of
the model, and less on its external validity.

Finally, there is the normative view of neural networks, which examines the
mathematical and statistical backdrop of neural architectures and "learning"
algorithms. This approach attempts to cut through the esoteric terminology
of the field, and elucidate what neural networks really do in the way of data-
analysis. The normative interpretation of neural networks is critically impor-
tant; First, it shows where neural networks are isomorphic to related techniques
like linear regression and cluster analysis. Second, it puts the finger on where
neural networks either violate or extend what can be already done with other,
more traditional models.

In this paper we adopt the computational view of the field, perceiving neural
networks as a resource that can be used to augment decision support systems.
With this pragmatic perspective, we wish to answer such questions as: how do
neural networks affect the structural aspects of a DSS? What kind of decision
problems lend themselves to neural networks? What are the contingent rela-
tionships between the structure (or lack of) the underlying decision problem
and alternative neural architectures?

Following Ariav and Ginzberg [6] , we observe that the building blocks of any
DSS are environment, components, and resources. This LLDSS framework" pro-
vides the applied context in which the above questions will be answered. In par-
ticular, the plan of the paper is as follows. Section 2 provides a brief overview
of key neural network concepts. Section 3 describes the DSS framework. This
sets the stage for the next three sections, which survey the typical environ-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

m e n t of neural network applications (section 4), the components that make up
a neural networks-based DSS, (section 5) , and the software and hardware re-
sources which are presently available to designers of neural networks (section
6). Section 7 discusses several decision support themes which are relevant to
neural networks, and section 8 provides concluding remarks. Readers who are
not interested in the technical aspects of neural networks may skip sections
2.1-2.3 without losing the main thread of the paper. All the same, we feel that
this material is quite readable to those who are willing to endure some minimal
mathematical notation.

An Overview of Neural Networks

The computer science literature offers several comprehensive reviews of neural
networks, and the interested reader is referred to Lippmann [43], Wasserman
[61], and Feldman et a1 [19] for a sample of highly readable surveys/tutorials
of the subject. This section attempts to pack such a survey into a few pages,
with the objective of equipping the reader with some essential terminology and
conceptual understanding of how neural networks are constructed, trained, and
used, in the field. In particular, we'll focus on feedforward neural architectures
and learning algorithms, as they unfold in the context of a typical business
classification problem. For the sake of clarity, we'll begin with the simplest
neural model - consisting of a single neuron - and gradually extend it to a
multi-layered, feedforward network of neurons. This model is by far the most
widely-used neural architecture in business applications. A neural net work is
a collection of many independent processing elements, also called "neurons"
or "units." Each unit (except those at the network's boundary) is linked to a
set of input-units, from one end, and to a single output-unit, from the other.
The inter-unit connections are parameterized by a set of numeric weights which
modulate the intensity of the messages that go through the network. When
a unit receives a set of messages (encoded as numeric values) via its incoming
connections, it multiplies them by their respective weights, sums up the result,
and passes it to a sigmoidal activation function which determines the unit's
output. The simplest activation function is the signum function, which acts
as follows. If the weighted sum exceeds a certain threshold value, the function
outputs 1. Otherwise, it outputs -1. This non-linear transformation serves

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

to either cancel out a weak message (if it falls short of the threshold), or,
alternatively, amplify it to an upper-bound (if it exceeds the threshold). The
resulting message is transmitted via the unit's outgoing connection to another
unit, and so on and so forth.

Neural networks are an old emerging technology. Versions of the basic model
- also called the perceptron machine - were first articulated by McCulloch and
Pitts [45] and by Widrow and Hoff [63]. Rosenblatt developed the first per-
ceptron learning algorithm [49], and Minsky and Pappert provided a brilliant
analysis of their mathematical properties [46]. This early work evolved into a va-
riety of neural network "sub-species" like backpropagation networks [51], coun-
terpropagation networks 1391 [29], Hopfield networks 1321, associative memories
[41], and adaptive resonance networks [ll], to mention some leading paradigms.
These models differ from each other in terms of their connectivity pattern (e.g.,
full or partial), topology (free-form or layered), data-flow (cyclical or acyclical) ,
data-type (discrete, binary, or real), output representation (localized or dis-
tributed), and learning algorithms (autonomous or feedback). In spite of these
differences, though, all neural models are basically different variations on the
same theme: a connected collection of many independent processors, working
in tandem to carry out a global computational task.

With that in mind, it's important to understand that different neural models
don't compete with each other; Rather, they represent different specializations
designed to solve different types of problems. In this paper we focus on one
specific model which lurks behind most if not all business applications of neural
computing: feedforward networks (also called backpropagation networks). This
model, which resulted from the seminal work of the PDP Research Group [51], is
widely-used in practice for a number of reasons. First, many important business
problems can be cast in terms of classification, a generic task which lends itself
nicely to feedforward networks. Second, the training algorithm of feedforward
networks, known as backpropagation learning, is relatively established and well-
understood. Finally, and perhaps most importantly, there exist by now many
software shells that enable users to build and train feedforward networks with
minimal programming.

The extension of feedforward networks from a single-neuron machine to a multi-
layered architecture is outlined in figure 1. The simplest model consists of a
single neuron designed to classify n-dimensional objects into 2 classes. This
basic model can be extended in two different ways. First, in order to clas-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

Figure 1: Three successive architectures of feedforward networks

sify objects into m > 2 classes, one adds more neurons to the network, each
representing a different class (Figure 1-b). Second, in order to classify objects
which are not linearly separable, one'adds more layers of neurons between the
n-ary input-layer and the rn-ary output-layer (Figure 1-c). The "hidden layers"
are designed to model non-linear boundaries in the objects-space, as will be
explained shortly.

Hence, feedforward networks represent an elegant ascent from simple to complex
architectures. The extensions from one architecture to another are straightfor-
ward, a complex network being a union of simpler networks, all the way down
to the level of individual neurons. In other words, all feedforward networks
are made up of the same atomic material - independent neurons - arranged in
different pat terns of connectivity. Therefore, the computational behavior of the
single neuron holds the key to the behavior of the entire network.

2.1 The Single-Neuron Model

Consider the following problem, taken from the domain of direct-mail market-
ing. A consumer-products company plans to promote a new product through a

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

fancy (and expensive) mailing kit. In order to cut cost and maximize yield, the
company seeks to approach only those customers who are likely to purchase the
new product. Strictly speaking, the company wishes to partition its customers-
base into two categories: "targets" (q) and '"on-targets" (cz). This, of course,
is a generic classification problem: the objective is to sort n-dimensional entities
(customers) into m classes (here m = 2).

We assume that the company maintains a customers file and a transactions
file. The first file keeps track of n customer attributes, denoted XI,. . . , X,, e.g.
age, income, zip-code, etc. With this notation, the universe of all possible
customers is the cartesian product X = XI x . . . x X,, a specific customer is
denoted x = < XI , . . . , x, > E X, and the company's customers file is denoted
Xf c X1. The t ransact ions file specifies which customer purchased what
product, and when. We also assume that there is a certain metric or a domain
expert who can partition the company's products into two sets: products that
are "related" to the promoted product, and products that are "unrelated."
Based on these assumptions, the company's files can be reprocessed to generate
two data-sets, as follows: Xl = {xlx E- Xi purchased a re la ted product),
and X2 = Xf\Xl. The first set contains examples of customers who might
be interested in the promoted product, whereas the second set contains all the
other customers. To complete the problem's setting, suppose now that the
company has access to a mailing list, denoted X3 C X, consisting of potential
adopters of the product whose buying behavior is unknown. Can we use XI and
Xz and a neural network to predict which X3 customers are likely to purchase
the new product?

We begin with a simple network, consisting of n input-units and a single
processing-unit (figure 2). The input-units are connected to the processing-
unit by n "wires" whose "widths" are represented by a set of numeric weights,
denoted wl, . . . w,, or w. The input-units store the descriptor values (customer
attributes), denoted xl, . . . x,, or x. The processing-unit is characterized by
two mathematical operations: a fixed weighted-sum operator which computes
the inner-product wx = C7 w;x;, and a fixed activation function, denoted g (*) ,
which maps wx on [-l,l]. If the network "thinks" that the customer in ques-
tion should be classified as "target," it will output 1. Otherwise, it will output
-1.

lThroughout this section, slanted letters (x), bold-face letters (x), and upper-case letters (X) represent
scalars, vectors, and sets of vectors, respectively.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

Figure 2: The generic structure of a neuron

The training data consists of the sets Xl and X2, whose member vectors are
known ex-post to be targets and non-targets, respectively. The training phase is
a cyclical process in which a "teacher" (which is actually a computer program)
repetitively samples objects form Xl and Xz and hands them over to the net-
work for classification. After comparing the network's response to the correct
classification, an error-minimizing procedure adjusts the network's weights in
an attempt to correct wrong classification decisions. Next, the network is fed
with another object, and the process continues. The details are as follows:

1. Initialize w and 6 to small random values.
2. Select at random one of the training sets X I or Xz and sample an

object x from it. If x f XI, set d = 1. Otherwise, set d = - 1.
3. Compute the classification of x as follows:

If g(wx - 8) > 0, set y=l. Otherwise, set y=-1.
4. If x was misclassified, compute a new set of weights w' as follows:

W: = W; + 77 - (d - y) -5;.

5. Set w = w f and go to 2.

The output of the model, which is determined in (3), is denoted y. The param-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

eter 7 in (4) is a gain-factor between 0 and 1 which determines the rate at which
the model converges to a stable set of weights. The threshold value 6 appears
to be fixed in (1-5), but this is done only for the sake of clear exposition. In
most models the threshold is made a learnable parameter through the following
modification of (1-5): (a) add a new input-unit x0 to the model and clamp its
value to -1; and (b) replace g(wx - 6) in step 3 with g(wx) (w and x are now
(n $ 1)-ary vectors); This way, 6 becomes yet another weight (wo) which is
adjusted by (1-5) like all the other weights in the model.

In general, the model is a symmetric implementation of Hebb7s rule of learning
[28]: a connection between two neurons should be strengthened whenever both
neurons fire. In the present model, when x is misclassified, step (4) serves to
either increment, or decrement, the weights along the active connections (where
x; # 0), according to the direction of the classification error. Hence, the weights
are continuously modified to promote improved network performance. In fact,
the data-driven weights constitute the only "moving parts" of the network's
machinery; All the other features of the network, namely the units topology
and the functions w - x and g(.), remain constant throughout the network's
operations.

The termination condition of (1-5) is pragmatic. If the objects space X is
linearly separable, the procedure is guaranteed to converge to a stable set of
weights (this result is know as Rosenblatt theorem). In other cases the process
is halted when all the examples have been exhausted. The entire procedure is
the computational reality behind the popular claim that neural networks can
"train themselves" or "learn from experience." We see that these anthropornor-
phic phrases should not be taken at face value: neural learning algorithms are
based on blind error-minimizing procedures which are far-fetched from what
we normally construe as human learning. It is possible that human learning at
its lowest level, namely at the neuron's level, is somewhat similar to (1-5), but
there is absolutely no biological evidence that this is indeed the case [14].

2.2 First Extension: More Neurons

Suppose now that instead of classifying the customers into two categories,
the company wishes to discern three categories, as follows: prime-targets,
secondary-targets, and non-targets, denoted cl,cz and CQ, respectively.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

(This will make sense if, for example, the company has two types of mailing
kits which vary in production and mailing cost .)

In order to represent the three categories, we extend the single processing-
unit model as follows. First, the input-layer of the network remains the same,
with n input-units, one for each customer attribute. This layer however will
be connected not to a single processing-unit, as before, but rather to three
processing-units, denoted yj, j = 1,2,3. Each of these units will be connected
to the same n input lines by a separate weight vector wj =< wlj , . . . , w,j >
, j = 1,2,3 (see figure 1-b, and note that for a fixed j the model reduces to the
single-unit model depicted in figure 1-a).

When a new customer's profile x =< XI,. . . , x, > is fed to the network, the
three processing-units compute (in parallel) the three inner-products wjx, j =
1,2,3. The output-unit with the largest inner-product is then selected as the
most promising category of the classified object. The rationale behind this
procedure is as follows. As the network sees more and more examples, the
learning algorithm continuously adjusts the three weight vectors. If learning is
successful, the weight vector wj will eventually store the "average" character-
istics (features) of the vectors who are known to belong to the class cJ . With
that in mind, the inner-products wjx, j = 1,2,3 measure the three vectorial
similarities (akin to correlations) between the new vector, x, and the up-to-date
average characteristics of the three classes cj, j = 1,2,3. Leaving the question
of whether or not this procedure will work to the next section, we note that the
extension of a single processing-unit to a layer of multiple units is straightfor-
ward. A single unit is a binary classifier. A layer of m units acts as a slab of m
competing classifiers, each measuring the vectorial similarity between its own
set of weights and the input vector.

2.3 Second Extension: More Layers

The network described in the previous section will not work for two reasons.
First, the network lacks a neural solution to the problem of identifying the
output-unit which attained the largest value. This, however, is not a major
problem: a second neural network, denoted maxnet, can be trained to identify
which of m input-units contains the greatest value. The two networks can then
be merged, connecting the first network's output-units to the input lines of
maxnet .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

However, it may well be that the resulting network will still fail to classify
customers correctly. This is because the objects-space (the world of customer
characteristics) is probably not linearly separable, whereas the network, in its
present form, can carry out only linear classification. In order to visualize this
limitation, picture a two-dimensional objects-space in which each object (cus-
tomer) is represented by a fixed point (xl, 2 2) in the (XI, X2) plane (e.g. income
and age values). Furthermore, assume that the customers are partitioned into
three classes, i.e. that some points (xl, 2 2) are labeled cl, others c2, yet others
c3. Finally, assume that even though the points exist, you still don't get to see
them. At that point you are staring at en empty (XI, X2) plane on which three
lines are randomly drawn.

Suppose now that you are provided with a ruler and a pencil and you are asked
to go through the following iterative exercise: in each step, one point (x17 x2)
will be exposed, along with its label (one of the three cj's). Your job (in each
iteration) is to separate the three sets of already visible points by adjusting the
three straight lines. If at some step you'll fail to separate the points correctly,
so will the network. To complete the analogy, denote the slopes and offsets of
the three lines in step k by the three pairs (< wl/w2,8 >j, j = 1,2,3)k. Note
that the entire setting corresponds exactly to the network's learning procedure,
in which the set of weights and threshold values are continuously adjusted to
achieve better classification. If the objects-space is not linearly separable, the
network will fail to converge to a stable set of weights: the ruler will continue
to oscillate, indefinitely.

As it turns out, most interesting classification problems are not linearly sep-
arable. For example, consider the customers space spanned by the attributes
XI, . . . , X,. In general, it will be naive to assume that the factors that de-
termine a purchase likelihood of a new product are simple linear functions of
customer attributes. Rather, it is entirely possible that a customer should be
classified into, say, cl, only if, say, XI + 2 2 is greater than, say, x2 + x3. TO make
matters worse, it might be that the boundaries of the class cl in the object
space cannot be expressed in the languages of mathematical functions at all.
In other words, in the worst case (which is unfortunately quite common) we
are facing an opaque classification problem f : XI x . . . x X, -+ {cl, . . . c,)
in which f may be not only unknown, but also non-descript in mathematical
terms.

However, although we may never know the underlying structure of the elusive

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

f , we still may have access to many examples of its "operation," namely to
vectors x and their correct classifications f (x). Can we use this raw information
to build a machine that simulates f without making any assumptions on its
underlying structure? This is precisely what multi-layered feedforward networks
are supposed to do. In a multi-layered network architecture, the input and the
output layers are separated by one or more "hidden7' layers of intermediate
neurons (see figure 1-c). If the network's topology is well-constructed, some
hidden neurons will "learn" to recognize subtle (read: non-linear) interaction
effects among the input neurons (the object attributes) and the target classes.

To illustrate the role of the hidden units, consider the quintessential example
of using a neural network to map fuzzy hand-written letters on the 22 letters
of the English alphabet (e.g. [I?] and [48]). Although the following description
is a simplification of the actual solution, it does capture its main spirit. The
basic network consists of three layers of neurons. The neurons of the input-
layer are linked to the pixels of a bit-mapped retina, on which the hand-written
images are laid. The output-layer consists of 22 mutually-inhibiting neurons,
each representing a different letter in the alphabet. The key player however is an
intermediate hidden layer whose neurons are designed to capture distinguishing
features in the input images. After seeing many examples of images and their
correct classifications, the network will learn, for example, that hand-writ ten
versions of A, 'If, and F, have one thing in common: a (more or less) horizontal
line positioned (more or less) in the center of the retina. This will cause a certain
hidden neuron to fire whenever an image with a center horizontal line is laid
on the retina. Through interaction with other hidden neurons (e.g. detectors
of vertical and diagonal lines), the network will learn, from experience alone,
which are the distinguishing features of the target classes.

Thus, when a certain image, say C, is fed to the network, the hidden neuron
that detects a left-sided vertical line will cast parallel "votes" in favor of such
candidates as L, H, and K, whereas the detector of a bottom horizontal line will
vote for L, B, E, and D. The votes will be "tallied" (via inner-product computa-
tions) by the output neurons that represent the 22 candidates, and the output
neuron with the highest vote will emerge as the winning letter. The process is a
bit more complicated, since the hidden neurons also cast negative votes against
unlikely targets, and in the final tally those negative votes are as important as
the positive ones.

In fact, it has been proven mathematically that any classification problem,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

no matter how complex (barring some exceptions that generally don't inhibit
practical applications), can be simulated by a neural network with only one
hidden layer of neurons [34] [33]. Yet the mathematical proofs are strictly
existential: they don't tell us how many neurons the hidden layer should include,
what activation functions they should invoke, and what learning algorithm could
be used to train them. These questions are at the forefront of today's neural
networks research. Although the construction of an effective topology is still
more art than science, network construction guidelines are now beginning to
emerge 1261 [7] [31] [59].

Another open question regards the meaning of the network. Given that a certain
network topology is indeed a successful classifier, how can we credibly justify
the network's operations, short of pointing out at an impressive empirical track
record? If the network is supposed to serve as a decision support system, it must
offer a certain degree of intuitive face validity and analytic account ability. We'll
return to this critical issue later in the paper, when we discuss the potential use
of neural networks in the context of strategic decision making.

3 The DSS Framework

Having described the basic building blocks of feedforward networks and learning
algorithms, we now turn to explore their potential use and limitations in sup-
porting a variety of decision making activities. The discussion will be organized
along the DSS framework of Ariav and Ginzberg, a description of which can
be found in [6]. The DSS framework was designed with one objective in mind:
help researchers and practitioners think systematically about the many factors
that come to play in the design and use of decision support systems. Inspired
by Churchman's approach [12] to analyzing general systems, the framework is
organized around three themes: environment, components, and resources. The
basic premise is that under ideal circumstances, the external characteristics of
the system's environment have to be reflected in its internal components, which,
in turn, determine the relevant resources required to realize the system. In re-
ality, the linkage often flows backwards: the resources that are actually used
determine the system's architecture, which, in turn, determines the system's
ability to effect its designated environment. This view is mirrored in sections
4, 5, and 6, where we explore, respectively, the environment, components, and

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

resources that either enhance or inhibit the use of neural networks in decision
support applications.

4 Environment

Decision processes are seldom conducted in a vacuum; Therefore, the charac-
teristics of the system's environment must be taken into consideration by the
system designer. By "environment" we refer to a host of external factors that
are relevant to the system's operation, but nonetheless are not under the control
of the system's designer. Ariav and Ginzberg partitioned the environment into
two major categories: task characteristics, and access pattern. Table 1 gives a
more detailed description of these categories.

The task characteristic that affects decision support most critically is structura-
bility, i.e., the degree to which the decision maker can apply a single predefined
model to bear on the underlying problem (Ginzberg and Stohr, 1241). The sec-
ond characteristic is the managerial level at which the system is supposed to
intervene in the decision process (Anthony, [5]). The third characteristic is the
cognitive phase that the system is intended to support (Simon, [56]). Finally,
the fourth characteristic is the functional area of the supported application. It
goes without saying that different decision problem vary greatly in terms of their
underlying structurability, managerial level, phase, and functional area. Each
of these variations implies a different set of constraints and design guidelines
on the type of decision support which is called for.

4.1 Structurability

As was pointed out earlier in the paper, numerous experiments have indicated
that feedforward networks are especially good at classifying fuzzy objects into
concrete categories. As it turns out, many important business problems can be
cast in terms of classification: assigning people to jobs, placing customers in
different mailing lists, determining the risk ratings of commercial loans, and,
in general, mapping different objects onto different categories that then merit
different treatments from the decision maker.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

Dimension Characteristics

Task
Characteristics

Access Pattern

structur- / * low

ability / i

managerial
level

* operational
* control

decision

functional
area

* strategic
* intelligence

process
whase

* finance

* design
* choice

* marketing
* production

* intensive, online

* slow, intermittent
* size P

user I * domain expertise
community I * computer literacy

systems I * models
neighboring

Table 1: The DSS Environment (summary)

* role
* databases

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

In general terms, then, the generic structure of problems that lend themselves
to feedforward networks is mapping, i.e. f : X -+ C. Going back to section
2.1, recall that X is a cartesian product Xl x . . . x Xn of object attributes, e.g.
financial ratios or customer characteristics, whereas C = {cl, . . . , c,) represents
a set of classes, e.g. credit ratings or customer categories, respectively. The
decision rule f represents an unknown mapping that assigns vectors in X to
classes in C. In general, f can be approximated deductively, if there is some
explicit knowledge about the classification's rationale, or inductively, if there
is a good sample {< x, f(x) > I x E X) of representative objects and their
ex-post classifications.

Complexity - the "unstructurability" of a decision task - can arise in this con-
text from three sources. First, it may be difficult to discern a good set of at-
tributes, as the object descriptors may be redundant, correlated, or downright
unmeasurable. Second, the set of target classes may be partially unknown, as
in the case of mapping new products on a set of standard categories that has
to be periodically updated. Finally, and perhaps most critically, the decision
rule f may defy simplistic interpretations. In such cases, traditional models like
linear discrimination rules and Bayesian classifiers will fail to provide a good
approximation of f .

In general, statistical classifiers as well as rule-based classifiers (e.g. diagnostic
expert systems) make strong assumptions on the structure of X, C, and f . For
example, linear discrimination models require that (a) the attributes (explain-
ing variables) xl, . . . , xn be independent; (b) the training sets {< x, f (x) >) be
drawn from populations that have multivariate normal distributions and identi-
cal covariance matrices; and (c) the objects-space be linearly separable. Models
for rule-based inference under uncertainty (e.g. EMYCIN-type systems (601)
seem to be less restrictive, although an analysis of their underlying "belief lan-
guages" reveals that they also make strong (although implicit) assumptions on
attributes independence [2] [53]. In addition, rule-based systems require at least
a partial specification of f - in this case the rule-base elicited from a human
domain expert.

In a rather dramatic contrast, neural networks don't have to make any a-priori
assumptions on the structure of f . In order to build a neural solution to the
classification problem f : XI x . . . x X, --+ {cl, . . . c,), one builds a network
in which some units represent the n input values, some units represent the rn
classes, and the remaining units implement the decision rule f . The key point

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

here is that f need not be explicitly specified; Instead, the neural implemen-
tation of f will evolve "automatically:" as the network sees more and more
examples of < XI, . . . z, > and their correct classifications f (< XI, . . . x, >), it
will adjust the definition off in a direction which minimize its own classification
errors.

Hence, compared with traditional classifiers which are widely used in decision
support, neural networks are marked by their minimal requirements with re-
spect to problem structure. This makes neural networks particularly suit able
to support complex classification problems in which the mapping rationale is
either fuzzy, inconsistent, or completely unknown. We conclude that feedfor-
ward networks represent a mixed case with respect to structurability; On the
one hand, they require that the underlying problem be modeled along the form
f : X -+ C. On the other hand, once this minimal structural requirement
has been satisfied, the problems themselves can be quite unstructured, because
no apriori knowledge on f is necessary. Needless to say, under-specified or
partially-specifiable models were the raison d'etre of decision support systems
in the first place [20].

4.2 Task Level

In his analysis of decision making activities in complex organizations, Anthony
described a "pyramid" of managerial tasks consisting of three levels (from bot-
tom to top): operational, control, and strategic [5] . Although it was tradition-
ally argued that decision support systems are mostly needed at the control level,
experience has shown that DSS can be used successfully at any task level (e.g.
[23] 1571 [27]). All the same, the task level still plays a major role in determining
the nature of the systems that should support various levels of decision making
in the organization.

Operational tasks are characterized by routine decisions, automatic transaction
processing, and minimal need for human judgment. neural networks are hardly
used in this level, with one notable exception: companies whose basic business
consists of massive data interpretation, in one way or another. For example,
we've already mentioned the possibility of applying neural networks to classify
new products into standard categories, based on known classifications of related
products. In a similar vein, some organizations use neural networks to index

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

press clips and cross-reference them with existing news databases [3]. Since
neural networks are especially effective when there are plenty of examples to
work with, such transaction-processing applications lend themselves nicely to
neural networks support.

A survey of business applications of neural networks reveals however that the
technology is mostly used in the controk level of management, where it sup-
ports decisions that concern resource allocation. Whet her they deal with credit
rating, scheduling flight crews, or targeting customers, neural networks are typ-
ically designed to optimize the use of capital, people, information, and other
corporate resources. (Incidentally, resource allocation problems have always
attracted decision support systems in general). One obstacle to a widespread
use of neural networks at the control level is the need for a technical liaison,
namely a network designer. If and when neural network shells will become as
easy to use as spreadsheet programs, line managers like credit analysts, factory
supervisors, etc., will undoubtedly discover new and creative ways to exploit
them in supporting day-to-day decision tasks at the control level.

Strategic decision making, which focuses on such decisions as introducing new
products or moving into new markets, can effect the very survival of an en-
terprise. Technically speaking, much of strategic decision making consists of
evaluating and then selecting alternative courses of action. Neural net works
have two inherent limitations that inhibit their use in that level of decision
making. First, neural learning algorithms are inductive, requiring masses of
data and repetitive examples, whereas st rat egic decision making deals with
one-of-a- kind, ad-hoc, type of decisions. Second, neural computing is extremely
convoluted, and therefore it is difficult to explain or defend the system's "ra-
tionale'' (unlike expert systems, where one can trace reasoning chains or invoke
some sort of a belief calculus). Therefore, neural networks suffer from low face
validity: since their decisions are supported by neither significance tests nor
by deductive knowledge, they lack the kind of accountably that is critical in
supporting decisions at the strategic level.

4.3 Phase

In his classical research of chess playing strategies and their analogy to human
reasoning, Simon 1561 identified three generic phases in decision making: in-
telligence (information gathering), design (solution construction), and choice

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

(solution selection) [56]. DSS researchers used this taxonomy to point out that
each phase requires a different set of support services. Traditionally, decision
support systems have been employed primarily in the design and choice phases,
with the intelligence phase being supported to a much lesser extent. Inciden-
tally, the latter area is precisely where neural networks can prove to be quite
useful, thus filling a gap in the range of services provided by other types of
decision support technologies.

In business, the intelligence phase consists of an on-going search for problems
and opportunities. For example, consider the managerial activities that take
place in a mutual funds company. The portfolio manager monitors his positions
continuously for non-performing stocks (problems), whereas stock analysts are
combing the markets for unknown but promising companies (opportunities).
Both search processes are not straightforward, because the factors that make
a stock expensive or undervalued are beyond the bounded rationality of most
analysts (otherwise the market would have priced the stock correctly). Also,
the factors that determine long-term success interact in subtle ways that might
go unnoticed by standard analysis. This lack of deductive knowledge, however,
can be sometimes compensated by a generous supply of inductive experience.
Indeed, most mutual fund companies have amassed an abundance of examples
of good and bad investments. In some cases, a neural network can be trained
to harvest this resource and make investment recornmendations based on past
experience with related companies, industries, and economic climates.

In contrast, the design and choice phases of decision making don't lend them-
selves naturally to neural networks support. These phases focus on planning
and selecting, respectively, alternative courses of action. Since artificial neural
networks are not very good in constructing and evaluating solutions, they don't
lend themselves to such decision activities. An exception to this statement
is the novel use of Hopfield networks in solving hard combinatorial problems
(such as integer programming) [32] [36]. Since combinatorial optimization plays
a critical role in supporting the choice phase of many decision problems, neural
networks can help here also, although indirectly.

4.4 Functional Area

For obvious reasons, the business function of the underlying task places spe-
cific demands and constraints on the type of decision support which is called

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

/ Area I Typical Applications

Finance bankruptcy prediction, customer credit scoring,
credit approval, mortgage underwriting, bonds rating,
stock and commodity advisory systems, currency trading

marketing

Table 2: A sample of business applications of neural networks

new product analysis, customer characterization,
sales forecasting, airline fare management, direct
mail optimization

operations

for. Table 2 lists representative examples of business applications of neural
networks, broken by the functional areas of finance, marketing, and opera-
tions management. With the exception of the latter category, neural networks
are used primarily in applications that involve forecasting, credit analysis, and
customer- or product- classification.

jet engine diagnostic systems, fan motor inspection,
assembly and packaged goods inspection, real-time 31)
object classification, fabrication plan development,
VLSI chip layout, process control, vehicle routing,
airline crew scheduling, facility location

The use of neural networks in economic forecasting is novel, and recent experi-
ments are quite encouraging. Most studies focused on stock market predictions
(e.g. [38] and [37]) and on predicting the behavior of individual stocks (e.g.
[62]). These studies seem to suggest that when it comes to analyzing time-
series, neural networks may have an edge on standard econometric methods
because they are capable of picking up and then simulating non-linear relation-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

ships in the data set.

Credit rating, a pervasive problem in financial analysis, has attracted numerous
neural solutions (e.g. [59] [22] [15] 1161 [13]). Since the financial rewards of
correct risk analysis are high, financial institutions are constantly on the search
for new risk assessment technologies. Indeed, there is a long going tradition in
American business of using quantitative methods to analyze risk and forecast
defaults, with the practice of bond rating going back to 1919. There is by
now a great deal of domain knowledge on the key attributes that determine the
financial strength of prospective borrowers, and the historical files of commercial
banks contain thousands of examples of good and bad loans. All these factors
make credit analysis an attractive application of feedforward neural networks.

In marketing, most business applications of neural networks focus on market
segmentation and on targeting customers (e.g. [35] [lo]). These, again, are
problems that can be cast in terms of fuzzy classification. Given the financial
and demographic characteristics of millions of potential adopters, on the one
hand, and the attributes of a new product or service, on the other, the problem
is to identify the customers who are most likely to make a purchase decision (this
application was discussed in section 2.1). If the company has access to many
examples of past purchase decisions (in the form transaction files or warranty
registration records), a neural network can be trained to classify customers into
prime targets, secondary targets, etc. Needless to say, effective targeting holds
the key for running eEcient direct-mail campaigns, where saving a few cents on
each customer can translate to huge savings at the global level.

4.5 Access Pattern

Continuing to follow the DSS framework (table l), we now turn to discuss an-
other environmental aspect of decision support systems: access pattern. Access
pattern encompasses three key characteristics of system's usage: (a) the pace,
or the intensity, of the supported decision process; (b) the given features of the
system's users community; and (c) the relationship between the system and its
neighboring systems.

Pace The intensity of decision processes varies from intensive and online (as
in crisis management, for example), to slow, evolving, and intermittent (as in

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

strategic planning). Apart from the "natural pace" of the underlying decision
process, some DSS resources impose long response times, as in the case of
lengthy database searches or step-wise optimizations. In the case of neural
networks, the training phase is a prolonged process that might require days
of uninterrupted CPU-time. However, once training is over and the network
is used in the field, response-time is excellent. Hence, neural networks are
adequate in situations where a relatively long setup time is available, and a fast
response during normal execution is considered an advantage. Many business
applications seem to fit this description. For example, the ability to quickly
confirm a loan application is an important competitive advantage in the banking
industry. This is at least one reason why several banks are presently studying
the potential use of neural networks in supporting the work of loan officers.

User community As was pointed out elsewhere in the paper, neural net-
works are unique in their inability to "explain" their own decisions to their
users. This limitation, coupled with lack of intuitive face validity, places cer-
tain constraints on the users community of neural networks. In particular, the
network's behavior should be scrutinized by a domain expert, especially in the
network's design and learning phases. Furthermore, a network that exhibits
excellent average performance during its operational phase can still generate
freak individual decisions that can go unnoticed without human monitoring.
Therefore, users of neural networks should be trained to identify exceptional
outputs and decisions which seem to be off-target, in which case a domain ex-
pert must be consulted. In that sense neural networks is essentially a decision
support technology, as final judgment should be reserved to human operators
(at least in critical applications).

Neighboring information systems: Since decision processes are never con-
ducted in a vacuum, the presence of neighboring information systems must be
recognized by the DSS designer. Indeed, we observe that stand-alone DSS's
with indirect or no access to other information systems are gradually being
phased out in favor of systems which tap directly into corporate databases and
information resources [42]. On the other end of this link, most DSS's are now
expected to be able to pipe their modeling outputs into neighboring systems. In
order to facilitate such an interaction, most neural network shells now provide
effective means for incorporating data from standard database and spreadsheet

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

files. This allows users to build and edit training data sets using familiar envi-
ronments like dBASE and Lotus, and then use the staging function of the shell
to import the data into the learning schedule of the network.

5 Components

According to the DSS design literature (e.g., [9] and [57]), a decision support
system consists of three functional components: model management, data man-
agement, and dialog management. The three components interact with each
other in a pattern that makes up the system's arrangement. In the DSS frame-
work, the components are treated at a conceptual level which is kept separate
from their actual implementations, the argument being that the DSS design
process should not be biased by resource availability.

For example, the designer of a trading DSS need not be constrained from the
outset by the presumption that the DSS will be eventually implemented on a
spreadsheet program. Starting from the user's view of the trader's job, the
designer must think in broad terms about the model-, dialog-, and data man-
agement, functions which are called for by the application. Only then, the
designer must seek the best resources to realize his conceptual design. We fol-
low this notion by separating the treatment of components and resources into
two independent sections.

Dialog management: During the last decade neural networks have proven
to be quite useful in several applications related to user interface design: hand-
writing recognition, speech recognition, and speech synthesis. For example,
Sejnowski and Rosenberg have built a network, called NetTalk, which is capa-
ble of correctly pronouncing written text [55j. In a similar vein, Lippmann and
his colleagues have shown that neural networks are generally better than other
traditional classifiers in the reverse task of speech recognition 1441. These en-
couraging results should be qualified by the fact that, unlike human speech
recognition and synthesis, artificial networks underst and nothing about the
meaning of the underlying text. Nonetheless, they clearly hold promise for
enhancing the dialog management function of decision support systems.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

Component

Dialog

Characteristics

dialog

I control i I
* user-led

/ Management I interface I i I
user

* system-led
* menu-driven

I I constructor I data + model I
request

* command-driven
interface to

data

management
* files
* databases

depository
data

* spreadsheets
data descriptions

Data
Management

directory
query

st aging

MBMS

I I execution I i I

and definitions
interface to dialog

facility

* automatic
* scattered models

model

and model management
* manual

* model-base
+ invoking

I I command I dialog I

Model
Management

I interface / data management

modeling

processor
data

Table 3: DSS components and their parts (summary)

25

* linking
interface to

management
interface to

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

Data management: The potential use of neural networks in data manage-
ment for decision support is significant. A great deal of business practice and
education focuses on the benefits that managers can reap from searching infor-
mation about similar companies, related products, and relevant strategies (see
for example the PIMS project, case-based reasoning, and hypertext). The fan-
tastic amounts of available data, the absence of a unifying data structure, and
the lack of indexing mechanisms, all make "strategic search" a prime target for
computer-based decision support.

Indeed, several experiments have indicated that neural networks are well-suited
to support a free-form quest for information, using a distributed memory orga-
nization and associative recall algorithms 1501 [58] 181. In a neural database (for
lack of a better term) such as the Hamming network, the data is not organized
in the conventional linear format of files and databases. In fact, the concept
of functional dependency, which is central in ordinary data models, does not
exist in the neural representation of data. Instead, the data is spread across
the network in a distributed format that does not lend itself to supporting any
one particular query, and allows retrieval of information through inexact or in-
complete keys. As a result, users can venture freely in a web of facts and rules,
using pattern recognition, rather than rigid indexing schemes, to retrieve data.
In the context of a business application, this flexibility will enable managers
and analysts to trace chains of associations and recognize patterns in surprising
and unpredictable ways. With that in mind, we anticipate that neural networks
will play an important role in the data management function of future decision
support systems.

Model management: The explicit management of models and the support
of modeling activity are the most distinguishing aspects of DSS among all other
information processing systems. Correspondingly, the ability to specify, in-
voke, run, change, combine, and inspect, models is a key capability in decision
support platforms. Ideally, the model management functionality should be
achieved through a modelbase to store models and a modelbase management
system (MBMS) to handle them [40].

If the DSS platform is intended to support classification tasks, the MBMS
should offer access to a variety of alternative models like cluster analysis, dis-
criminant analysis, and induction, using the same terminology and user-interface
across the board. Since the feedforward network paradigm can be viewed as

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

yet another data analysis model, its inclusion is a generalized DSS environ-
ment should pose no difficulties from the standpoint of software engineering.
Once incorporated in the environment, the MBMS should allow users of neu-
ral networks to accept inputs from, and pipe outputs to, other models in the
model-base.

6 Resources

It is only after the DSS has been designed - after the desired architecture has
been logically developed - that resources should be taken into consideration. At
this point the key questions are: How can the proposed system best be realized
by the available technology? How close to the ideal can a feasible system come?
Which specific resources should be used to build the system? In this section we
are primarily interested in the latter question. Following the DSS framework,
we discern four categories of DSS resources, as follows: hardware, software,
people, and data (see Table 4).

Hardware resources were critical in the 70's, when DSS7s required specialized
input/output devices. With the advent of desktop computing in the last decade,
the hardware resource are no longer a binding constraint in DSS design. Soft-
ware resources, on the other hand, still play a prominent role in the design
process. Even though any system can be written in any general-purpose pro-
g ramming language, most DSS designers augment this basic resource with a
variety of tools like screen generators, data dictionaries, specialized editors, et c.
These resources support at least one of the three major DSS functions - dialog,
data, or model management - providing building blocks that speed up the DSS
design process.

In addition to hardware and software, the two other resources that come into
play in the DSS design process are people and data. The four resources interact
with each other in a number of different ways. Whereas the tradeoff between
hardware and software is obvious, there are other tradeoffs as well. For exam-
ple, the people resource (in the form of inexpensive personnel) can sometime
substitute the need for an expensive data resource (e.g. a computerized news
clipping service). In a similar vein, the availability of a sopware resource (e.g.
an auditing expert system) can compensate for a scarce people resource (e.g.
experienced auditors).

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-35

Table 4: DSS Resources and some of their characteristics (summary)

Hardware

Software

People

Data

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

* personal computers
* workstations
* mainframes
* storage media
* data communication
* languages
* tools
* generators
* environments
* designers
* operators
* "chauffeurs7'
* internal
* operational
* external

Of course, the final architecture of a DSS is always a compromise between ideal
design and available resources. If a DSS is implemented on a DBMS platform, it
will typically provide good data management support, but little if any support
in the way of model management. Conversely, a spreadsheet-based DSS will
exhibit opposite strengths and limitations. Although several "integrated" soft-
ware resources claim to support data, dialog, and model, management equally
well, they typically excel in at most one function. Hence, once we commit our-
selves to a certain resource, we typically compromise one DSS functionality in
lieu of another.

6.1 Hardware

In general there is a sequence of hardware configurations which offer increas-
ingly powerful capabilities for neural computing. The simplest configuration is
an ordinary personal computer loaded with a neural networks software simula-
tor (to be discussed shortly). The next step is an ordinary PC or a workstation
equipped with an accelerator board which offers parallel processing capabilities
(e.g. SAIC7s Delta I1 board, ANZA7s Plus board). Finally there are "true"
parallel processors like connectionist machines which lend themselves nicely to
neural applications. Of particular interest in the future will be optical com-
puters with programmable memory buses. Data transfer in these machines is
carried out by laser beams, which, unlike physical circuits (and human synapse)
can criss-cross without losing information. As of this writing, optical architec-
tures are beginning to enable the implementation of complex network topologies
which are unfeasible on conventional, hard-wired machines.

With respect to processing speed, it's important to reiterate that neural net-
works are CPU-intensive only in their training phase, when thousands of weights
have to be continuously adjusted as the system learns how to classify historical
objects, or "cases." Once training is over, however, the network's operation
(in the way of classifying new objects) is reduced to computing many inner-
products - a straightforward calculation that can be efficiently done by any
computer. Therefore, the use of parallel processing and accelerator boards is
critical only during the network's design phase. Once the network has been de-
ployed in the field, it can run on practically any machine. This is especially true
in business applications of neural networks, where network sizes rarely exceeds
several dozen neurons and several hundred connections.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

6.2 Software

The DSS framework distinguishes among four types of software resources: pro-
gramming languages, DSS tools, DSS generators, and DSS environment s. Whereas
a DSS tool is similar to a general-purpose subroutine, a DSS generator is es-
sentially a streamlined collection of DSS tools. DSS generators attempt to
address all three functions of DSS (at least to some extent). Therefore, they
can be used to construct - quite easily - a wide variety of specialized systems
in diverse and unrelated areas of application. The fourth software resource -
a DSS environment, differs from a DSS generator in that it supports a specific
class of problems. For example, a scheduling DSS environment can be used
to assign professors to classes, operators to shifts, or specialists to projects.
These scheduling decisions share a similar structure, and, furthermore, a com-
mon model-base. Therefore, the same generic DSS environment can be used to
support them.

When it comes to constructing neural networks, there are essentially three al-
ternatives design approaches. At one extreme, a specific network can be "hard-
wired" in software using a conventional language like Pascal or C. Indeed, since
the backpropagation learning algorithm was published in 1986, [51] feedforward
networks were implemented by numerous researchers, especially those who were
interested in studying only one aspect of neural computing. At the other ex-
treme of "canned support" one finds neural network shells like Nestor's "NDS"
and Neuralwork's "Professional" - stand-alone software packages that enable
the definition, training, and execution, of a wide spectrum of neural network
models. In terms of table 4, neural network shells correspond to DSS genera-
tors: software environments which can be used to custom-tailor neural solutions
to specific problems with minimal programming.

The design process of a new network begins by choosing a particular neural
architecture from a library of several dozen candidate architectures (p ercep-
trons, feedforward, autoassociative, etc.). Once a specific architecture has been
chosen, the shell invokes a template topology which is placed in a graphical edi-
tor. This enables the designer to create arrays of neurons and connections with
minimal effort, moving the mouse around and manipulating graphical objects
and pull-down menus. Once the network has been constructed, the designer
can select a learning algorithm and a training schedule that will best fit the
problem at hand. Although training does not require human supervision, some

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

shells allow the designer to intervene in the process and exercise partial control
(as in clamping weights) during the network's training phase.

The designer-interface of the shell is important because the construction and
training of a neural networks can benefit greatly from graphical insights. For
example, some shells feature Hinton Diagrams 1301 - a chart that packs, in a
simple to read format, a great deal of real-time information about the network's
behavior during learning. Such graphical tools enable the designer to debug the
network structure in real-time, as well as pinpoint subtle relationships between
the objects-space and the target categories - relationships that might go unde-
tected in a non-graphical interface.

Hence, the shells provide an integrated solution to the tasks of constructing,
training, and executing, a wide family of neural network models. The networks
that the shells produce can run either on dedicated hardware, or on general-
purpose PC's through software simulation. In both cases the shells do all the
necessary mappings from user-defined definitions of neurons and connections
to the corresponding hardware processing elements (or to their counterpart
elements in software simulations).

Aside of the two design extremes - building a network from scratch through
programming versus customizing a template network with a shell - there is
also the interim alternative of using a library of neural utilities that can be
compiled with conventional languages. For example, the Axon language (by
Hecht-Nielsen Neurocomputers) allows users to build networks via an object-
oriented definition language that can be compiled with regular C code. In a
similar vein, the Rochester Connectionist Simulator 1251 [19] offers an elabo-
rate library of procedures that can be compiled with C source code to produce
custom-made neural architectures. The library contains procedures for setting
up arrays of neurons and connections, selecting (and even defining) activation
functions, and controlling learning parameters. In addition, the simulator fea-
tures a programmable user-interface in which networks can be displayed and
tested in real-time. Using programming, the designer can determine which
neurons and connections will be displayed, what shapes and sizes they should
attain, and what frequency should govern the display process (continuous, only
when the neuron fires, only when the neuron's output changes, etc.) Whereas
neural network shells conform to the definition of DSS generators, neural li-
braries are essentially DSS tools. As tools, they don't provide a complete design
solution, but rather a set of building blocks that speeds up and streamlines the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

network design process.

We see that contrary to common belief, the task of building a neural network is
technically straightforward; The hard part is the logical design of the network,
namely selecting the appropriate architecture at the outset and constructing
an effective network topology (effective in terms of classification). Once these
questions are resolved, the actual implementation of the network is a straight-
forward technical exercise that can be assisted by a variety of software design
aids.

6.3 Data

Unlike the deductive nature of expert systems, neural networks learn to per-
form their designated tasks by example, using inductive learning algorithms. In
the absence of a fixed inferenecing mechanism, neural networks require massive
data sets in order to achieve meaningful learning. In the case of classification,
the data sets consist of examples of historical objects (e.g. companies) whose
class-memberships (e.g. bond-ratings) are known ex post facto. The goal of
the learning algorithm is to use these data to teach the network how to cor-
rectly classify new objects (e.g. assign credible bond-ratings to new prospective
borrowers).

Due to the centrality of data in the learning process, special attention must
be paid to the data's structure, quality, and quantity. As with many other
data analysis models, the main challenge is to reduce wholistic objects (like
companies) to structured tuples of at tributes, or "descriptors." The chosen
at tributes must be complete, relevant, measurable, and independent 1541. Once
a data structure has been built, a mechanism has to be designed to filter data
into it from historical files. In business applications, external data sources (like
industry and trade databases) are typically used to supplement internal data
sources.

The critical role that data plays in neural applications implies that DSS that
include, or are based on, neural models, must be equipped with powerful data
staging mechanisms. In the DSS framework, "staging7' refers to importing data
from operational and historical databases, preprocessing data in a variety of
different ways, and piping data into specific DSS modules. The designer of neu-
ral networks can use these services to eliminate irrelevant attributes, aggregate

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

other attributes in order to counter multi-colinearity, and translate attributes
from one data-type to another, as dictated by the network architecture. In
addition, staging services might include access to a variety of sampling retrieval
techniques, in which an algorithm methodically selects training objects
from a relatively small sample of data. (Lack of data is a notorious problem in
neural networks training, and modern sampling techniques like those described
in [18] are likely to play a major role in alleviating this shortcoming.)

6.4 People

Since the operation of a neural network is not based on explicit reasoning and
textbook knowledge, there is a no need for knowledge engineering in the con-
ventional sense of the word. Rather, the network design process draws on the
expertise of three individuals: a network designer, a domain expert, and a data
specialist. Instead of eliciting rules, the designer and the domain expert focus
on defining attributes, discerning classes, and formulating a network topology.
To a large extent, the topology is based on assumptions about attributes in-
teraction, on the one hand, and on the separability of the objects-space (the
geometry of the decision boundaries), on the other. These assumptions are ar-
ticulated and then tested through a dialog between the network designer and
the domain expert.

Once the network has been set up, the learning process must be fueled with
massive amounts of data. Since the data must conform to the topology and
typology of the input neurons, preprocessing and staging are inevitable. This
is where the data specialist, e.g. a database administrator, enters the picture.
In many cases, one needs to pool data from multiple sources like transaction
files, historical databases, and spreadsheets. This, in turn, opens the door to
the perils of data redundancy and inconsistency. Hence, access to raw data is
a necessary, but insufficient, condition for proper learning. A corporate data
dictionary and a cooperative database administrator are essential ingredients
as well.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

7 Decision Support Themes

We conclude the paper with a brief discussion of three critical subjects for
prospective adopters and educators of neural networks: face validity consider-
ations, the interplay of neural networks and expert systems, and the teaching
of a neural networks course or module in academic institutions and in industry
training programs.

7.1 Face Validity

Neural networks are constructed in a step-wise fashion. First, a general archi-
tecture is chosen, and a specific network topology is laid out. The number of
neurons and layers are determined according to LLgenerally-accepted" construc-
tion rules, but the actual topology of the network evolves more or less through
what may be termed an educated trial and error process. More often than not,
a certain topology will prove to be an effective classifier, but the designer will
not be able to explain why this network is better than others. Also, the weights
that emerge from the learning process are not easily labeled, and their meaning
with respect to the features of the classified objects is not directly discernable.

Recalling the complex non-linear computations that neural networks perform,
It is not surprising that their structure and operations defeat simplistic expla-
nations. When it comes to real brian circuitry, there is a similar phenomenon:
most cognitive processes are hard to explain, and yet we tend to rely on them
almost blindly, without ever stopping to question their validity. For example,
although it is hard to justify formally why we prefer a certain person to a cer-
tain job, we don't hesitate to use our judgement and make a hiring decision.
The reason for our confidence is twofold. First, we are dealing with a famil-
iar classifier - our own brain. Knowing that we've already used this classifier
(whichever form it might have) to make many good hiring decisions in the past,
we are willing to give it another try. Second, we typically entertain the belief
that even though we might err, we'll never err big. For example, although we
might end up hiring a lazy secretary, it's unlikely that he or she will shred all
the company's files or set the office on fire.

Unfortunately, the same sense of confidence does not translate well to artificial
neural networks. Even though we can confirm empirically that a particular

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

network performs well on a large training set, we often can't explain this suc-
cess analytically. Therefore, we can't guarantee that a network will not make
freak decisions at some point in the future, and we can't justify its analytic
rationale. This problem places neural networks is an disadvantage, compared
to other, more traditional classifiers. For example, statistical models offer sig-
nificance tests that enable the user to assess with precision the statistical power
of the model's predictions; Diagnostic expert systems offer another form of ac-
countability: they allow the user to trace reasoning chains and understand the
rationale that led to a certain recommendation.

Unlike statistical models and rule-based classifiers, neural networks offer no
simple and convincing means to assess the credibility of their outputs. Fur-
thermore, it is difficult, and often impossible, to make sense of intermediate
network constructs and "revealed" features. Hence, it is not clear to what ex-
tent the application of a neural network can contribute reliably to a deeper
understanding of the underlying problem. This might present problems in the
context of decision support systems, as the facilitation of learning is cited by
some researchers as the main source of DSS value 1471).

At present, the only way to "sell" a neural solution to a decision maker is to
point at an impressive empirical track record, which is typically better than
those of linear regression, discriminant analysis, induction, and diagnostic rule-
based algorithms. This poses an interesting dilemma to prospective clients
of neural networks: should they use a classifier with, say, 90% hit-rate but
vague accountability, or, rather, one that offers 70% hit-rate and excellent
accountability2? We believe that this dilemma has caused many DSS prac-
titioners to shun away from neural networks for business applications, where
one has to be accountable to one's decisions. Clearly, "teaching" a network to
explain its own operations is going to be a major research challenge in the next
few years.

7.2 Neural Networks and Expert Systems

neural networks are related to expert systems in a number of ways. First, neural
algorithms can be used to extract a set of rules that specify how an expert has
reached past decisions in a certain domain. [21] [52]. This application of neural

'By "accountability'' we refer to some form of analytic, normative, or logical, justification.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

networks is somewhat similar to the use of the ID3 algorithm in knowledge
elicitation. Both methods rely on massive amounts of data (examples), and
both involve an optimization process: minimizing classification error in the
case of neural networks, maximizing entropy in the case of ID3.

Second, a set of rules can be used to override or modify the training schedule
of a neural network. Instead of invoking an unattended learning algorithm that
walks the network through thousands of examples in a blind fashion, a domain
expert (who is also trained in neural computing) can be assigned to oversee
the learning process. Monitoring the classification behavior of the network as
it "sees" new examples, the expert can intervene in the learning process by
forcing certain neurons to certain outputs, clamping weights to fixed values,
and fine-tuning the network's topology.

Finally, it is feasible that future systems will be based on hybrid architectures
that incorporate elements of both inductive and deductive reasoning [4] [I].
When one extracts rules from a domain expert, one often hears statements
like: at this point I would make this or that decision, but I can't explain exactly
why. If the expert will be able to provide many examples of such intuitive
judgements, a neural networks could be trained to simulate his local decisions,
without attempting to explain them. The inputs and outputs of the network
can then be linked to the heads and tails, respectively, of standard IF . . .
THEN . . . rules. This, again, is a promising and open area of future research.

7.3 Teaching Neural Networks

The introduction of a new topic to an education program is always constrained
by the availability of three resources: established course curricula, textbooks,
and software. This is particularly true in the case of neural networks, a sub-
ject which is relatively unknown to most instructors, and yet can be covered
effectively in many different ways and styles. We conclude this section with a
few ideas on how neural networks can be taught in academic courses and in
corporate training programs.

In a computer science department, the study of neural networks can easily fill a
one-semester or even a two-semester graduate-level elective course. The theoret-
ical part of the course will focus on the mathematical and statistical backdrops
of neural architectures and algorithms, whereas the applied part might consists

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

of student presentations of key applications and applied term projects. In busi-
ness information systems departments, the subject does not seem to merit an
entire course. Instead, a more balanced treatment would be a neural networks
module (of, say, 2 to 6 class meetings) within an elective course on expert
systems, A1 applications, or decision support systems. In order to minimize
confusion and avoid technical clutter, it is recomended that this module will
expose the students to no more than a single neural paradigm, feedforward
networks being a natural candidate. In industry, the need for neural networks
education arises when companies wish to either see "what this technology is all
about" or train systems analysts and knowledge engineers to apply the tech-
nology to business applications. For this purpose, several companies now offer
a 3-days or a one week workshop of intense training. All vendors of neural
networks products also offer such workshops, but for obvious reasons their own
products often take the center stage in these programs.

As regards literature, there are by now several excellent neural networks sur-
vey/ tutorial books. In this rapidly developing field, "Parallel Distributed Pro-
cessing" by Rumelhart et al. [51], a 1986 publication, is now considered a
classic. This two-volume book gives a comprehensive review of all the key ideas
that led to the development of feedforward networks and backpropagation al-
gorithms, along with a series of articles on theory and applications written by
some of the top researchers in the field. As such, it can be used to support
a full-semester graduate-level course on neural networks in a computer science
department. On the lighter side of the literature, there are several introduc-
tory books which vary in quality and focus. Some authors have managed to
give an accurate and compact view of the field without getting into too much
technical clutter; Wasserman7s "Neural Computing: Theory and Practice" [61]
and Alexander and Morton's "Introduction to Neural Computing" [4] are good
examples. These books are very readable, and they can be best utilized in
supporting elective courses in information systems programs.

In addition to literature, there is by now a good selection of reasonably priced
and quite powerful neural network software shells. These shells can be easily
installed on personal computers and thus in academic PC labs. Most software
vendors, like Nestor and KnowledgeWare, offer educational versions of their
shells for significant discounts. Shells that originated from academic institu-
tions, like the Rochester Connectionist Simulator, can be also obtained (by
other universities) for nominal fees. In short, instructors who wish to teach a

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

course or a module on neural networks will find a good selection of books and
software to choose from.

As a rule, it is our belief that instructors should avoid the trap of building their
curricula around specific commercial tools. Instead, the tools should be used
chiefly in the way of demonstrating fundamental ideas and making the students
educated consumers of neural network products. This can be done by arranging
the curriculum around the sequence of (a) analyzing a real problem that calls for
decision support; (b) developing an "idealized" system design; and (c) assessing
and critically examining which neural (as well as conventional) resources will
best realize the ideal design.

8 Conclusion

During the last decade, neural networks have proliferated to so many directions
that it is no longer clear what the term "neural networks" stand for. In order
to keep track of the field, one has to monitor several journals in neuroscience,
computer science, psychology, mathematics, physics, and statistics. Worse yet,
it is entirely possible that the solution to a certain marketing problem is buried
in a physics journal, where is applied to analyzing spin glass. Hence, potential
adopters of the technology are quite confused by the overwhelming gamut and
esoteric terminology of neural computing. The situation is not helped by the
multitude of hyperbolic articles on neural networks which appear in an alarming
rate in popular journals and in conference proceedings.

For this reason, DSS designers and practitioners often find it difficult to map the
essential features of the technology on their actual decision support needs. With
that in mind, we've taken in this paper a different stance, one that assumes
that the acceptability (or the lack of it) of any new DSS resource must be
examined in the functional context of its potential use. Hence, rather than
focusing on the technology itself, we gave a systemic description of the various
components and features that characterize the development of any decision
support system. Only then we proceeded to map the capabilities and limitations
of neural networks on DSS design and application. We believe that this view
might will help researchers and practitioners realize the exciting possibilities
that neural networks entail, without losing sight of the limitations that still
inhibit their use in decision support applications.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

References

[I] DARPA Neural Network Study. Fairfax, VA: AFCEA International Press,
1988.

[2] J.B. Adams. Probabilistic reasoning and certainty factors. In B.G.
Buchanan and E.H. Shortliffe, editors, Rule-Based Expert Systems,
pages 263-271, Addison-Wesley, 1984.

[3] E.R. Addison. Using news understanding and neural networks in foreign
currency options trading. In Proceedings of the 1st Intl. Conf. on Artificial
Intelligence Applications on Wall Street, pages 319-323, 1991.

[4] I. Alexander and M. Morton. An Introduction to Neural Computing. Lon-
don, UK: Chapman and Hall, 1990.

[5] R.N. Anthony. Planning and Control Systems: A Framework for Analy-
sis. Technical Report, Cambridge, MA: Harvard University GSBA, 1965.
Studies in Management Control.

[6] G. Ariav and M.J. Ginzberg. Dss design-a systemic view of decision
support. Communications of the ACM, 28(10):1045-1052, 1985.

[7] E.B. Baum and D. Haussler. What size net gives valid generalizations?
Neural Computation, 1:151-160, 1988.

[8] E.B. Baum, J. Moody, and F. Wilczek. Internal representations for asso-
ciative memory. Biological Cybernetics, 1988.

[9] R.H. Bonczek, C.W. Holsapple, and A.B. Whinston. Foundations of Deci-
sion Support Systems. New York: Academic Press, 1981.

[lo] J.E. Bowen. Marketing and artificial intelligence: a neural network seg-
mentation example. In Proceedings of the 1st Intl. Conf. on Artificial In-
telligence Applications on Wall Street, pages 251-256, 1991.

[l 11 G. Carpenter and S. Grossberg. A massively parallel architecture for a self-
organizing neural pat tern recognition machine. Computer Vision, Graph-
ics, and Image Processing, 37:54-115, 1987.

[12] C.W. Churchman. The System Approach. New York: Dell Publishing,
1968.

[13] E. Collins, S. Gosh, and C.L. Scofield. An application of multiple neural
network learning system to emulation of mortgage underwriting judge-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

ments. In Proc. of the Int. Joint Conf. on Neural Networks, Sun Diego:
SOS Printing, pages 11-459-466, 1988.

[14] F. Crick. What Mad Pursuit. New York: Basic Books, 1988.

[15] Cadden. D.T. Neural networks and the mathematics of chaos - an inves-
tigation of accurate predictions of corporate bankruptcy. In Proceedings
of the 1st Intl. Conf. on Artificial Intelligence Applications on Wall Street,
pages 52-57, 1991.

[16] S. Dutta and S Shekhar. Bond rating: a non-conservative application of
neural networks. In Proc. of the Int. Joint Conf. on Neural Networks, San
Diego: SOS Printing, pages 11-443-450, 1988.

[17] G.M. Edelman. Neural Darwinism. New York: Basic Books, 1987.

[I81 B. Efron and G. Gong. A leisurely look at the bootstrap, the jackknife,
and cross-validation techniques. The American Statistician, 37(1):36-48,
F'ebruary 1983.

1191 J.A. Feldman, M.A. Fanty, N.H. Goddard, and K.J. Lynne. Computing
with structured connectionist networks. Communications of the ACM,
31(2):170-187, 1988.

[20] Gorry G.A. and M.S. Scott-Morton. A framework for management infor-
mation systems. Sloan Management Review, 13(1):55-70, 1971.

[21] S.I. Gallant. Connectionist expert systems. Communications of the ACn/l;
31(2):152-169, 1988.

[22] S. Garavaglia. An application of a counterpropagation neural network:
simulating the s&p corporate bond rating systems. In Proceedings of
the 1st Intl. Conf. on Artificial Intelligence Applications on Wall Street,
pages 278-287, 1991.

[23] M.J Ginzberg. Dss success: measurement and facilitation. In C.W. Hol-
sapple and A.B. Whinston, editors, Data-Base Management: Theory and
Applications, pages 367-387, Dordrecht , Netherlands: D. Reidel, 1983.

[24] M.J. Ginzberg and E.H. Stohr. Decision support systems: issues and per-
spectives. In M.J. Ginzberg, W.R. Reitman, and E.A. Stohr, editors, De-
cision Support Systems, pages 9-32, Nort h-Holland, Amsterdam, 1982.

[25] N.H. Goddard, K.J. Lynne, and T. Mintz. Rochester Connectionist Simu-
lator. Technical Report, Technical Report 233, Computer Science Depart-
ment, University of Rochester, 1988*

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

1261 R.P. Gorman and T.J. Sejnowski. Analysis of hidden units in a layered
network trained to classify sonar targets. Neural Networks, 1(1):75-90,
1988.

[27] G.A. Gorry and R.B. Krumland. Artificial intelligence research and deci-
sion support systems. In J.L. Bennett, editor, Building Decision Support
Systems, pages 205-219, Reading, MA: Addison-Wesley, 1983.

[28] D.O. Hebb. The Organization of Behavior. New York: Wiley and Sons,
1849.

[29] R. Hecht-Nielsen. Counterpropagation networks. Applied Optics,
26(23):4979-4984, 1987.

[30] G.E. Hinton. Learning distributed represent ations of concepts. In Pro-
ceedings of the 8th Annual Conference of the Cognitive Science Society,
pages 1-12, 1986.

[31] C. Ho. On multi-layered connectionist models: adding layers vs increasing
width. In Proceedings ofthe 11th Intl. Joint Conf. on Artificial Intelligence
(Volume I), pages 176-179, 1989.

[32] J.J. Hopfield and D.W. Tank. Neural computations of decisions in opti-
mization problems. Biological Cybernetics, 52:141-152, 1985.

[33] K. Hornik. Approximation capabilities of multilayer feedforward networks.
Neural Networks, 4:251-257, 1991.

[34] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward net-
works are universal approximators. Neural Networks, 2:359-366, 1989.

[35] W.R Hutchinson and K.R. Stephens. The airline marketing tactician: a
commercial application of adaptive networking. In IEEE First Int. Conf.
on Neural Networks (pp. IV:753-757) Sun Diego: SOS Printing, 1987.

[36] D. Johnson. More approaches to the travelling salesman guide. Nature,
330, December 1987.

1371 K. Kamijo and T. Taniga~va. Stock price recognition - a recurrent neural
net approach. In Proc. of the Int. Joint Conf. on Neural Networks, Sun
Diego: SOS Printing, page I:589, 1990.

[38] T. Kimoto and K. Asakawa. Stock market prediction with modular neural
networks. In Proc. of the Int. Joint Conf. on Neural Networks, Sun Diego:
SOS Printing, pages 1:l-6, 1990.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-35

[39] T. Kohonen. Self-Organization and Associative Memory. New York:
Springer-Verlag, 1988.

[40] B. Konsynski. On the structure of a generalized model management sys-
tems. In Proc. of the 14th Annual Hawaii International Conference on
System Sciences, pages 19-31, 1980.

[41] B. Kosko. Bi-directional associative memories. IEEE Transactions on
Systems, Man, and Cybernetics, 18(1):49-60, 1987.

[42] L.J. Laning, G.O. Walla, and L.S. Airaghi. A dss oversight-historical
databases. In G.W. Dickson, editor, DSS-82 Transactions, pages 87-95,
1982.

1431 R.P. Lippmann. An introduction to computing with neural nets. IEEE
ASSP Magazine, 4-21, 1987. April 1987.

1441 R.P. Lippmann. Review of neural networks for speech recognition. Neural
Computation, 1:1, 1989.

[45] W.W. McCulloch and W. Pitts. A logical calculus of the ideas imminent
in nervous activity. Bulletin of Mathematical Biophysics, 5:115-33, 1943.

[46] M. Minsky and S. Pappert. Perceptrons: an Introduction ro Computational
Geometry. Cambridge: MIT Press, 1969.

[47] Keen. P.G.W. and T.J. Gambino. Building a decision support system: the
mythical man-month revisited. In J.L. Bennett , editor, Building Decision
Support Systems, pages 133-172, Reading, MA: Addison-Wesley, 1983.

[48] A. Rajavelu, M.T. Musavi, and M.V. Shirvaikar. A neural network ap-
proach to character recognition. Neural Networks, 2(5):387-394, 1989.

[49] F. Rosenblatt. Principles of Neurodynamics. New York: Spartan Books,
1962.

[50] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal repre-
sentations by error propagation. In D.E. Rumelhart and J.L. McClelland,
editors, Parallel Distributed Processing: Exploring the Microstructure of
Cognition, Cambridge, MA: MIT Press, 1986.

[51] D.E. Rumelhart and J.L. McClelland. Parallel Distributed Processing: Ex-
ploring the Microstructure of Cognition. Cambridge, MA: MIT Press, 1986.

[52] T. Samad. Towards connectionist rule-based systems. In Proc. of the Int.
Joint Conf. on Neural Networks, Sun Diego: SOS Printing, pages II-525-
532, 1988.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

[53] S. Schocken and P. R. Kleindorfer. Artificial intelligence dialects of the
bayesian belief revision language. IEElE Transactions on Systems, &fan,
and Cybernetics, 19:1106-1121, 1989.

1541 S. Schocken and R. Weitz. A Survey of Classification Models in Manage-
ment Science. Technical Report, Information Systems Dept ., NYU7s Stern
School of Business, 1991.

[55] T.J. Sejnowski and C.R. Rosenberg. Parallel networks that learn to pro-
nounce english text. Complex Systems, 1:145-168, 1987.

[56] H.A. Simon. The New Science ofManagement Decision. New York: Harper
and Row, 1960.

1571 R.H. Sprague and E.D. Carlson. Building E'ective Decision Support Sys-
tems. Englewood Cliffs, N. J.: Prentice-Hall, 1982.

[58] C. Stanfill and D. Waltz. Toward memory-based reasoning. Communica-
tions of the ACM, 29(12):1213-1228, 1986.

1591 J. Utans and J. Moody, Selecting neural network architectures via the
prediction risk: application to corporate bond rating prediction. In Pro-
ceedings of the 1st Intl. Conf. on Artificial Intelligence Applications on
Wall Street, pages 35-41, 1991.

[60] W. van Melle, E.H. Shortliffe, and B.G. Buchanan. Emycin: a knowledge-
engineer's tool for constructing rule- based expert systems. In E.H. Short-
liffe and B.G. Buchanan, editors, Rule-Based Expert Systems, pages 302-
313, Addison- Wesley, 1984.

[61] P.D. Wasserman. Neural Computing: Theory and Practice. New York:
Van Nostrand Reinhold, 1989.

1621 H. White. Economic prediction using neural networks: the case of the ibm
daily stock returns. In Proc. of the Int. Joint Conf. on Neural Networks,
Sun Diego: SOS Printing, pages II:443-50, 1988.

[63] B. Widrow and Hoff M.E. Adaptive switching circuits. In IRE WElSCON
Convention Record, Part 4, pages 96-104, New York: Institute of Radio
Engineers, 1960.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-35

