
ON COMPLETENESS OF HISTORICAL
RELATIONAL QUERY LANGUAGES

by

James Clifford
Information Systerns Department

Leonard N. Stern School of Business
New York University

Albert Croker
Statistics and Computer Information Systerns

Baruch College
City University of New York

and

Alexander Tuzhilin
Information Systems Department

Leonard N. Stern School of Business
New York University

December, 1991

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Working Paper Series

STERN IS-91-41

This replaces CRIS # I 92.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

Abstract

Numerous proposals for extending the relational data model to incorporate the temporal
dimension of data have appeared in the past several years. These proposals have differed
considerably in the way that the temporal dimension has been incorporated both into the
structure of the extended relations of these temporal models, and consequently into the
extended relational algebra or calculus that they define. Because of these differences it has
been difficult to compare the proposed models and to make judgments as to which of them
might in some sense be equivalent or even better. In this paper we define the notions of
t empora l ly grouped and temporal ly ungrouped historical data models and propose
two notions of historical relational completeness, analogous to Codd's notion of rela-
tional completeness, one for each type of model. We show that the temporally ungrouped
models are less powerful than the grouped models, but demonstrate a technique for extend-
ing the ungrouped models with a grouping mechanism to capture the additional semantic
power of temporal grouping. For the ungrouped models we define three different languages,
a temporal logic, a logic with explicit reference to time, and a temporal algebra, and show
that under certain assumptions all three are equivalent in power. For the grouped models
we define a many-sorted logic with variables over ordinary values, historical values, and
times. Finally, we demonstrate the equivalence of this grouped calculus and the ungrouped
calculus extended with the proposed grouping mechanism. We believe the classification of
historical data models into grouped and ungrouped provides a useful framework for the
comparison of models in the literature, and furthermore the exposition of equivalent lan-
guages for each type provides reasonable standards for common, and minimal, notions of
historical relational completeness.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

I Introduction

Over the course of the past decade various historical relational data models have been

proposed, including [JM80], [BZ82], [CW83], [Ari86], (Tan861, [CC87], [Lor87], [NA87],

[Sno87], [Gad%], [SarSO] .' These data models are intended for those situations where there

is a need for managing data as it changes over time. Generally, these data models extend

the standard relational data model by including a temporal component. This incorporation

of the temporal dimension has taken a number of different forms. Chief among these have

been the addition of an additional attribute, say TIME, to a relation (the equivalence of

time-stamping) [Sno87], or the inclusion of time as a more intrinsic part of the structure of

a relation [CC87, Gad861. The latter approach results in what have been called non-first

normal f o r m relations.

Although the structures of the historical relations defined in each of the proposed histor-

ical relational data models differ from each other to varying degrees, they it has remained

a subject for debate whether they have the same modeling capabilities. Moreover, because

the query languages defined in these data models differ from each other in their formula-

tions, it has remained unclear whether they provide the same capabilities for extracting

various subsets of a database. So many different languages have appeared in the literature,

in fact (e-g., [MS89] refers to no fewer than eleven algebras alone) that it is crucial to have

some standard measure against which to compare them.

In this paper we address the issue of completeness for historical relational data models. A

metric of historical relational completeness can provide a basis for determining the

expressive power of the query languages that have been defined as part of proposed historical

relational data models. As such, the notion of historical relational completeness can serve a

role similar to that of the original notion of relational completeness first proposed by Codd

[Cod721 and later justified as being reasonable by Bancilhon [Ban781 and [CH8O].

In Section 2 we first address the issue of the modeling capability of the various historical

lThis list is not exhaustive; for an overview of the area of time and databases see [AC86] and [SnoSO];
for an ongoing bibliography on the subject see [McK86], [SS88] and [SooSl].

1

Center for Digital Economy Research
Stern School of Business
Worhng Paper IS-91-41

data models that have been proposed. In particular we explicate the different modeling

capabilities achieved by incorporating the temporal dimension at the tuple level (by time-

stamping each tuple) or at the attribute-value level (by including time as part of each

value). We introduce the terms temporally ungrouped and temporaIly grouped to

distinguish between these two approaches, respectively, and discuss the relative power of

the two approaches. We then propose two different canonical models to serve as the basis

for our analysis of the power of query languages for these two approaches. The distinction

between these two different types of models, temporally ungrouped and temporally grouped,

serves to structure the remainder of the paper. Essentially, we define two separate notions of

completeness - one for each of these two types of models - and then discuss the relationship

between the two notions.

In Section 3 we examine the temporal ly ungrouped models, and define three different

languages for them: a temporal logic, a logic with explicit reference to time, and a temporal

algebra. We show that under certain assumptions about the temporal universe all three

are equivalent in power. We propose these languages as a standard for completeness for

temporally ungrouped models. In Section 4 we examine the temporal ly grouped mod-

els, and define a historical relational calculus for them; this calculus is a many-sorted logic

with variables over ordinary values, historical values, and times. We propose this calculus

as a standard of completeness for models of this type. We then show in Section 5 how

the representation power of the ungrouped models and their languages can be extended

to incorporate the grouping semantics. Finally, in Section 6 we examine the completeness

of several historical relational languages that have been proposed in the literature with

respect to these metrics.

It is worth pointing out that there are a number of additional issues which might reasonably

be said to be related to the question of completeness of query languages but which are

necessarily outside of the scope of this paper. We are limiting our attention to models

which incorporate a single dimension of time (historical, as opposed to temporal models, in

the terminology of [SA85]), but we believe that these results could be extended to handle

additional time dimensions. Firrthermore, in the spirit of most of the work on completeness

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

for standard relational languages, we do not address the issue of temporal aggregates (as,

for example, in [SGM87]). Work in the spirit of [Klu82] could extend the results here in

that direction if so desired. Finally, we do not incorporate schemaevolution over time (as in

[CC87]) because this would entail a comprehensive treatment of null values, which is beyond

the scope of this paper. For the same reason we limit our attention to homogeneous relations

([Gad88]), i.e., relations whose tuples have attributes all defined over the same period of

time. In all of these decisions of what to incorporate in our notion of "reasonable" queries,

we have been motivated by the desire to choose the common denominator of the various

models proposed. In this way we have been be able to apply our metric of completeness

fairly against several models in the paper.

We conclude in Section 7 with a summary of our results and some directions for future

research.

2 Temporally Grouped and Temporally Ungrouped
Data Models

Two different strategies for incorporating a temporal dimension into the relational model

have appeared in the literature. In one, the schema of the relation is expanded to include

one or more distinguished temporal attributes (e.g,, START-TIME and END-TIME) to

represent the period of time over which the fact represented by the tuple is to be consid-

ered valid. This approach has been referred to in the literature as tuple time-stamping

or as a first-normal form (1NF) model. In the other approach, referred to as attribute

time-stamping or as a non-first-normal form (NINF) model, instead of adding additional

attributes to the schema, the domain of each attribute is extended from simple values to

complex values (functions, e.g.) which incorporate the temporal dimension Both [CC87]

and [SnoSO] contrast these two approaches.

Consider, as an example, a relation intended to record the changing departmental and

salary histories of employees in an organization2. Figures 1 and 2 show typical representa-

2Similar examples have appeared in [CW83], [Gad861 and [Sno87]

3

Center for Digital Economy Research
Stern School of Business
Worhng Paper IS-91-41

EMPLOYEE
NAME I DEPT I SALARY I/ time

Figure 1: Prototypical INF Historical Employee Relation

tions in these two approaches. While both relations appear to have the same information

content, i.e., the same data about three different employees over the same period of time,

the models represent this information in quite different ways. In the 1NF approach (Fig-

ure 1) each moment of time relevant to each employee is represented by a separate tuple

which carries the time stamp. In the NlNF approach (Figure 2), each employee's entire

history is represented within a single tuple, within which the time stamps are embedded

as components of the values of each attribute.

In each of the so-called NlNF models (e.g.,[Tan86, CC87, Gad@]) all of the information

about each employee is represented in a single tuple; in the 1NF models that have been

proposed (e.g.,[Ari86, Sno87, Lor87, TC90]), this property does not hold. Also note, with

respect to the NlNF models, that while in general a key field like NAME would typically

be constant over time, there is no requirement that this be the case. For example, in the

E M P L O Y E E relation in Figure 2 the employee Tom changes his name to Thomas at time

3. There are many applications where the value of a key need not be constant over time,

but merely unique in the relation at any given time.

While NlNF models inherently group related facts into a single tuple, 1NF' models, whether

historical or temporal (using the distinction in [SA85]) for models with one or two time

dimensions, respectively) are problematic in this regard, as Figure 1 makes clear. Such

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

Figure 2: Prototypical NlNF Historical Employee Relation

EMPLOYEE

models provide no inherent grouping of the tuples that represent the same objecp; for

instance, they do not group the tuples of the same employee (Jim, e.g.) in Figure 1. As

we shall see, it is up to the users to know and to maintain that grouping in all of their

interactions with the database.

NAM%

0 -+ Tom
1 -+ Tom
2 -+ Tom
3 -+ Thomas
1 -+ Jim
2 -+ Jim
3 -+ Jim
1 -+ Scott
2 -+ Scott

We point out that another technique for time-stamping tuples (or values) that has appeared

in the literature (e.g., [Sno87, Lor871) uses a time-interval rather than a time-point as the

time-stamp. For example, the VALID- TI&% ('om) and (to) attributes in Figure 3 denote

a time interval.It is well-known that if time is discrete) , then these two approaches are

equivalent[vB83]. Nearly all of the work on historical or temporal databases has assumed

a discrete temporal domain (McKenzieSnodgrass89). We will therefore utilize the two

representation schemes interchangeably.

Although in this paper we are concerned only with the issue of completeness of query

languages for historical data models, it is worth pointing out that the same grouping

DEPT

0 -+ Sales
1 --+ Finance
2 -+ Finance
3 -+ MIS
1 -+ Finance
2 -+ MIS
3 -+ MIS
1 -+ Finance
2 -+ Sales

problem occurs in temporal models, as the prototypical representation in Figure 3 makes

clear. In these models the tuples are stamped, not merely with the time period during which

the fact that they represent held true in reality (VALID- TIlWE), but also with another time

SALARY

0 -+ 20K
1 -+ 2OK
2 -+ 20K
3 4 27K
1 -+ 20K
2 --+ 30K
3 - 40K
1 -+ 20K
2-+ 20K

stamp representing the time period during which the database knows of the fact (TRANS-

lifespan

{0,1,2,3)

{1,2,3)

{1,2)

3?Ve will use the term object occasionally in the paper. We use it in a completely neutral sense, and not
as a reference to objects in any object-oriented paradigm with all of the implications thereof

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

Figure 3: Prototypical 1NF Temporal Employee Relation

EMPLOYEE

TIME). We do not treat such relations in this paper, but believe that our results could

(and should) be extended to address them.

Because the term NlNF has been used elsewhere to refer to various kinds of relaxations of

the 1NF Property including, among other things, models which allow nested relations or

set-valued attributes, we prefer to use the terms Temporally Grouped and Temporally

Ungrouped for these two types of models. In the sequel, therefore, we will use the term

Temporally Grouped (TG) to refer to models which provide built-in support for the

grouping of related temporal values, and Temporally Ungrouped (TU) for those which

do not.

NAME
Tom
Tom
Tom
Thomas

Jim/
Jim
Jim
Scott
Scott

In the rest of this section we will precisely define two canonical models, one ungrouped and

the other grouped. These models will first be informally contrasted, and then will be used

in the remainder of the paper to provide the basis for our definitions of temporally grouped

and temporally ungrouped completeness.

TRANS- TIiWE

2.1 A Canonical Temporally Ungrouped Relation Structure

DEPT
Sales
Finance
Finance
MIS
Finance
MIS
MIS
Finance
Sales

(start)

t 1
t2
t3
t 4

t5
t6

t7
t s
t9

The structure for relations in temporally ungrouped data models is essentially a straight-

forward extension of the standard relational structure.

(stop)
00

00

co

00

CO

co
co
co

00

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-41

SALARY
20K
20K
20K
27K
20K

30K
40K
20K
20K

n

VAL ID- TIME
(from)
0
1
2
3
1
2
3
1
2

(to)
1
2
3
4
2
3
4
2
3

Let UD = {Dl, D 2 . . . , Dnd) be a (universal) set of value domains (i.e., each D; is a set

of values), where for each i, Di f: 0. D = U:zl Di is the set of all values.

Associated with each value domain D; is a set of value comparators ElDi, each element

of which can be used to compare two elements of the domain. At a minimum each set

of value comparators contains the comparators "=" and ' L f " to test for the equality and

inequality, respectively, of any two elements of the associated value domain.

Let UA = {A1, A2, . . . , An,) be a (universal) set of a t t r ibutes . Each attribute names some

property of interest to the application area. Moreover, there is a distinguished attribute

TIME, not in UA, which will be used to represent temporal information.

A tempora l ly ungrouped historical relation scheme RTU is a 4-tuple

RTU =< A, T , K , D O M > where:

1. A U { T I M E) is the set of attributes of scheme RTu, where A 5 UA; the attributes

in A are called value a t t r ibutes , and TIIWE is the tempora l a t t r ibu te .

2. T = {to, tl , . . . , t i , . . .) is a non-empty set, the set of t imes, and < is a total order on

T . The cardinality of T is restricted to be at most countably infinite.

3. The set KU {TIME), where K C A, is the key of scheme ItTu, i.e. KU {TIME) --+

A.

4. D O M : A U {TIME) -+ UD U {T) is a function that assigns to each value attribute of

scheme RTU a value domain, denoted DOhf(Ai, RTU), and to TIME the temporal

domain T .

A temporal ly ungrouped historical relational database scheme

DBTu = {R1,,, R2TU,. . . , RnTU) is a finite set of temporally ungrouped historical relation

schemes.

A temporal ly ungrouped historical t up l e tTu on scheme RTU =< A, T, K , D O M >

is a function that associates with each attribute A; E A a value in DOIM(A;, RTU) and

to T I M E a value in T.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

A tempora l ly ungrouped historical relation r on scheme RTU =< A, T, K, DOM >
is a finite set of ungrouped historical tuples on scheme RTU that satisfies the key constraint.

A tempora l ly ungrouped historical database dTu = {rlTU, r Z T U 7 . . . , is a set

of temporally ungrouped historical relations where each riTU is defined on a (not necessarily

unique) ungrouped historical relation scheme RiTU.

The EMPLOYEE relation in Figure 1 is a typical relation in the temporally ungrouped

historical data model,

2.2 A Canonical Temporally Grouped Relation Structure

As a basis for the specification of our notion of historical completeness for temporally

grouped temporal relations, we begin by defining a canonical temporally grouped histori-

cal relation upon which we will base the calculus that we define in the next section. The

structure of this relation is specified in such a way as to capture the intent and require-

ments of a temporally grouped historical relation, and to be general enough to have the

representational capabilities of other proposed historical relations.

Let UD, D, ODi, and UA be as for the canonical temporally ungrouped relation structure

(Section 2.1).

T will designate the set of t imes in the model, and any subset L 5 T is called a lifespan.

(Note, therefore, that a lifespan can consist of several, non-contiguous intervals of time.)

Corresponding to each value domain D; is a t empora l domain LIiT of partial ternporal-

based functions from the set of times T to the value domain D;. Each of these partial

functions defines an association between each time instance in some lifespan L, and a

value in a designated domain, and thus provides a means of modeling the changing of an

attribute's value over time.

A temporal ly grouped historical relation scheme RTG is a 4-tuple

RTG =< A t T, K, DOM > where:

Center for Digital Eco l lo l~~y Research
Stern School o f Business
W o r h n g Paper IS-91-41

1. A 2 UA is the set of a t t r ibu tes of scheme RTG

2. T = {to, t l , . . . , t i , . . .) is a non-empty set, the set of t imes, and < is a total order on

T. The cardinality of T is restricted to be at most countably infinite.

3. K 2 A is the key of scheme RTG, i.e., K -+ A

4. D O M : A t UD U (7') is a function that assigns to each attribute of scheme RTG

a value domain, and, by extension, the corresponding temporal domain. We denote

the domain of attribute A; in scheme RTG by DOM(Ai, RTG).

A tempora l ly grouped historical relational database scheme

DBTG = {RITG, RZTG,. . . , RnTG} is a finite set of temporally grouped historical rela-

tion schemes.

A tempora l ly grouped historical tuple ~ T G on scheme RTG =< A , T, K, D O M >

is a function that associates iirith each attribute A; E A a temporal-based function from

the tup le lifespan (any subset of T) common to the tuple, denoted tTG.l, to the domain

assigned to attribute A;. That is, tTG(A;) : L -+ DOM(A;). (We note that it is also

possible to associate lifespans with attributes [CC87]; a treatment of this is beyond the

scope of this paper. Doing so permits historical relation schemes to accommodate changes

that may occur to them over time.)

A temporal ly grouped historical relation ~ T G on scheme RTG =< A , T, K, D O M >

is a finite set of temporally grouped historical tuples on scheme RTG such that given

any two tuples tlTG and tzTG in rTG, Vs1 E (tlTG.l n tZTG.l) 3Ai E K such that

t l ~ ~ (Ai)(sl) # tzTG(Ai)(s1). This notion of a key simply specifies that there can be no
time in which two different tuples agree on the key. Although in general we would assume

that the temporal-based function associated with each key attribute of a tuple would be

constant with respect to the lifespan of that tuple, we do not require it to be so. Note that

the EMPLOYEE relation in Figure 2, with three tuples, is an example of a temporally

grouped historical relation.

A temporal ly grouped historical database dTG = {rlTG, rzTG,. . . , rnTG} is a set

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-91-41

of temporally grouped historical relations where each riTG is defined on a (not necessarily

unique) temporally grouped historical relation scheme RiTG.

In the sequel we will generally omit the subscripts TG and TU when no confusion over

the type of model will result.

2.3 Comparison of Grouped and Ungrouped Models

Many researchers have assumed that these two different approaches to incorporating a

temporal dimension into the relational data model - the temporally grouped and the tern-

porally ungrouped approaches - were equivaIent in power, the differences simply a matter

of style4. In exploring the issue of completeness for historical databases, however, we had to

try to reconcile these two different approaches, and in doing so came to the conclusion that

they are not equivalent. Gadia in [Gad881 addresses this issue of grouping (without using

the term), when he discusses the relationship between his homogeneous model, a grouped

model, and what he calls a snapshot valued function which is essentially a corresponding

ungrouped model. However, rather than emphasizing the importance of the diflerences

between these two approaches, he concludes by showing that they are only weakly equiva-

lent. Essentially he shows that you can (trivially) take a grouped relation and ungroup it,

but that for an ungrouped relation there is not a unique grouped relation, and hence his

equivalence is weak.

What we will argue in the rest of this section is that the differences are important, and the

modeling capabilities are not the same. In subsequent sections we shall define precisely a

notion of completeness for each of the two approaches, and then compare them formally.

Finally, we will show how by adding grouping mechanism to the ungrouped model there is

a (strong) equivalence between the two models.

The first problem with the ungrouped historical models is that without knowledge of the key

of the relation there is no way of knowing how to group appropriately the facts represented

*For example. Snodgrass (ISno87, pp.264-2661) discusses what he calls the "embedding" of the temporal
relation into a flat relation, and informally discusses four techniques for doing so, with the implication that
they are all equivalent.

Center for Digital Economy Research
Stern School of Business
Worhng Paper IS-91-41

in an arbitrary and unbounded number of tuples. Also, if the key is not required to be

constant over all times (and there is no reason to require this), there would be no way at all

to group related (i.e., describing the same object) tuples! Figure 3 is typical of the figures

provided with these models (e.g. ,[Sno87, Figure 81) in that it "begs the question" somewhat

by assuming that the key value of an object remains constant over time. Moreover, these

figures implicitly sort the tuples by the key field(s). However, since relations are sets, the

implicit grouping of the multiple tuples for a given object in these models is in fact being

done subIiminally for the reader and is not supported by these models. A simple listing

of the tuples in such a relation is not guaranteed to present them in such a nicely ordered

fashion.

Another, even more serious problem inherent in these ungrouped models can be seen when

we consider the result of the following two queries.

Q1: Give me the salary history of each employee.

Q2: Give me the salary history of each employee, but without identifying the employees

to whom they belong.

Q 1 poses no additional problems for any of the three models: provided the user knows that

NA~ME is the key, the key is constant over time, and the user remembers (or the DBMS is

nice enough) to sort the resulting tuples by the key, the interpretation of the tuples in the

answer to Q1 is no more problematic than interpreting the tuples in the base relation.

Q2, however, is another matter entirely. First, it is worth noting that this is a very

reasonable query and asks simply that the DBMS treat the salary history (temperature

history, rainfall history, etc.) as a first-class value that can be queried, manipulated, etc.

The result of the query in the three models is shown in Figure 4. Note that only a temporally

grouped model, such as that in Figure 2, respects the integrity of the temporal values of all

attributes as first-class objects and therefore yields the answer shown in Figure 4(a). The

result of the query in such a model could, for example, be piped to a graphics program to

Center for Digital Economy Rerearch
Stern School of Business
Working Paper IS-91-41

produce a visual query output such as is shown in Figure 5 . Temporally ungrouped models

cannot support this query, because they do not treat temporal objects as first-class values,

We believe that a model which claims to support the temporal dimension of data should

support temporal values - i.e., values changing over time. For example, a SALARY should

be seen as the history of the changing salary values over some time period, and not as a

simple scalar value whose time reference is somewhere else in the relation. There are two

issues here, and they lead to the following definition. A temporal DBMS is said to have

temporal value integrity if:

I. The integrity of temporal values as first-class objects is inherent in the model, in the

sense that the language provides a mechanism (generally, variables and quantification)

for direct reference to value histories as objects of discourse.

2. Temporal values are considered identical only if they are equal for all points in time

over which they are defined, and

We categorize models which do not satisfy these properties, such as the so-called 1 N F

historical data models, as Temporally Ungrouped. In their answer to Q2 (Figures 4(a and

b)), Property 1 is violated: instead of showing salary values for three individuals and at

nine different moments in time as in Figure 4(a), the T U model incorrectly equates Tom,

Jim and Scott's salaries between times 1 and 2 and Thomas' and Scott's salaries between

times 2 and 3, and discards what it considers duplicates, merely because at those particular

points in time the salaries happen to have the same values. Property 2 is violated since

the tuples in the answer are presented as though they are completely unrelated - which

salaries are tied together into which groups? The model does not provide any inherent

grouping. The user must therefore always know and demand the key in any query, even

when, perhaps for security reasons, this is not desired.

In temporally ungrouped models you can never quite take hold of an object like a "salary."

You can take pieces of it, but if you try to grab the whole thing and look at it and inspect

it, it falls through your fingers moment by moment. Only in a temporally grouped model

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-41

lifespan

I 2 -+ 20K I {I, 2)

(a) Answer in TG Model

I SALARY /I time 1

m

(b) Answer in Time Point TU Model

(c) Answer in Time-Interval TU Model

Figure 4: Answers to Q2

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

1 2 3 4 5

TIME

Figure 5: Graph of Employees' Salaries from Figure 4(a?)

is an object Like a salary (or the pricing history of a stock, or the average annual rainfall

in Boulder over the last fifty years) a first class object that you can interrogate, examine,

dissect, or compare to another salary (or the rainfall in Spokane.) It is really an ontological

question of what exists in the model. As Quine put it, "a theory is committed to those

and only those entities [emphasis ours] to which the bound variables of the theory must

be capable of referring" IQui53, in On What There Is]; in temporally ungrouped models

temporal entities (like salary histories) do not exist because the models and their languages

provide no mechanism for referring to them.

We note that the same problem occurs in those ungrouped models (like TQuel [Sno87])

which use two attributes, rather than one, to incorporate the valid time Figure 4(b). Only

a Temporally Grouped model, like the one in Figure 2 exhibits t e m p o r a l value integrity,

and therefore provides the correct answer to this query, Figure 4(c),

The issue of completeness of query languages for a historical relational data model is com-

plicated by the two representation schemes, TG and TU. We are therefore led to define two

notions of completeness for historical database query languages, one based on TG models

and the other on TU models. We first define TU-completeness and demonstrate the equiv-

alence of 3 different types of query languages for TU models: a temporal logic, a first-order

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

MANAGEMENT 1
f MGR I PROJECT 1 t i m e 1

Figure 6: Management TU Historical Employee Relation

Tom
Tom
Herb
Jim
Jim
Jim

logic with explicit temporal variables, and an extended relational algebra ([TCgO]). We

then define TG-completeness in terms of a calculus which we call Lh. Lh is a natural

extension to standard first-order calculus, incorporating two domains (ordinary values and

times) and providing each domain with constants, variables, and quantification. Finally,

we show how ungrouped models can be extended in a simple way (by adding the group-

ing mechanism of group IDS), so that the two completeness notions, modulo the grouping

capacity, are essentially equivalent.

One additional aspect that we will address is the issue of sa fe ty : which expressions in

the language are guaranteed to yield finite answers, and answers that come from data in

the database (see, e.g., the description of d o m a i n independence in [UllSS]). For instance,

consider an additional historical relation modeling managers and their projects, as shown

in Figure 6. Without some restrictions on the way that time references can be made

in a query, it will be possible to ask questions that in effect create arbitrary temporal

relationships among data items where such relationships do not exist in the database.

P1
P2
P2
P3
P3
P3

For example, in a query language which does not respect t e m p o r a l value in tegr i t y the

following query can be asked:

4
4
5
4
5
6

This query, here expressed in a temporal calculus (to be described in Section 3.2), could

also be expressed in other ungrouped languages such as TQuel ([Sno87]). The answer, as

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

I NAME / DEPT / time I

mi
Jim MIS

Figure 7: Answer to Unsafe Query Q3

shown in Figure 7, relates employees and departments at times which are clearly nonsensical

because this relationship was created by the query rather than extracted from the data in

the database. While such a query is clearly expressible in a language for a model which

treats time as just another attribute, it seems to us questionable whether the model is

incorporating time into the model in any meaningful way. This issue will be addressed

by our rules for safe expressions in historical query languages, which incorporate the view

([AU79]) that query languages should be used for data extraction only.

Temporally grouped models support temporal values directly - they incorporate the tem-

poral component into the historical model at the appropriate level, and provide a means

to refer directly to temporal objects. They also group together into a single tuple all of

the facts about an object over time. In Sections 3 and Sections 4 we will show that the

TG representation is more expressive than the TU representation. Thus we can state that

merely time-stamping tuples in the database, as attractive as its simplicity might make it,

is not sufficient to adequately incorporate a temporal dimension into the database.

Because the values of many tuples, or their attributes, frequently do not change over

long periods of time, it is often convenient to adopt a shorthand notation for temporally

grouped relations. Figure 8 represents a TG Historical Database using this shorthand

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

EMPLOYEE

Figure 8: The TG Historical Relations E M P L O Y E E and D E P A R T M E N T

NAhilE
[O, 5) -+ Tom

[5,6] -+ Thomas
[2,6] -+ Juni
[I, 4) -+ Ashley
[5,6] --+ Ashley

DEPARTMENT

notation; we will refer to it in the remainder of the paper. Note that the EMPLOYEE

relation records historical information on three employees in three historical tuples, and

the D E P A R T M E N T relation represents the history of four departments in four historical

tuples.

Center for Digital Economy Research
Stern School of Business
Tn'orlmg Paper IS-9 1-41

DEPT
[O,4) 4 Sales
[4,6] -+ Mktg

(2,6/ -+ Acctng
[I, 3) -+ Engrng
[3,4) -+ Mktg
[5,6] -+ Engrng

Zifespan

{0,1,2,3,4,5, 6) -

(0, 1 ,2,3,4,5,6}

(0: 1 ,2 ,3 ,4 .5 ,6)
{o , l1213,4 ,516)

DEPT
[0,6] -+ Acctng

[O, 61 -+ Engrng

[O, 61 -+ Mktg

[0,6]-+Sales

MGR
[O, 2) -+ Paul
[2,6] -+ Juni
[O, 5) -+ Wanda
[5,6/ -+ Ashley
[O, 5) -+ Tom
[5,6] -t Thomas
[0,6]-+Sue

SALARY
[O, 3) -+ 20K
[3,5) -+ 30K
[5,6] -+ 27K
[2,6] -+ 28K
[l , 2) -+ 27K
[2,4) 4 30K
[5,6] -+ 35K

lifespan

{0,1,2,3,4,5,6)
{2,3,4,5,6}

{1,2,3,5,6)

3 Historical Relational Completeness for Ungrouped
Languages

In this section, we define the concept of ungrouped temporal relational completeness.

It will be based on two temporal calculi and a temporal algebra. We will define all three

formalisms in this section and show their equivalence. However, to make the paper self-

contained, we provide a brief overview of temporal logic in the next subsection.

3.1 Overview of Temporal Logic

In this section, we review the basics of temporal logic. Both Kroger [Kro87] and Rescher

and Urquhart [RU71] provide a good introduction to the subject.

Since temporal logic deals with time, we have to specify the model of time that we will be

working with. The most general model represents time as an arbitrary set with a partial

order imposed on it. By specifying additional axioms, we can introduce other models of

time, e.g. time can be discrete or dense, bounded or unbounded, linear or branching [vB83].

Although the temporal calculus can be defined for an arbitrary model of time (since it is

based on the predicate temporal logic), we consider the discrete linear temporal domain in

this paper because the algebra TA defined in Section 3.3 is based on that domain. We note

that this is the model of time generally considered by historical and temporal data models

([MS90]).

The syntax of a predicate temporal logic is obtained from the first-order logic by adding

various temporal operators to it. In this paper, we consider the US logic, i.e., the temporal

logic with unti l and since temporal operators, because it is shown in [Kam68] and also in

[Gab891 that this logic is equivalent to the first-order temporal logic with explicit references

to time5. There are several different definitions of unti l and since operators proposed in

the literature. We will use the definition of these operators from [Kro87] shown in Figure 9.

5Kamp [Kam68] used the term complete to describe this property. However, we will use this term in a
broader sense and abstain from introducing any additional terminology.

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-91-41

A until B: is true now if B will be true at some future time t and A will be
true for all the moments of time in the time interval (now, t)

A since B: is true now if B was true at some past time t and A was true for
all the moments of time in the time interval (t , now)

Figure 9: Temporal Operators until and since

The semantics of a temporal logic formula is defined with a temporal structure [I<ro87],

which comprises the values of all its predicates at all the time instances. Formally, let

P I , . . . , Pk be a finite set of predicates considered in the predicate temporal language6.

Then, a temporal structure is a mapping I< : T -+ Fl x . . . x Fk, where T is a

set of time instances, and 'Pi is the set of all the possible interpretations of predicate Pj.

The mapping K assigns to each time instance an interpretation of each of the predicates

P I , . . . , Pk at that time. We will use I6 instead of IC(t) to denote the value of temporal

structure I' at time t , We make an assumption, natural in the database context, that the

domains of predicates do not change over time.

From a database perspective, a temporal structure I ' is most naturally looked at as map-

ping of each moment of time t into a state of the database, i.e. into instances of each of the

database relations at time t. Therefore, each predicate in a temporal structure determines

a historical relation, i.e. a relation that changes over time.

A historical database represented in a certain historical data model, such as the (historical

component of) TQuel data model [Sno87], HRDM [CC87], or the homogeneous data model

[Gad88], defines a temporal structure, i.e. the mapping I<, although often implicitly.

Therefore, a temporal structure represents a common base of comparison for different

historical data models. For instance, the temporal structure of the N l N F historical relation

EMPLOYEE presented in Figure 2 is shown in Figure 10.

Given a temporal structure for temporal logic predicates, we can interpret arbitrary tem-

poral logic formulas in the standard inductive way [Kro87]. For example, the meaning of

6Since we are interested in database applications, we consider only a finite number of predicates corre-
sponding to the set of relations in a database.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

Figure 10: TemporaI Structure for Relation EMPLOYEE.

EMPLOYEE

until and since operators in Figure 9 can be defined inductively in terms of the temporal

structures for A and B.

time

i = 0

i = 1

i = 2

i = 3

Alternatively, assertions about temporal structures can be expressed in a two-sorted first-

order logic, where one of the sorts is time. In this logic, arbitrary quantifications are allowed

over both temporal and non-temporal variables.

I - (E7M;PL 0 YEE)
EMPL(Tom, Sales, 20K)
EMPL(Tom, Finance, 20K)
EMPL(Jim, Finance, 20K)
EMPL(Scott, Finance, 20K)
EMPL(Tom, Finance, 20K)
EMPL(Jim, MIS, 30K)
EMPL(Scott, Sales, 20K)
EMPL(Thomas, MIS, 27K)
EMPL(Jim, MIS, 40K)

It is clear that until and since operators can be expressed in this first-order logic. In fact,

Figure 9 shows how to do that. Furthermore, Kamp [Kam68] and subsequently Gabbay

[Gab891 have shown that the two Iogics are equivalent when time is modeled either by the

real numbers or the integers,

3.2 Temporal Calculi Tl, and TC

In Section 3.1 we described the temporal logic US and also considered a two-sorted first-

order logic with explicit references to time. These two logics give rise to two temporal

calculi TL and TC. In order to define them precisely, we first introduce the concept of

temporal safety for the two languages.

Intuitively, a temporal formula (both a temporal logic and a first-order formula with explicit

Center for Digital Eco l lo l~~y Research
Stern School o f Business
W o r h n g Paper IS-91-41

references to time) is safe if it can produce only bounded relations at all time instances7

and if these relations contain only data from the database. We basically define the safety

of temporal logic formulas as it is done for the snapshot relational case [Ull88], except that,

in addition, we assume that the temporal operators until and since produce safe formulas

if operands of these operators constitute safe formulas. It is easy to see that, indeed, these

temporal operators cannot produce infinite historical relations if they operate on finite

relations. For the first-order logic with explicit references to time, safety is defined exactly

as in [U1188].

With this definition of safety for the two types of logic, we are ready to define the two

calculi TL and TC.

Definition. A temporal calculus query is an expression of the form

{ x I , x ~ , . - . ~ x ~ 14)

where 4 is a safe temporal logic formula and X I , x2,. . . , xn are the free variables in gbs. We

denote the temporal calculus based on these queries as TL.

Let T be a temporal domain for the predicates in #. The answer to this query is a historical

relation defined on T, such that for any t in T, its instance is

We also define a temporal query expressed in the first-order logic with explicit references

to time in a similar way as

where # is a safe formula from the first-order logic with explicit references to time, XI, 2 2 ,

. . ., xn are the free variables in 4, and t is a temporal variable. The answer to this query is

defined exactly as in the standard relational case. We denote the temporal calculus based

on these queries as TC.

7"~oundedness" refers to the structural and not to the temporal domain because we have already
assumed that the temporal domain is bounded.

8As in the standard relational case, we assume that other free variables in 4 not appearing among the
output variables (xl, 2 2 , . . . , I,) are implicitly existentially quantified.

Center for Digital Economy Research
Stem School of Business
Worlung Paper IS-91-41

Figure 11: Historical Relation U N E M P L

U N E M P L

Note that in both calculi a query operates on historical relations and returns a historical

relation, i.e. it returns the same type of object as the type of its operands.

NAM;F
Tom
Jim
Tom
Scott
Scott
8

Example 1 Assume that time is measured in years. Consider historical relation UN-

EMPL(NAME) specifying that a person is unemployed for most of the year. Figure 11

gives an example of such a relation. Historical relation TAXES(NAME, TAX) specifies

taxes a person paid in a certain year. Figure 12 gives an example of such a relation. We

say that a person is a "good citizen" if he or she always paid taxes during the period of his

or her last employment, i.e. since the last time the person was unemployed. The relation

GOOD-CITIZEN(NAME) can be computed with the following TL query:

YEAR
1986

1987

1988
1989 - 1990

GOOD-CITIZEN = {NAME / TAXES(NAME, TAX) since UNEMPL(NAME))

The same relation can also be computed with the following TC query:

GOOD-CITIZEN = {NAME, t I (3t1)(UNEMPL(NAME, t') and

(Vt")(tl < t" < t + TAXES(NAME,TAX,tM)))]

The proposal to use TL as a query language for historical databases was made in [Tuz89]

and in [TCSO]. The proposal to use TC as a query language for historical databases was

made in [KSWSO]. Since the US temporal logic is equivalent to the first-order logic with

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

explicit references to time for the discrete linear model of time considered in the paper

[Kam68], it follows that the two calculi TL and TC are also equivalent.

Scott
Jim
Jim
Tom
Jim
Tom
Jim
Tom
Scott

3.3 Temporal Algebra irA and Its Equivalence to Calculi TL and

In this section, we present a temporal algebra TA that is equivalent to the two calculi

8400
10400
10800
12000
11500
13200
12800
13600
9200

aennea in me prevlous sec~ion. nis algevra was llrsb lrlLrouuceu 111 1 A b r v j .

1986
1987
1988

1989

1990

Let R = {RtItET, S = {St)tET and Q = {QtItET be historical relations defined over a

temporal domain (lifespan) T = itl, t,]. Using the standard relational algebra terminology,

we say that two historical relations are union compatible if their schemas have the same

sets of attributes. Then we consider the following temporal algebra operators:

01: Select: S = uF(R) iff St = uF(Rt) for all t in T, where F is the first-order (non-

temporal) formula defined as for the standard relational case [U1188].

02: Project: S = TA ,,..., A,(R) iff St = TA ,,..., A,(Rt) for all t in T, where A1,. . . ,Ak are

some attributes in R.

03: Cartesian product: S = R x Q iff St = Rt x Qt for all t in T.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

04: Set diflerence: S = R - Q iff S and R are union compatible and St = Rt - Qt for all

t in T.

05: Union: S = R U Q iff S and R are union compatible and St = Rt U Qt for all t in 2'.

06a: Future linear recursive operator: S = LF(R7 Q) iff St+l = (Rt T) St) U Qt, St, = 0.

06b: Past linear recursive operator: S = Lp(R7 Q) iff st-1 = (Rt n St) U Qt, St, = 0.

A temporal join operation W can be defined exactly as for the snapshot case in terms of

the Cartesian product, select and project operators.

Denote the temporal algebra defined by operators 01 - 0 6 as TA. Note that the operators

01 - 0 5 correspond to the standard relational operators of the snapshot relational algebra

and are reduced to these operators in the degenerate case when tl = t,.

Example 2 The relation GOOD-CITIZEN(NAIC'lE), defined in Example 1, can be

computed in TA as follows. Set TAXES1 = T N A M E (TAXES). Then

GOOD-CITIZEN = LF(TAXES1,UNEMPL)

The resulting relation GOOD-CITIZEN is shown in Figure 13. The last row constitutes

a prediction of who will be a good citizen in 1991.

It is shown in [TC90] that the algebra TA is equivalent to the calculus TL and, therefore,

to TC for the discrete linear model of time. This means that the three languages, i.e. TL,

TC, and TA are equivalent in terms of the expressive power.

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-91-41

GOOD-CITIZEN
NAME I YEAR

Figure 13: Historical Relation GOOD-CITIZEN

3.4 Ungrouped Historical Relational Completeness

We propose to use the three languages considered in this section, the historical relational

algebra (TA) and the two temporal calculi (TC and TL), as a basis for ungrouped historical

relational completeness because of the following reasons. First, the temporal calculi have

a sound and well-studied theoretical basis since they are based on first-order logic and on

temporal logic. Second, both the calculi and the algebra are very simple. Essentially, one

temporal calculus is based on the first-order logic and another one is obtained from the

first-order logic by adding to it the temporal operators until and since. The temporal

algebra is obtained from the relational algebra by a straightforward extension to its five

basic operators and by the addition of a single additional temporal operator. Third, the

two calculi and the algebra are equivalent for certain models of time, i.e. besides being

simple and "natural," the two approaches have the same expressive power. This suggests

that they capture an important class of temporal queries. Fourth, the temporal algebra

and the two calculi are reduced to the relational algebra and calculus in the degenerate

case when the time set consists of only one instance. Therefore, the notion of historical

ungrouped completeness is compatible with standard relational completeness when the

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

temporal dimension is so reduced. Fifth, the temporal calculi are independent of a specific

historical relational data model, and the temporal algebra is independent of any data model

based on the discrete bounded model of time, Some of the query languages and algebras

proposed in the literature are tailored to a specific historical data model. That is, operators

of these languages take into account specific constructs of the underlying historical data

model. For example, the constructs overlap, begin of and end of of TQuel jSno871

assume that the temporal data are grouped into intervals. There are no model-specific

operators in the temporal calculus and in the algebra considered in this paper. This means

that the temporal calculus can be applied to any historical relational data model and the

temporal algebra to any historical relational data model supporting discrete bounded time.

For all these reasons, we propose to use the two calculi and the algebra presented in

this section as a basis of ungrouped historical completeness. We note that our notion of

ungrouped historical completeness subsumes the notion proposed in [Sno87, p.2871, "the

temporal query language, when applied to a snapshot of the database, is at least as powerful

as ... Codd's definition." Our notion meets this criterion, but also allows queries (e.g.,

comparing values across different times) that cannot be reduced to operations on a snapshot

of the database. We will return to this issue in Section 6 when we examine the completeness

of a number of models proposed in the literature.

4 Historical Relational Completeness for Grouped
Languages

In this section we define a concept of grouped historical relational completeness.

The basis for this concept of completeness is a (grouped) tuple-based historical relational

calculus, Lh .

4.1 A Grouped Historical Calculus

To begin our development of grouped historical relational completeness we define a tuple-

based historical relational calculus, the language Lh. This language is intended for grouped

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-41

historical relations that conform to the canonical grouped relations defined in Section 2.2.

It is a many-sorted logic with variables over ordinary values, historical values, and times

admitting quantification over all three sorts of variables. This distinguishes Lh from, among

other languages, Gadia's calculus [Gad88], which does not have temporal variables or quan-

tification over them. To simplify the discussion we will assume that we are defining this

calculus relative to a particular relational database dTG = {rl, 7-2,. . . , r,), with universe of

values I>, universe of times T and universe of attributes UA.

The Syntax of Lh

1. The Basic Expressions of lib are of three categories:

(a) Constant Symbols

i. CD = {S1, 62, . . .) is a set of individual constants, at most denumerably

infinite, one for each value S in D

ii. CT = {TI, TZ,. . .) is a set of temporal constants, at most denumerably infi-

nite, one for each time T in T

iii. CA = {A1, A2,. . .A,,) is a finite set of attribute name constants, one for

each attribute A in UA.

(b) Variable Symbols

i. VT = {tl, tz, . . .) is a denumerably infinite set of temporal variables

ii. VD = {xl, x2,. . .) is a denumerably infinite set of domain variables

iii. VTv = {el, ea, . . .) is a denumerably infinite set of tuple variables

(c) Predicate Symbols

i. 0 = {01, 02,. . . , On,) is a set of binary predicates, one corresponding to each

value comparator defined on objects of type y (e.g., values from a common

value domain). The predicate symbol < must be included for the domain

. .
11. r = {rl, r2, . . . , r,) is a set of relation predicates, one corresponding to each

relation r in the database d.

Center for Digital Economy Rerearch
Stern School of Business
Working Paper IS-91-41

2. The Terms of Lh are as follows:

(a) Every individual constant S is a value t e r m

(b) Every domain variable x is a value t e r m

(c) If e is a tuple variable, A is an attribute name constant, and t is a temporal

variable, then e.A(t) is a value t e r m

(d) Every temporal constant T and temporal variable t is a t empora l t e r m

(a) If e is a tuple variable, then e.1 is a lifespan t e rm, where I is a distinguished

symbol of Lh

3. The Formulae of Lh are the following:

(a) If a and ,8 are both value terms, and 0 is a dyadic predicate, then aB,8 is a

formula.

(b) If a is a lifespan term and t is a temporal variable, then t E a is a formula.

(c) If tl and t2 are temporal variables and T is a temporal constant, then

i. tl < t2 is a formula,

ii. T < tl and t l < T are formulae, and

iii. T = tl and tl = T are formulae.

(d) If r is a relation predicate and e is a tuple variable, then r(e) is a formula.

(e) If # and $ are formulas, then so are (#), 14, (4 A $), (4 V $), (# + $), and

(4 ++ $9.

(f) If # is a formula and t r is a tuple, temporal, or domain variable, then Vu(4) and

3 4 4) are both formulae.

4. The Query Expressions of Lh are all expressions of the form:

[el .Al, . . . , en.An : t] 4 where:

(a) [el.Al, . . . , en.An : t] is called a target list, and consists of

i. A list of terms e;.A; where each e; is a free tuple variable, and

ii. The free temporal variable t

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-91-41

(b) 4 is a formula.

As a convenience, for a set of attributes A = {Al, Az, . . . , A,} we use the notation e.A

to denote the list e.Al, e.A2, . . . , e.A, in a target list. Similarly, given a tuple variable e

that ranges over a set of tuples on a common scheme that consists of the set of attributes

A = {A1, A2,.. . , A , } , we use the notation e.* to denote e.A.

The Semantics of Lh Here we give the intended interpretation of the tuple relational

calculus. For convenience the numbering used here correlates directly with that used in

the specification of the syntax.

1. The Basic Expressions of Lh denote as follows:

(a) Constant Symbols

i. An individual constant S denotes an object in some vaIue domain D;

ii. A temporal constant T denotes a time in the universe of times T

iii. An attribute name constant A denotes an attribute in UA.

(b) Variable Symbols

i. A temporal variable t denotes a time in the universe of times T

ii. A domain variable x denotes a value in the universe of domain vaIues D

iii. A tuple variable e denotes a tuple in some grouped historical relation r in

the database d

(c) Predicate Symbols

i. A binary predicate symbol 0 denotes some value comparator (e.g., =, fi, <)

over objects in some domain.

ii. A relation predicate r denotes a relation (set of tuples) in the database

2. The Terms of Lh denote as follows:

(a) An individual constant 6 denotes an object in some value domain Di

Center for Digital Economy Research
Stern School of Business
Worhng Paper IS-91-41

(b) A domain variable x denotes an object in some value domain Di

(c) A value term e.A(t) denotes an object in some value domain. In particular, it

denotes the value in the tuple denoted by e of the attribute denoted by A at the

time denoted by t.

(d) A temporal constant T denotes a time in the universe of times T

(e) A lifespan term e.E denotes a set of times, in particular, the set of times which

is the lifespan of the tuple denoted by e.

3. The Formulae of Lh denote as follows:

(a) crBP is true just in case the denotation of CY stands in the relation 8 with the

denotation of ,f?, and false otherwise

(b) t E a is true just in case the time denoted by t is in the lifespan denoted by cr,

and false otherwise.

(c) tl < t:, is true just in case the time denoted by t l occurs before the time denoted

by t2, and false otherwise; similarly for T < t l , tl < T, and T = tl.

(d) r(e) is true just in case the tuple denoted by e is in the grouped historical relation

denoted by r, and false otherwise.

(4 (417 7 4 (4 A $)1 (4 v $1, (4 -+ $ 1 1 and (4 ++ +) . are true just in case the

obvious conditions on 4 and + hold.

(f) Vu(4) and 3u(4) are true just in case the obvious conditions on 4 and u hold.

4. A Query Expression [el.Al, . . . , e,.A, : t]# of Lh denotes a historical relation, each n-

tuple of which is derived from a satisfying assignment to the variables of the formula

4. The components of the n-tuples are denoted by the value terms e;.A;. The Iifespan

of each tuple in the result is the set of values of the temporal variable t , for which all

of the ei.A;(t) values satisfy the formula 4.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

4.2 Safety

In order to ensure that the relations denoted by expressions of the calculus are well-defined,

we include along with the syntax given earlier several additional restrictions. Without these

restrictions it is possible to specify formulae that define historical relations that contain an

infinite number of tuples, e.g., [e.* : t]-lr(e) At = 12. It is also possible to specify relations,

some of whose tuples have unbounded Iifespans or undefined values for certain times within

their lifespans, e.g., [e.* : t]r(e) A ~ (t E e.1).

To avoid such situations we restrict the allowable formulae of Lh to a subset of safe formulae.

Our the definition of safety derives from [U1188], and is extended to the temporal domain.

For a formula q5 of Lh to be safe it must satisfy the following conditions:

1. It does not contain any use of the universal quantifier (V).

2. It contains exactly one free temporal variable, no free domain variables, and for each

free tuple variable e, 4 is of the form F, At E e.1 where t is the free temporal variable.

3. For each disjunction Fl V F2 in 4, Fl and F2 must include the same set of atoms

ti E ej.

4. In each maximal conjunct fi A . . . A Fn of 4 the following conditions hold:

(a) for each F; of the form e.A(t) = cx or cx = e.A(t), there is an Fj of the form

t E e.1, where cx is a term of category value.

(b) for each F; of the form t E e.1, there is an Fj of the form R(e);

(c) for each Pi of the form lF;/ the following condition must hold: for all the free

temporal variables t in F;' there is an Fj of the form t E e.1 and for all the free

historical variables e in F;' there is an Fj of the form R(e).

5. The application of the not operator 1 is limited to those terms Fi defined in the rule

above for maximal conjuncts

An Lh query

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

is safe if the corresponding Lh formula 4 is safe. We restrict our attention to safe Lh queries

in the sequel.

4.3 Examples of Lh Queries

In the following we give several examples of queries expressed in the language Lh for the

database consisting of the EMPLOYEE and DEPARTMENT relations shown in Figure

8.

Example 3 This first query performs a selection of historical tuples from EMPLOYEE,

and projects the results onto the attributes NAIIJE and SALARY.

What are the names and salaries of those employees in the marketing department at time

6?

Example 4 This second query returns a set of historical tuples that are derived from the

joining of two historical relations.

Who are the managers for whom Tom has worked?

 NAME(^;) = Torn A e2.DEPT(t2) = d.DEPT(t2) A

d.MGR(t2) = el .NAME(t2))

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

Example 5 Finally, we give an example of a query that, although semantically safe in

that it returns a historical relation having a finite number tuples whose values are extracted

from the base relations, is syntactically unsafe.

Who are the employees who have only worked in the accounting department?

[e.* : t]EMPLOYEE(e) A t E e.lA

1(3t l (t l E e.1 A l (e .DEPT(t l) = Acctng)))

The query is not safe because the quantified subformula, which is a maximal conjunct,

does not include the conjunct EMPLOYEE(e) . If this conjunct were added into the

subformula the entire formula would be safe.

4.4 Grouped Historical Relational Completeness

We propose to use the language considered in this section, the many-sorted calculus Lh,

as the basis for grouped historical relational completeness. The reasons that support the

choice of this language as an appropriate metric for completeness are essentially similar to

those that motivated out choice of the metric(s) for ungrouped historical relational com-

pleteness (Section 3.4). Lh has a sound and well-studied theoretical basis since it is based

on a many-sorted first-order logic, The sorts that it uses are the "natural" ones for the task

at hand: ordinary values, temporal values, and historical or time-series values. The need

for historical values has already been motivated: they provide the linguistic mechanism

for direct reference to temporally changing values, and provide for the grouping of these

values with the object that they describe. As with our metric for historical ungrouped

completeness, Lh reduces to the relational calculus in the degenerate case when the time

Center for Digital Eco l lo l~~y Research
Stern School o f Business
W o r h n g Paper IS-91-41

set consists of only one instance. It is therefore compatible with standard relational com-

pleteness when the temporal dimension is so reduced. Furthermore, in Section 5 we shall

see that Lh differs from T C and the other ungrouped languages only in this respect, so that

it is an extension of the concept of ungrouped historical completeness that is minimal: it

adds only what is necessary for providing temporal value integrity.

5 Relationship Between Historically Grouped and
Historically Ungrouped Completeness

We defined grouped historical completeness based on the calculus Lh in Section 4 and

ungrouped historical completeness based on calculi TC, TC, and on algebra TA in Section 3.

In this section, we study the relationship between these two concepts,

Since the query languages and algebras for the two types of completeness are based on

different data models, they are unrelated to each other. This means that the data model

for one of the types of completeness must be adjusted to make a comparison possible. In

this section, we adjust the language T C so that it can also support grouping. Then we show

that the adjusted language, TC,, is "equivalent" in some sense to the grouped language

Lh.

5.1 TC,: Extending TC to Support Grouping

To support grouping in the temporal calculus TC, we introduce an additional group

identifier attribute for each relation in TC,. For example, a T C relation R(A, B, T) is

extended with an additional attribute 0 and becomes R (0 , A, B, T) , where 0 is a group

identifier attribute. The grouping attribute serves a role similar to that of object identifiers

in ob ject-oriented databases.

To define the grouping process, we introduce a temporal logic with grouping, TCS, as a

3-sorted first-order logic, where the first sort is the domain sort, the second sort is the

temporal sort, and the third sort is the grouping sort. The domain and the temporal

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

EMPLOYEE
gid 1 NAME / DEPT / SALARY / / time

Figure 14: Relation EMPLOYEE in the Grouped TC, Model

sorts are defined exactly as for TC in Section 3. Intuitively, the grouping sort divides a TCg

relation into groups, each group having the same group identifier. Furthermore, tuples are

parameterized by time within each group, i.e. the combination of the group-id and time

uniquely determines the tuple. Figure 14 shows the E M P L O Y E E relation of Figure 8 as

it would be represented in the TC, model.

Formally, the grouping sort 0 has countably many constants and variables, and a set of

function symbols newk for k = 1,2 , . . . that will be defined later. Relational predicates

have one and only one attribute with the grouping and temporal sorts, and relational

operators (=, >, 2) are not defined for the grouping sort. Finally, the grouping sort

admits quantifiers.

The semantics of grouping is captured with the following grouping axioms that specify

how TCg tuples are grouped into "temporal objects."

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

1. A group-id and time uniquely determine the rest of the tuple no matter which relation

it belongs to, i.e. if R(o, XI , . . . , x,,t) and Q(o, y l , . . . , y,,t) are true then rn = n (i.e.,

the relations must be union-compatible) and x; = y; for i = 1,. . . , n. In other words,

OT functionally determines a31 the attributes in all the relations in which 0 and T

appear.

2. A group-id uniquely determines the group of tuples independently of which rela-

tion they belong to, i.e., if o appears in relations R and Q, meaning that if both

(3 ~ 1) . . . (3un)(3t1)R(o, ul, . . . , u,, t') and (3yl). . . (3y,)(3tM)Q(o, yl, . . . , y,, t") hold,

then, for all XI, . . . , x,, t, if R(o, XI, . . . , x,, t) is true then Q(o, $1,. . . , x,, t) is also

true, and vice versa.

3. A group of tuples uniquely determines the group-id, i.e. there cannot be two identical

groups of tuples with different group-id's. Formally, if there are R, Q, o, and o'

such that for all 21,. . . , x,, t , if R(o, XI , . . . , x,,t) implies &(ol,xl,. . . , x,,t) and

Q(ol, X I , . . . , x,, t) implies R(o, 21,. . . , x,, t), then o = or.

The first axiom ensures that a group-id always refers to the groups of tuples of the same

arity, and that elements in the same group, defined by a group-id, are parameterized by

time. The second and third axioms ensure that a group-id uniquely defines a group of

tuples and that a group of tuples is assigned a unique group-id. These axioms ensure that

group-ids uniquely identify a group of tuples and vice versa, so that the notion of a group of

tuples in the ungrouped model can be made (below) consistent with the notion of a single

tuple in the grouped model.

A TC, query is defined as

where 4 is a TC, formula and o;, x; and t, for i = 1,. . . , n, are the only free group, domain

and temporal variables, respectively, appearing in it.

Example 6 Consider the query of Example 3 in Section 4

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

What are the names and salaries of those employees in the marketing department at time

6?

It can be expressed in TC, as

{< o, x >, < 0, z >, t I EMPLOYEE(o, x, y, z , t) A y = Mlctng A t = 6)

However, the definition of a TC, query, as defined above, has one important drawback.

A query does not return an object of the same type as the objects it operates on, i.e. it

does not return historically grouped relations. To fix this problem, we slightly change the

definition of a TC, query by "encoding" the tuple of pairs < 01, xl >, . . . , < on, x, > with

a new group-id.

To do this, we divide the set of tuples S = {< 01~x1 >, . . . , < on,xn > , t) into groups of

tuples

G(ol,. . . , o n , S) = {XI,. . . xn, t I (< 01~x1 >, . . . , < on1xn > , t) E S)

i.e. put attributes of tuples with the same group-id's into the same group. Then we encode

the group of tuples G(ol, . . . , on) with an encoding function

where I1 is the universe of all possible values (Section 2.1), 0 is a set of group-id's, and

T is the set of times. An encoding function is a bijection between sets 2DXT and 0. It is

well-known that such encoding functions are definable ([End72]).

Then the definition of a TC, query is changed to

This definition says that, first, the query is computed according to the previous definition,

then tuples in the answer are grouped into sets G(ol,. . . , on, Q(4)) and, finally, each set is

given a unique group-id.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

Although this definition of a TC, query is technically better than the first one, because it

evaluates to objects of the same type, the first definition is easier to use. Therefore, we will

often use the first definition of a query in the paper, because it could always be modified

to the second form.

Semantics of TC, Queries. Since TC, is a 3-sorted first-order logic, the semantics of

its formulae is defined as in the standard case of many-sorted logics [End72]. Based on this

semantics, a TC, query

returns the set of tuples << 01, x1 >, . . . , < on, x, >, t > for which the formula qi is true.

Safety for TC, Queries. As is the case with Lh formulae and the standard first-order

relational calculus, we have to define safe TCg formulae that return finite answers over a

finite time horizon.

A TC, formula 4 is safe if it satisfies the following conditions.

1. It does not contain any universal quantifiers (V).

2. There is exactly one free temporal variable t , and for every free group-id variable o;,

i = 1,. . . , n, there is a range expression gCI; = (3xij,). . . (3 ~ ~ j ,) R ~ (o ~ , xil, . . . , xi,, , t)

such that 4 = $1 A . . . A $, A 4' for some TC, formula #', and such that all the

free domain variables of # and only they appear among the free variables of range

expressions $;.

3. If a group-id variable o and a temporal variable t in a TC, formula qi appear in the

same predicate R(o, . . . , t), then we say that there is a pair < o, t > of variables in

4 *

Then the two disjuncts Fl and F2 of each disjunction operator in 4, Fl V F2, must

have the same set of pairs < o;, t j >.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

4. Every maximal conjunct Fl A . . . A Fn in 4 must satisfy the following conditions:

(a) If some F; has the form x = a or cr = x, where cr is either a constant or a variable,

then there is a conjunct Fj of the form R(o, . . . , x, . . . , t) for some variables o

and t .

(b) If some F; has the form 7F;' then for each free temporal variable t in F ' there

must be a conjunct Fj either of the form Q(o', xy7 . . . , x',', t) or of the form t = c,

and for each free group-id variable o in F: there is a conjunct Fj of the form

Q(0, xi , . . . , x;, t').

5 . The application of the not operator 1 is limited to those terms F; defined in the rule

above for maximal conjuncts.

This definition of safety mirrors the definition of safety of Lh formulae as defined in Sec-

tion 4. In particular, Condition 2 ensures that only data from the database can appear in

the answer to a TC, query. This definition is also an extension of the definition of safety

from [U1188] to the temporal domain.

A TC, query

{<< 0 1 , X l >,...,< on,xn >7t > I d)

is safe if the corresponding TC, formula 4 is safe. We restrict our attention to safe TC,

queries in the sequel.

5.2 Equivalence of Languages Lh and TC,

In this section, we show that the two languages Lh and TC, are "equivalent" in a sense

to be defined precisely below. Since TC, differs from TC only by supporting the grouping

attribute in its relations, we in fact show that the languages Lh and T C are "close enough"

to each other and that the concepts of grouped and ungrouped historical completeness are

essentially the same "modulo grouping."

The first step in defining and proving equivalences of Lh and TC, should be establishing the

relationship between data models for these two languages. TC, is based on the relational

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

data model with group identifiers and Lh on the H R D M data model. In the next section,

we explain how one data model can be mapped into another and vice versa.

5.2.1 Relationship Between Lh and TC, Data Models

In this section, we define mappings between the structures of the ungrouped and grouped

historical models. .RUG maps TC, relations into Lh relations; intuitively, it groups TC,

tuples with the same group-id into a single group that becomes a historical tuple. i - 2 ~ ~

maps Lh relations to TC, relations; intuitively, it ungroups a historical tuple into a set of

tuples with the same group-id.

Formally, the mapping QuG from TC, to Lh relations is defined as follows. Let R and R' be

TC, and Lh relations, respectively, with the same number of domain attributes Al, . . . , Ak.

Then fluG(R) = R' if and only if the following conditions hold:

1. Each tuple in R appears in some historical tuple in R', i.e. for all the tuples <

o, a l , . . . , ak, t > belonging to relation R there is a historical tuple e such that Rt(e)

is true, t E e.1, and e.Al(t) = al , . . . , e.Ak(t) = ak.

2. Each historical tuple e in R' contains all ungrouped tuples from R with the same

group-id. Formally, if Rf(e) and R(o, a l l . . . , ak, t) are true for some historical tuple

e, group-id o, domain values a l l . . . , ak and time t , and if t E e.l and e.Al(t) =

a l l . . . , e.Ak(t) = ak, then for all a:, . . . , a i l t', if R (o , a ~ , . . . ,a;,tf) is true then

t' E e.1 and e.Al(t1) = a:, . . . , e.Ak(t1) = a:.

The mapping OGU is defined similarly. It ungroups all the historical tuples into relational

tuples with the same group-id. We omit the formal definition of QGu because it is very

close to the definition of fluG.

Clearly, the two mappings QGv and QUG are inverses of each other, i.e. QGu 0 QUG = I

and QUG o flGU = I because grouping followed by ungrouping and ungrouping followed by

grouping always produce the same relation. This property holds because we introduced

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

group-id's. Without group-id's, we cannot reconstruct a relation if we first group and then

ungroup it and vice versa. (The same problem occurs in all NlNF models ([FVG85, RKS881.

(RKSS8, p.4091 points out that "in order to avoid problems where [grouping an ungrouped

relation is impossible] we assume each database relation, . . . their nested relations, and

relations created by collecting const ants into a limited domain, have an implicit [italics

ours] keying attribute (or set of attributes) whose value uniquely determines the values

of all the other attributes." Our group-ids make explicit the need for such a "keying

attribute".)

5.2.2 Mapping TC, ForrnuIae to Lh

In this section, we define the mapping TUG that maps safe TC, formulae into equivalent

safe Lh formulae.

To define equivalence, let 4 be a TC, formula and d' be an Lh formula, with a set of

"similar" relational predicates. That is, there is a bijection between predicates in 4 and $'

such that the corresponding predicates R in 4 and S in # have schemas R (0 , A1,. . . , A,, T)

and S(Al, . . . , A,) respectively. We say that such formulae 4 and qS are equivalent if and

only if for any instances R1,. . . , Rn of TC, predicates appearing in gi

and for any instances of Lh predicates Sl, . . . , S, appearing in 4'

It follows from this definition that two formulae 4 and # are equivalent if both diagrams

in Figure 15 are commutative, i.e. it does not matter if .RUG is applied first and then 4',
or q+ and then .RUG. Also, it does not matter if .RGu is applied first and then 4, or qS and

then fluG.

It remains for us to define the mapping TUG from TC, to Lh formulae. Let 4 be a safe TCg

formula. The formula ruG(4) is obtained from 4 by replacing all the atomic formulae in

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

Figure 15: Definition of equivalence of TC, formula # and Lh formula 4'.

Center for Digital Economy Rerearch
Stern School of Business
Working Paper IS-91-41

4 together with quantified variables in the manner described below, and leaving all other

connectives (e.g. A, V, 1) intact. The replacement of atomic formulae and quantified

variables in (5 is done as follows:

1. Replace TC, predicate R(o, x l , . . . , x,, t) with

where A; is the attribute in R corresponding to variable xi9. A group-id variable o

defines a unique historic variable across different relations, i.e. if several predicates

in 4 have the same group-id variable o then this variable o is replaced with the same

historic variable e.

2. Replace each quantifier (30) in 4 with the quantifier (3e) in rUG(d), where o is a

group-id variable appearing in some TCg relation Ri(o, xl, . . . , x,, t) , and e is the

corresponding historic variable defined in Step 1 that replaces o.

3. If a domain variable x is bound in 4 then do not change its quantifier (32) in rUG((5).
If x is unbound in 4 then ruG($) is of the form (I s) $, where $ E Lh.

4. Each range expression $; = (3x i j ,) . . . (3xij ,)Ri(oi , x;1,. . . , xini, t) 1 ° is replaced with

the expression Ri(ei) A t E e;.l,

We defined the mapping rUG on the set of safe TC, formulae. This mapping can be

extended to TC, queries as follows. If Q is a TCg query

where 4 is a safe TCS formula of the form:

gActually, there is no need to add expressions e .Ai (t) = xi for all i = 1, . . . , n as some examples below
will show, but only for those xi's that appear in other expressions. However, it is acceptable to do it for
all terms, i.e. it simplifies the presentation, and the transformation is still correct.

l0Range expressions were introduced in Section 5.1 when safe TCg queries were introduced.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

then r U G (Q) is

where historic variables e; correspond to the group-id variables oi appearing in predicates

Ri in 4, and attributes Aj correspond to variables x j in these predicates.

Examples illustrating the mapping PUG follow. In these examples we assume that the

schemas of TC, relations R and Q are R(O, A, T) and Q (0 , A, T) respectively, where 0 is

a group-id, A is an attribute, and T is a temporal attribute.

Example 7 Consider the TC, query Q

The first step of the conversion algorithm replaces R(o, x, t) with R(e) At E e.lAe.A(t) = x,

and Q(ol, a', t) with Q(el) At E el.l A el.A(t) = XI. The second step is not applicable in this

case. The third step results in

(3x)(3x1)((R(e) A t E e.1 A e.A(t) = x) A (Q(el) A t E el.l A e1.A(t) = x'))

Finally, the query ruc (Q) is

[e.A, el.A' : t] (3x)(3x1)((R(e) A t E e.1 A e.A(t) = x) A (Q(et) A t E el.l A el.A(t) = x'))

A R (~) A t E e.1 A Q(el) A t' E el.l

This expression for rUG(Q) could be simplified (using standard techniques of logical trans-

formation) to

[e.A, el.A' : t] R(e) A t E e.b A Q(et) A t E e'.E

However, this simplification is not always possible as the following example shows.

Example 8 The TC, query

{< 0,x >, t I R(o, x, t) A (301)Q(01, x, t))

44

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

is mapped into

Note that in this case the variable x serves to equate the terms e.A(t) and el.A(t), via

transitivity. In certain cases, the two values e.A(t) and el.A(t) cannot be equated directly

because one of the terms e.A(t) or el.A(t) is ill-defined. In this case, this use of an interme-

diate, such as x above, solves the problem. Also note that the quantified group-id variable

(30') was replaced with the historic variable (3e') in the Lh formula.

Example 9 The TC, query

{< 0, x >, t I R(o, x , t) A (3x')(3t1)Q(o, x', t '))

is mapped with some additional simplifications into

[e.A : t] (3x')(3t1)(Q(e) A t' E e.1 A e.A(tl) = x') A R(e) A t E e.1

Note that there is the same historic variable in both R(e) and &(e) because there is the

same group-id variable o in the corresponding TC, formula. Also note that the domain

variable X I in the TC, formula remained unchanged in the Lh formula.

Example 10 The TC, query

{< o, x >, t I R(o, x , t) A (3xr)(3t')(R(o, x, t) A Q(o, x', t') A x = x'))

is replaced with

[e.A : t] (3x)((R(e) A t E e.l A e.A(t) = x) A (3x1)(3t')((R(e) A t E e.1 A e.A(t) = x)A

(Q(e) A t f E e.l A e.A(tf) = x') x = X I)) A R(e) A t E e.l

This expression can be simplified to

45

Center for Digital Economy Research
Stern School of Business
Worhng Paper IS-91-41

[e.A : t] (3 x) (3 x r) (3 t ') ((R (e) A t E e.1 A e .A (t) = x) A (Q (e) At' E e.1 A e.A(tt) = x')

A x = x') A R (e) A t E e.1

Note that the equality x = x' did not change in the conversion process. However, it follows

from the facts that e.A(t) = x , e .A(t t) = x' and x = x1 that the terms e .A(t) and e.A(tJ)

are equal.

Example 11 The TC, formuIa

is converted to

[e.A : t] (3 x) (R (e) A t E e.1 A e .A (t) = x A l (Q (e) A t E e.1 A e .A (t) = x)) A R (e) A t E e.1

Note that in the previous examples, rUG maps safe TCg formulae into safe Lh formulae.

We generalize these observations in the following proposition.

Proposition 1 TUG maps safe TCg formulae into safe Lh formulae.

Sketch of Proof: Let gl be a safe TCg formula. We will prove that ruG(#) is safe b y

verifying all the conditions in the definition of safety for Lh formulae, First, r u ~ (4) does

not have universal quantifiers since 4 does not have them.

Second, the range expression $; = (3 x i j 1) . . . (3x i j ,)Ri (o; , x i l , . . . , x;,,, t) is mapped into

the expression (3x i j ,) . . . (3x i j l) (R i (e i) A t E ei.EA ei.Aijl (t) = x;l A . . . A e;.Aih (t) = xij ,) and

also the expression R;(e;) A t E ei.l is added at the "outermost" level of rvG(4) because

of condition 4 in the definition of the mapping ruG. Clearly, the two expressions are

semantically equivalent. But the second condition was added to make rUG(gl) syntactically

safe. Since rUG($b) has the formula R;(e;) A t E e;.l for each range expression at the

outermost level, the second condition of safety for Lh formulae is satisfied.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

Third, subformula Fl V F2 in # is mapped into ruG(Fl) V ruG(F2) so that rUG(Fl) and

rUG(F2) have the same set of atoms ti E ej because the formulae Fl and F2 have the

same set of pairs < oj, ti > and because the mapping rUG translates them into expressions

ti E ej.

Finally, the mapping rUG is defined so that all the three items in the definition of safety

related to maximal conjuncts are satisfied. E l

Theorem 2 For any sclfe TC, formula #, # and PUG(#) are equivalent.

Sketch of Proof: Intuitively, the two formulae are equivalent because the predicate

R(o, xl , . . . , x,, t) is mapped into the expression R(e) A t E e. 1, so that the historical vari-

able e corresponds to the group-id o and t is in the lifespan of e. Furthermore, group-id's

are defined so that the variables XI , . . . , x, are uniquely determined by values of o and t

and are irrelevant in the translation process. Also, the expressions R(o, X I , . . . , x,,t) and

R(e) A t E e.1 are equivalent. In addition, the mapping rUG preserves the structure of the

formula 4, i.e. it leaves conjunctions, disjunctions and negations of 4 in their places in

~ u G (#) .

5.2.3 Mapping Lh Formulae to TC,

In this section, we define the mapping rGu that maps safe Lh formulae into equivalent safe

?"G formulae. Let # be a safe Lh formula. As for the ruG mapping, the formula rGu(4)

is obtained from d, by replacing all the atomic formulae in 4 together with quantified

variables and leaving the structure of # intact (operators A, V , 1 remain unchanged). The

replacement of atomic formulae and quantified variables is done in the following manner:

1. Replace quantified variables in Lh as follows.

(a) Do not change any quantified domain and temporal variables, i.e. (3s) and (3)

in Lh will remain in I'Gu(#).

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

(b) Replace quantified historic variables (3e;) with (go;), where o; is a unique group-

id variable.

(c) Consider all pairs of historic and temporal variables e and t such that contains

an expression t E e.2. Depending on the relationship between the scopes of these

variables, we add the expression (3xl) , . . (32,) to rGv(4), where x; is a domain

variable associated with historic variable e of arity n, as follows.

i. if t is afree and e is a bound variable, then place the expression (3x1). . . (32,)

before the expression (go) obtained in Step lb;

ii. if t and e are bound variables, and the scope of e is contained within the

scope of t then also place (3x1). . . (32,) before (30);

iii. if t and e are bound and the scope of t is contained within the scope of e

then place (3x1). . , (32,) before (3) ;

iv. in all other cases, do not add anything to the formula.

2. Replace each occurrence of Lh expression R(e) with (3x1). . . (3xn)(3t)R(o, XI , . . . , x,, t)

If e is a bound variable in $, then the group-id variable o is the same as the one that

replaced e in the expression (3e) in Step lb . If e is free, then all the occurrences of e

are replaced with the same group-id variable o.

3. Replace each occurrence of expression t E e.2 with R(o, 21,. . . , x,, t) , where predicate

R is one ofthe predicates occurring positively in the maximal conjunct containing t E

e.ll1. If e is a bound variable in 6, then the group-id variable o is the same as the one

that replaced e in the expression (3e) in Step 1, and the domain variables XI , . . . , x,
are the same as the quantified variables introduced in Step 1 for the combination of

(3e) and (3) expressions. If e is a free variable in 4, then the group-id variable o and

the domain variables XI,. . . , x, are free and are different from all other variables in

~ G U (4)-

4. Replace each term e.A;(t) in $ with xi, where x; is defined as follows. Since # is

safe, the maximal conjunct containing e.A;(t) must also contain expressions t E e.l

It follows from the grouping axioms in Section 5.1 that it does not matter which positively occurring
predicate R is selected. Any seiected predicate will produce the same results. In fact, all the qualifying
predicates can be selected as well, for a longer but logically equivalent formula.

Center for Digital Economy Research
Stern School of Business
Worhng Paper IS-91-41

and R (e) (for some R). In Step 3, t E e.1 is replaced with R(o , X I , . . . , x,, t) . Then

x; corresponds to the variable in this expression that corresponds to attribute A; in

R.12

Examples illustrating the mapping rcu follow. In these examples we assume that the

schemas of relations R and Q from Lh are R (A , B) and & (A) respectively.

Example 12 The Lh query

is mapped into the TC, query as follows. R (e) is replaced with (33') (3y') (3t1)R(o, x', y l , t ') ,

t E e.1 with R(o, x , y, t) , and e .B(t) = 5 with y = 5.

Putting the pieces together, we get the answer:

{< o, x >, < o, y >, t I (3xf) (3y ') (3 t ')R(o, x', y', t') A R(o, x , y , t) A y = 5)

Since (3xt)(3y')(3t ')R(o, x', y', t') A R(o, x , y , t) is equivalent to R(o, x , y , t) we can rewrite

the previous query as

Example 13 The Lh query

is mapped into the TC, query

{< o, x >, < o, y >, t 1 R(o, x , y, t) A (3 ~ ") (3 ~ ") (3 t ') (R (o , xu, y", t ') ~

(30') (3x') (Q(ol , x', t ') A R(o, x , y , t) A y = X I)) }

''Remark in the footnote 11 is also applicable here.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

Note that the domain variable x' in the previous example is quantified in the same part

of the rGU(#) formula as the group-id variable 0'. Also note that the variables x", y" are

quantified together with temporal variable t'. In general, the domain variables appearing

in the same predicate as group-id variable o and temporal variable t are quantified together

with the innermost scope of variables o and t. The following example illustrates this point

further.

Example 14 The Lh query

is mapped into the TC, query

Note that the variable x' is quantified together with t' and not with o', as was done in

Example 13.

The next two examples show how rGU handles negations.

Example 15 The Lh query

is mapped into the TC, query

{< o, x >, < o, y >, t I R(o, x, y , t) A -(3x')(3y')(3tt)R(o, x', y', t')}

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

Example 16 The Lh query

[el.* : t] (3e) (Q(e) A ~ (t E e.1 A Q (e)) A R(et) A t E el.l) A R(et) A t E et.l

is converted to

{< o', x' >, < o', y' >, t (~ o) (~ x) ((~ x ") (~ ~ ") & (o , x", t") A i Q (o , x, t) A

R(ot, x', yl, t)) A R(o', 2 ' 1 y t , t))

The next example shows that rGU does not affect domain variables in #.

Example 17 The Lh query

[e.* : t] R (e) A t E e.1 A (3 z) (R (e) A t E e.1 A e.A(t) = z)

is translated into

{< 0, x >, < 0, y >, t I R(0, x , y , t) A (3 s) (R (o , 2 , Y , t) A x = z) }

Proposition 3 rGV maps safe Lh formulae into safe TCg formulae.

Sketch of Proof: The proof proceeds along the lines of the proof of Proposition 1.

Theorem 4 For any safe Lh formula 4, # and F G U (~) are equivalent.

Sketch of Proof: The proof is done by induction on maximal conjuncts in (6. At any

inductive step the Lh formula #(e l , . . . , en, x l , . . . , x,, t l , . . . , t k) is mapped into the TCg for-

mula rGU(#)(ol , . . . , on, 5 1 , . . . , x,, y l , . . . , yl, t l , . . . , t k) , where yl, . . . , Yr are extra variables

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

introduced in the translation process (i.e. when R(e) A t E e.l becomes R(o, yl, . . . , y,, t)) .

Notice that variables yl, . . . , yl are uniquely determined (i.e. functionally depend) by val-

ues of variables 01, . . . , on, XI, . . . , x,, tl, . . . , t k . Therefore, these variables are "superfluous"

and do not affect the translation process. With this observation in mind, the proof proceeds

along the lines of Theorem 2. CI

5.2.4 Conclusion

Theorems 2 and 4 show that the languages Lh and TC, are equivalent. Since TC, differs

from TC only by supporting the grouping attribute in its relations, it shows that the

languages Lh and TC are "close" to each other. In fact, it is precisely and only the

inherent grouping mechanism of temporal values in Lh that makes it more powerful than

TC.

6 Historical Models and Completeness

All of the historical relational data models and languages that have been proposed differ

from one another in the set of query operators that they provide. In addition, they often

differ in the structure of the historical relations that they specify, that is, the way in which

the temporal component is incorporated into the structure. In this section we describe four

of these models and discuss the completeness of their languages. Two of the data models

we discuss are ungrouped, one with an algebra ([Lor87]) and the other with a calculus

([Sno87]); the other two data models discussed are grouped, one with an algebra ([CC87]),

the other with both an algebra and a calculus ([Gad88]).

For each of the data models discussed in the following, we are interested in two aspects of

its query language: its expressiveness, that is, its ability to express every relation that

can be denoted by expressions of the languages Lh or TC defined in the earlier sections,

and its boundedness, its ability to express only those relations that can be expressed by

these languages. It is well known that the standard relational calculus is as expressive as,

bounded by, and hence equivalent to the standard relational algebra ([Cod72]).

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

The completeness of a language can be viewed solely in terms of its relative expressiveness.

We have earlier motivated our choice of Lh and TC as appropriate metrics for our notions

of completeness. Therefore, in this section a language will be said to be complete with

respect to either Lh or 7°C if it is as expressive as that language. We also consider the

boundedness of each of the four query languages discussed in this section. If our metric

of completeness is reasonable, then it must be the case that each language considered

here is bounded by either Lh or TC. For each of the historical query languages discussed

in the following we consider first its boundedness, translating various of its operators into

equivalent expression in one of the previously defined languages, and then its expressiveness.

We shall see that all of the languages we consider are bounded by either Lh or TC, but not

all are as expressive.

We begin with a discussion of the completeness of the historical relational algebra specified

by the historical relational data model H R D M ICCS71. We discuss this language first both

because the canonical historical relation defined in Section 2 is derived directly from the

structure of the historical relations in H R D M , and because the set of operators specified

by this model were intended initially to provide all the functionality thought useful and

desirable.

6.1 HRDM

The historical relational data model H R D M presented in [CC87] is a temporally grouped

model with an algebraic query language which is presented as an extension to the standard

relational algebra.

We can categorize the operators of H R D M as follows:

Set-Theoret ic These operators are defined in terms of the set characteristics of relations,

and include the standard set operators union (u), intersection (n), set difference (-), and

Cartesian product (x) . Because these operators do not exploit the historical aspects of

H R D M relations, the standard mappings from these operators in relational algebra to

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

their counterpart in relational calculus also applies to these operators here. For example,

 US = { X ~ X E ~ V X E S)

E [e. * It]r(e) A t E e.1 V s(e) A t E e.E

Attribute-Based This category includes those operators that are defined in terms of

the attributes (or their values) of a relation. Some of these operators, as suggested by their

names, are derived from similar operators that exist in the standard relational algebra. As

shown below, often the original definition of these operators has been modified to exploit

the temporal component of the historical model. For each of these operators we give both

its set-theoretic definition, and then an equivalent Lh-based expression.

1. Project (n): This operator is equivalent in definition to its standard relational

counterpart, and has the affect of reducing the set of attributes over which each of

the tuples x in its operand, a relation r, is defined, to those attributes contained in

a set of attributes X.

2. Select-If (a - IF): This variant of the select operator selects from a relation r those

tuples x each of which for some period within its lifespan has a value for a specified

attribute A that satisfies a specified selection criterion. The period of time within the

lifespan is specified by a lifespan parameter L. The selection criterion is specified as

ABa, where 8 is a comparator and a is a constant. (It is also possible to compare one

attribute with another in the same tuple.) A parameter, Q, of the select-if operator

is used to denote a quantifier that specifies whether the selection criterion must be

satisfied for all (V) times in the specified subset of the tuple's lifespan, or that there

exists (3) at least one such time.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

(if Q is 3) E [e.* : t]r(e) A t E e.1 A

3tl(tl E L A tl E e.1 A e.A(tl)Oa)

(if Q is V) [e.* : t]r(e) A t E e.1 A

-.3tl(tl E L A tl E e.1 A l (t l A e.A(t)Ba))

3. Select-When (a - W H E N) : This operator is similar to the 3-quantified select-if

operator. However, the lifespan of each selected tuple is restricted to those times

when the selection criterion is satisfied.

4. 0-Join: Like its counterpart in the standard relational data model this operator

combines tuples from its two operand relations. With 0-join two tuples are combined

when two attributes, one from each tuple, have values at some time in the intersection

of the tuples' lifespans that stand in a 6 relationship with each other. The lifespan

of the resulting tuple is exactly those times when this relationship is satisfied.

Let rl and 7-2 be relations on schemes R1 and R2, respectively, where A f R1 and

B E R2 are attributes.

5 . Sta t ic Time-Slice (TQL): This operator reduces a historical relation in the temporal

dimension by restricting the lifespan of each tuple e of the operand relation r to those

times in the set of times L.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

Other Operators In addition to the above categories of operators, the HRDM alge-

bra includes several grouping operators that are used to restructure a relation without

changing the information content of that relation. These operators, union-merge (u,),

intersection-merge (no), and diRerence-merge (-,), first computes the set-theoretic

union, intersection, and difference, respectively, and then regroups the tuples in the result-

ing relation.

The HRDM algebra also includes the operators WHEN and Dynamic Time-Slice.

We categorize the WHEN operator as an extra-relational operator in that it computes

a result that is not contained in a database relation, nor given as a constant. Applied

to a historical relation, this operator returns a value defined as the union of the lifespans

of the tuples in that relation. This operator can be viewed as a type of temporal-based

aggregate operator. The dynamic time-slice is only applicable to relations that include in

their scheme an attribute A whose domain consists of partial functions from the set T I M E S

into itself. We do not treat such attributes in this paper since most of the models considered

distinguish between ordinary values and the times at which they hold, and do not allow

comparisons between them. Therefore it would be unfair to include such an operator in our

comparison. We omit the other operators from our discussion of completeness of HRDM

and the remaining languages that tve will examine. The grouping operators are not treated

because they are not intended for querying, and the aggregate operators, because they are

outside of the scope of standard relational-based notions of completeness.

The translations that we have provided for each of the relation-defining operators of the

HRDM algebra shotvs that this algebra is bounded by the language Lh. However, this

historical algebra is n o t complete in that there are queries that are expressible in Lh for

which no equivalent algebraic expression (i.e., sequence of algebraic operations) exists. One

example is the query on the database in Figure 8 for the name and department of each

employee that has at some time received a change in salary, expressible in Lh as

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

The lack of an equivalent algebraic expression is due to the specification of those operators

in N R D M that include the comparison of two values as part of their definition: the join,

and the various select operators. In each case only attribute values that occur at the same

point in time can be compared. Thus, as required by the above query, it is not possible

to compare the salary of an employee at some time tl with that employee's salary at some

other point in time, t2.

6.2 The Historical Homogeneous Model of Gadia

The next historical rnodel that we discuss is one that was proposed by Gadia [Gad88]; it is

a model that includes a query language and an algebra. This data model, which we shall

label T D M G , is the same as that of H R D M , and thus of the canonical historical relation

defined in Section 2.

In T D M G the value of a tuple attribute is a function from a set of times to the value domain

of the attribute, and the lifespan is the same for all the attributes (Gadia's homogeneity

assumption). Therefore the T D M G model is temporally grouped.

In addition to the data modei, Gadia defines a historical algebra and calculus. Although his

data model is temporally grouped, the semantics of the algebra is defined in terms of the

ungrouped model obtained by ungrouping temporal relations. Gadia calls this a snapshot

interpretation semantics. The semantics of the historical algebra is defined by ungrouping

temporal relations because Gadia considers grouped and ungrouped models "weakly equal"

and does not distinguish between them when he proves equivalence of the algebra and the

calculus.

Gadia's algebra is defined as follows. Re starts with the five standard relational operators of

selection, projection, difference, Cartesian product, and union as TL does. He also defines

derived temporaI operators such as join, intersection, negation, and renaming. In addition,

he defines temporal expressions for the temporal domain. Finally, he combines relational

and temporal expressions by considering relational expressions of the form e(v) where e

and v are relational and temporal expressions respectively.

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-91-41

Gadia7s algebra is bounded by the temporal calculus TC defined in Section 3 for the fol-

lowing reasons. The five standard temporal operators are defined as for TL and, there-

fore, can be expressed in TC. Temporal expressions are defined as a closure of a time

intervals over the operations of union, intersection, difference and negation. Each of

these operators can be expressed in the first-order logic with explicit references to time.

For example, the expression tdom(r(A, B)) V tdom(s(A, B)) can be defined in TC as

{t (3x)(3y)r(x1 y, t) V s(x, y, t)). This means that T D M G is bounded by TC.

Gadia also defines a historical calculus and shows its equivalence to the algebra (modulo

temporal grouping). This calculus is expressible in Lh for the same reasons that the un-

grouped algebra is expressible in TC. A lifespan of a temporal tuple x in T D M G can be

captured with expression t E 2.1 in Lh. Also, the operators of union, intersection, difference

and negation for temporal expressions can be expressed in Lh with the same methods that

are used to express algebraic expressions in TC since Lh explicitly supports time.

However, both Gadia's algebra and calculus are not complete for the same reason that the

HRDM algebra is not complete: it is not possible to compare the value of one attribute at

time tl with the value of another or the same attribute at some other time t2. For example,

the query that finds the name and department of each employee that has at some time

received a cut in salary, i.e.

cannot be expressed in T D M G .

To summarize, the temporally grouped language Lh has strictly more expressive power

than Gadia's calculus, i.e. this calculus is bounded by Lh but not complete. Also, the

temporally ungrouped language TC is strictly more powerful than Gadia's algebra , i.e.

the algebra is bounded by TC but not complete.

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-91-41

6.3 TQuel

TQuel is the query language component of a historical relational data model proposed by

Snodgrass [Sno87]. We shall call this model TRDM.

TRDM provides for two types of historical relations. One, called an interval relation, is

derived from a standard relation through the addition of two temporal attributes, valid-

from and valid-to, both of whose domains are the set of times T. (An example of such a

relation has already been given in Figure 3). As before, we will ignore the two TRANS-

TIME temporal attributes since we are only considering historical data models. The values

of the non-temporal attributes of a tuple in such a relation are considered to be valid during

the beginning of the interval of time starting at the valid-from value and ending at, but

not including, the valid-to value. (This interval thus denotes the lifespan of the tuple.)

The second type of relation, an event relation is, defined by extending a standard relation

by a single temporal attribute valid-at. Since both interval relations and event relations are

derived from first normal form relations through the addition of attributes whose values

are atomic, they are also in first normal form.

The query language TQuel is an extended relational calculus derived from and defined as a

superset of Quel, the query language of the Ingres relational database management system

[SWKH76]. TQuel extends Quel by adding temporal-based clauses that accommodate

the valid-from and valid-to attributes. (These attributes are not visible to the existing

components of the Quel language.)

A WHEN clause is added to define an additional temporal-based selection constraint that

must be satisfied in conjunction with the constraint defined by the TQuel (and Quel)

WHERE clause. This constraint, specified as a temporal predicate over a set of tuple valid-

from-valid-to intervals (lifespans) defines a restricted set of relationships that must hold

among them.

A VALID clause is used to define, in terms of temporal expressions, valid-from and valid-to

values for tuples in the relation resulting from the TQuel statement.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

As Snodgrass shows [SnoS7], both temporal predicates and temporal expressions have a

semantics that is expressible in terms of the standard tuple calculus.13 Since standard

tuple calculus is bounded by TC, this implies that TQuel is bounded by Lh.

TQuel is bounded by the language TC since the semantics of TQuel like that of Quel [UIISS]

can be expressed in terms of, and is thus bounded by, the standard relational calculus which

in turn is bounded by TC. In particular, Snodgrass shows how any TQuel query can be

expressed as a formula of the form Q A I' A Q! where Q, I', and Q! are the calculus formulae of

the underlying Quel statement, the TQuel WHEN clause and VALID clause, respectively,

and I' and contain no quantifiers. Additionally, I' and Q! are defined only over the

temporal attributes valid-from and valid-to, neither of which may be included in Q. The

structure of this formula means that, as with Quel, not all algebraic expressions can be

expressed as a single TQuel statement (for example, algebraic expressions containing the

union operator).

If none of the non-temporal attributes over which a TRDM database is defined has a

domain whose values are comparable to those in the set of times T , then in no algebraic

expression over the relations in this database can such an attribute be compared to either

valid-from or valid-to. For such a database, TQuel statements, as represented by a defining

tuple calculus formula, are no more restrictive than Quel statements. Therefore (as with

Quel) a sequence of TQuel statements, can express any algebraic expression, perhaps by

creating temporary relations, and using operators such as APPEND and DELETE,

Although interval relations and event relations are distinguished by TQuel, they are stan-

dard first normal form relations that provide a fixed way of encoding temporal data using

the temporal attributes. TQuel differs from Quel only in the distinction accorded these at-

tributes. Thus, like Quel - with the addition of such operators as APPEND - it is complete

in the sense defined by Codd. By extension, as a result of the use of the temporal attributes,

it has temporally ungrouped completeness. Therefore we conclude that TRDM is complete

in the temporally ungrouped sense, but does not exhibit t emporal value integrity.

I3This specification also includes the use of several auxiliary functions that are used to compare times
in order to determine which of two times occurs first or last.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

6.4 The Temporal Relational Algebra of Lorentzos

The final historical data model that we discuss is one that was proposed by Lorentzos

in [Lor87]. The data model in [Lor87], which is called T R A , is essentially the same as

that in [Sno87], except that as an historical model it is restricted to only one temporal

dimension. One of the stated goals of T R A is that "no new elementary relational algebra

operations are introduced and first normal form is maintained" [Lor87, p. 991. Typical

relations in this model appear basically as in Figure 3 (with the columns valid-from and

valid-to called Sfrom and Sto, respectively). Although the structures of relations in this

model are essentially the same as in the historical version of T R D M , we discuss this model

here because, unlike [Sno87], the language it proposes is an algebra rather than a calculus.

It is difficult to discuss formally the algebra of T R A because it is not specified formally.

Rather, it is presented via a series of example queries and discussion. Nevertheless, enough

of a picture of the algebra emerges clearly through these examples to make a discussion

possible.

Two new operators, FOLD and UNFOLD are defined. These operators essentially convert

between the time interval representation (as in Figure 3) and a time point representation

(as in Figure 1). The FOLD and UNFOLD are clearly expressible in terms of operators in

the standard relational algebra, as [Lor871 points out.

The previous sections demonstrated that two other algebras, that of H R D M and that of

T D M G were incomplete because they were not able to compare the value of one attribute

at a time tl with the value of another (or the same) attribute at some other time t2. In

T R A such comparisons are possible. Consider again the query that finds the name and

department of each employee that has at some time received a cut in salary:

This query can be expressed in T R A as follows. First UNFOLD the interval relation

61

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

EMPLOYEE into all of its time points:

EMPLOYEEU, = UNFOLL)[Time, Start, Stop](TIME, E M P L)

Then, @-Join this relation with itself, joining tuples with the same name and with a pay

cut, and then Select just the names of the employees from the result (here NAMEl and

NAME2, etc., refer to the NAME attributes in the first and second operands to the Join):

N A M E l = NAME2,
T E M P 1 = EMPLOYEEU, T I M E 1 < TIME2, EMPLOYEEU, [SALl > SAL2 1
T E M P 2 = c ~ N ~ M ~ ~ (TEMPI)

Finally, Join the result with the original relation and Project onto the desired fields:

Because TRA is equivalent to standard relational algebra, the question of its completeness,

as in the case of TRDM, is reduced to the question of the completeness of relational

algebra. Therefore we conclude that TRA is complete in the temporally ungrouped sense

but, like all ungrouped languages, it does not exhibit temporal value integrity.

The results of our explorations into the completeness of these five languages is summarized

in the table in Figure 16.

7 Summary and Conclusions

In this paper we have explored the question of completeness of languages for historical

database models. In this exploration we were led to characterize such models as being of

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

Figure 16: Summary of Completeness Results

..

one of two different types, either temporally grouped or temporally ungrouped. We

first discussed these notions informally by means of example databases and queries, and

showed that the two models were not equivalent. The difference between the two models is

that in temporally grouped models, historical values are treated as first class objects which

can be referred to directly in the query language. In the temporally ungrouped models, no

such direct reference is permitted. We characterized this property of the grouped models

as tempora l value integrity.

We then proceeded to propose a notion of historical relational completeness, analogous

to Codd7s notion of relational completeness, for both types of models. We showed that the

temporally ungrouped languages are less powerful than the grouped models, because they

do not allow for direct reference to temporal objects like salary histories, However, we also

demonstrated a technique for extending the ungrouped models, by incorporating a grouping

 mechanism, to capture the additional semantic power of temporal grouping.

Language
Lh
TL

T R A algebra
T R D M calculus
H R D M algebra
T D M G calculus
T D M G algebra

Specifically, for the ungrouped models we defined three different languages, TL, TC, and TA:

a temporal logic, a logic with explicit reference to time, and a temporal algebra, and showed

that under certain assumptions about the model of time employed all three are equivalent

in power. For the grouped models we defined the calculus Lh, a many-sorted logic with

variables over ordinary values, historical values, and times. We demonstrated a technique

for extending the ungrouped model with a grouping mechanism, a group identifier. With

this mechanism we showed how the ungrouped language TC could be extended to TC, in

Center for Digital Economy Research
Stern School of Business
Worhng Paper IS-91-41

Completeness
Proposed Basis
Proposed Basis

complete
complete
incomplete
incomplete
incomplete

Reference
Section 4
Section 3
[Lor871
[Sno87]
[CC87]
[Gad881
[Gad881

Type
grouped
ungrouped

ungrouped
ungrouped
grouped
grouped
ungrouped

such a way as to make it equivalent to Lh. In this way we demonstrated that the languages

are nearly equivalent; that is, it is precisely the grouping capability which distinguishes

them.

Finally, we examined several historical relational proposals in light of these metrics: Lh as

the standard for grouped historical relational completeness and TC as the standard

for ungrouped historical relational completeness. We looked at four historical mod-

els, two grouped and two ungrouped, offering five different languages. In the ungrouped

models we found both a complete algebra (TRA) and calculus (TQuel from TRDM) ,

while in the grouped models we found (in addition to our metric, the complete calculus Lh)

an incomplete algebra (HRDM) and an incomplete calculus (T D M G) as well as an in-

complete ungrouped algebra (TDMG). We believe that this classification scheme, and our

examination of the completeness of several historical models, should help to explicate the

differences and the commonalities between the various models proposed in the literature.

One point bears emphasizing. It has on occasion been said that the issue of adding time to

relational databases is an uninteresting one, since the user can always just add whatever

extra attributes are desired (e.g., Start-Tirne and End-Time) and then use standard

SQL (or relational algebra) as the query language. In our discussion of the completeness

of the ungrouped temporal languages we, to some extent, relied on the underlying point

of this argument. For example, this point underlay our argument that T R A (which is

equivalent to standard relational algebra) is complete in the ungrouped sense. Two points

need to be made in reply to this comment. First, there is a difference between the formal

notion of completeness and the informal, but no less important, notion of ease of use. Even

though the programming language Cis formally equivalent to a Turing Machine, it is a lot

more convenient to use Cif you are writing an operating system because of its built-in high

level features. The built-in temporal features of the historical and temporal data models

make them easier to use for managing temporal data; without these features a greater

burden is placed upon the user. Secondly, this paper has shown that the grouped models

and languages are more expressive than the ungrouped systems, unless these models add a

surrogate grouping mechanism. This grouping mechanism, itself, is a higher-level construct

Center for Digital Economy Research
Stern School of Business
Worhng Paper IS-91-41

that is implicit in the grouped systems (and this, we argue, makes them more convenient),

but needs to be made explicit in the ungrouped systems for them to be equivalent in

expressive power.

There are a few interesting areas for future research that this work has clarified. First of

all, it is interesting to note that we did not find here, nor are we aware of, any complete

algebra for grouped historical data models. This is clearly an interesting open question.

Another area in which there continues to be interest is in the support of evolving schemas.

Our decision not to treat this interesting area here was based largely on the fact that

hardly any of the models except [CC87] incorporate this feature, and we wanted to choose

the common denominator of all the models in order to make our comparisons fairly. The

model in [CC87j addressed this issue, and other work (e.g. [BKKKS7, MS901) continues to

be done in this area.

Finally, we would like to address the question of completeness for temporal as opposed to

historical relational models (in the terminology of [SA85]). We believe that our results

on grouped and ungrouped historical relational completeness can be extended in

a straightforward way to temporal data models and languages. The extension would in-

volve the addition of another sort (for transaction times). In ungrouped temporal models,

relations would be extended with an additional column to stamp every tuple with its trans-

action time, and the language would have constants, as well as variables, and quantification

for this sort. In grouped temporal models, values would be extended to be doubly indexed;

they would most likely be better modeled as functions from a transaction time into func-

tions from a data time to a scalar value, but the order of the two temporal indices could

be reversed. Preliminary work that we have done on Indexical Databases holds promise for

a unified treatment, not only of these two temporal dimensions, but of spatial, or other,

dimensions as well.

References

[ACSG] G. Ariav and J. Clifford. Temporal data management: Models and systems. In

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

G. Ariav and J. Clifford, editors, New Directions for Database Systems, pages

168-185. Ablex Publishing Corporation, 1986.

[Ari86] G. Ariav. A temporally oriented data model. ACM Transactions on Database

Systems, 11(4):499-527, December 1986.

[AU79] A.V. Aho and J.D. Ullman, Universality of data retrieval languages. In ACAf

Symposium on Principles of Programming Languages, pages 110-120, New

York, 1979. ACM.

[Ban781 F. Bancilhon. On the completeness of query languages for relational databases.

In Proc. Seventh Symposium on Mathematical Foundations of Computing, pages

112-123. Springer-Verlag, 1978.

[BKKK87] J . Banerjee, W. Kim, H.-J. Kim, and H.F. Korth. Semantics and implemen-

tation of schema evolution in object-oriented databases. In SIGMOD, pages

311-322, San Francisco, CA, 1987. ACM.

[BZ82] J. Ben-Zvi. The Time Relational Model. PhD thesis, University of California

at Los Angeles, 1982.

[CC87] J. Clifford and A. Croker. The historical relational data model HRDM and

algebra based on lifespans. In Proc. Third International Conference on Data

Engineering, pages 528-537, Los Angeles, February 1987. IEEE.

[CH80] A.K. Chandra and D. Harel. Computable queries for relational data bases.

Journal of Computer and System Sciences, 21(2):156-178, October 1980.

[Cod721 E.F. Codd. Relational completeness of data base sublanguages. In R. Rustin,

editor, Data Base Systems. Prentice-Hall, 1972.

[CW83] J. Clifford and D. S. Warren. Formal semantics for time in databases. ACM

Transactions on Database Systems, 6(2):214-254, June 1983.

[End721 H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.

New York.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

[FVGS5] P.C. Fischer and D. Van Gucht. Determining when a structure is a nested

relation. In International Conference on Very Large Databases, pages 171-180,

1985.

[Gab891 D. Gabbay. The declarative past and imperative future: Executable temporal

logic for interactive systems. In B. Banieqbal, H. Barringer, and A. Pnueli,

editors, Proceedings of Co2loquium on Temporal Logic in Specification, pages

402-450. Springer-Verlag, 1989. LNCS 398.

[Gad861 S.K. Gadia. Toward a mulithomogeneous model for a temporal database. In

Proc. Second International Conference on Data Engineering, Los Angeles, Cal-

ifornia, February 1986. IEEE.

[Gad881 S. K. Gadia. A homogeneous relational model and query languages for temporal

databases. TODS, 13(4):418-448, 1988.

[JMSO] S. Jones and P.J. Mason. Handling the time dimension in a data base. In

Proc. International Conference on Data Bases, pages 65-83, Heyden, July 1980.

British Computer Society.

[Kam68] H. Kamp. On the Tense Logic and the Theory of Order. PhD thesis, UCLA,

1968.

[Klu82] A. Klug. Equivalence of relational algebra and relational calculus query lan-

guages having aggregate functions. Journal of the A CM, 23(3):699-717, July

1982.

[Kro87] F. Kroger. Temporal Logic of Programs. Springer-Verlag, 1987. EATCS Mono-

graphs on Theoretical Computer Science.

[KSW9O] F. Kabanza, J.-M. Stevenne, and P. Wolper. Handling infinite temporal data.

In Proceedings of PODS Symposium, pages 392-403, 1990.

(Lor871 R.G. Lorentzos, N.A.; Johnson. TRA: A model for a temporal relational al-

gebra. In Proceedings of the Conference on Temporal Aspects in Information

Systems, pages 99-112, France, may 1987. AFCET.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

[McK86] E. McKenzie. Bibliography: Temporal databases. ACM SIGMOD Record,

15(4):40-52, December 1986.

[MS89] E. McKenzie and R. Snodgrass. An evaluation of algebras incorporating time.

Technical Report TR89-22, University of Arizona, September 1989.

[MSSO] E. McKenzie and R. Snodgrass. Schema evolution and the relational algebra.

Information Systems, 15(2):207-232, 1990.

[NA87] S.B. Navathe and R. Ahmed. TSQL - a language interface for history databases.

In Proceedings of the Conference on Temporal Aspects ,in Information Systems,

pages 113-128, France, may 1987. AFCET.

[Qui53] W.v.0 Quine. From a Logical Point of View. Harvard University Press, Cam-

bridge, 1953.

[RKS88] M. A. Roth, H. Korth, and A. Silberschatz. Extended algebra and calculus for

nested relational databases. TODS, 13(4):388-417, 1988.

[RU71] N. Rescher and A. Urquhart. Temporal Logic. Springer-Verlag, 1971.

[SA85] R. Snodgrass and I. Ahn. A taxonomy of time in databases. In Proceedings of

ACM SIGMOD, pages 236-246, New York, 1985. ACM.

[SarSO] N.L. Sarda. Algebra and query language for a historical data model. The

Computer Journal, 33(1):11-18, February 1990.

[SGM87] R. Snodgrass, S. Gomez, and E. McKenzie. Aggregates in the temporal query

language tquel. Technical Report TempIS 16, University of North Carolina a t

Chapel Hill, July 1987.

[Sno87] R. Snodgrass. The temporal query language TQuel. ACM Transactions on

Database Systems, 12(2):247-298, June 1987.

[Sno9O] R. Snodgrass. Temporal databases: Status and research directions. ACM

SIGMOD Record, 19(4):83-89, December 1990.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-41

[So0911 M.D. Soo. Bibliography on temporal databases. ACM SIGMOD Record,

20(1):14-23, March 1991.

[SSSS] R. Stam and R. Snodgrass. A bibliography on temporal databases. Database

Engineering, 7(4):231-239, December 1988.

[SWKH76] M. Stonebraker, E. Wong, P. Kreps, and G. Held. The design and imple-

mentation of ingres. ACM Transactions on Database Systems, 1 (3):189-222,

September 1976.

[Tan861 A.U. Tansel. Adding time dimension to relational model and extending rela-

tional algebra. Information Systems, 11 (4):343-355, 1986.

[TCSO] A. Tuzhilin and J. Clifford. A temporal relational algebra as a basis for temporal

relational completeness. In International Conference on Very Large Databases,

pages 13-23, 1990.

[Tuz89] A. Tuzhilin. Using Relational Discrete Event Systems and Models for Prediction

of Future Behavior of Databases. PhD thesis, New York University, October

1989.

[U1188] J. Ullman. Principles of Database and Knowledge-Base Systems, volume 1.

Computer Science Press, 1988.

[vB83] J.F.A.K. van Benthem. The Logic of Time. D. Reidel Publishing Company,

1983.

Center for Digital Economy Research
Stem School of Business
W o r h g Paper IS-91-41

