
A KNOWLEDGE REPRESENTATION FOR 
CONSTRAINT SATISFACTION PROBLEMS 

by 

Albert E. Croker 

and 

Vasant Dhar 
Leonard N. Stern School of Business 

Information Systems Department 
New York University 
40 ?Vest 4th Street 

New York, NY 10003 

Revised August 1990 

Center for Research on Information Systems 
Information Systems Department 

Leonard N. Stern School of Business 
New York University 

Working Paper Series 

STERN IS-90-9 

This paper replaces Working Paper No. 191 entitled, "A PROBLEM-SOLVER/TMS 
ARCHITECTURE FOR GENERAL CONSTRAINT SATISFACTION PROBLEMS." 

Center for Digital Economy Research 
- - "  Stem School of Business 

IVorking Paper IS-90-09 



Abstract - 

In this paper we present a general representation for constraint satisfaction problems (CSP) and a 
- 

framework for reasoning about their solution that unlike most constraint-based relaxation algorithms. 
stresses the need for a "natural" encoding of constraint knowledge and can facilitate making inferences for 
propagation, backtracking, and explanation. The representation consists o i  two componenrs: a 
generate-and-test problem solver which cclntains information about the problem variables, and a 
constraint-driven reasoner that manages a set of constraints, specified as arbitrarily complex Boolean 
expressions and represented in the form of a constraint network. This constraint network: incorporates 
control information (reflected in the syntax of the constraints) that is used for constaint propagaticn: 
contains dependency information that can be used for explanation and for dependency-directed 
backtracking; and is incremental in the sense that if the problem specification is modified, a new solution 
can be derived by modifying the existing solution. 

1. Introduction 
Many problems can be formulated as constraint satisfaction problems. Expressing problems as 

constraint satisfaction problems requires a decomposition of the problem into parts, the generation or 

retrieval of alternatives for these parts, and the coordination of solutions for each part into an integrated 

whole (Simon, 1973). This general characterization applies to a variety of problems ranging from the 

design of a fugue (Reitman, 1965), a house (Alexander, 1964), or an engineered artifact (Simon, 1973). 

to that of a business plan (Dhar and Pople, 1987). Domain expertise is involved in deciding how best to 

decompose a problem into parts, in generating alternatives, recognizing constraints among the 

alternatives, and in resolving conflicts among them in a way that least impairs the quality oi the overall 

solution. Solving such probtems involves constraint satisfaction. 

In this paper we present a general representation for constraint satrsfaction problems. Each of these 

problems are characterized in terms of discrete sets of alternatives, which we call choice sets, and a set 

of constraints that are defined in terms of the choice sets. A solution to a constraint satisfaction problem 

ts defined as a set of alternatives, one from each of the characterizing cho~ce sets, that together satisfies 

each [i.e., does not violate any] of the characterizing constraints. 

We also describe a system for reasoning about constraint satisfaction problems. This reasoning system 

consists of two components: a probiem solver that contains domain knowledge, and a constraint-directed 

reasoner that keeps track of the status of constraints and focuses the problem solver's search. We show 

that by exploiting structural features of the problem and adopting a certain delineation of responsibilities 

between the constraint-directed reasoner and the problem solver, considerable simplicity in the 

architecture is achieved. In addition, the architecture is incremental; that is, a new solution is derived by 

modifying an existing solution if the problem description is changed. We provide a precise 

characterization of the overall reasoning process by describing the algorithms corresponding to the 

problem solver and the constraint-directed reasoner. We also contrast our representation with related 

work in operations research and artificial intelligence. 
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. 2. The Constraint Satisfaction Problem - 

Many types of design problems can be vrewed as the task of making cholces from among competing - 

sets of alternatives. For example, the design (spec~fication) of a computer system m~ght require the 

selectron of a processor, memory un~t, operating system, etc. from amocg the various alternatives 

available for each. In turn, each cholce may entall certain tradeoifs; for example, w~th respect to cost, 

performance, and cornpatib~lity wlth other components to be selecred. 

Often the designer is faced with a set of constraints that must be satisiied by the set of selected 

choices. Again, using the computer system design example, each set of choices has an associate0 set of 

attributes that characterize and distinguish the alternatives in the set. For example, each of the 

processors that can be selected has an associated speed and cost. Assuming cost is an attribute 

associated with each of the types of soitware and hardware components to be selected, then the 

designer may be faced with a budgetary constraint. That is, the total cost of the various components 

selected cannot exceed a specified amount. 

2.1. Definitions 
A constraint satisfaction problem (CSP) is characterized by an ordered set X = {X,, X,, X3. ..., Xnj oi 

choice sets, and a set C = {C,, C2 C3, ..., Cm} of constraints. Each choice set Xi = {xi,,, xjS2 ..., x ,,,, ,) 
represents a set of alternatives. Corresponding to each Xi is a set of choice set attributes Ai = {A,,, AjT2. 

.... Ai,,,j used to characterize each of the alternatives in that choice set. For example, i f  X, is the cho~ce 

set consisting of a set of computer processors, as discussed above, then speed and cost are two of the 

attribute values associated with this choice set, meaning each processor in the set has an assoclarea 

value for this attribute. 

..., x , r where An assignment for the set o i  choice sets X is a sequence of alternatives X = CX,,,,, x~,,. ,,," 
x. .  E XI. 
'.Ii 

A constraint Cj G C can be viewed as a Boolean mapping defined over the set of assignments for X. 

That is, Cjx",, );; --, {T,v. An assignment X for X is said to satisfy the constraint Cj if C,(q = T; 
otherwise Xis said to violate the constraint. An assignment for X is called a satisficing assignment for the 

CSP characterized by the set of choice sets X and the constraint set C i f  V Cj E C, CjX) = T. 

We specify constraints in the form 

t,. t, t3, ..-, tn-, 3 tn 

which we call a dependency constraint Each constraint term ti is a Boolean-valued expression over a set 

of constants and variables, where each variable is specified in the form Xi-Aii' and denotes the value 

associated with attribute AjVi of the alternative selected in choice set X, Thus, a constraint term states a 

relationship between various of the choice set attributes and constants, and denotes (assuming eacn of 

the variables over which it is defined has a value) either the value TRUE or the value FALSE. 

A constraint, specified in the form shown above is interpreted as the material implication 
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f l ~ ( z~ t3~ ; . . ~ (n - l  3 t,, 

We thus call each term that occurs to the left of the arrow in a constraint an antecedent term, and the 
- 

term to the right the consequent term. A constraint that has no antecedent terms is called a premise 

constraint. Under this semantics, a constraint is satisfied jf each of its terms denotes a value, and either 

its consequent term denotes TRUE or at least one of its antecedent terms denotes FALSE. Therefore, ii 

each of the relationships specified by the conjuncts in the antecedents of the constraints holds (i:e., 

denotes TRUE), then the relationship specified by the consequent t, must also hold. The consequent o f  a 

premise constraint must always hold. 

2.2. Efficiency and Representation Issues in CSPs 
Constraint satisfaction problems are NP-complete and can be solved by backtrack search. Several 

relaxation methods have been developed for preprocessing a problem so as to reduce the search effort. 

Waltz (1972) has developed a "filtering" algorithm for scene labeling, now commonly known as an 

arc-consistency or 2-consistency algorithm since it eliminates values from variable domains considered 

two at a time. Montanari (1974) extended arc-consistency to deal with three variables at a time; the 

resuling algorithm is known as a path-consistency or 3-consistency algorithm. For definitions of these 

algorithms, the reader is refered to Mackworth (1977). The basic idea underlying such algorithms is that 

local constraints become propagated globally through the iterative application of relaxation rules. Freuder 

(1 978) generalized the concept of relaxation by providing an algorithm for achieving k-consistency, that is, 

pruning variable domains by considering k variables at a time. When k equals the total number of problem 

variables, the algorithm, in effect, generates all solutions. More recently, Montanari and Rossi (1990) 

have defined efficient methods that apply every relaxation rule only once. 

A CSP, as we define it, is amenable to the application of a k-consistency relaxation algorithm. Applying 

the algorithm would result in the compilation of a list of untenable combinations of up to k values. (Freuder 

actually eliminates untenable values, but they can be useful for explanation, a point we return to later.) 

There is not enough evidence about the tradeoffs involved in applying the various relaxation algorithms, 

although preliminary results suggest that node and arc-consistency are almost always useful whereas 

achieving higher levels of consistency is not generally worthwhile (Dechter, 1989). 

While the need to solve constraint satisfaction problems as efficiently as possible is important, it is 

equally important to have a rich representation for expressing these problems, both from a user and a 

computational standpoint. For a user, it is important that the problem be express~ble as naturally as 

possible and that a representation be able to provide explanation and "what-if" capabilities. From a 

computational standpoint, the representation should allow a system to incrementally alter an existrng 

solution when the problem description is modified, and to reduce search by being able to explo~t control 

information that might exist in the syntax of the constraints, and by applying application-spec~fic 

knowledge for dependencydirected backtracking. In the next two sections, we describe a representation 

that makes the above functionality possible. In simple terms, this is achieved by providing additional 

semantics to the nodes and links in the constraint network, and by distributing the overall responsrbility for 
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solving the problem into two distinct components, a problem solver and a constra~nt-driven reasoner. The 

resulting architecture turns out to have some interesting features in common w~ th  truth rna~ntenance 

systems. 

3. The Problem Solver 
The problem solver is assigned the task of deriving a satisficing assignment for a CSP. Given a CSP 

characterized by (X, C}, where X is a set of choice sets, and C is a set of dependency constraints, it  has 

the responsibility of selecting an appropriate alternative  from each of the choice sets X, in X. Together, 

the set of selected alternatives must satisfy each of the constraints in C. 

The problem solver is restricted to making one selection from one choice set at a time. At each 

instance, the problem solver holds a set of beliefs, these beliefs corresponding to the set of alternatives 

that it has currently selected from various of the choice sets. In turn, a set of currently held beliefs, if 

retained, may limit the set of alternatives that can be selected by the problem solver from those choice 

sets for which a selection has yet to be made. 

The limitations faced by a problem solver arise as a result of the problem's set of characteriz~ng 

constraints. Each constraint term specifies a relationship between various of the alternatives. When a 

constraint term occurs on the right hand side of a constraint it defines a limitation that may have to hold at 

various times during the problem solving task. Premise constraints, having no left hand side, specify 

limitations that are in effect throughout problem solving, regardless of the problem solvers current state of 

beliefs. 

The problem solver extends its set of beliefs through the action of making selections. As the set oi 

beliefs expands, the problem solver may become more limited in the future actions that it may take. As 

the number of limitations grows it may reach a point where the problem solver cannot take any action that 

will not result in the violation of at least one constraint. 

In order to remedy a conflict, the problem solver must change some of its currently held beliefs, 

supplanting them with other beliefs. This remedy is effected by retracting some currently selected 

alternatives, and substituting other alternatives from the same choice sets. Thus, the set of beliefs held by 

the problem solver can grow non-monotonically. 

Corresponding to each choice set Xi the problem solver maintains a selection variable Xi that is used to 

designate the alternative that it has selected from that choice set. This compound variable cons~sts of 

one component, designated Xi.A,.? for each attribute Ali over which the associated choice set is defined. 

At the beginning of the problem solving task each component of each selection variable is initialized to 

the value UNKNOWN indicating that no alternative has been selected from any of the choice sets. For a 

selection variable Xi, we represent this initial state as Xf = UNKNOWN. When the problem solver selects 

an alternative from the associated choice set it sets each of the components of the selection variable to 

the corresponding attribute value of that alternative. 
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Since the problem solver can only select one alternative form one choice set at any instance, this task 

must be ordered. Although the order in which alternatives from the choice sefs are searched must not 

-affect whether or not a satisficing assignment is eventually found -- the search procedure must be 

exhaustive -- it is likely to determine which of several satisficing assignment is found. in the system that 

we have implemented the search can be biased by specifying a preference for the order in which choice 

sets, and alternatives withing choice sets, will be considered. Typically, the ordering is specified in terms 

of function defined over the choice set attributes. This is analogous to a utility function in decision theory. 

Once the problem solver has selected an alternative from a choice set it must then determine a new ser 

of relationships (i.e., limitations) that, based on this selection, must hold among the alternatives, both 

those that have already been selected, and those that will be selected. To perform this part of its task, it 

uses a constraint-directed reasoner (CDRJ. 

4. The Constraint-Directed Reasoner 
The CDR subcomponent is designed to be separate from, but interact closely w~ th  the problem solver 

With respect to control, the CDR is subordinate to the problem solver. Specrficaliy, w~th each new bellei 

communrcated to it by the problem solver, the CDR computes incrementaliy the relat~onshrps as 

expressed by the constraint terms that must hold. Also it must be able to detect conrradictlons In the 

current set of beliefs. The problem solver is informed of any contradictrons that arrse, and has the 

responsibility of resolving them. 

The basic unit manipulated by the CDR in carrying out its task is a constraint term node. With one 

exception the CDR maintains a node for each constraint term, regardless of the number of times that 

constraint term appears among the constraints. The exception to this scheme occurs when one consrraint 

term, say ti, is the logical negation of another constraint term 5, that is, ti = l$. Here one node is used to 

represent both terms. A constraint term node, designated 

<constraint-term-label, constraint-term-value, justifications, consequents> 

. . 
consists of four components, each of which we describe below. 

A constraint-tern-label designates the constraint terms to which the containing node corresponds. The 

constraint-term-label of a node explicitly specifies a single constraint term ti that appears in the 

antecedent or consequent of one or more dependency constraints. We call this constraint term the prime 

designee of the node. 

In addition to its prime designee, a node designates the logical negation of its prime designee. (This 

iogical negation need not appear in a dependency constraint.) Two benefits derive from the ability of a 

node to designate two constraint terms. First, the number of nodes needed to designate the varlous 

constraint terms may be reduced since each constraint term and its negation does not need a unlque 

designator. Second, as will be shown, it provides a convenient mechanism for detecting certain 

contradictions that, based on the set of beliefs, may arise among the derived relationsh~ps. 
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The constraint-term-value component is used to record whether or not the relationship speciiied by the 

prime designee, and similarly its negation, is to hold. This value, one of TRUE, FALSE, UNKNOWN, or 

TIF is stated with respect to the prime designee and is implicit for its negation. If constraint term ti is the 

prime designee of the node, then a value of TRUE indicates that, based on the current set of beliefs of 

the problem solver, the relationship expressed by ti must hold, and, equivalently, that expressed by its 

negation -7 ti must not hold. Similarly, a value of FALSE indicates that the relationship expressed by ti 

must not hold, and that that expressed by 7 t i  holds. The value UNKNOWN indicates that it cannot be 

determined from the current set of beliefs whether or not the relationship specified by the designees of 

the node must or must not hold. If the problem solver has taken some action (i.e., selected an alternative) 

that leads to a contradiction in that its current set of beliefs is such that both the relationship expressed by 

ti and that expressed by -7 ti must hold, then the constraint-term-value component is assigned the value 

TiF. As will be seen, this allows the reasoning system to function with inconsistencies until the problem 

solver chooses to resolve them. 

The justification component provides bases for the relationships expressed by the designees of a node. 

This component consists of two subcomponents: a set of t-justifications, and a set of f-justifications. Each 

t-justification states the set of beliefs that together form a basis for the relationship specified by the prlme 

designee of the node holding, and thus for the relationship specified by its negation not holding. Similarly, 

the f-justifications provide a basis for the relationship specified by the prime designee not holding, but the 

relationship specified by the secondary designee holding. As we will discuss shortly, the justification 

component is used by the CDR to establish or confirm the relationship specified by one of the designees 

of the node and to detect contradictions. 

The consequent component of a node identifies those constraint terms, and thus nodes, that specify 

relationships whose value, that is whether or not they hold, may be affected by the current value of the 

node containing this component. The identified nodes correspond to the consequent terms of those 

constraints where a designee of the current node appears as an antecedent term. Thus, consequent 

components establish dependencies among the designees of the constraint term nodes. A consequent 

component also consists of two subcornponents: a set of tconsequents, and a set of f-consequents. The 

tconsequents identify those nodes having a designee whose value may be dependent on the value of the 

prime designee of the current node. Similarly, the fconsequent identifies those nodes having a desrgnee 

whose value is potentially dependent on the value of the secondary designee of the current node. 

In identifying constraint term nodes the values of the consequent subcomponents, in effect, define 

edges between the containing node and the nodes identified by these values. These edges, along with 

the constraint term nodes define a dependency net that characterizes the set of constraints from which it 

is derived, and that is used for constraint propagation. 

Since constraint term nodes correspond to dependency constraint terms they can, and are, created 

when the CSP is specified to the system. At this time one constraint term node is created for each term 

and, if present, its negation, encountered in the set of dependency constraints. The first of the two terms 

encountered becomes the prime designee of the created node. 
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The initial value of the constraint-term-value component of a newly created node is determined by the 

placement of the node's designees within the set of characterizing dependency constrarnts. If neither 

designee appears as the consequent term of a premise constraint, then the constraint-term-value IS set to 

UNKNOWN, indicating that initially it is not known whether or not the relationships spec~iiea by the 

designees of the node must hold. 

The relationships specified by premise constraint terms must always hold. Thus the nodes for which 

these constraints are designees must have a constraint-term-value that is not initialized to UNKNOWN. 

Rather, if the prime designee of the node occurs in a premise constraint, then the constraint-term-value is 

initialized to TRUE. Similarly, it is initialized to FALSE if the negation of the prime designee occurs in a 

premise constraint. The occurrence of both designees of a node in premise constraints indicates an 

inconsistency in the set of characterizing constraints, knowledge of which the user is informed. 

The two justification subcomponents have initial values that are also determined by the nature of the 

designees of the containing node. If initially the problem solver has no basis for belief in the relationship 

expressed by the designees of a node, that is, the initial constraint-term-value is UNKNOWN, then 

equivalently there must not be any justification for these relationships. Accordingly, the t-justification and 

f-justification are both initialized to nil. 

An initial constraint-term-value of TRUE or FALSE in a node corresponds to the prime designee or the 

secondary designee, respectively, being a premise constraint term. For such nodes a special marker P is 

used to indicate that the relationship specified by one of the designees of the node holds because ~t was 

specified as a premise constraint. If the constraint-term-value is TRUE, then the t-justification is initialized 

to the set {P} and the f-justification is initialized to nil. Similarly, if the constraint-term-value is FALSE,  

then the t-justification and the f-justification are initialized to nil and {PI, respectively. 

It should be noted that the constraint network is compiled when the constraints are specified, and does 

not change with the changing state of the problem. The size of the network is bounded by the number of 

constraint terms. 

5. Implementation 
In this section we describe the data structures and algorithms used in implementing the overall problem 

solving system. These descriptions are not intended to be exhaustive. Rather, they are intended to 

provide a somewhat simplified, and for reasons of exposition, ideal, view of how the system is constructed 

and functions. n u s  the descriptions range from simple narratives when adequate, to more formal 

programming language-like descriptions using both structured and object-oriented language conventions. 
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5.1. Data s t ruc tures  

The basic data structures manipulated by the problem solver are those that are used to represent 

choice sets. A data structure of type choice-set is a record-like object defined as 

choice-set = 
object of 

selection : integer; 
alternative: array[I..#-of-alternatives] 

of attribute-indexed records 
end 

The alternatives in a choice set are represented as elements of the array that is defined as the second 

component of a choice-set object. Each of these elements is an associative record structure (e.g., 

dictionary) that contains one value for each attribute over which the choice set is defined. The value for a 
particular attribute of an alternative is retrieved by specifying the appropriate attribute name. Thus, 

cs.alternative[n].A (or for brevity, cs[n].A, where attribute is understood) references the value 

associated with attribute A of the nh alternative in choice set cs. The first component of a choice-set 

object, referenced as cs.selection, specifies the index of the alternative that has currently been selected 

from choice set cs. A value of zero is used to indicate that no alternative has currently been selected from 
the specified choice-set object. 

AIJ objects of type choice-set are maintained by the problem solver. In particular, the problem solver is 

responsible for setting the value of the selection slot of these objects to indicate which of the alternarives 

in the corresponding choice set it has selected. In order for the CDR to be able to determine the affect of 

a newly made selection (or a change in a selection) on its belief of which relationships hold, it is given 

read access to each instance of an object of type choice-set. This read access is provided so as to 

simplify parameter passing in the system. 

The basic data structures manipulated by the CDR are objects of type c-term-node that, as described 

in the previous section are defined to correspond to constraint terms. Together, instances of 

c-term-node objects are used to implement a dependency net that'models the set of constraints C that 

characterize the target problem. A node of. type c-term-node is defined as follows: 

c-term-node = 
object of 

c-term-label: c-term-func; 
c-term-value : extended-~oolean'; 
t-justif : set of support-sets; 
f - justif: set of support-sets; 
t-conseq: set of c-term-nodes; 
f-conseq: set of c-term-nodes; 

end 

The c-term-label component of a c-term-node object is implemented as an extended-Boolean-valued 

'We define an extended-Boolean as consisting of, depending on the context, a specified set of other values in addition to those 01 
T R U E  and FALSE In particular we allow the values UNKNOWN and T/F. 
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function (c-term-func) that is der~ved from the constraint term that is the prime designee of the node. 

When executed this function accesses the appropriate choice-set instances (those over which the 

corresponding constraint term is defined) and returns a value that results from computing the relationship 

expressed by the constraint term. If too few of the choice sets over which this relationship is defined have 

had alternatives selected, preventing a value of TRUE or FALSE from being returned, then UNKNOWN is 

returned as the value of c-term-label. 

The value of a c-term-value component can be TRUE, FALSE, UNKNOWN, or TIF. If ne!ther 

designee of the c-term-node is the consequent of a premise constraint, then the c-term-value is initialized 

to the value UNKNOWN. The c-term-value component is initialized to TRUE if the prime designee of the 

node is the consequent of a premise constraint, and to FALSE if the secondary designee of the node is 

the consequent of premise constraint. Since the the c-term-value component reflects the current belief in 

the relationship specified by a designee of the c-term-node, its value can be expected to be changed by 

the CDR throughout the course of the problem solving task. 

The t-justif and f-justif components of a c-term-node object corresponds, respectively, to the t- 

justification and f-justification subcomponents described in the previous section. Each of these 

components is implemented as a set of objects of type support-set. 

Each element of a support-set object is a structured object of type support-element consisting of hvo 

components. The first component is an instance of a c-term-node object, and the second component is 

one of the Boolean values TRUE or FALSE. 

The t-justif and f-justif components of a node contain one support-set object for each problem 

constraint in which the prime designee (implemented as the associated c-term-label) and its negation, 

respectively, appear as the consequent term. Each object of type support-set contains one 

support-element object for each antecedent term in the corresponding problem constraint 

A support-set object is used by the CDR to determine if belief in the reiationship specified by a 

designee of the containing c-term-node is derivable from (i.e., supported by) belief in each of the 

relationships specifikd by f i e  antecedent terms of the corresponding problem constraint. The first 

component of each support-element of a support-set identifies the c-term-node associated with one of 

these antecedent terms. The second component, the Boolean value, specifies which of the two designees 

of the identified c-term-node object corresponds to the antecedent term. The value TRUE indicates the 

prime designee, FALSE its negation. 

The t-conseq and f-conseq of a c-term-node object are implemented as sets. Each element of each of 

these sets identifies a c-term-node object that has a designee that is the consequent term of a problem 

constraint for which the prime designee, in the case of tconseq, and its negation, in the case of 

t-conseq, of the current node appears as an antecedent term. 

- - 
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5.2. Algorithms - 

Each of the algorithms, presented here in the form of a function or a procedure, comprise one or the 

other of the CDR or the problem solver. In the overall control scheme the problem solver, using some 

heuristic, selects some alternative from a choice set. Based on this selection and the set of problem 

constraints the CDR makes a series of deductions that determine what relationships must hold among 

various of the choice set alternatives. When no more deductions are possible, the constraint set is said to 

be relaxed. If no constraint violation (i.e., inconsistencies in the set of relationships that must hold) are 

detected by the CDR, control passes back to the problem solver and the cycle continues. If any violations 

are detected, the CDR performs dependency analysis in order to determine those sets oi selections, such 

that each set identifies those selections that together leads to at least one of the detected violations. 

The problem solver is implemented by the procedure PROBLEM-SOLVER shown below. 

Procedure PROBLEM-SOLVER ( )  
PS-1. CS = select-unassigned-cs 
PS-2. if cs = undefined 
PS-3. then return (true) 
PS-4. cs.select = 1 
PS-5. while CDR-NOGOOD-VIOLATION (cs) = true 

and cs . select I number-of (cs. alternatives) 
PS-6. do cs-select = cs-select + 1 
PS-7. if cs. select > number-of (cs . alternatives) 

then 
PS-8. cs. select = 0 
PS-9. return (fail) 
PS-10 con£ lict-set-list = 0 
PS-11. CDR-PROPAGATE (cs, conf lict-set-list) 
PS-12. if not-empty (conflict-set-list) 

then 
PS-13. retract-list = choose (conflict-set-list) 
PS-14. for each choice set C in retract-list 

do CDR-RETRACT (x) 
PS-15. while fail (PROBLEM-SOLVER) 

and cs . select 2 number-of (cs . alternatives) 
PS-16. do cs.select = cs.select + 1 
PS-17. if cs. select > number-of (cs. alternatives) 

then 
PS-18. cs. select = 0 
PS-19. return (fail) 
PS-20. else return (fme) 

The function select-unassigned-cs invoked in Step PS-1 of the problem solving algorithm encodes 

the heuristic for determining from which choice set an alternative wiil be next selected. If an alternative 

has currently been selected from each choice set, this function retrurns the value undefined. 

After a choice set has been selected, the problem solver attempts to select an alternative from it by 

using the procedure CDR-NOGOOD-VIOLATION to successively test alternatives to find one that does 

not form in conjunction with other currently selected alternatives a combination that from past experience 

the CDR knows will lead to an inconsistency. (Each untenable combination of selections, cailed a nogood, 

when first detected by the CDR is added to a list. This list of nogoods is accessed by 

CDR-NOGOOD-VIOLATION in the performance of its task.) 
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Once the problem solver has selected a suitable alternative (i.e., one that does not lead to a 

combination of selected alternatives that encompasses a. nogood) it informs the CDR of this selection 

through the invocation of the CDR module CDR-PROPAGATE. This module, which is described below, 

controls the constraint function of the CDR. If no contradictions arise from the propagation, 

then the problem solver continues its task, through a recursive call to itself, by selecting another choice 

set from which to select an alternative. If a contradiction is detected during propagation then 

CDR-PROPAGATE provides, through its second argument, information about the combinations of 

selected alternatives that led to the contradictions, providing the problem solver with the information that it 

needs to so that it can take appropriate action to alleviate the problem before continuing the task of 

selecting alternatives. 

The CDR is organized as a set of modules, each performing a specific aspect of the overall CDR 

function, and serving as an entry point to the CDR from the problem solver. One of these modules, 

CDR-PROPAGATE, is invoked by the problem solver to effect changes in the set of relationsh~ps, 

expressed by constraint terms, that, based on the set of alternatives that have currently been selecreo, 

are believed to hold. 

Procedure CDR-PROPAGATE (cs, conf lict-sets) 

CDR-1. for each c-term-node c in entry-nodes(cs) 
do CDR-LT-PROPAGATE (c, conf lict-sets) 

CDR-2. return 

The procedure CDR-PROPAGATE serves as an overall control module for the propagation functron of 
the CDR. This module invokes the procedure CDR-LT-PROPAGATE for each c-term-node contarned 

within the set indexed by the choice set denoted by the parameter cs.(i.e., entry-node(cs)). This indexed 

set identifies each of the constraint term nodes having a designee, and thus a label, that is defined In 
terms of the indexing choice set cs. Each of these nodes serves as an entry point into the dependency 

net, and allows the CDR to only have to consider those constraint term nodes that have a c-term-label 

value that can be affected by the alternative that was selected by the problem solver. 

The procedure CDR-LT-PROPAGATE is used to determine if the value of the c-term-label of the 

constraint term node identified by its first parameter is affected by the the selected alternative. Such a 

change may, depending on the set of problem constraints and the current state of the set of c-term- 

nodes, necessitate the propagation of constraint term values. 

Procedure CDR-LT-PROPAGATE (c , conf lict-sets ) 

L1. if c.label = unknown or c.label = c-value or c-label = t/f 
L2. then return 

else 
~ 3 .  if c .value <> unknown 

then 
L4. let c-value = Uf 
L5. assumpt-sets = CONFLICT-ASSUMPTS (c) 
L6. nogoods = nogoods u assunrpt-sets 
L7. conflict-sets = conflict-sets u assumpts-sets 

- 
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- 
else 

~ 8 .  c.value = c-label 
L9.  if c.label = true 

then 
- 

LIO . for each const-term-node x in t-conseq 
~11. - do CDR-JT-PROPAGATE (x, conflict-sets) 

else 
L 1 2 .  for each const-term-node x in f-conseq 
L 1 3 .  do CDR-JT-PROPAGATE (x, conflict-sets) 

Step L1 of CDR-LT-PROPAGATE is used to determine whether or not the propagation process should 

continue for the current constraint term node. If the c-term-label component of the node evaluates to 

unknown or to a value that is the same as that of the c-term-value component, or the c-term-value 

component has the value t/f, then propagation does not proceed; in the first case because a value of 

unknown indicates a lack of belief in whether the relationships corresonding to each of the designees of 

the node should hold, in the second and third cases because the current value of the c-term-value 

component indicates that propagation, if necessary, was performed during an earlier visit to the node 

when this value was originally determined. 

Assuming that the c-term-label component evaluates to a value other than unknown, and that this 

value is different from that of the c-term-value component, Step L3 of the procedure checks to see ii a 

conflict has occured. If a conflict has occurred, that is, the value of the c-term-value component is also 

other than unknown, and by Step L1 is different from that of the c-term-label component, then the 

procedure sets c-term-value to t/f, and invokes the function CONFLICT-ASSUMPTS to determine the 

underlying set of the problems solvers beliefs that led to the conflict. 

Finally, CDR-LT-PROPAGATE attempts to propagate the newly derived c-term-la~el value forward by 

invoking CDR-JT-PROPAGATE. This procedure is invoked using each of the c-term-nodes pointed to by 

the current nodes t-conseq component if the c-term-label value is true, or the fconseq component if the 

c-term-label value is false. 

The function CONFLICT-ASSUMPTS, when presented with a c-term-node for which a conflict has 

been detected, returns a set of conflicting-assumption sets. Each conflicting assumption set is a subset 

of those alternatives that have currently been selected from the various choice sets by the problem solver, 

and that together, in conjunction with the set of problem constraints, lead to the detected conflict. Each 

such conflict set is saved as a nogood for later use by the CDR module CDR-NOGOOD-VIOLATION in 

its task of helping the problem solver avoid remaking futile combinations of selections. 

As an example of the formation of these nogoods consider the set of dependency constraints 

where each constraint term ti is defined in terms of a single choice set i. Assume that alternatives have 
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been selected from each of the choice sets corresponding to the constraint terms shown above, and that 

these -selections lead to a conflict that is detected in the c-term-node that has t, and ?iLZ as its 

designees. In addition, assume that the alternative that has been selected from choice set D is such that 

the relationship specified by tD holds. We could resolve the conflict by retracting belief in {i.e., some of 

the selections that support) either the relationship specified by tD or that specified by 7 i 0 .  The former 

requires the retraction of the selected alternatives in choices sets D and E or choice set D and C and 

either of A and B. The latter requires the retraction of the selected alternatives in either of choice sets 0 or 

E. Graphically, these combinations can be represented by the following AND/OR graph: 

0 r 
/ \ 

/ \ 
/ \ 

and and 
/ \ \ 

/ \ \ 
D \ \ 

0 r or 
/ \ / \  

/ \ / \ 
E \ E B 

and 
/ \ 

/ \ 
c \ 

0 r 
/ \ 

/ \ 
B A 

The leftmost subtree of the root (topmost or) node specifies those combinations of selected alternatives 

upon which belief in the relationship specified by tD is based. Similarly, the right subtree shows the 

combination of alternatives that provide support for belief in the relationship specified by ~ 1 ~ .  

The procedures CDR-LT-PROPAGATE and CDR-JT-PROPAGATE . . invoke CONFLICT-ASSUMPTS 

to construct a set of conflict sets for each constraint term node for which a selected alternative leads to a 

conflict The union of these sets of conflict sets are returned to the problem solver which has the task of 

deciding which of the selections should be retracted in order to eliminate the conflicts. 

The procedure CDR-JT-PROPAGATE shown below is used by the CDR to determine if belief in the 

relationship specified by one of the designees of the c-term-node denoted by the first argument of the 

procedures has become newly justified. This justification of a designee is determined using the t-justif and 

f-justif components of the c-term-node, with the associated designee corresponding to a consequent 

constraint term. When a relationship is newly justified the c.value component of the node is set 

accordingly, and, depending on that value, propagation continues through a recursive call to 

CDR-JT-PROPAGATE using each of the nodes in either the t-conseq or the f-conseq component. 

Procedure CDR-JT-PROPAGATE (c, conf lict-sets) 

a. if not SATISFIED (t- justif) and not SATISFIED (f- justif) 
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3 2 .  then return 
5 3 .  if SATISFIED (t- justif) 

then - 

5 4 .  if c.value <> true 
then 

3.5. if c.value = unknown 
then 

5 6 .  let c-value = true 
5 7 .  for each cnstr-tern-node x in t-conseq 
J 8 .  do CDR-JT-PROPAGATE (x, conf lict-sets) 

else 
J 9 .  let assumpt-sets = CONFLICT-ASSUMPTS (c) 
510.  let nogoods = nogoods u assqt-sets 
Jll  . let conflict-sets = conflict-sets u assuapt-sets 
512 .  if c. value = false 

then 
513. let c .value = t/f 
514 .  for each const-term-node x in t-conseq 
515 .  do CDR-JT-PROPAGATE (x, conflict-sets) 
5 1 6 .  if SATISFIED (f - justif) 

then 
5 1 7 .  if c-value i> false 

then 
518 .  if c. value = unknown 

then 
519 .  let c .value = false 
J 2 0 .  for each const-term-node x in f-conseq 
521 .  do CDR-JT-PROPAGATE (x, conflict-sets) 

else 
522 .  let assumpt-sets = CONFLICT-ASSUMPTS (c) 
523 .  let nogoods = nogoods u assumpt-sets 
524 .  let conflict-sets = conflict-sets u assuapt-sets 
525 .  if c.value = true 

then 
526 .  let c.value = t/f 
527 .  for each const-term-node x in f-conseq 
5 2 8 .  do CDR-JT-PROPAGATE (x, conflict-sets) 

The function SATlSFlED used by CDR-JT-PROPAGATE to determine if its argument, a t-just~f or 

f-justif component, has a support-set that is satisfied in the sense that each of its support-elements 
identifies a c-term-node that has a c-value that is equal to the value specified by the second component 
of the support-element. If such a support-set is found, then SATISFIED returns the value true; otherwise it 
returns the value false. 

In addition to CDR-PROPAGATE, the CDR provides the problem solver with two other entry modules: 
CDR-RETRACT and CDR-NOGOOD-VIOLATION. The first of these modules is used by the problem- 
solver to undo the affects on the dependency net of a selection that it has retracted. The function and 
structure of this module is similar to that of CDR-PROPAGATE, and will not be further elaborated on 
here. 

The module CDR-NOGOOD-VIOLATION maintains a database of nogoods, and is used by the 
problem solver to determine i f  a prospective alternative that it would like to select from a choice set will 
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lead, in conjunction with other of the alternatives that it has selected from other cho~ce sets, to a conflict. 

Unlike the other two CDR modules, CDR-NOGOOD-VIOLATION does not access any of the c-term- 

nodes that make up the dependency net. 

5.3. lncrementality 
Design and planning problems, including those that can be modelled as CSPs are often subjected to 

incremental changes to the problem specification. For example, it might be desirable to perform impact 

analysis on a problem solution or to otherwise modify the problem specification based on the current 

solution. 

With respect to CSPs, an incremental change is a single modification to the set of constraints or cho~ce 

sets that characterize a CSP: a choice set or constraint might be added to or deleted from the problem 

specification, or a choice set might be modified by adding or deleting an alternative within it. (The 

modification of an existing constraint or choice set alternative can be effected through a deletion and 

insertion of constraints or choice set alternatives, respectively, and thus we will not explic~tly discuss 

them.) 

The architectural framework that we have defined accomodates incremental changes to the 

specification of a CSP. The impact on an existing problem solution of an incremental change will depend 

on the nature of the modification made. Some modifications to the problem specification will have no 

affect on an existing solution, others will require that different alternatives be selected for some or ail of 

the choice sets. 

Deleting an existing constraint from the problem specification, adding a new choice set, or adding a 

new alternative to a choice set has the least impact on an existing solution, and is thus the easiest type of 

modificaton to handle within our framework. The deletion of a constraint from a set of constraints has the 

affect of relaxing the set of constraints. Any CSP solution that satisfies the unmodified set of constraints 

will therefore satisfy the modified set of constraints. (In deleting a constraint it is also necessary to modify 

the dependency net that is manipulated by the CDR so that it reflects the remaining set of constraints.) 

If a CSP is modified by adding a new choice set, or adding a new alternative to an existing choice set, 

then what had been the existing solutions must still satisfy the set of constraints since these have not 

been modified. However, it becomes necessary to select an alternative for the new choice set. This 

process is effected by invoking the PROBLEM-SOLVER which will then attempt to extend the existing 

solution by selecting one of the alternatives from the new choice set. Since (by definition) the existing 

constraints cannot have been defined over the new choice set any of its alternatives can be selected 

without violating any of these constraints. 

A CSP can also be modified by removing one of its characterizing choice sets. If no constraints are 

defined over this choice set, then no additional solving problem is required since the existing set of 

selected alternatives from the remaining set of choice sets will still satisfy the set of problem constraints. If 
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there are constraints that are-defined over the choice set that rs to be removed from the problem 

specification, then the removal of the choice set will cause these constra~nts to become ~nvalid. W~th~n the 

context of our framework, we require that these constraints first be incrernen?ally removed from the 

problem specification, at which point the target choice set can then be removed. 

The deletion of an alternative from an existing choice set will only impact on a problem solution if that 

alternative is part of the solution. In this situation the PROBLEM-SOLVER is invoked to attempt to 

reextend what has become a partial solution to a full soiution by selecting a different alternative from the 

choice set. 

When modifying a CSP by adding a new constraint to its specification, it is necessary to modify the 

CDR dependency net to reflect the new set of constraint. Unlike the situation that existed when the 

dependency net was originally defined, it is now possible to specify the constraint-term-value component 

of each of the constraint term nodes that are inserted into the dependency net since, assuming that the 

constraint is valid, alternatives have been selected for each of the choice sets over which the constraint 

has been defined. Similarly, it is possible to determine if the existing solution satisfies the new constra~nt. 

If it satisfies the constraint, then it is also a solution for the modified problem, and no further problem 

solving is required. 

The situation that arises when an existing solution violates a newly added problem constraint is similar 

to that which arises during problem solving when the PROBLEM-SOLVER selects an alternative from a 

choice set that violates a constraint, and is resolved in a similar way. Tine procedure 

CONFLlCT-ASSUMPTS is invoked with the consequent constraint term of the newly added constraint as 

its argument. The set of assumptions returned by this procedure is then used by the PROBLEM-SOLVER 

to resolve the conflict. 

5.4. Explanation 
There are three types of knowledge that form the basis for variable assignments: variable (choice set) 

ordering, value (alternative) ordering, and constraints. The first expresses the relative "importance" of 

each choice set, that is, the relative importance of making the more preferred selections in them. Value 

ordering is expressed via preference (or utility) functions defined over the alternatives within choice sets. 

Severai heuristic approaches to variable and value ordering for reducing backtracking have been 

discussed in the literature [Dechter and Pearl, 19881. Finally, constraints force the problem solver to 

explore only the feasible solutions. 

Because of the preference functions, given a choice set Xi consisting of an ordered set of alternatives 

(Xi,lPiJ,. . . Xi,,), the question 'Why Xi,k?'' implicitly states 'Why not any of the alternatives preceding 

Xi,k?'' Since the system must have actually attempted all of these, it must be the case that they led to 

constraint violations when considered in conjunction with some other selections. If the variable ordering 

used for retraction is the reverse of that used for search (i.e., chronological backtracking), then it must be 

the case that selections preceding Xi& were not possible in conjunction with attempted selections in 
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choice sets preceding Xi. Since backtracking is usually not chronological, however, all that can be saio is 

the alternatives preceding Xi,k were not feasible with certain other selections; all such attempts are 
- 

recorded as nogoods. 

Finally, the third basis for variable assignments is contained in the justification structure of the 

constraint term nodes, and is similar, conceptually, to the notion of data dependencies in truth 

maintenance systems. Specifically, if a node corresponding to a consequent term (say, "hardware speed 

should be greater than 5 MIPS'? has its t-justif or f-justif satisfied, it means that the current selections in 

choice sets associated with that term (in this case hardware) satisfy the constraint expressed by that 

term; further the problem solver was constrained into making this selecrion because the antecedent terms 

that make up the justification for the current node also hold. Each of these antecedent terms, in turn, has 

either a similar support, or it is justified by a selection made according to a utility function. Thus, ultimately 

it is the utility functions that form the bases on which all selections are justified. 

6. Rela t ionship  to Other  Work 
Our work is related to a number of constraint satisfaction approaches, notably, relaxation methods, 

truth maintenance, and integer programming. 

6.1. Relationship to Relaxation Methods 
Relaxation methods focus on eliminating bad combinations of assignments prior to search by 

transforming a given constraint network into a "more explicit" one (Montanari and Rossi, 1990). Thls 

reduces backtracking in subsequent problem soiving. It is interesting to note that the applicarion of a 

k-consistency algorithm results in nogoods of size upto k. Smaller nogoods are more powerful in pruning 

search. 

In our model, nogoods are examined by the function TMS-NOGOOD-VIOL4TlON to ensure that the 

problem solver aviods these untenable combinations of assignments. A second use of nogoods, as 

described in the previous section; is that they are useful for explanation. 

6.2. Relationship to Truth Maintenance Systems 
The relationship of our model with truth maintenance systems can be examined in terms of the 

structure and semantics of the nodes in the dependency network, and the labelings of the nodes. 

Table 1 indicates the relationship between the four valued logic used to label nodes in our constraint 

network and the INS and OUTS of a Doyle-style TMS. A truth value of true for a proposition corresponds 

to it being IN and its negation being OUT. Similarly, a false corresponds to the proposition being OUT and 

its negation being IN. A value of unknown indicates that the proposition and its negation are both 

unknown. Finally, a value of t/f, indicating a contradiction, indicates that the proposition and its negation 

are both IN. 
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................................................... 
-I Term I P I -p I 
I T= th  value I - I I 
I of term p I 1 I - 
1--------------------------------------------------- I 
I TRUE I IN I OUT I 
I I I I 
I FALSE I OUT ( IN 1 
I I I i 
I UNKNOWN I OUT I OUT j 
I l I I 
I T/F I IN 1 IN I ................................................... 

Table I 

A non-monotonic justification such as "unless x-+y",  which states that unless x is true y is true, is 

expressable in our language as a disjunction of false and unknown, that is, "(false x) OR (unknown x) -+ 

y". In effect, a non-monotonic justification is converted into a Boolean expression representing a term- 

node which is handled in the standard way by our constraint-driven reasoner. 

In terms of the semantics of the nodes of the dependency network, the I-justif and f-justlf part of 

constraint term nodes are similar to support-list justifications of TMSs. A fundamental difference, however, 

is that our structure models a constraint expression (a term) and not a problem solver datum. In contrast, 

dependency nodes in truth maintenance systems represent assertions (each being a problem solver AND 

a TMS datum with different meanings in the two) whose justification structure is dynamic. In fact, in order 

to maintain consistency and well-foundedness -- two fundamental properties that the data must satrsiy -- 
a TMS essentially manipulates the justification structures which in turn determine node labeling~. In 

contrast, our constraint reasoner basically performs label propagation with static justification structures, 

abdicating all decision-making responsibility to the problem solver. This leads to considerable simplicity in 

our status assignment algorithms and a more natural division of responsibility between the problem solver 

and the constraint reasoner, avoiding the rather ad-hoc constraint satisfaction methods employed by the 

various TMSs. 

It should be nated that the constraint terms can be constraints themselves, expressing relationships 

among sets of selections across choice sets. For example, a constraint involving a term of the form 

hardware-.cost < (software.cost + operating-system.cost) 

specifies a relationship that holds for certain combinations of hardware, software and operating systems 

(as the problem solver makes selections, the CDR determines whether such relationships, and hence the 

constraints they make up, hold). Since the terms can be arbitrarily nested Boolean expressions, higher 

order constraints are easily expressed. In general, the number of constraints of the form above is small 

compared to the size of the search space. Thus the dependency network maintained by our reasoner is 

small, resulting in an efficient constraintdriven module. 
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6.3. Operations Research Approaches 
Constraint - satisfaction problems have been dealt with extensrvely in the Operations Research literature 

where an additional requirement of optimality is expressed via an objective function. If the constra~nts and 

objective function are linear, and the variables are continuous valued, the problem is easily solved using 

linear programming (LP) algorithms such as the Simplex algorithm (Dantzig, 1963) or Karmarkar's new 

algorithm (Karmarkar, 1984). Solving a discrete valued problem is more difficult. It involves an ilerat~ve 

process where each iteration begins by first solving its LP relaxation (that is, ignoring integrality). The set 

of feasible solutions of the LP relaxation form a polytope which is generally a superset of the polytope 

representing integer solutions. Therefore additional constraints (sometimes called "cuts") are introduced 

into the formulation to move toward the integer solutions. This is accomplished in the second step by 

using either the branch and bound or the "cutting planes" technique (Gomory, 1958; Chvatal, 1973). 

Gfotschel and Padberg (1 982) have reported remarkable success in applying specialized branch and 

bound and cutting planes algorithms in solving the traveling salesman problem. In addition, Crowder et al. 

(1983) have described several constraint pre-processing and cutting plane generation strategies for 

general 0-1 problems that result in a dramatic reduction in the work done by the branch and bound step. 

The constraints involved in these discrete problems, linear constraints, are special cases of those in the 

constraint satisfaction problem described in this paper. Thus, certain special cases of our problem can be 

solved efficiently using these methods. In the remainder of this section we describe these special cases 

and how they can be transformed for solution using discrete optimization methods. We also describe how 

our TMS can be coupled with an optimization module to provide a useful decision support functionality. 

Since choice sets contain discrete sets of alternatives each of which may or may not be selected, each 

alternative can be characterized in terms of a 0-1 variable. Constraints can then be expressed in terms of  

algebraic relationships among Boolean variables. Each such constraint can in turn be expressed as a 

clause. For example, the constraint -,sI,s2--+s3 is equivalent to ' 3 ,  or not-s, or s3" where each si is a 

propositional variable. In this way, the problem can be expressed conveniently in conjunctive normal form. 

Each clause can be expressed as an inequality. For example the above clause can be expressed as 

s1+(1-s2)+s3 2 1 

In general, as has been noted independently by Hinton (1979) and Hooker (1988), a clause can be 

expressed in the form: 

clsl+ ...+ c,s, 2 1-n(c) 

where c is a row vector and s is a column vector, and n(c) is the number of negative elements in the 

vector c. Each ci is 1,0, or -1, indicating whether si appears, does not appear, or -.lsi appears in the 

clause, respectively. The above notation is due to Hooker (1988). 

If the constraint set consists entirely of premise constraints, the problem can be formulated as a 

general 0-1 integer programming problem. I f  all terms in the constraints are linear, we have a linear 0-1 

formulation. For example, the premise "software cost is less than hardware cost", where software and 

hardware are choice sets and cost is an attribute of both sets, expresses a linear constraint. In contrast, a 
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premise constraint such as "the ratio of hardware to software costs should be less than half the air- 

conditioning equipment cost"is a non-linear (quadratic) constraint. 

Non-linear cases can be solved by transforming the problem into linear form. It has been shown 

(Wagers, 1967) that any polynomial 0-1 program can be transformed into a linear 0-1 program by 

replacing every product of 0-1 variables by a new 0-1 variable and introducing additional constraints (see 

Hansen,1979). It has been recognized, however, that the number of new variables and new constrarnts 

so introduced may be very large even for small non-linear 0-1 problems (Hansen, 1979), making them 

difficult to solve. 

If the set C includes non-premise dependency constraints involving terms of the form described above, 

the problem can still be reduced to a 0-1 form, although the number of 0-1 constraints required to express 

a dependency constraint can be large, depending on the number of terms in it and the sizes of chorce 

sets referenced by the terms. Essentially, each term of a dependency constraint requires enumerating the 

set consisting of combinations of selections (from the choice sets referenced in the term) that satisfy the 

term expression. Specifically, a constraint term involving n choice sets each with an average of k 

selections can result in a set of size on the order of k". Expressing the constraint as a whole requires 

generating the Cartesian product of the sets corresponding to the consrraint terms. Expressrng 

dependency constraints using 0-1 variables could therefore result in a large number of constraints. As 

with the case above involving only premise constraints, the formulation becomes even more difficult if the 

constraints turn out to be non-linear, as does the effort required to solve the problem. 

OR techniques have two additional drawbacks. There is no explanation, and incremental model 

revision is difficult since the formulation tends to be extremely brittle (i.e. translating real-world changes 

into the binary algebraic formulation is difficult). This can be a serious limitation for many problems wnere 

even though an initially optimal solution may be desirable, decisions can be constantly subject to change 

forcing decision makers to abandon optimality and make incremental changes based on pragmatic 

grounds. These issues have been discussed at length by Dhar and Ranganathan (1989) in the context of 

a course scheduling type of constraint satisfaction problem. 

The limitations of OR techniques can be overcome to a some extent by coupling an optimizer to a 
constraint reasoning module such as our CDR. The architecture that we have implemented can be 

coupled with an optimization package to achieve a functionality that allows for the repercussions of 

changes to be assessed incrementally. Specifically, if an initial optimal solution is found, the cholces that 

make up this solution can be communicated to the problem solver and the CDR. Conducting a what-lf 

analysis is then straightforward since the CDR can compute the impacts of changing decisions. A change 

can either "go through" (not require making changes in other parts of the solution), or result in violated 

constraints, identified by the CDR. In the latter case the CDR computes alternative fixes (represented by 

the AND/OR graph in the previous section) to be evaluated by the problem solver or/and the dectsion 

maker. 
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7. Concfuding Remarks - - 

wehave provided precrse descriptions of the class of problems modeled by our arch~tecture and the 

algor~thms corresponding to the problem solver and the constra~nt-directed reasoner. We also described 

how (and why) the tasks in problem solving are distr~buted between them. 

Our objectives have been to design an architecture that has the expressive power to represent a 

general cfass of constraint satisfaction problems, to solve such problems efficiently, and for the solution to 

be incrementally modifiable. In addition, the modeling primitives are powerful and simple enough to 

enable a user to describe a problem as naturally as possible. Our architecture has been mot~vared in 

large part out of frustration in trying to achieve these objectives simultaneously with existing tools. 

A common drawback of most At tools that we have witnessed is that the knowledge engineer or user 

has difficulty in fitting the problem into the primitives provided by the tool. For example, we have found 

that in systems that use TMSs, it is often unclear how the problem solver should be designed so that the 

interactions (and responsibilities) between it and the TMS are demarcated correctly. In practice, we have 

found that the importance and difficulty of such decisions is often underestimated, and that it is often 

necessary for knowledge engineers (or users) to familiarize themselves with the inner workings of the tool 

to make good design decisions. in contrast, we have observed that users of our system are able to 

quickly specify declaratively the various knowledge components of their constraint satisfaction problem 

once the choice sets and their attributes have been specified (although these tend to get modified as the 

constraints are expressed). The problem solver and the CDR are completely transparent to the user, an 

important consideration in designing complex reasoning systems for real-world applications. 
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