
TEXT EDITING AND BEYOND:
A STUDY IN LOGIC MODELING

by

Michael Bieber
Computer Science Department
Carroll School of Management

Boston College
Chestnut Hill, Massachusetts 02167-3808

and

Torniis Isakowitz
Information Systems Department

Leonard N. Stern School of Business
New York University

New York, New York 10003

December 1991

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Working Paper Series

STERN IS-91-39

forthcoming in Decision Support Systems

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-39

Abstract

This paper presents a logic modellng exerclse in w h ~ c h we d e ~ e l o p
test and implement a logic model for a tes t editor and use ~t t o test
existing tes t editing software iYe begin by presenting a firqt orcir>r
Horn logic axlomatization of a text editor by proxiding domain ecltia-
tlons for the prlmttiLe operations znseri, delete and character retrzer a1

'Ct'e show that thls logic model captures the essential aspects of the
text editlng task and how more complex features are built uslng these
primitixes it'e discuss poss~ble ~mplementat ions and conclude that
any operational semantics-the set of algorithms tha t perform the
task-must be strongl. related to the logic model we present in other
words, each operational semantics c o n s t t t u t ~ s a modelof the Iogtc the-
ory Nest , we illustrate the usefulness of the model by implement~ng
a basic text edlting system and testlng the correctness of an existing
text editor 'CVe conclude by describing how we are integrating thew
modeling techniques into a larger and more complex knowledge-basecl
sqstem

Keywords:
Logzc Jlodeling. Text Editzng, Operational Semantics, Nonre Log~c, Horr~
Logic, Prolog, Hypertext

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-39

SIichael Bieber is an Assistant Professor of Information Sys-
tems a t Boston College, Carroll School of SIanagement. He rt-
ceived his B.S.E. in Computer Science and Ph. D, in Decision
Sciences a t the University of Pennsylvania. His research interests
include hypertext, information presentation and knowledge- baseci
decision support.

Tomis Isakowitz is an -4ssistant Professor a t the Information
Systems Department of the Leonard Stern School of Business,
Sew York University. He received his B.Sc. in ;Ifathematics at
the Hebrew Vniversity of Jerusalem, his SI.Sc. in Ifathematic?
at the University of California at Santa Barbara, his S1.S.E. and
his Ph.D. in Computer Science a t the The Sfoore School of Elec-
trical Engineering, Yniversity of Pennsylvania. His research in-
terests include logic programming, decision support systems ancl
hypertext systems.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-39

1 Introduction

Computer applications can be very complex and need to be planned ivell.
Logic modeling [I] can be a useful tool in the design and testing of a conip1ltc.r
system. A logical axiomatization of the various components of a syster~i c < l r i

provide several useful services:

Logic can serve as a language for expressing the mathematical srinail-
tics, assumptions and concepts of a system's domain.

As a design tool, the development of a formal logic model forces one to
determine and to explicitly express all of the elements in the clonlai~i
of the system.

X logic model can be used to build a prototype system in a prograixl-
ming language such as Prolog i'2.31 or OBJ [-I]. This prototj.pe !{.ill
prove useful in testing the ideas behind the specification of the logic.
model.

Axioms in the logic model can be used to test the correctness of specific
implementations.

Production rules-one of the major knowledge representation schemes
used in artificial intelligence and expert systems 151-can be represeilte(1
directly in first order logic.

In this paper we present a logic model for a text editor. Text editing
is a necessary feature in any computer system which accepts textual input
from the user. Our logic model of a text editor can be implemented direct1~.
as a standalone computer application (which we have done in section 4) .
Alternatively it could be used as a basic text-handling module, or as the
foundation of a more comprehensive module in a larger computer system
model (as we show in section 6).

In section 2 we develop a first order logic Horn axiomatization of a text
editor. We show how all text editing commands are built upon the insert.
delete and character retrieval operations, Section 3 describes an operational
semantics for representing the components of a text editing system. We
show that this operational semantics is sound and complete with respect to

Center for Digital Economy Rerearch
Stern School of Business
Working Paper IS-91-39

the logic model. In section 4 we use the axioms and operational sernarltic.;
to implement a text editor of our own in Prolog. In section 5 Hoare logic
is used to test the correctness of an existing text editor basecl upon t i ~ c
axioms developed in section 2 and implemented in section 1. \\.P concli~clc~
wi th a general discussion of logic modeling for constructing large infornlar i o i i

systems and illustrate this with an example of how we have expanded t l i i ,

model.
'IYe begin by presenting two logic models for text editing. the first qllitv

simple, the other more flexible.

A Logic Model for Text Editing

In this section we provide two theories in predicate calculus that modi.1 the
principal operations a text editor has to perform. Our language is first o r t l ~ r
logic with equality. ifre assume that the reader is familiar with the t>asic
concepts in logic ([6 , i]) . There is a set of variables that, follo~ving the Pro-
log convention, we shall denote by uppercase letters: 5 , E ; 2,. . ., a set of
constants denoted by lowercase letters from the beginning of the alphal~et:
a , b, . . ., and function symbols also denoted by lowercase letters: f . y. h
The logical connectives are A for "and". V for ''or", -, for negation. > for
implication, r for equivalence, V for universal quantification over variahlcs
and 3 for existential quantification. Terms and formulae are defined over this
language. There is a special predicate = which stands for equality and al-
ways is to be interpreted as such. We write = instead of the normal eclualit~,
symbol to emphasize the fact that it is part of the logical language.

In section 2.1 we present a "bare bones7' text editor in the form of a stack.
Its purpose is to get our feet wet, and to introduce logic modeling and some of
the constructs upon which we shall be expanding. In section 2.2 we increase
the efficiency of the bare bones editor by allowing direct access to individual
characters instead of being restricted to the head of a stack. Each of the more
advanced editor's commands are axioms built from a combination of three
basic functions: insert , delete and retrieve character, and we show this
construction. To be able to implement such a model in logic programming
languages such as Prolog we must show that this model can be reduced to
"Horn logic". Wk discuss this further in section 2.3.

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-91-39

2.1 A Bare Bones Text Editor

M'e begin this study with a set of operators corresponding to text ecliting
functions and by capturing their behavior in a logical way. This logical LvaJ-
is given via axioms in the form of equations, As an example. consiiler t i i t .

editor that interacts with the user when he or she is typing a command to
the operating system of a PC (e.g., hIS-DOS). In general, this editor allo\vq
the user to enter characters one by one and to backspace. The only rrlearlq
of correcting something is by backspacing. In summary. it supports adclitioil
and deletion of characters only at the end of the file. We represent this qirnple
model with two functional operators:

a(F. C) which returns the file resulting from appending character C' to
the end of file F. and

b (F) which returns the file resulting from backspacing over tlie last
character of file F.

One necessary axiom specifies that an append followed by a backspace
leaves the file unchanged:

VCVF b(a(F, C)) = F.

In general all variables appearing in an axiom will be universally cluanti-
fied and from now on we shall not write the quantification explicitly. Ses t
we specify the result of backspacing past the beginning of the file. Using the
constant X to denote the empty file, we have a second axiom:

For example, the sequence of operations corresponding to writing the
characters i, t , i and s followed by two backspaces is represented by the term:

which can be proven to be equivalent to the term: ua(a(X, i),t)" by two
applications of the first axiom. This last term represents the file containing
the characters: "it,"

Center for Digital Economy Rerearch
Stern School of Business
Working Paper IS-91-39

2.2 A More Advanced Editor

JYe now expand these concepts to address the issue of arbitrary insertions anti
deletions at any position of the file. JVe represent character positions i v i t l l

non-negative integers. JVe assume the theory of natural numbers is a ~ a i l ~ l ~ l t ~
in the form of some axiomatization which includes the predecessor. succesfos
and the natural ordering "<" functions (e.g.. Presburger's Arithmetic). 11-e
abbreviate predjP) by P - 1 and succ(P) by P + 1. The function s j~ml~o l i
are:

a ins(C, F, P), which represents the file resulting from rnst-rtzng character
C into file F at position P (i.e., before the character currently resitlins
a t position P) ,

a del(F, P) , which represents the file resulting from de le t ing the charac te r

at position P in file F , and

a ch(F, P), which represents the character retrieval at position P in file
F.

Many other operations can be built on top of these basic ones. For esa1-u-

ple, deleting a block of characters from position pl through p2 is equi7-alelit
to successively deleting the characters at positions p 2 . p ~ - 1 . ~ 2 - 2]) I .

We can define this recursively with the axioms:

Equation 2 is a conditional equation of the form = t' if C", where C is
a formula. The way these axioms are used in deductions is by first making
sure the condition holds and only then applying the axiom. Suppose that our
theory (the set of axioms) contains the conditional equation "t = t' if C."
If C holds in I' (i.e., I' I- C) we can deduce that t = t' holds in I' (i.e.,
r t- (t = t y .

Similarly one can define a copy operation from one file to another by suc-
cessively performing "chn and "ins" operations, as in "ins(ch(Fl, P), F2, PI)."

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-39

The operation of cutting can be represented by first copying a block to a spe-
cial file. e.g., the clipboard. and then deleting the block. Pasting equates t o

copying from the special file into the current one, Similarly one can clcfinc
search, replace and all other text editing operations. ('i1.e are excluding ..ill-
put/output" procedures such as saving the file, beeping to the user, prlntiili:
on screen, window operations and monitoring for keyboard activity t~ecauir
these are not intrinsically related to the text editing process from the nlocl-
eling point of view.)

Lire are not suggesting that this is the best way to implement text eciiting
operations, but rather that their logical nature is captured by such asio~llr.
The point is that, however these operations are implemented (that is. what-
ever the operational semantics are), these axioms have to be satisfied. I11

section 5 we show how they can be used to ensure correctness of a specific
implementation of a text editor.

Now, it is not enough to say that "del" stands for delete and "ins" for in-
sert, we have to impose some structure to enforce this interpretation. 'ile clo
this with the following set of axioms that establish the relationships among
the different operators. In defining these relationships we shall use t\tro con-
stants, which were not in our original language specification: X and €of-chni..

denoting the empty file and an end of file marker respectively. lye also as-
sume a lexicographic ordering on characters where the eof-char character is
the smallest. (This permits us to avoid using negation which, as we shall
see, would have made our formulation non-Horn.) For convenience we also
introduce an end of file function "eof(F, P)," which returns the boolean f r u t
if integer position P is past the end of the file of F , i.e., beyond the actual
eof-char, which is the final character in a file. We define this in axiom 3
below. Note that the ch function returns eof-char for any position past the
end of file. (This can be proven using axioms 4 and 10.)

eof(F, P) r P > 0 A (ch(F, P - 1) = eof-char) (3)

ch(X, P) = eof-char (4)

ins(C, F, P) = F if eof(F, P) (5)
del(F, P) = F if eof(F, P + 1) (6)

Equation 4 states that character retrieval from any position of the empty
file produces an end of file marker. Equation 5 tells us that inserting beyond

Center for Digital Ecollol~~y Research
Stern School of Business
W o r h g Paper IS-91-39

the end of file has no effect and returns the original file F . Equation 6 en.;ure.;
that we cannot delete the end of file marker or at an!. position after i t . Agai11.
this just returns the original file.

'IVith these defined we can declare the relationships among the differe~~t
functions. First we define the relationship between the operations of insertitig
and retrieving characters.

ch(ins(C, F, P), P) = eof-char

if eof(F. P) (7)

ch(ins(C, F. O) , 0) = C (S 1
ch(ins(C,F, P) , P) = C

i f P > O A
ch(F, P - 1) > eof-char (0)

ch(ins(C, E: P) , ?;) = ch(F, .V - 1)

if P < .V (10)
ch(ins(C, F, P), N) = ch(F, ,'V)

if P > ,V (1 1 \

Equations S and 9 state that the character retrieved at position P is
the same as that which was inserted there. Equation 7, which follows fro111
equations 3, 4 and 10, makes an exception for the case in which the insertion
was illegal (i.e., beyond the end of file). Equations 10 and 11 describe the
movement of the original characters positioned before and after an insertion
point. Equation 10 states that characters a t positions N after an insertion
point P are shifted over by one position (now they are a t position ,V whereas
previously they were at position N - 1). Equation 11 states that characters
located in front of an insertion point remain unchanged by an insertion.

Next we declare the relationship between the insert and delete functions.
If we always start with an empty file we never have net deletions. This is
ensured by axiom 6 and by the next group of axioms, which enables us to
cancel deletions from terms by finding corresponding insertions and removing
matching occurrences.

del(ins(C, F, N), N) = F

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-39

del(ins(C, F, P), ,V) = ins(C, delj F, -L' - I) , P)
if P < -1- (1.1)

del(ins(C, F. PI. ,Y) = ins(C. del(F. -V), P - 1)

if P > (1 i i

As an example, start with an empty file, add the string ah at position.; 0
and 1. and insert c a t position 1 between them. This yields the file crch an(l
can be represented by the term:

t ins(c, ins(b. ins(a, A , 0), I) , I) .

If we now delete the character at position 0 the result should be the file ch.
The deletion is represented by the term:

By axiom 14 we transform this term to:

ins(c, del(ins(b, insja, A , 0), 1). 0) . 0).

Applying the same axiom once more we obtain:

which is equal to "ins(c, ins(b, A , O), 0)" via axiom 12, producing the file ch.
Certain properties hold in the axioms above. For example, deleting a

character and then reasserting it results in an unchanged file. This is some-
thing natural that we expect to hold and does follow from the above asionls.
Equations 7 through 11 could be compressed into a single equation using
an if.. . then.. . else construct, as could equations 12 through 14. It may be
clearer, however, t o write them as separate equations.

Lastly we give the relationships between the delete and retrieve character
functions. If we start with a non-empty file, it is possible to delete without
having inserted (directly) beforehand. The following axioms correspond to
equations 10 and 1 1 :

ch(del(F, P), N) = ch(F, N + 1)

if (P < N)
ch(del(F, P), N) = ch(F, N)

i f N < P

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-39

Lye could convert this set of axioms into a program in the equatiorial
language OBJ [A]. We also could use the axioms to implement a tt.-\-t ecli-
tor. which although not very efficient in its performance. is useful in testins
whether the specification makes sense. To do so, we just transforrll t l l r . \ c >

axioms into Horn clauses, as we describe in the next section.

2.3 A Horn Logic Version of the Text Editor

-An implementation in a pure logic programming language requires axioms in
a certain form, namely Horn clauses. X "clause" is a disjunction of literal.;
(positive or negated "atomic sentences"). '4 "Horn clause" is a clause n-it11

at most one positive literal, which can be written as

This is equivalent to a formula of the form:

where

-,Y1, . . .

are the variables appearing in the formulae

B1, . . . , B, and '4.

Because Prolog does not handle functions, we must transform our equations
into predicates. For example, for the three-place function "ins(C, F, P)" we
introduce the four-place predicate "ins(C, F, P, Result)." The predicate is
true whenever Result represents the file obtained by inserting character C'
at position P in file F. We use the same name or "functor" (e.g., "ins")
for the three-place function and the four-place predicate, assured that the
arity (the number of arguments) will determine which we mean to invoke. It
is a simple exercise to transform all the equations in section 2.2 into Horn
clauses. We give examples in section 4.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-39

3 Operational Semantics

Now we turn to implementing-developing an operational model for-3t1r
logic model. An operational semantics for a given task consists of a set o f

algorithms to perform it. For text editing. the operational semantics conii.t-
of actual procedures to perform Ins, del and ch. From a logical point of i.ieiv.
we shall see that an operational semantics is just a model, i.e.. a domairl (i f
discourse and an interpretation of the function and predicate symbols that
satisfies the axioms of the theory.

To back this up we briefly sketch the logical notions of model and stl.11~-
ture. For more detail we refer the reader to the literature [6,7]. Given a logic
language L , a structure S for that language consists of a domain of discoiirs~
Ds and interpretations for the function and predicate symbols. If f 1s a
function symbol of n arguments, then the interpretation of f in S. clcnort~tl
by fs, is a function taking n-tuples of elements of Ds as arguments. That i i .
fs : Dz c-' Ds. Note that a constant c is interpreted as an element cs E DS.
The interpretation can be extended in a unique way to ground terms so that
a term t is interpreted by t s . Ground terms are terms with no variables. Tlli.
is achieved by the recursive definition [f (t l , . . . , t ,)] ~ = .fs([tljs, [t,] s 1.
Predicates are interpreted as subsets so that if P is a predicate of n argu-
ments, then Ps c D:. A formula P (t l , . . . , t,) holds in (or is satlsficd I,.)
the language's structure S, written S + P (t l , . . . , t ,) , if (t l , . . . , t ,) E Ps.
The notion of satisfaction for more complex formulae involving logical cou-
nectives, variables and quantifiers is defined in a natural way [6,7].

For a set of axioms I' we say that a structure ,tl is a model of the logic
theory r , written M /= I?, if the axioms in I' are satisfied by the structure
M. The notion of a model is the method in logic for talking about truth. i i e
shall see that the operational semantics for a task should represent a truthful
model or implementation of the task as embodied in the axioms of the task's
logic theory.

The word model has two meanings. Its logical meaning refers to a struc-
ture that satisfies a logic theory. The other sense of the word model refers
to describing and representing tasks. Our paper is about the latter use of
logic modeling as a tool. That is the meaning of the word model in the title
of this paper. In this section, however, we shall concentrate on the former
meaning of the word because we are discussing the structural relationship
between implementations and logic.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-39

An operational semantics for a given task consists of a set of algorithms
to ~ e r f o r m the given task. One can think of a computer program for tevt

editing as an operational semantics for the task of text editing descril)c.tl
through the logic model we presented in section 2. It is in this sense t I ih t

a program becomes an operational semantics for a logic theory. i l k ctevclop
this idea next.

Consider a straightforward implementation of a test editor. l i e co~ii(l
represent our system in a procedural programming language such as .-C".
Our data structure for a file could be a C-record consisting of an integr-.~.
field, eo f , denoting the length of the file and a string fielcl. t e x t . containing
the actual characters present in the file:

typedef s t r u c t
{ i n t e o f ;

c h a r * t e x t ;) f i l e ;

For example. a file with contents abc is depicted in Figure la .

Place Figure l a here.

The character retrieval operation is quite simple:

cha r ch(F,P)
f i l e *F;
i n t P;

{ if (F-+eof C= P)
ch = EOF-CHAR;

else ch = F t t e x t [PI ;)

(In this paper's code and clauses we shall be using the abbreviations F and
P for 'filen and "positionn respectively. These correspond to the variables F
and P in section 2. t e x t [PI represents the character a t position P.)

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-39

The function to implement character inserfion can be realized by t h e I n s
C-function.

f i l e * i n s (C , F , P)
c h a r C ; /* t h e c h a r a c t e r t o b e i n s e r t e d */
f i l e *F; /* F i s t h e f i l e where t h e c h a r a c t e r C i s t o b e i n s e r t e d * /
i n t P; /* t h e p o s i t i o n a t which t h e i n s e r t i o n i s t o o c c u r . * /

i f P > F--.eof
i n s = F;

e l s e

{
f o r i := P t o F-+eof do

F d t e x t [i+l] := F-text [i] ;
F-+text [PI : = C ;
F-+eof := F+eof +I

Similarly, we can write a C function d e l (F , P) to delete the character a t
position P from file F.

How do operational semantics and logic models relate? The C computer
program we just described provides a domain of discourse and interpretations
for the function symbols. The ins, del and ch predicates are interpreted by
C functions. Thus the computer program also is, in some sense, a structure
for the logic theory. Recall that a structure for a logic theory provides (1)
a domain of discourse, i.e., a universe, the elements of which correspond to
individual objects in the theory and (2) an interpretation for the function
symbols, i.e., an actual function for each function symbol in the theory. These
functions take elements of the domain of discourse as their arguments and
attain their values within the same domain.

The domain of discourse of the C computer program described above
consists of finite sequences of bits (strings of bits) that constitute C objects.
That is, bit strings correspond to either a C-integer, a C-character or a
C-object of type file as defined above. The interpretation will map the
constant X to the sequence of strings which corresponds to a C-structure of

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-39

type file with eof field of value 0 and t e x t field containing an empty s t s i ~ ~ g .
The function symbol zns is interpreted by the C function Ins. \\-hat do n e
mean by the C function ~ n s ? IVe do not refer to the code sequence of I11ts

representing this function in machine language. it> refer to the mathenlatic ai
function realized by this code that maps bit-strings to bit-strings.

So far we have interpreted functions of the logic theory. If we transfo1111
these functions into predicates as suggested earlier, we also must pro1 I ~ P

interpretations for those predicates. IVe do this by looking at the qet ot
tuples that conform the function. That is, if the function is f : S H It7. tI1c1
corresponding predicate is interpreted by the set of tuples {< x, f (s) > 1.r E
.Y} .

We have just shown how an operational semantics leads to a struct use
of the corresponding logic theory. These structures satisfy all the equations
in the logic theory and are therefore models (in the logic meaning of tlir
word) of the logic theory. This is true whenever the operational semantics
represents a truthful implementation of the specifications embodied in the
logic theory. The relation between models and operational semantics is thus:
given a logic theory, an operational semantics that is correct with respect to
the specification of the logic theory is a model of that theory.

This relation provides us with a tool to test the correctness of implemen-
tations. We know that if the implementation violates an equation in the
logic theory, then it can not be a model and hence it is not a correct irn-
plementation of the task specified by the logic theory. kt'e will use this fact
in section 5 to develop a computer program to help detect incorrectness of
implementations.

Note that not every model lends itself to be programmed because some
models might not be computable. Thus, some models fail to represent oper-
ational semantics.

In the sections that follow, we shall be implementing our text editor and
correctness checks in Prolog, which is a declarative (non-procedural) lan-
guage. Instead of a record, our data structure of a file is a list containing
two arguments, as illustrated in Figure Ib. The first is an integer represent-
ing the position of the eof-char. The second argument is a list of the text
characters in the file followed by a single eof-char. The Prolog code for the
predicates ins, del and ch is given below. Note that we have had to convert
the functions pred and succ as these are referenced by ins and del . (In the
declaration of pred, we see that Prolog implements "or" with multiple in-

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-39

stances of a predicate. If one instance is not executed successfully, the next
occurrence of the predicate with the same arity is attempted. This cont i1111c.

until one of the occurrences succeeds or until none remains untried.) Thi.
empty file is initialized so that Eof-P is 0. The end of file marker is rcplr-
sented by the constant eof -char.

Place Figare 1b here.

pred(P, Bef ore-P) : -
P > 0,
Before-P is P - 1.

ins (Char, [E O ~ -P ,Text] , P , [R-Eof -P , R-Text]) : -
pred(P, Bef ore-P) ,
sublist (Text, 0 ,Bef ore-P , PreText) ,
sublist(Text,P,Eof-P,PostText),
append([PreText , Char, PostText] ,R-Text) ,
succ(Eof-P,R-Eof-P).

The first instance of i n s checks that the position P is not past the end
of file (the last character of the text list). The second separates the text
before and after the insertion point, puts the inserted character between
and concatenates the three text portions to create the new text R-Text. The

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-39

Prolog predicate sublist retrieves a designated range from a list as a new lict.
The Prolog predicate a p p e n d concatenates the contents of the input list in the

first argument and returns these in the second. The first argument is a l i c t of
lists. (Alternatively a p p e n d could take the second argument and split i t i n t o
the three sublists in the first argument. This dual functionality is a feat tire

of logical axioms.) The predicate declaration concludes by increrrlent ing t lie

end of file position to R-Eof-P.
We implement deletion as follows:

del ([Eof -P, Text1 , P, [Eof -P ,Text]) : -
Eof-P <= P.

del ([Eof -P, Text] , P, [R-Eof -P , R-~ext]) : -
pred(P , Bef ore-P) ,
sublist(Text,O,Before-P,PreText),
succ(P ,After-P) ,
sublist(Text,After-P,Eof-P,PostText),
append ([PreText , ~ostText] , R-Text) ,
pred(Eof-P,R-Eof-P).

Again, the first instance of del checks that we are not deleting past the encl
of file. The second instance takes the sublists on either side of the character
t o be deleted and concatenates them to form the new text R-Text. The
declaration concludes by decrementing the end of file position.

We implement character retrieval with the get char predicate as fol1on.s:

getchar([Eof -P ,Text] ,P ,Char) : -
at-position(Text ,P,Char) .

The first instance of getchar returns eof -char if we retrieve from past the
end of file. The second instance uses the predicate at-position to retrieve the
character at position P in the text list. As the definition of at-position is
straightforward, we omit it here.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-39

Call this operational semantics 0. As described at the beginning of this
section. we can view 0 as a model for the logic theory of section 2.2. wliicli
describes the text editing task. The domain of discourse consists of the d a t a
structures used in 0, namely lists for files, arrays of characters for test. non-
negative integers for end of file counter positions, etc. The function s\-niixjl
ins is interpreted by the predicate ins which takes a character, a file anti a
position as arguments and returns a file. Similarly de l is interpreted 11j. del

and ch by getchar. Furthermore, it is easy to show that 0 is a model of tllc

set of axioms r given in section 2.2, i.e., that it satisfies every axiom. '111

example consider axiom 1%:

which converts to Prolog code:

If position N is not after the end of file, then the result in 0 of I n s will 1)e
to shift all characters in F one place to the right from position -Y. retusn-
ing file F2. The result of the d e l is to shift those characters one place to
the left returning F again. The combination of both operations leaves F
unchanged. The case urhere eo f (F, rt ') is simpler as ins and de l return the
files unchanged and F r F2.

In a similar fashion we can check that all other axioms in r are satisfied I>>.
this Prolog code. Thus 0 captures the meaning of our text editor. In a sense
this corroborates our intuition that the set of axioms is satisfactory because
most programmers would agree that 0 performs the operations wanted in a
truthful way. This, of course, is not the only possible operational semantics
for this model. Any other correct implementation (say, in a different lan-
guage, with different data structures such as hashing tables or linked lists,
or with different algorithms to help do global search faster) also constitutes
a model of l".

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-39

4 A Prolog Implementation of a Text Editor

We have used the Prolog language to build a basic text editor in accorclancc~
with the operational semantics (3 declared in the previous section. Prolog I +

not nondeterministic, nor is its choice of goals arbitrary. It predictahb- p r x l -

forms a sequential depth-first search on its goal by always choosing the fir.t
(leftmost) goal it encounters and backtracking when necessary. I t is recoe-
nized, however, as the most developed language based on logic programrnlllg
[3] and is both adequate and practical for computer implementations of logic
models. These deviations do not affect our specifications.

Our text editor features the following commands:

i n s : insert a character into a file
d e l : delete a character from a file
g e t cha r : retrieve a character
ins-block: insert a block of characters
del-block: delete a block of characters
char-block: retrieve a block of characters
backspace: delete the character preceding the current position in the file
copy: copy a block of characters to another file
c u t : move a block of characters to another file
f i n d : locate a block of characters without altering
replace-gener ic : replace a block of characters by another block of char-
acters
r ep lace - re la t ed : remove, transform and replace text

Together these commands can emulate, for example, the complete func-
tionality of Apple Computer's Macintosh text editing routines [9] (not in-
cluding those concerning memory and screen management).

For each command we first give the logical function. We then show
the Horn logic version of its corresponding predicate. For ins-block and
del-block we also give the code for the Prolog implementation of the pred-
icate using the operational semantics described in section 3. These two sam-
ples should suffice as the Prolog code is so similar to the Horn logic predi-
cates. (For the sake of clarity, predicate and variable names in the Prolog
code shown here have been shorted slightly from those in the code we actually
implemented.) After describing the command set we provide two examples.

Center for Digital Economy Research
Stern School of Business
Worhng Paper IS-91-39

4.1 Insert Block
IYith the ~nsert-block operation we introduce standard list notation to
our language. [I denotes the empty list of no elements. [HIT] denotes the
splitting of the list where H is the first element (the '.head" or *.car") of t i i t .

list and T is the remaining list (the "tail" or ,.cdr") once the first element I.
removed. T may be the empty list.

Axioms
ins-block([I ,F,P) = F
ins-block([Bh/Bt] , F ,P) =

ins-block(Bt,ins(Bh,F,P),P+I)

Horn Logic Predicates
ins-block([I ,F,P,F)
ins(Bh,F,P,Ins-F) A
succ(P,After-P) A
ins-block(Bt,~ns-F,~fter-P,F-Out) >

ins-block([BhlBt] ,F,P,F-Out)

Prolog Implementation
ins-block([1 ,F,P,F) .
ins-block([BHIBT],F,P,F-Out) :-

ins(BH,F,P,Ins-F) ,
succ(P ,After-P) ,
ins-block(BT,Ins-F,~fter-P,F-Out).

4.2 Delete Block

The axioms for delete-block are found in section 2.2.

H o w Logic Predicates
d e l (F , P , F-Out) 3

del-block(F ,Pa P , F-Out)
PI < P2 A
de l (Fa P2, Del-F) A
pred(P,Before-P) A

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-91-39

Prolog Implementation
del-block(F,P,P,F-Out) : -

del (F , P, F-Out)
del-block(F,PI,P2,F-Out) :-

PI < P2,
del (F, P2, Del-F) ,
pred (P , Bef ore-P) ,
del-block(De1-F,PI,Before-P,F-Out).

4.3 Char Block

This operation returns a block of characters in list format from a file. It
cannot be used to retrieve the eof-char.

Axioms
char-block(F,Pl ,P2) = [1

if getchar(F,Pl) = eof-char
char-block(F,P1 ,P2) = []

if (P2 < PI)
char-block(F,Pl,P2) =

[getchar(F,Pl) 1 char-block(F ,P1+1 ,P2)]
if (PI < P2)
if getchar(F,Pl) > eof -char

Horn Logic Predicates
getchar(F,Pl,eof-char) >

char-block(F, PI, ~ 2 , [1)
P2 < P1 3

char-block(F,Pl ,P2, [I)
P1 < P2 A
getchar(F,Pl,Char) A
Char > eof-char A
succ (PI, Aft er-PI) A
char-block(F ,After-PI , P2 ,Block) 3

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-39

4.4 Backspace

This operation deletes the character at the position prior to the orie inciicatc.tl.
Of course, one may not backspace past the start of the file or over the ~ o j l

char.

Axioms
backspace(F,O) = F
backspace (F , P) = d e l (F , P- 1)

Horn Logic Predicates
backspace (F, 0, F)
pred(P ,Bef ore-P) A

d e l (F, Bef ore-P ,F-out) 3
backspace (F , P , F-out)

4.5 Copy

This operation copies text between files. It returns the updated ver~ioii of
the file to which the text is copied.

Horn Logic Predicate
char -b lock(F1 ,P I1 ,P12, Block) A
ins-block(Block,F2 ,P2, F2-Out) 3

C O ~ ~ (F ~ , P I ~ , P ~ ~ , F ~ , P ~ , F ~ - O U ~)

4.6 Cut

This operation copies text from one file to another and deletes the copied text
from the first. It returns a list containing both file F2, to which we copied
and file F1, from which we copied. (We could define separate cut functions
returning the new state of either file.)

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-91-39

Horn Logic Predicate
copy(~1,~11,~12,F2,P2,F2-Out) A
del-blo~k(Fl,P11,Pl2~F1-Out) >

cut (F1 ,Pll,P12,F2,P2, [F2-Out ,FI-Out])

4.7 Find
Like getchar0 and char-block(), this operation does not affect t l l ~ file.

Nothing is inserted or deleted. f lnd determines whether a specific hlocli of
characters is in the file. If so, the start and end position of the block a re

returned as the list [PI ,P21.

Axiom
find(F,Block) = [PI,P2]

if char-block(F,Pl,P2) = Block

Horn Logic Predicate
char-block(F,Pi,P2,Block) >

find(F,Block, [PI ,P21)

4.8 Replace - Generic

There are two replace operations. We represent the first as a function of
arity 4 with a corresponding predicate of arity 5. It replaces a block of test
with another block of text. The blocks may be of different lengths.

Axiom
replace(F1,PI,P2,Block) =

ins-block(~lock,del-block(F1, PI , ~ 2) , P2)

Horn liogic Predicate
del-block(F,Pl,P2,Delete-F) A

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-39

4.9 Replace Related

We represent the second replace as a function of arit?; 3 with a correspon(ii11g
predicate of arity 4. It takes a block of text, performs operation op on i t ant1
replaces the original text with the results of that operation. The filnctio11
op(B1ock-In) = Block-Out can be defined by the user. Esamples incl~ltlc~
filtering out non-printable characters. reversing the characters and c o n ~ r r t in2
the text to a different format.

Axiom
replace(F1,P1 ,P2) f

ins-block(op(char-block(F ,PI ,P2)) ,
del-block(F,Pl,P2) ,PI)

Horn Logic Predicate
char-block(F,P1,P2,Elock-In) A
op(B1ock-In,Block-Out) A
del-block(F,Pl,P2,Delete-F) A
ins-block(B1ock-Out,Delete-F,Pl,F-Out) >

replace(Fl,Pl,P2,F-Out)

4.10 Examples

Figure 2a illustrates invoking the following operations in our Prolog imple-
mentation of a text editor, which we built using the operational semantics
from this and the previous sections.

def (ins (b , i n s (c , i n s (x , i n s (a , A , 0) , I), 2) , 2) , 1)

Each of these operations results in the identical file. This is similar in
nature to the exampIe at the end of section 2.2.

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-91-39

Place Figure ?a here.

Figure 2b contains a longer example in which we create the test "Saml>lt>
Sentence " by using many of the operations from this section. In this rsaniplc.
replace-related reverses the text in the block chosen.

Place Figure 2b here

5 Testing the Correctness of an Existing Text
Editor

In the previous section we used the logic model and operational semantics
developed in sections 2 and 3 to design and implement a text editor. In this
section we use them to test the correctness of an existing implementation of a
text editing system. \Ve chose to examine a base subset of a widely-used set
of system routines-the internal text editing "toolbox" routines incorporated
in the operating system of the Macintosh computer. This demonstrates that
our axioms can be applied outside of the original system hut within their
intended domain.

We use the Hoare logic approach [I I] to ensure the correctness of every
toolbox editing routine by establishing and checking pre- and post-conditions.
Operations can be defined and characterized by their input and output con-
straints (logical rules and properties). If the system is in a legal state and
only legal operations are executed, then the data of the resulting system
will be guaranteed to have semantic integrity. Hoare's use of pre- and post-
conditions is important for three reasons: (1) the checking of particular con-
straints is tied t o particular operations, (2) the pre- and post-constraints for

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-39

the operation act as a guide for the implementation, and (: 3) they are rlsecl to
prove that the operation's specification and implementation are correct 1121.
Before the operating system executes each toolbox routine, we determine t lit.
current system state. This is our pre-condition. After each rolltine we enqltrc
that the state of the system reflects only the changes we expect clue to t llc

execution of that routine. This is our post-condition.

Place Figure 3 here.

We use the perform predicate to implement this in Prolog. \ire **.ian<livicli"
the pre- and post- conditions around the hlacintosh tooll>ox routines ancl
observe as users invoke each routine from the interface. Vsers invoke test
editing commands from keystrokes (such as typing a character or pressing
the backspace key) or menu commands. Figure .3 ilIu3trates our testing en-
vironment. The Macintosh "event loop" traps each text editing command
Our system examines the user command and instead of passing it directly to
the toolbox, passes it to the perform predicate with the name of the actnal
toolbox routine as an additional parameter. First, perform records the state
of the Macintosh file before the user's command. It then executes the actttal
toolbox call associated with the command and records the actual state of
the Macintosh file resulting from the execution of the routine. Next it sim-
ulates the execution of the toolbox routine using the predicates developed
in section 4. If the simulation produces the same results as executing the
actual toolbox routine, then we consider the toolbox routine to be correct.
Otherwise the routine is flagged as not being correct. We code the perform
predicate as follows:

perf orm(Sim0p, UserInput , ActualCmd, File-ID) : -
before-operation(Fi1e-ID, F-Before, PI, P2),
call (ActualCmd, File-ID) ,
after-operat ion(Fi1e-ID, F-Af ter) ,
simulate(SimOp, F-Bef ore, Pi, P2, F-After) ,
message(UserInput, Pi, P2, SimOp, Flag, File-ID).

Center for Digital Economy Research
Stem School of Business
Worlung Paper IS-91-39

SimOp: the Prolog predicate that 4 1 simulate the toolbox command
User Input : the action the user chose to invoke the toolbox command
ActualCmd: the actual toolbox command that implements the user's action
F i le - ID: an internal pointer to the actual file stored in computer nlernori
F-Bef o r e : a simulation of the file's state before executing the toolbos coni-
mand
F-Af te r : a simulation of the file's state after executing the toolbos con?-
mand
P I : the starting character position of the current selection
P2 the ending character position of the current selection
F l a g : "ok" if the simulation matches the actual file; "not ok" otherwise

A full listing of the perform predicate and how we intercepted the rx.ent
loop can be found in Appendix 2.

CC'e found we had to account for several characteristics of the l l a c i n t o ~ l ~
text editing environment. Character positions actually are marked between
characters. For example, if you want to select the first character in a file
you must specify from position 0 to position 1. Thus it is possible to hal-e
a null selection. Also. several commands have different functions depending
on whether the user has made a null selection or a non-empty selection. For
example, when the user presses the backspace key with a null selection, t l l r
toolbox performs the equivalent of a backspace command, otherwise it per-
forms the equivalent of a del-block. Another difference is that the 3Iacintosh
file has no eof-char. We simulate it based on the length of the text for testing.

We have tested the following Macintosh toolbox text editing commands
(many of which invoke more that one operation depending on the user action
and the current selection) thoroughly in the environment shown in Figure :3 .
We present the full test in Appendix 1. We are hereby pleased to announce
that all of the toolbox text editing commands are correct according to the
axioms of the logic model we have developed in this paper!

tekey (insert/backspace) - insert/backspace/replace-generic/delete-block

tecut (cu t) - cut a character block to the clipboard file

tecopy (copy) - copy a character block t o the clipboard file

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-39

t e p a s t e (pas te) - insertlreplace-generic a character block from the clipl~oartl
file

t ede le te (c lear) - delete- block

munger (find) - determine the position of a hlock of characters

6 A Larger Application of Logic Modeling

In this section we discuss how we are applying these logic modeling t e c l ~ n i r ~ i ~ e ~
to a larger information system.

Jt'e are part of a research group developing a decision support system
(DSS) shell to support individual applications that declare their coriipo-
nents to a knowledge-base 1171. The shell wiIl comprise a model nianage-
ment subsystem "TEFA" [14,10], a scenario and data management suhs~..-
tem "OLEOS," a user interface subsystem ">laxi" [15,16], and communica-
tion links among these. Together these subsystems provide an environment
in which an application builder has to specify just the models, data and S F . -

port formats that are unique to his or her application. The shell hancllc3i
all sharing, retrieval and execution functions for models and data, as \wll
as communications with the end user. \Ye are modeling each of these i 1 1 l 1 -

systems and communication methods in logic before implementing it. O ~ t s

goal is to make it cheaper and easier for application builders to develop DSS
applications, and for users such as decision analysts to work with them.

To illustrate our use of logic modeling we shall focus here on a single as-
pect of the user interface subsystem, providing hypertext-style navigation as
a "system-level7' feature. The shell automatically generates decision report.;
known as "interactive documents" such as the hypothetical ones in Figure 4.
It automatically infers which elements of the application builder's knowledge
base map t o hypertext "nodes", "links" and "buttons". Nodes are the ob-
jects of interest such as particular decision models and data. Links represent
relations among these, e.g., which models use which data, as well as DSS
commands, e.g., describing and executing a model. We highlight hypertext
buttons in boldface within interactive documents to indicate links (e.g., the
name of a model to execute, a numerical result to query). It is through these
buttons that users navigate or "traversen around the DSS applications.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-39

Place Figure 4 here.

In building the interface we are using logic modeling in two distinct arm.:
to manage hypertext buttons in the text editor, and to control the inference.
of hypertext nodes and links in preparation for and during link traverqal.

IVe have expanded the standard functionality of a text editor based on our
model from section 2 to account for additional hypertext-specific conditions.
For example, interactive documents can contain several types of buttons. each
of which must be validated against user actions in a different way. Some. srtcll
as the execution results shown in Figure 4, may be deleted by the user bur
not modified. Others, such as keyword buttons, may be modified, but cloixlg
so invalidates the buttons and the system must deregister them. In adclition
to validation, the character positions of all buttons after the modification
point must be updated whenever text is added or deleted. \ire have mocleleil
validation and positioning with logical axioms.

Now to the inference of nodes, links and buttons for link traversal. (For
more details see [18].) We believe that application builders should not ha\-c
to express the contents of their knowledge base-mathematical models and
data, etc.-in terms of hypertext nodes, links, buttons. The shell (Xfaxi ancl
TEFA) provides a set of general logical axioms called "bridge laws" that
map components of application knowledge bases to hypertext entities. To
do so, bridge laws employ the known structure of the shell's DSS application
components.

For example, we declare nodes as folIows:

where N is the identifier of the node and A is a list of arbitrary attributes
which are available for inferencing. The declaration has been simplified for
this presentation-see [16,18] for more details. The following bridge law maps
all of an application's mat hematical models t o hypertext nodes:

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-39

where X is the model identifier, S is its source and D is a definition for ~ t .
With this one axiom. all mathematical models in any application's knowletlctl
base compatible with the DSS shell are now accessible as hypertext entit i t x i .

Logic modeling has helped us in specifying, verifying anci protot\.l,irl~
these aspects of the user interface. It has been most beneficial in designing
the other subsystems as well.

Conclusion

It is well known that maintenance costs commandeer up to 75% of t h e lift.
cycle cost of software systems. Almost all new information systems contain
"bugs" and periodically systems need to be upgraded to accommodate new
business conditions (e.g., newT tax laws) (131. Logic modeling can play a n
important role in the planning and testing of computer systems. Systenl5
analysts could employ it as one of their standard design tools to minimize
the potential for design flaws. Logic modeling forces the analyst to ctetaii
the system's features and components clearly and unambiguously. The logic
model also can serve as documentation and as a base for designing system
enhancements. Logic modeling is useful for testing correctness of both designs
and implementations. Given the inevitability of bugs as well as the recent
threat of viruses, people responsible for testing implementations could turn
to the methods developed in section 5 as one weapon in their testing arsenal.

In this paper we have shown how to represent the essential aspects of a
text editor in a logic model, This exercise resulted in a simple first order
theory which we then used for two purposes:

1. to construct a prototype implementation in Prolog, and

2. to test another implementation of a text editor (the internal Macintosh
toolbox editing functions).

We feel strongly that this two-fold use of logic modeling constitutes an

Center for Digital Economy Research
Stem School of Business
Wor!ang Paper 13-91-39

important contribution to the area of software development. Logic modeling
naturally coordinates

1. software specification (via Horn logic),

2. prototypical implementations, and

:3. developing a testing strategy to evaluate implementations.

These aspects of logic modeling clearly support its use as a softxare (lc-

velopment tool.

8 Acknowledgements
We wish to thank Hemant Bhargava of the Saval Postgraduate School. ('hris
Jones of Simon Fraser University and Steven 0. IGmbrough of the IVharton
School for their invaluable help with this project. This work was S U ~ I I O ~ ~ E ' C I
in part by the U. S. Coast Guard, under contract DTCG139-86-C-E92'70 1 (for-
merly DTCG39-86-C-8034S), Steven 0. Kimbrough principal investigator.

This paper expands an earlier version appearing as [19].

Version 1.9 -November 21, 1991.

References
[l] Kimbrough, Steven 0. and Ronald M. Lee, "Logic Alodeling: X Tool for

Management Science," Decision Support Systems, vol. 4, p. 3-16, 19%.

[2] W. F. Clocksin and C. S. Mellish, Programming in Prolog, Springer
Verlag, Berlin 1980.

(31 Leon Sterling and Ehud Shapiro, The Art of Prolog: Advanced Program-
ming Techniques, MIT Press, Cambridge, 1986.

[4] K. Futatsugi, Joseph Goguen, J. Juoannoud, and Josk Mesegue, "Princi-
ples of OBJ2," Proceedings, 1985 Symposium on Principles of Program-
ming Languages, p. 52-66, ACM, 1985.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-39

[5] Frederick Hayes-Roth, "Rule Based Systems," Commun~caf~ons of ,fhc
,-IC.lI. vol. 25, no. 9, p. 921- 932, September 198.5.

161 Jean H. Gallier, Logic for Computer Science. Harper and Row. 1OS.5.

['7] Herbert B. Enderton, .4 ,\lathematical Introduction to Logzc, 5e1v \r ;)~l i :
Academy Press, 1972.

[S] Jose hfeseguer and Joseph Goguen, "Initiality, Induction ancl t ' o n i -
putability," in I1f. Nivat and J . Reynolds, eds., . . t lg~brn~c .llethod; 111

Semantics. p. 459-540, Cambridge University Pess. 1913.

191 AApple Computer, Inc.. Inside Ltfacintosh I.'olume I, p. 39:3-391, l!lS.j

[lo] Hemant Bhargava, A Logic llfodel for Illodel ,lIanagement: ,471 E~rtbcrl-
ded Languages Approach, Ph. D. Thesis. Decision Sciences Departmcnt.
University of Pennsylvania. Philadelphia, 1990.

[I l l I<. R. Apt, "Ten Years of Hoare's Logic: A Survey - Part 1." .-1C'.\I
TOPLAS, vol. 3 no. 4 p. 431-183, October 1981.

[12] Anthony I. Wasserman, et al., .*Developing Interact ive Informat ion S!.<-
tems with the User Software Engineering 1Iethodology." in R . Becker
and W. Buxton, eds., Readings in Human- Computer Interfaces: il .\Iul-
tidisciplinary Approach, p. 508-527, Llorgan Iiaufmann Publishers. Inc..
1985.

[13] James C. Emery, Management Information Systems: The Strategic C'i-if-
ical Resource, Oxford Press, New York, 1987.

[14] Hemant K. Bhargava and Steven 0 . Kimbrough, "On Embedded Lan-
guages for Model Management," Proceedings of the Twenty-Third Haulair
International Conference on System Sciences, IEEE Press, FVashington.
D.C., 1990.

1151 Michael Bieber and Steven 0. Kimbrough, "On Generalizing the Con-
cept of Hypertext," forthcoming in Management Information Systems
Quarterly.

Center for Digital Ecollol~~y Research
Stern School of Business
Worhng Paper IS-91-39

[16] Michael Bieber, Generaltzed Hypertext in a I<nou.ledge-based DSS S h ~ l l
En vtronrnent, Ph. D. Thesis, Decision Sciences Department. T*ni~-erii t \ -

of Pennsylvania, Philadelphia, 1990.

[l'i] Steven 0. Kimhrough, Clark Pritchet t , hlichael Bieber and Henlalit

Bhargava. "The Coast Guard's KSS Project," Interfaces, vol. 20 no. o
p. 5-16, November 1990.

[IS] Michael Bieber and Steven 0. Il;imbrough, "On the Logic of C;eneralizf>(l
Hypertext," in this issue of Decision Support Systems.

[19] Michael Bieber and Tomis Isakowitz, "A Logic ?isode1 for Text Ecliting."
Proceedings of the Twenty-Second Hawaii Internatron nl Conference or,

System Sciences, I E E E Press, Washington, D.C.. 19S9.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-39

eof:
t e x t :

Figure l a - Our "record" data structure for a text editing file implemented in "C", ~ v l ~ e r t .

the file contains the text acb.

[3 , [a, c , b, eof-char11

Figure l b - Our "list" da ta structure for a text editing file implemented in Prolog, where

the file contains the text acb.

Center for Digital Economy Rerearch
Stern School of Business
Working Paper IS-91-39

?- EmptyJile = [O,[eof-char]],
insjb,EmptyJile.O.FO),
ins(c,FO,l,Fl),
ins(a,Fl,O,Resulting_File).

Resulting-File = [3,[a,b.c,eof-char]]

?- EmptyJile = [O,[eof-char]],
ins(c.Empty-File,O,FO),
ins(b,FO,O.Fl),
ins(a,Fl ,O,Resulting_File).

Resulting-File = [3,[a. b ,c,eof-char]]

7- Emptyfi le = [O,[eof-char]],
ins(a.Empty_File,O,FO),
ins(x,FO,l,Fl),
ins(c,Fl,Z,F2),
ins(b,F2,2,F3),
del(F3,1,Resultingfile).

Resulting-File = [3,[a,b,c,eof_char]]

Figure 2a - 3 ways to produce "abc"

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-39

?- Clip = [O,[eof-char]]. % define the clipboard file
EmptyTile = [O.[eof-char]], S/c define the empty file
~ns('S',Emptyl;'ile,O,FO),
ins(.S7,F0,1,F1),
ins-block([e,n,t,t.t,n.e.s,' ', 'S1,a.m+x.p,l.e],F1,2,F2),
backspace(F2,1,F3), % remove first "S"
backspace(FB,O,F4), % no change
del(F4,13.F5), %, remove "x"
del(FS,16,F6). % delete "eof-char" no change
del-block(F6,4..5.F7j, 5% delete "tt"
replace(F7,6.6,[c.e] ,F8), % replace "s" by "ce"
replace(F8,4,5,F9), % reverse "new to "en"
find(F9,pS'.a,m,p,l.e],[F9-posnl ,F9-posn2]), % find text
~ut(F9,F9-posnl,F9-~osn2,Clip,O,[Cli~X,FlO] '% cut text to the clipboard file
copy(ClipX,O,lO,F10,O,F1I), $4 copy whole clipboard to start of file
ins(' ',F11,6,F12).

Figure 2b - creating the text "Sample Sentence "

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-39

This figure shows two snapshots of the Macintosh testing environment we describe in section 5. Users invoke text editing
commands implicitly from the keyboard or explicitly from the c'pull-down" menu (shown in the first snapshot). The action
log displaying our simulation results is in the "System Messages" window. The "Text Editor" window shows the results of
the last action shown in the "System Messages" window. (The full example testing each of the Macintosh toolbox routines
is in Appendix 1. The main Prolog code implementing this environment is in Appendix 2.)

System Messages
Input: typed(S) from position: 0-0 Simulation: insert Result: ok
Resulting Simulation File: [l,IS,eofrharll
Resulting Macintosh File: "S"

Input: typed(S) from position: 1-1 Simulation: insert Result: ok
Resulting Simulation Fi le: I2, IS,S,eof~harll
Resulting Macintosh File: "SS"

Input: typed(S) from position: 2-2 Simulation: insert Result: ok
Resulting Simulation Fi le: 13, CS,S,S,eofsharll
Resulting Macintosh File: "SSS"

h I

I Text Editor I
Sample Sentence

Raulting Macintosh File: " Samplesentense"

Input: typed() from position: 7-7 Simulation: insert Result: ok
Resulting Simulation File: I16, I ,S,a,m,p, l,e, ,S,e,n,t,e,nJsJe,eof_rharll
Resulting Macintosh File: " Sample Sentense"

Input: typed(c) from position: 14-15 Simulation: replace Result: ok
Resulting Simulation File: i16, I: ,S,a,m,p, I,e, ,S,e,n,t,e,n,c,e,eof~harll

Figure 3 - The Testing Environment on the Macintosh
Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-39

f l e e t cost =
lead ship sai laway cost =
fo l low ship sai laway cost =
lead ship payload cost =
fo l low ship payload cost =

Figure 4 - Two Interactive Documents with Inferred Hypertext Buttons in Boldface

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-39

In this example, we observe a user invoking each of the Macintosh text d t ing routines described in

section 5. This is the text of the transaction log resulting from the user's keystrokes and menu

commands, which appears in the "System Messages" window. Figure 3 shows the actual interface during

the fist and the last three user actions. We present the code underlying this example in Appendix 2.

Input: typed(S) from position: 0-0 Simulation: insert Result: ok
Resulting Simulation File: [l,[S,eof-char]]
Resulting Macintosh File: "S"

Input: typed(S) from position: 1-1 Simulation: insert Result: ok
Resulting Simulation File: [2, [S,S,eof-char]]
Resulting Macintosh File: "SS"

Input: typed(S) from position: 2-2 Simulation: insert Result : ok
~esulting Simulation File: [3, [S, S, Sf eof-char] 1
Resulting Macintosh File: "SSS"

Input: typed(e) from position: 3-3 Simulation: insert Result: ok
Resulting Simulation File: [4, [Sf S, S, el eof-char] 1
Resulting Macintosh File: "SSSe"

Input: typed(t) from position: 4-4 Simulation: insert Result: ok
Resulting Simulation File: [5, [S, S, S, el t,eof-char] I
Resulting Macintosh File: "SSSet"

Input: typed(t) from position: 5-5 Simulation: insert Result: ok
~esulting Simulation File: [6, (S,S,S,e,t,t,eof-char]]
Resulting Macintosh File: "SSSett"

Input: typed(t1 from position: 6-6 Simulation: insert Result: ok
Resulting Simulation File: [7 , [S,S,S,e,t,t,t,eof-char]]
Resulting Macintosh File: "SSSettt"

Input: typed(e1 from position: 7-7 Simulation: insert Result: ok
Resulting Simulation File: [8,[S,S,S,e,t,t,t,eIeoffcharll
Resulting Macintosh File: "SSSettte"

Input: typed(n) from position: 8 -8 Simulation: insert Result: ok
Resulting Simulation File: (9, [S,S,S,e,t,t,t,e,n, eof-char1 I
Resulting Macintosh File: "SSSettten"

Input: typed(s) from position: 9-9 Simulation: insert Result: ok
Resulting Simulation File: [lo, [Sf S, S,e, t, t, t,e,n,s,eoffchar1 1
Resulting Macintosh File: "SSSetttens"

Input: typed(e) from position: 10-10 Simulation: insert Result: ok
Resulting Simulation File: [11,[S,S,S,e,t,t,t,e~n,sIe,eof_charl1
Resulting Macintosh File: "SSSetttense"

Input: typed() from position: 11-11 Simulation: insert Result: ok
Resulting Simulation File: [1 2 , [S , S , S , e , t , t , t , e , n , s , e , ,eof-char11
Resulting Macintosh File: "SSSetttense "

Appendix I : Figure 3 in Further Detail - Page 1 Center for Digital Economy Research
Stem School of Business
W o r h g Paper IS-91-39

Input: typed(S) from position: 12-12 Simulation: insert Result: ok
Resulting Simulation File: 113, [S, S, S, el t, t,t, el n, s,e, ,St eof-char]]
Resulting Macintosh File: "SSSetttense S"

Input: typed(a) from position: 13-13 Simulation: insert Result: ok
Resulting Simulation File: [14, [S,S,S,e,t,t,t,e,n,s,e, ,S,a,eof-char]]
Resulting ~acintosh File: "SSSetttense Sa"

Input: typed(m) from position: 14-14 Simulation: insert Result: ok
Resulting Simulation File: [15, [S,S, S, el t,t, t,eInI sIeI , S, a,m,eof-char] 1
Resulting Macintosh File: "SSSetttense Sam"

Input: typed(m) from position: 15-15 Simulation: insert Result: ok
Resulting Simulation File: [16, IS, S, S, el t, t, t,e,n, s,e, , S, a,m,m,eof-char! j
Resulting Macintosh File: "SSSetttense Sam"

Input: typed(p) from position: 16-16 Simulation: insert Result: ok
Resulting Simulation File: [17, [S, S, S,e, t, t, t,e,n, s,e, , S, a,m,m,preof-char] J
Resulting Macintosh File: "SSSetttense Sammp"

Input: typed(1) from position: 17-17 Simulation: insert Result: ok
Resulting Simulation File: [18, [S, S, S,e, t, t, t,e,n, s,e, , S, a,m,m,p, 1,eof-chafl
Resulting Macintosh File: "SSSetttense Sammpl"

Input: typedte) from position: 18-18 Simulation: insert Result: ok
Resulting Simulation File: E19, [S, S, S,e,t, t, t,e,n, s,e, , S, a,m,m,p, l,e,eof-char: :
Resulting Macintosh File: "SSSetttense Sample"

Input: backspace-key from position: 1-1 Simulation: backspace Result: ok
Resulting Simulation File: [18, [S, S,e, t, t, t,e,n, sIeI , S,a,m,m,p, 1,eof-char] J
Resulting Macintosh File: "SSSetttense Sammpl"

Input: backspace-key from position: 0-0 Simulation: backspace Result: ok
Resulting Simulation File: [18, [S, S, S,e, t, t, t,e,n, s,e, , S, a,m,m,p, 1,eof-charj j
Resulting Macintosh File: "SSSetttense Sampl"

Input: clear from position: 4-6 Simulation: delete-block Result: ok
~esulting Simulation File: [16, [S, S,e, t,e, n, s, el ,St a,m,m,p, 1, el eof-char] 1
Resulting Macintosh File: "SSetense Sammple"

Input: copy from position: 5-6 Simulation: copy Result: ok
Resulting Simulation File: [16, [S, S,e, t, el n, s, el , S, a,m,m, p, 1, ereof-char]]
Resulting Macintosh File: "SSetense Sample"

Input: paste from position: 3-3 Simulation: copy Result: ok
Resulting Simulation File: [17, [S, S,e,n, t,e,n,s,e, , S,a,m,m,p, l,e,eof-char1 I
Resulting Macintosh File: "SSentense Sample"

Input: backspace-key from position: 13-14 Simulation: delete-block Result: ok
Resulting Simulation File: [16, [S, S,e, n, t,e,n, s,e, , S, a,m,p, 1, ereof-char1 I
Resulting Macintosh File: "SSentense Smmplen

Input: find from position: 13-13 Simulation: find Result: ok
Resulting Simulation File: [16, [S,S,e,n, t,e,n, s,e, , S, a,m,p, 1, e,eof-char]]
Resulting Macintosh File: "SSentense Sample"

Input: cut from position: 9-16 Simulation: cut Result: ok
Resulting Simulation File: [9, [S, S,e, n, t,e, n, s,e, eof-char1 I
Resulting Macintosh File: "SSentensen

Appendix 1 : Fgure 3 in Further Detail - Page2 Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-91-39

Input: deleteblock/paste from position: 0-0 Simulation: copy Result: ok
Resulting Simulation File: 115, [,S,a,m,p, l,e, S,e,n, tIelnI sIeIeof_char]]

Resulting Macintosh File: " Samplesentense"

Input: typed() from position: 7-7 Simulation: insert Result: ok
Resulting Simulation File: [16, [, S,a,m,p, l,e, , S,e,n, t,e, n, s,e,eof_char] 1
Resulting Macintosh File: " Sample Sentense"

Input: typed(c) from position: 14-15 Simulation: replace Result: ok
Resulting Simulation File: [16, [,St a,m,p, l,e, , S, e, n, t, e,n, c, e, eoeharj]
Resulting Macintosh File: " Sample Sentence"

Appendix 1 : Fgure 3 in Further Detail - Page3
Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-39

2: The Code of T-

This is the primary Prolog code implementing the text editor described in section 5, and illustrated in Figure 3 and

Appendix 1. The editor intercepts both keyboard inputs and menu selections. The perform14 predicate utilizes Hoare

logic by establishing pre- and post-conditions (with the predicates before-operationi4 and qfter operurion/2) that verify -
the Macintosh text editing routines (the third argument of pelformI4).

% KEYBOARD INPUT:
a~Typing (FileID, AsciiCode) : -

determine-character(Char,AsciiCode), % what did they type?
mempeek(FileI3,32,SeiStart), % selection starting c5aracter cosi':-- "..". ,

mempeek (FileIil. 34, SelEnd) , % selection ending character p c s i t i s n
(SelStart = SelEnd, % click (null seiection)?
(AsciiCode = 8, % "8" = backspace key

perform (brck.pica, backspace-key, tekey (AsciiCode, File1D) ,FileID) ;
perform(inaert, Char, typed (Char), tekey (AsciiCode, FileID) , FileID)) ;

AsciiCode = 8,
perf orm (drl*te-block, backspace-key, tekey (~sciicode, ~ i l e 1 ~) , FileID) ;

perfom (mpbc*, [Char] ,typed (Char) , tekey (AsciiCode, FileID) , FileID)) .

% EDITOR MENU COMMANDS:

% CUT
nenu selection (FileID, 1) : - -

perform (cut, cut, tecut (FileID) , FileID) .

% COPY
menu-selection (FileID, 2) : -

perform (copy, copy, tecopy (FileID) , FileID) .

% PASTE
menu-selection (FileID, 3) : -

mempeek (FileID, 32, SelStart) , % get selection start position
mempeek (FileID, 34, SelEnd) , % get selection end position
(SelStart = SelEnd, % click (null selection) ?

perform (plate-insert, paste, tepaste (FileID) , FileID) ;
perform(pl8to-*la=, 'delete-block/pastel , tepaste (FileID) , FileID)) .

% CLEAR
menu-selection (FileID, 4) : -

perform (&lob-block, clear, tedelete (FileID) , FileID) .

% FIND
menu-selection (FileID, 6) : -

get-search-text-from-user (TextString),
perform(fiad, find,mnger (TextString, Result), FileID) .

% EXIT
menu-selection (FileID, 8) :-

retractall (programFinishCondition (-1) ,
asserta(programFinishCondition(true)) .

Appendix 2: The Macintosh Text Editor Implementation - Page 1
Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-39

8 PERFORM PREDICATE
perfor~(bck8p.cr,MacOperation,Comd, FileID) :-

before-operation (FileID, File-Before, Posnl ,Posn2) ,
Cormland,
after-operation (FileID, File-After) ,
simlate(backspace(File-Before,Posnl,File-After),ConditionFlag),
message(Mac~ration,Posnl,Posn2,backsplce,Con&tionFlag,FileID)

perform (in-, Char,MacGperatlon, C o m d , FlleID) : -
be£ ore-operation (FlleID, File-Befor , Posnl , Posn2) ,
CormMnd,
after-operation (FlleID, File-After) ,
slmulate (Insert (Char, File-Before,Posnl,FlleAfter) , Con&tlonFlag) ,
message (MacCperatlon,Posnl, Posn2, rnsert, Con&tlonFlag,FlleID) .

perfon(Qlete~block,MacGperation,Command,~ileID) :-
before~operation(FileID,File_Before,Posnl,Posn2),
Comnand,
after-operation (FileID,File-After) ,
simulate(delete~block(File~Before,Posnl,Posn2,File~After),ConditionFlag),
message (Macoperation, Posnl, Posn2, delete-block, ConditionF'lag, FileID) .

perform(nrplace, Block, MacGperation, C o m d , FileID) : -
before~operation(FileID,File~Before,Posnl,Posn2),
Comnand,
after-operation (FileID, File-After) ,
simlate(replace(File~~fore,Posnl,Posn2,Block,File~~fter),ConditionFlag),
message(MacOperation,Posnl,Posn2,replace,ConditionFlag,FileID).

perform (find, Macoperation, Comd,FileID) : -
before-operation (FileID, File-Before,-, -) ,
Comnand,
after-operation(FileID,File-After,Posnl,Posn2),
simulate (find (File-Before, Block, [Posnl, Posn21) ,

find(Fi1e-After,Block, [Posnl,Posn2]),ConditionFlag),
message(Mac~ration,Posnl,Posn2,find,ConditionFlag,FileID).

perform(cuk, Macoperation, Co~nd,FileID) : -
before~operation(FileID,File~Before,Posnl,Posn2),
Comnand,
after-operation (FileID, File-After) ,
srrnulate (cut (File-Before, Posnl, Posn2, errpty-f ile, 0, [Clipboard, File-After]) ,

asserta (clipboard (Clipboard)) , ConditionFlag) ,
message(Mac~ration,Posnl,Posn2,cut,ConditionFlag,FileID).

p e r f o m (p ~ e ~ ~ 8 ~ r ~ , M a c ~ e r a t i o n , C o m d , F i l e I D) :-

before~operation(FileID,File~Before,Posnl,Posn2),
C o m d ,
after-operation (FileID, File-After) ,
simulate (clipboard (Clipboard) ,

copy (Clipboard, O,lO,File-Before, Posnl, File-After) , ConditionFlag) ,
rrw?ssage(Ha~ration,Posnl,Posn2,copy,ConditionFlag,FileID).

perform (p88te-rrphcr,MacOperation, Conrmand, FileID) : -
before~operation(FileID,File~Before,Posnl,Posn2),
Comnand,
after-operation (FileID, File-After) ,
simulate (clipboard (Clipboard) ,

delete-block (File-Bef ore, Posnl , Posn2, File-Temp) ,
copy (Clipboard, 0.10, File-Tenp, Posnl, Fileafter) , ConditionFlag) ,

message(HacOperation,Posnl,Posn2,copy,ConditionFlag,FileID).

Appendix 2: The Macintosh Text Editor Implementation - Page '
Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-39

Derform (copy, Macoperation, Cotiunand, FileID) : -
b~fore-operat~on(FileID,File-Before,Posnl,Posn2),
c o m d ,
after-operation (FileID, File-After) ,
si~late(co~(File-Before,Posnl,Posn2,empty-file,O,File~~ter),

copy (File-After, Posnl, Posn2, [O, [eof-char]] '0, Clipboard) ,
asserta (clipboard (Clipboard)) , ConditionFlag) ,

message(NacOperation,Posnl,Posn2,copy,ConditionFlag,FileID).

before-operation (FileID, File, Posnl, Posn2) : -
create~substitutegrolo~~file(FileID,File),
get~current_pos~tions(FileID,Posnl,Posn2).

after-operation (FileID, Flle) : -
create-subst~tutegrolog-f~le (FileID, File) .

after-operation (FileID, File, Posnl, Posn2) : -
create-substitutegrolog-file (FileID, File) ,
get~currentpsit~ons(FileID,Posnl,Posn2).

simulate (PrologComd, ok) : -
PrologCommand.

simulate (-, 'not ok ') .
simulate (PrologComnandl, PrologCommand2, ok) : -

PrologCommandl,
PrologCommand2.

simulate (-, -, 'not ok ') .

create~substitutegrolog~file(FileID,[Length,Text]) :-
tegettext (FileID, StrPtr) , % retrieve the file's text
mempeek (FileID, 60, Length), % get the file length
pointer-to-list(StrPtr,Length,TextList), % convert the file's text to a list of characters
append(TextList, [eof-char] ,Text) . % add the eof-char to the s~mulated file's text

get-currentpositions (FileID, SelStart, Posn2) :- % Positions are marked beeween characters
rnempeek (FileID, 32, SelStart) , % get selection start position
mempeek (FileID, 34, SelEnd) , % get selection end position
(SelStart = SelEnd, % account for a null selection

Posn2 - SelEnd; % if null then end position is correct
Posn2 is SelEnd - 1). % ... else adjust for the simulation

Appendix 2: The Macintosh Text Editor Implementation - Page "
Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-91-39

