
A KNOWLEDGE REPRESENTATION FOR
CONSTRAINT SATISFACTION PROBLEMS

by

Albert E. Croker

and

Vasant Dhar
Leonard N. Stern School of Business

Information Systems Department
New York University
40 ?Vest 4th Street

New York, NY 10003

Revised August 1990

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Working Paper Series

STERN IS-90-9

This paper replaces Working Paper No. 191 entitled, "A PROBLEM-SOLVER/TMS
ARCHITECTURE FOR GENERAL CONSTRAINT SATISFACTION PROBLEMS."

Center for Digital Economy Research
- - " Stem School of Business

IVorking Paper IS-90-09

Abstract -

In this paper we present a general representation for constraint satisfaction problems (CSP) and a
-

framework for reasoning about their solution that unlike most constraint-based relaxation algorithms.
stresses the need for a "natural" encoding of constraint knowledge and can facilitate making inferences for
propagation, backtracking, and explanation. The representation consists o i two componenrs: a
generate-and-test problem solver which cclntains information about the problem variables, and a
constraint-driven reasoner that manages a set of constraints, specified as arbitrarily complex Boolean
expressions and represented in the form of a constraint network. This constraint network: incorporates
control information (reflected in the syntax of the constraints) that is used for constaint propagaticn:
contains dependency information that can be used for explanation and for dependency-directed
backtracking; and is incremental in the sense that if the problem specification is modified, a new solution
can be derived by modifying the existing solution.

1. Introduction
Many problems can be formulated as constraint satisfaction problems. Expressing problems as

constraint satisfaction problems requires a decomposition of the problem into parts, the generation or

retrieval of alternatives for these parts, and the coordination of solutions for each part into an integrated

whole (Simon, 1973). This general characterization applies to a variety of problems ranging from the

design of a fugue (Reitman, 1965), a house (Alexander, 1964), or an engineered artifact (Simon, 1973).

to that of a business plan (Dhar and Pople, 1987). Domain expertise is involved in deciding how best to

decompose a problem into parts, in generating alternatives, recognizing constraints among the

alternatives, and in resolving conflicts among them in a way that least impairs the quality oi the overall

solution. Solving such probtems involves constraint satisfaction.

In this paper we present a general representation for constraint satrsfaction problems. Each of these

problems are characterized in terms of discrete sets of alternatives, which we call choice sets, and a set

of constraints that are defined in terms of the choice sets. A solution to a constraint satisfaction problem

ts defined as a set of alternatives, one from each of the characterizing cho~ce sets, that together satisfies

each [i.e., does not violate any] of the characterizing constraints.

We also describe a system for reasoning about constraint satisfaction problems. This reasoning system

consists of two components: a probiem solver that contains domain knowledge, and a constraint-directed

reasoner that keeps track of the status of constraints and focuses the problem solver's search. We show

that by exploiting structural features of the problem and adopting a certain delineation of responsibilities

between the constraint-directed reasoner and the problem solver, considerable simplicity in the

architecture is achieved. In addition, the architecture is incremental; that is, a new solution is derived by

modifying an existing solution if the problem description is changed. We provide a precise

characterization of the overall reasoning process by describing the algorithms corresponding to the

problem solver and the constraint-directed reasoner. We also contrast our representation with related

work in operations research and artificial intelligence.

Page 1
-
- - -

.- .- Center for D ~ g ~ t a l Economy Research
Stem School of Busmess
Work~ng Paper IS-90-09

. 2. The Constraint Satisfaction Problem -

Many types of design problems can be vrewed as the task of making cholces from among competing -

sets of alternatives. For example, the design (spec~fication) of a computer system m~ght require the

selectron of a processor, memory un~t, operating system, etc. from amocg the various alternatives

available for each. In turn, each cholce may entall certain tradeoifs; for example, w~th respect to cost,

performance, and cornpatib~lity wlth other components to be selecred.

Often the designer is faced with a set of constraints that must be satisiied by the set of selected

choices. Again, using the computer system design example, each set of choices has an associate0 set of

attributes that characterize and distinguish the alternatives in the set. For example, each of the

processors that can be selected has an associated speed and cost. Assuming cost is an attribute

associated with each of the types of soitware and hardware components to be selected, then the

designer may be faced with a budgetary constraint. That is, the total cost of the various components

selected cannot exceed a specified amount.

2.1. Definitions
A constraint satisfaction problem (CSP) is characterized by an ordered set X = {X,, X,, X3. ..., Xnj oi

choice sets, and a set C = {C,, C2 C3, ..., Cm} of constraints. Each choice set Xi = {xi,,, xjS2 ..., x ,,,, ,)
represents a set of alternatives. Corresponding to each Xi is a set of choice set attributes Ai = {A,,, AjT2.

.... Ai,,,j used to characterize each of the alternatives in that choice set. For example, i f X, is the cho~ce

set consisting of a set of computer processors, as discussed above, then speed and cost are two of the

attribute values associated with this choice set, meaning each processor in the set has an assoclarea

value for this attribute.

..., x , r where An assignment for the set o i choice sets X is a sequence of alternatives X = CX,,,,, x~,,. ,,,"
x. . E XI.
'.Ii

A constraint Cj G C can be viewed as a Boolean mapping defined over the set of assignments for X.

That is, Cjx",,);; --, {T,v. An assignment X for X is said to satisfy the constraint Cj if C,(q = T;
otherwise Xis said to violate the constraint. An assignment for X is called a satisficing assignment for the

CSP characterized by the set of choice sets X and the constraint set C i f V Cj E C, CjX) = T.

We specify constraints in the form

t,. t, t3, ..-, tn-, 3 tn

which we call a dependency constraint Each constraint term ti is a Boolean-valued expression over a set

of constants and variables, where each variable is specified in the form Xi-Aii' and denotes the value

associated with attribute AjVi of the alternative selected in choice set X, Thus, a constraint term states a

relationship between various of the choice set attributes and constants, and denotes (assuming eacn of

the variables over which it is defined has a value) either the value TRUE or the value FALSE.

A constraint, specified in the form shown above is interpreted as the material implication

Page 2
-
- - - - -

Center for Digital Economy Research
S t em School o f Buqiness
Working Paper IS-90-09

f l ~ (z~ t3~ ; . . ~ (n - l 3 t,,

We thus call each term that occurs to the left of the arrow in a constraint an antecedent term, and the
-

term to the right the consequent term. A constraint that has no antecedent terms is called a premise

constraint. Under this semantics, a constraint is satisfied jf each of its terms denotes a value, and either

its consequent term denotes TRUE or at least one of its antecedent terms denotes FALSE. Therefore, ii

each of the relationships specified by the conjuncts in the antecedents of the constraints holds (i:e.,

denotes TRUE), then the relationship specified by the consequent t, must also hold. The consequent o f a

premise constraint must always hold.

2.2. Efficiency and Representation Issues in CSPs
Constraint satisfaction problems are NP-complete and can be solved by backtrack search. Several

relaxation methods have been developed for preprocessing a problem so as to reduce the search effort.

Waltz (1972) has developed a "filtering" algorithm for scene labeling, now commonly known as an

arc-consistency or 2-consistency algorithm since it eliminates values from variable domains considered

two at a time. Montanari (1974) extended arc-consistency to deal with three variables at a time; the

resuling algorithm is known as a path-consistency or 3-consistency algorithm. For definitions of these

algorithms, the reader is refered to Mackworth (1977). The basic idea underlying such algorithms is that

local constraints become propagated globally through the iterative application of relaxation rules. Freuder

(1 978) generalized the concept of relaxation by providing an algorithm for achieving k-consistency, that is,

pruning variable domains by considering k variables at a time. When k equals the total number of problem

variables, the algorithm, in effect, generates all solutions. More recently, Montanari and Rossi (1990)

have defined efficient methods that apply every relaxation rule only once.

A CSP, as we define it, is amenable to the application of a k-consistency relaxation algorithm. Applying

the algorithm would result in the compilation of a list of untenable combinations of up to k values. (Freuder

actually eliminates untenable values, but they can be useful for explanation, a point we return to later.)

There is not enough evidence about the tradeoffs involved in applying the various relaxation algorithms,

although preliminary results suggest that node and arc-consistency are almost always useful whereas

achieving higher levels of consistency is not generally worthwhile (Dechter, 1989).

While the need to solve constraint satisfaction problems as efficiently as possible is important, it is

equally important to have a rich representation for expressing these problems, both from a user and a

computational standpoint. For a user, it is important that the problem be express~ble as naturally as

possible and that a representation be able to provide explanation and "what-if" capabilities. From a

computational standpoint, the representation should allow a system to incrementally alter an existrng

solution when the problem description is modified, and to reduce search by being able to explo~t control

information that might exist in the syntax of the constraints, and by applying application-spec~fic

knowledge for dependencydirected backtracking. In the next two sections, we describe a representation

that makes the above functionality possible. In simple terms, this is achieved by providing additional

semantics to the nodes and links in the constraint network, and by distributing the overall responsrbility for

Page 3

-
-

Center for Digital Economy Research
Stem School of Business
iVorkmg Paper IS-90-09

solving the problem into two distinct components, a problem solver and a constra~nt-driven reasoner. The

resulting architecture turns out to have some interesting features in common w~ th truth rna~ntenance

systems.

3. The Problem Solver
The problem solver is assigned the task of deriving a satisficing assignment for a CSP. Given a CSP

characterized by (X, C}, where X is a set of choice sets, and C is a set of dependency constraints, it has

the responsibility of selecting an appropriate alternative from each of the choice sets X, in X. Together,

the set of selected alternatives must satisfy each of the constraints in C.

The problem solver is restricted to making one selection from one choice set at a time. At each

instance, the problem solver holds a set of beliefs, these beliefs corresponding to the set of alternatives

that it has currently selected from various of the choice sets. In turn, a set of currently held beliefs, if

retained, may limit the set of alternatives that can be selected by the problem solver from those choice

sets for which a selection has yet to be made.

The limitations faced by a problem solver arise as a result of the problem's set of characteriz~ng

constraints. Each constraint term specifies a relationship between various of the alternatives. When a

constraint term occurs on the right hand side of a constraint it defines a limitation that may have to hold at

various times during the problem solving task. Premise constraints, having no left hand side, specify

limitations that are in effect throughout problem solving, regardless of the problem solvers current state of

beliefs.

The problem solver extends its set of beliefs through the action of making selections. As the set oi

beliefs expands, the problem solver may become more limited in the future actions that it may take. As

the number of limitations grows it may reach a point where the problem solver cannot take any action that

will not result in the violation of at least one constraint.

In order to remedy a conflict, the problem solver must change some of its currently held beliefs,

supplanting them with other beliefs. This remedy is effected by retracting some currently selected

alternatives, and substituting other alternatives from the same choice sets. Thus, the set of beliefs held by

the problem solver can grow non-monotonically.

Corresponding to each choice set Xi the problem solver maintains a selection variable Xi that is used to

designate the alternative that it has selected from that choice set. This compound variable cons~sts of

one component, designated Xi.A,.? for each attribute Ali over which the associated choice set is defined.

At the beginning of the problem solving task each component of each selection variable is initialized to

the value UNKNOWN indicating that no alternative has been selected from any of the choice sets. For a

selection variable Xi, we represent this initial state as Xf = UNKNOWN. When the problem solver selects

an alternative from the associated choice set it sets each of the components of the selection variable to

the corresponding attribute value of that alternative.

Page 4
- -
- - -

-- Center for Dlg~tal Economy Research
Stem School of Buslness
IVork~ng Paper IS-90-09

Since the problem solver can only select one alternative form one choice set at any instance, this task

must be ordered. Although the order in which alternatives from the choice sefs are searched must not

-affect whether or not a satisficing assignment is eventually found -- the search procedure must be

exhaustive -- it is likely to determine which of several satisficing assignment is found. in the system that

we have implemented the search can be biased by specifying a preference for the order in which choice

sets, and alternatives withing choice sets, will be considered. Typically, the ordering is specified in terms

of function defined over the choice set attributes. This is analogous to a utility function in decision theory.

Once the problem solver has selected an alternative from a choice set it must then determine a new ser

of relationships (i.e., limitations) that, based on this selection, must hold among the alternatives, both

those that have already been selected, and those that will be selected. To perform this part of its task, it

uses a constraint-directed reasoner (CDRJ.

4. The Constraint-Directed Reasoner
The CDR subcomponent is designed to be separate from, but interact closely w~ th the problem solver

With respect to control, the CDR is subordinate to the problem solver. Specrficaliy, w~th each new bellei

communrcated to it by the problem solver, the CDR computes incrementaliy the relat~onshrps as

expressed by the constraint terms that must hold. Also it must be able to detect conrradictlons In the

current set of beliefs. The problem solver is informed of any contradictrons that arrse, and has the

responsibility of resolving them.

The basic unit manipulated by the CDR in carrying out its task is a constraint term node. With one

exception the CDR maintains a node for each constraint term, regardless of the number of times that

constraint term appears among the constraints. The exception to this scheme occurs when one consrraint

term, say ti, is the logical negation of another constraint term 5, that is, ti = l$. Here one node is used to

represent both terms. A constraint term node, designated

<constraint-term-label, constraint-term-value, justifications, consequents>

. .
consists of four components, each of which we describe below.

A constraint-tern-label designates the constraint terms to which the containing node corresponds. The

constraint-term-label of a node explicitly specifies a single constraint term ti that appears in the

antecedent or consequent of one or more dependency constraints. We call this constraint term the prime

designee of the node.

In addition to its prime designee, a node designates the logical negation of its prime designee. (This

iogical negation need not appear in a dependency constraint.) Two benefits derive from the ability of a

node to designate two constraint terms. First, the number of nodes needed to designate the varlous

constraint terms may be reduced since each constraint term and its negation does not need a unlque

designator. Second, as will be shown, it provides a convenient mechanism for detecting certain

contradictions that, based on the set of beliefs, may arise among the derived relationsh~ps.

Page 5
- - -

Center for D ~ g ~ t a l Economy Research
Stem School of Busmess -
Work~ng Paper IS-90-09

The constraint-term-value component is used to record whether or not the relationship speciiied by the

prime designee, and similarly its negation, is to hold. This value, one of TRUE, FALSE, UNKNOWN, or

TIF is stated with respect to the prime designee and is implicit for its negation. If constraint term ti is the

prime designee of the node, then a value of TRUE indicates that, based on the current set of beliefs of

the problem solver, the relationship expressed by ti must hold, and, equivalently, that expressed by its

negation -7 ti must not hold. Similarly, a value of FALSE indicates that the relationship expressed by ti

must not hold, and that that expressed by 7 t i holds. The value UNKNOWN indicates that it cannot be

determined from the current set of beliefs whether or not the relationship specified by the designees of

the node must or must not hold. If the problem solver has taken some action (i.e., selected an alternative)

that leads to a contradiction in that its current set of beliefs is such that both the relationship expressed by

ti and that expressed by -7 ti must hold, then the constraint-term-value component is assigned the value

TiF. As will be seen, this allows the reasoning system to function with inconsistencies until the problem

solver chooses to resolve them.

The justification component provides bases for the relationships expressed by the designees of a node.

This component consists of two subcomponents: a set of t-justifications, and a set of f-justifications. Each

t-justification states the set of beliefs that together form a basis for the relationship specified by the prlme

designee of the node holding, and thus for the relationship specified by its negation not holding. Similarly,

the f-justifications provide a basis for the relationship specified by the prime designee not holding, but the

relationship specified by the secondary designee holding. As we will discuss shortly, the justification

component is used by the CDR to establish or confirm the relationship specified by one of the designees

of the node and to detect contradictions.

The consequent component of a node identifies those constraint terms, and thus nodes, that specify

relationships whose value, that is whether or not they hold, may be affected by the current value of the

node containing this component. The identified nodes correspond to the consequent terms of those

constraints where a designee of the current node appears as an antecedent term. Thus, consequent

components establish dependencies among the designees of the constraint term nodes. A consequent

component also consists of two subcornponents: a set of tconsequents, and a set of f-consequents. The

tconsequents identify those nodes having a designee whose value may be dependent on the value of the

prime designee of the current node. Similarly, the fconsequent identifies those nodes having a desrgnee

whose value is potentially dependent on the value of the secondary designee of the current node.

In identifying constraint term nodes the values of the consequent subcomponents, in effect, define

edges between the containing node and the nodes identified by these values. These edges, along with

the constraint term nodes define a dependency net that characterizes the set of constraints from which it

is derived, and that is used for constraint propagation.

Since constraint term nodes correspond to dependency constraint terms they can, and are, created

when the CSP is specified to the system. At this time one constraint term node is created for each term

and, if present, its negation, encountered in the set of dependency constraints. The first of the two terms

encountered becomes the prime designee of the created node.

Page 6
-
- - - -

-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-09

The initial value of the constraint-term-value component of a newly created node is determined by the

placement of the node's designees within the set of characterizing dependency constrarnts. If neither

designee appears as the consequent term of a premise constraint, then the constraint-term-value IS set to

UNKNOWN, indicating that initially it is not known whether or not the relationships spec~iiea by the

designees of the node must hold.

The relationships specified by premise constraint terms must always hold. Thus the nodes for which

these constraints are designees must have a constraint-term-value that is not initialized to UNKNOWN.

Rather, if the prime designee of the node occurs in a premise constraint, then the constraint-term-value is

initialized to TRUE. Similarly, it is initialized to FALSE if the negation of the prime designee occurs in a

premise constraint. The occurrence of both designees of a node in premise constraints indicates an

inconsistency in the set of characterizing constraints, knowledge of which the user is informed.

The two justification subcomponents have initial values that are also determined by the nature of the

designees of the containing node. If initially the problem solver has no basis for belief in the relationship

expressed by the designees of a node, that is, the initial constraint-term-value is UNKNOWN, then

equivalently there must not be any justification for these relationships. Accordingly, the t-justification and

f-justification are both initialized to nil.

An initial constraint-term-value of TRUE or FALSE in a node corresponds to the prime designee or the

secondary designee, respectively, being a premise constraint term. For such nodes a special marker P is

used to indicate that the relationship specified by one of the designees of the node holds because ~t was

specified as a premise constraint. If the constraint-term-value is TRUE, then the t-justification is initialized

to the set {P} and the f-justification is initialized to nil. Similarly, if the constraint-term-value is FALSE,

then the t-justification and the f-justification are initialized to nil and {PI, respectively.

It should be noted that the constraint network is compiled when the constraints are specified, and does

not change with the changing state of the problem. The size of the network is bounded by the number of

constraint terms.

5. Implementation
In this section we describe the data structures and algorithms used in implementing the overall problem

solving system. These descriptions are not intended to be exhaustive. Rather, they are intended to

provide a somewhat simplified, and for reasons of exposition, ideal, view of how the system is constructed

and functions. n u s the descriptions range from simple narratives when adequate, to more formal

programming language-like descriptions using both structured and object-oriented language conventions.

Page 7
- - -

- -
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-09

5.1. Data s t ruc tures

The basic data structures manipulated by the problem solver are those that are used to represent

choice sets. A data structure of type choice-set is a record-like object defined as

choice-set =
object of

selection : integer;
alternative: array[I..#-of-alternatives]

of attribute-indexed records
end

The alternatives in a choice set are represented as elements of the array that is defined as the second

component of a choice-set object. Each of these elements is an associative record structure (e.g.,

dictionary) that contains one value for each attribute over which the choice set is defined. The value for a
particular attribute of an alternative is retrieved by specifying the appropriate attribute name. Thus,

cs.alternative[n].A (or for brevity, cs[n].A, where attribute is understood) references the value

associated with attribute A of the nh alternative in choice set cs. The first component of a choice-set

object, referenced as cs.selection, specifies the index of the alternative that has currently been selected

from choice set cs. A value of zero is used to indicate that no alternative has currently been selected from
the specified choice-set object.

AIJ objects of type choice-set are maintained by the problem solver. In particular, the problem solver is

responsible for setting the value of the selection slot of these objects to indicate which of the alternarives

in the corresponding choice set it has selected. In order for the CDR to be able to determine the affect of

a newly made selection (or a change in a selection) on its belief of which relationships hold, it is given

read access to each instance of an object of type choice-set. This read access is provided so as to

simplify parameter passing in the system.

The basic data structures manipulated by the CDR are objects of type c-term-node that, as described

in the previous section are defined to correspond to constraint terms. Together, instances of

c-term-node objects are used to implement a dependency net that'models the set of constraints C that

characterize the target problem. A node of. type c-term-node is defined as follows:

c-term-node =
object of

c-term-label: c-term-func;
c-term-value : extended-~oolean';
t-justif : set of support-sets;
f - justif: set of support-sets;
t-conseq: set of c-term-nodes;
f-conseq: set of c-term-nodes;

end

The c-term-label component of a c-term-node object is implemented as an extended-Boolean-valued

'We define an extended-Boolean as consisting of, depending on the context, a specified set of other values in addition to those 01
T R U E and FALSE In particular we allow the values UNKNOWN and T/F.

Page 8

- -
Center for Digital Economv Research -
Stem School of Business
IVorking Paper IS-90-09

-

function (c-term-func) that is der~ved from the constraint term that is the prime designee of the node.

When executed this function accesses the appropriate choice-set instances (those over which the

corresponding constraint term is defined) and returns a value that results from computing the relationship

expressed by the constraint term. If too few of the choice sets over which this relationship is defined have

had alternatives selected, preventing a value of TRUE or FALSE from being returned, then UNKNOWN is

returned as the value of c-term-label.

The value of a c-term-value component can be TRUE, FALSE, UNKNOWN, or TIF. If ne!ther

designee of the c-term-node is the consequent of a premise constraint, then the c-term-value is initialized

to the value UNKNOWN. The c-term-value component is initialized to TRUE if the prime designee of the

node is the consequent of a premise constraint, and to FALSE if the secondary designee of the node is

the consequent of premise constraint. Since the the c-term-value component reflects the current belief in

the relationship specified by a designee of the c-term-node, its value can be expected to be changed by

the CDR throughout the course of the problem solving task.

The t-justif and f-justif components of a c-term-node object corresponds, respectively, to the t-

justification and f-justification subcomponents described in the previous section. Each of these

components is implemented as a set of objects of type support-set.

Each element of a support-set object is a structured object of type support-element consisting of hvo

components. The first component is an instance of a c-term-node object, and the second component is

one of the Boolean values TRUE or FALSE.

The t-justif and f-justif components of a node contain one support-set object for each problem

constraint in which the prime designee (implemented as the associated c-term-label) and its negation,

respectively, appear as the consequent term. Each object of type support-set contains one

support-element object for each antecedent term in the corresponding problem constraint

A support-set object is used by the CDR to determine if belief in the reiationship specified by a

designee of the containing c-term-node is derivable from (i.e., supported by) belief in each of the

relationships specifikd by f i e antecedent terms of the corresponding problem constraint. The first

component of each support-element of a support-set identifies the c-term-node associated with one of

these antecedent terms. The second component, the Boolean value, specifies which of the two designees

of the identified c-term-node object corresponds to the antecedent term. The value TRUE indicates the

prime designee, FALSE its negation.

The t-conseq and f-conseq of a c-term-node object are implemented as sets. Each element of each of

these sets identifies a c-term-node object that has a designee that is the consequent term of a problem

constraint for which the prime designee, in the case of tconseq, and its negation, in the case of

t-conseq, of the current node appears as an antecedent term.

- -

Page 9
-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-09

5.2. Algorithms -

Each of the algorithms, presented here in the form of a function or a procedure, comprise one or the

other of the CDR or the problem solver. In the overall control scheme the problem solver, using some

heuristic, selects some alternative from a choice set. Based on this selection and the set of problem

constraints the CDR makes a series of deductions that determine what relationships must hold among

various of the choice set alternatives. When no more deductions are possible, the constraint set is said to

be relaxed. If no constraint violation (i.e., inconsistencies in the set of relationships that must hold) are

detected by the CDR, control passes back to the problem solver and the cycle continues. If any violations

are detected, the CDR performs dependency analysis in order to determine those sets oi selections, such

that each set identifies those selections that together leads to at least one of the detected violations.

The problem solver is implemented by the procedure PROBLEM-SOLVER shown below.

Procedure PROBLEM-SOLVER ()
PS-1. CS = select-unassigned-cs
PS-2. if cs = undefined
PS-3. then return (true)
PS-4. cs.select = 1
PS-5. while CDR-NOGOOD-VIOLATION (cs) = true

and cs . select I number-of (cs. alternatives)
PS-6. do cs-select = cs-select + 1
PS-7. if cs. select > number-of (cs . alternatives)

then
PS-8. cs. select = 0
PS-9. return (fail)
PS-10 con£ lict-set-list = 0
PS-11. CDR-PROPAGATE (cs, conf lict-set-list)
PS-12. if not-empty (conflict-set-list)

then
PS-13. retract-list = choose (conflict-set-list)
PS-14. for each choice set C in retract-list

do CDR-RETRACT (x)
PS-15. while fail (PROBLEM-SOLVER)

and cs . select 2 number-of (cs . alternatives)
PS-16. do cs.select = cs.select + 1
PS-17. if cs. select > number-of (cs. alternatives)

then
PS-18. cs. select = 0
PS-19. return (fail)
PS-20. else return (fme)

The function select-unassigned-cs invoked in Step PS-1 of the problem solving algorithm encodes

the heuristic for determining from which choice set an alternative wiil be next selected. If an alternative

has currently been selected from each choice set, this function retrurns the value undefined.

After a choice set has been selected, the problem solver attempts to select an alternative from it by

using the procedure CDR-NOGOOD-VIOLATION to successively test alternatives to find one that does

not form in conjunction with other currently selected alternatives a combination that from past experience

the CDR knows will lead to an inconsistency. (Each untenable combination of selections, cailed a nogood,

when first detected by the CDR is added to a list. This list of nogoods is accessed by

CDR-NOGOOD-VIOLATION in the performance of its task.)

Page 10
- - -

- -

- - . - . , Center for D~g~ta l Economy Research
Stem School o f Busmess
IVorkmg Paper IS-90-09

Once the problem solver has selected a suitable alternative (i.e., one that does not lead to a

combination of selected alternatives that encompasses a. nogood) it informs the CDR of this selection

through the invocation of the CDR module CDR-PROPAGATE. This module, which is described below,

controls the constraint function of the CDR. If no contradictions arise from the propagation,

then the problem solver continues its task, through a recursive call to itself, by selecting another choice

set from which to select an alternative. If a contradiction is detected during propagation then

CDR-PROPAGATE provides, through its second argument, information about the combinations of

selected alternatives that led to the contradictions, providing the problem solver with the information that it

needs to so that it can take appropriate action to alleviate the problem before continuing the task of

selecting alternatives.

The CDR is organized as a set of modules, each performing a specific aspect of the overall CDR

function, and serving as an entry point to the CDR from the problem solver. One of these modules,

CDR-PROPAGATE, is invoked by the problem solver to effect changes in the set of relationsh~ps,

expressed by constraint terms, that, based on the set of alternatives that have currently been selecreo,

are believed to hold.

Procedure CDR-PROPAGATE (cs, conf lict-sets)

CDR-1. for each c-term-node c in entry-nodes(cs)
do CDR-LT-PROPAGATE (c, conf lict-sets)

CDR-2. return

The procedure CDR-PROPAGATE serves as an overall control module for the propagation functron of
the CDR. This module invokes the procedure CDR-LT-PROPAGATE for each c-term-node contarned

within the set indexed by the choice set denoted by the parameter cs.(i.e., entry-node(cs)). This indexed

set identifies each of the constraint term nodes having a designee, and thus a label, that is defined In
terms of the indexing choice set cs. Each of these nodes serves as an entry point into the dependency

net, and allows the CDR to only have to consider those constraint term nodes that have a c-term-label

value that can be affected by the alternative that was selected by the problem solver.

The procedure CDR-LT-PROPAGATE is used to determine if the value of the c-term-label of the

constraint term node identified by its first parameter is affected by the the selected alternative. Such a

change may, depending on the set of problem constraints and the current state of the set of c-term-

nodes, necessitate the propagation of constraint term values.

Procedure CDR-LT-PROPAGATE (c , conf lict-sets)

L1. if c.label = unknown or c.label = c-value or c-label = t/f
L2. then return

else
~ 3 . if c .value <> unknown

then
L4. let c-value = Uf
L5. assumpt-sets = CONFLICT-ASSUMPTS (c)
L6. nogoods = nogoods u assunrpt-sets
L7. conflict-sets = conflict-sets u assumpts-sets

-
Page 11
- -

-
-

Center for Digital Economy Research
Stem School o f Business
Working Paper IS-90-09

-
else

~ 8 . c.value = c-label
L9. if c.label = true

then
-

LIO . for each const-term-node x in t-conseq
~11. - do CDR-JT-PROPAGATE (x, conflict-sets)

else
L 1 2 . for each const-term-node x in f-conseq
L 1 3 . do CDR-JT-PROPAGATE (x, conflict-sets)

Step L1 of CDR-LT-PROPAGATE is used to determine whether or not the propagation process should

continue for the current constraint term node. If the c-term-label component of the node evaluates to

unknown or to a value that is the same as that of the c-term-value component, or the c-term-value

component has the value t/f, then propagation does not proceed; in the first case because a value of

unknown indicates a lack of belief in whether the relationships corresonding to each of the designees of

the node should hold, in the second and third cases because the current value of the c-term-value

component indicates that propagation, if necessary, was performed during an earlier visit to the node

when this value was originally determined.

Assuming that the c-term-label component evaluates to a value other than unknown, and that this

value is different from that of the c-term-value component, Step L3 of the procedure checks to see ii a

conflict has occured. If a conflict has occurred, that is, the value of the c-term-value component is also

other than unknown, and by Step L1 is different from that of the c-term-label component, then the

procedure sets c-term-value to t/f, and invokes the function CONFLICT-ASSUMPTS to determine the

underlying set of the problems solvers beliefs that led to the conflict.

Finally, CDR-LT-PROPAGATE attempts to propagate the newly derived c-term-la~el value forward by

invoking CDR-JT-PROPAGATE. This procedure is invoked using each of the c-term-nodes pointed to by

the current nodes t-conseq component if the c-term-label value is true, or the fconseq component if the

c-term-label value is false.

The function CONFLICT-ASSUMPTS, when presented with a c-term-node for which a conflict has

been detected, returns a set of conflicting-assumption sets. Each conflicting assumption set is a subset

of those alternatives that have currently been selected from the various choice sets by the problem solver,

and that together, in conjunction with the set of problem constraints, lead to the detected conflict. Each

such conflict set is saved as a nogood for later use by the CDR module CDR-NOGOOD-VIOLATION in

its task of helping the problem solver avoid remaking futile combinations of selections.

As an example of the formation of these nogoods consider the set of dependency constraints

where each constraint term ti is defined in terms of a single choice set i. Assume that alternatives have

Page 12

- - - - - -
- -

- Center for D~g~ta l Economy Research
Stem School o f Busmess
IVorkmg Paper IS-90-09

been selected from each of the choice sets corresponding to the constraint terms shown above, and that

these -selections lead to a conflict that is detected in the c-term-node that has t, and ?iLZ as its

designees. In addition, assume that the alternative that has been selected from choice set D is such that

the relationship specified by tD holds. We could resolve the conflict by retracting belief in {i.e., some of

the selections that support) either the relationship specified by tD or that specified by 7 i 0 . The former

requires the retraction of the selected alternatives in choices sets D and E or choice set D and C and

either of A and B. The latter requires the retraction of the selected alternatives in either of choice sets 0 or

E. Graphically, these combinations can be represented by the following AND/OR graph:

0 r
/ \

/ \
/ \

and and
/ \ \

/ \ \
D \ \

0 r or
/ \ / \

/ \ / \
E \ E B

and
/ \

/ \
c \

0 r
/ \

/ \
B A

The leftmost subtree of the root (topmost or) node specifies those combinations of selected alternatives

upon which belief in the relationship specified by tD is based. Similarly, the right subtree shows the

combination of alternatives that provide support for belief in the relationship specified by ~ 1 ~ .

The procedures CDR-LT-PROPAGATE and CDR-JT-PROPAGATE . . invoke CONFLICT-ASSUMPTS

to construct a set of conflict sets for each constraint term node for which a selected alternative leads to a

conflict The union of these sets of conflict sets are returned to the problem solver which has the task of

deciding which of the selections should be retracted in order to eliminate the conflicts.

The procedure CDR-JT-PROPAGATE shown below is used by the CDR to determine if belief in the

relationship specified by one of the designees of the c-term-node denoted by the first argument of the

procedures has become newly justified. This justification of a designee is determined using the t-justif and

f-justif components of the c-term-node, with the associated designee corresponding to a consequent

constraint term. When a relationship is newly justified the c.value component of the node is set

accordingly, and, depending on that value, propagation continues through a recursive call to

CDR-JT-PROPAGATE using each of the nodes in either the t-conseq or the f-conseq component.

Procedure CDR-JT-PROPAGATE (c, conf lict-sets)

a. if not SATISFIED (t- justif) and not SATISFIED (f- justif)

Page 13

- -
Center for D ~ g ~ t a l Economy Research
Stem School of Busmess
Work~ng Paper IS-90-09

3 2 . then return
5 3 . if SATISFIED (t- justif)

then -

5 4 . if c.value <> true
then

3.5. if c.value = unknown
then

5 6 . let c-value = true
5 7 . for each cnstr-tern-node x in t-conseq
J 8 . do CDR-JT-PROPAGATE (x, conf lict-sets)

else
J 9 . let assumpt-sets = CONFLICT-ASSUMPTS (c)
510. let nogoods = nogoods u assqt-sets
Jll . let conflict-sets = conflict-sets u assuapt-sets
512 . if c. value = false

then
513. let c .value = t/f
514 . for each const-term-node x in t-conseq
515 . do CDR-JT-PROPAGATE (x, conflict-sets)
5 1 6 . if SATISFIED (f - justif)

then
5 1 7 . if c-value i> false

then
518 . if c. value = unknown

then
519 . let c .value = false
J 2 0 . for each const-term-node x in f-conseq
521 . do CDR-JT-PROPAGATE (x, conflict-sets)

else
522 . let assumpt-sets = CONFLICT-ASSUMPTS (c)
523 . let nogoods = nogoods u assumpt-sets
524 . let conflict-sets = conflict-sets u assuapt-sets
525 . if c.value = true

then
526 . let c.value = t/f
527 . for each const-term-node x in f-conseq
5 2 8 . do CDR-JT-PROPAGATE (x, conflict-sets)

The function SATlSFlED used by CDR-JT-PROPAGATE to determine if its argument, a t-just~f or

f-justif component, has a support-set that is satisfied in the sense that each of its support-elements
identifies a c-term-node that has a c-value that is equal to the value specified by the second component
of the support-element. If such a support-set is found, then SATISFIED returns the value true; otherwise it
returns the value false.

In addition to CDR-PROPAGATE, the CDR provides the problem solver with two other entry modules:
CDR-RETRACT and CDR-NOGOOD-VIOLATION. The first of these modules is used by the problem-
solver to undo the affects on the dependency net of a selection that it has retracted. The function and
structure of this module is similar to that of CDR-PROPAGATE, and will not be further elaborated on
here.

The module CDR-NOGOOD-VIOLATION maintains a database of nogoods, and is used by the
problem solver to determine i f a prospective alternative that it would like to select from a choice set will

Page 14

- - . * - - . - Center for Digital Economy Research

-%- s
Stem School of Business
IVorking Paper IS-90-09

lead, in conjunction with other of the alternatives that it has selected from other cho~ce sets, to a conflict.

Unlike the other two CDR modules, CDR-NOGOOD-VIOLATION does not access any of the c-term-

nodes that make up the dependency net.

5.3. lncrementality
Design and planning problems, including those that can be modelled as CSPs are often subjected to

incremental changes to the problem specification. For example, it might be desirable to perform impact

analysis on a problem solution or to otherwise modify the problem specification based on the current

solution.

With respect to CSPs, an incremental change is a single modification to the set of constraints or cho~ce

sets that characterize a CSP: a choice set or constraint might be added to or deleted from the problem

specification, or a choice set might be modified by adding or deleting an alternative within it. (The

modification of an existing constraint or choice set alternative can be effected through a deletion and

insertion of constraints or choice set alternatives, respectively, and thus we will not explic~tly discuss

them.)

The architectural framework that we have defined accomodates incremental changes to the

specification of a CSP. The impact on an existing problem solution of an incremental change will depend

on the nature of the modification made. Some modifications to the problem specification will have no

affect on an existing solution, others will require that different alternatives be selected for some or ail of

the choice sets.

Deleting an existing constraint from the problem specification, adding a new choice set, or adding a

new alternative to a choice set has the least impact on an existing solution, and is thus the easiest type of

modificaton to handle within our framework. The deletion of a constraint from a set of constraints has the

affect of relaxing the set of constraints. Any CSP solution that satisfies the unmodified set of constraints

will therefore satisfy the modified set of constraints. (In deleting a constraint it is also necessary to modify

the dependency net that is manipulated by the CDR so that it reflects the remaining set of constraints.)

If a CSP is modified by adding a new choice set, or adding a new alternative to an existing choice set,

then what had been the existing solutions must still satisfy the set of constraints since these have not

been modified. However, it becomes necessary to select an alternative for the new choice set. This

process is effected by invoking the PROBLEM-SOLVER which will then attempt to extend the existing

solution by selecting one of the alternatives from the new choice set. Since (by definition) the existing

constraints cannot have been defined over the new choice set any of its alternatives can be selected

without violating any of these constraints.

A CSP can also be modified by removing one of its characterizing choice sets. If no constraints are

defined over this choice set, then no additional solving problem is required since the existing set of

selected alternatives from the remaining set of choice sets will still satisfy the set of problem constraints. If

Page 15

- - -
- - -

* - - --
Center for Digital Economy Research
Stem School of Business
iVorkmg Paper IS-90-09

there are constraints that are-defined over the choice set that rs to be removed from the problem

specification, then the removal of the choice set will cause these constra~nts to become ~nvalid. W~th~n the

context of our framework, we require that these constraints first be incrernen?ally removed from the

problem specification, at which point the target choice set can then be removed.

The deletion of an alternative from an existing choice set will only impact on a problem solution if that

alternative is part of the solution. In this situation the PROBLEM-SOLVER is invoked to attempt to

reextend what has become a partial solution to a full soiution by selecting a different alternative from the

choice set.

When modifying a CSP by adding a new constraint to its specification, it is necessary to modify the

CDR dependency net to reflect the new set of constraint. Unlike the situation that existed when the

dependency net was originally defined, it is now possible to specify the constraint-term-value component

of each of the constraint term nodes that are inserted into the dependency net since, assuming that the

constraint is valid, alternatives have been selected for each of the choice sets over which the constraint

has been defined. Similarly, it is possible to determine if the existing solution satisfies the new constra~nt.

If it satisfies the constraint, then it is also a solution for the modified problem, and no further problem

solving is required.

The situation that arises when an existing solution violates a newly added problem constraint is similar

to that which arises during problem solving when the PROBLEM-SOLVER selects an alternative from a

choice set that violates a constraint, and is resolved in a similar way. Tine procedure

CONFLlCT-ASSUMPTS is invoked with the consequent constraint term of the newly added constraint as

its argument. The set of assumptions returned by this procedure is then used by the PROBLEM-SOLVER

to resolve the conflict.

5.4. Explanation
There are three types of knowledge that form the basis for variable assignments: variable (choice set)

ordering, value (alternative) ordering, and constraints. The first expresses the relative "importance" of

each choice set, that is, the relative importance of making the more preferred selections in them. Value

ordering is expressed via preference (or utility) functions defined over the alternatives within choice sets.

Severai heuristic approaches to variable and value ordering for reducing backtracking have been

discussed in the literature [Dechter and Pearl, 19881. Finally, constraints force the problem solver to

explore only the feasible solutions.

Because of the preference functions, given a choice set Xi consisting of an ordered set of alternatives

(Xi,lPiJ,. . . Xi,,), the question 'Why Xi,k?'' implicitly states 'Why not any of the alternatives preceding

Xi,k?'' Since the system must have actually attempted all of these, it must be the case that they led to

constraint violations when considered in conjunction with some other selections. If the variable ordering

used for retraction is the reverse of that used for search (i.e., chronological backtracking), then it must be

the case that selections preceding Xi& were not possible in conjunction with attempted selections in

Page 16 - - - -
- - - -

. . Center for D~g~ta l Economy Research
Stem School o f Busmess
IVorkmg Paper IS-90-09

choice sets preceding Xi. Since backtracking is usually not chronological, however, all that can be saio is

the alternatives preceding Xi,k were not feasible with certain other selections; all such attempts are
-

recorded as nogoods.

Finally, the third basis for variable assignments is contained in the justification structure of the

constraint term nodes, and is similar, conceptually, to the notion of data dependencies in truth

maintenance systems. Specifically, if a node corresponding to a consequent term (say, "hardware speed

should be greater than 5 MIPS'? has its t-justif or f-justif satisfied, it means that the current selections in

choice sets associated with that term (in this case hardware) satisfy the constraint expressed by that

term; further the problem solver was constrained into making this selecrion because the antecedent terms

that make up the justification for the current node also hold. Each of these antecedent terms, in turn, has

either a similar support, or it is justified by a selection made according to a utility function. Thus, ultimately

it is the utility functions that form the bases on which all selections are justified.

6. Rela t ionship to Other Work
Our work is related to a number of constraint satisfaction approaches, notably, relaxation methods,

truth maintenance, and integer programming.

6.1. Relationship to Relaxation Methods
Relaxation methods focus on eliminating bad combinations of assignments prior to search by

transforming a given constraint network into a "more explicit" one (Montanari and Rossi, 1990). Thls

reduces backtracking in subsequent problem soiving. It is interesting to note that the applicarion of a

k-consistency algorithm results in nogoods of size upto k. Smaller nogoods are more powerful in pruning

search.

In our model, nogoods are examined by the function TMS-NOGOOD-VIOL4TlON to ensure that the

problem solver aviods these untenable combinations of assignments. A second use of nogoods, as

described in the previous section; is that they are useful for explanation.

6.2. Relationship to Truth Maintenance Systems
The relationship of our model with truth maintenance systems can be examined in terms of the

structure and semantics of the nodes in the dependency network, and the labelings of the nodes.

Table 1 indicates the relationship between the four valued logic used to label nodes in our constraint

network and the INS and OUTS of a Doyle-style TMS. A truth value of true for a proposition corresponds

to it being IN and its negation being OUT. Similarly, a false corresponds to the proposition being OUT and

its negation being IN. A value of unknown indicates that the proposition and its negation are both

unknown. Finally, a value of t/f, indicating a contradiction, indicates that the proposition and its negation

are both IN.

Page 77
-

-
- - -

Center for Digital Economy Research
- - - Stem School of Business

IVorking Paper IS-90-09

...
-I Term I P I -p I
I T= th value I - I I
I of term p I 1 I -
1--- I
I TRUE I IN I OUT I
I I I I
I FALSE I OUT (IN 1
I I I i
I UNKNOWN I OUT I OUT j
I l I I
I T/F I IN 1 IN I ...

Table I

A non-monotonic justification such as "unless x-+y", which states that unless x is true y is true, is

expressable in our language as a disjunction of false and unknown, that is, "(false x) OR (unknown x) -+

y". In effect, a non-monotonic justification is converted into a Boolean expression representing a term-

node which is handled in the standard way by our constraint-driven reasoner.

In terms of the semantics of the nodes of the dependency network, the I-justif and f-justlf part of

constraint term nodes are similar to support-list justifications of TMSs. A fundamental difference, however,

is that our structure models a constraint expression (a term) and not a problem solver datum. In contrast,

dependency nodes in truth maintenance systems represent assertions (each being a problem solver AND

a TMS datum with different meanings in the two) whose justification structure is dynamic. In fact, in order

to maintain consistency and well-foundedness -- two fundamental properties that the data must satrsiy --
a TMS essentially manipulates the justification structures which in turn determine node labeling~. In

contrast, our constraint reasoner basically performs label propagation with static justification structures,

abdicating all decision-making responsibility to the problem solver. This leads to considerable simplicity in

our status assignment algorithms and a more natural division of responsibility between the problem solver

and the constraint reasoner, avoiding the rather ad-hoc constraint satisfaction methods employed by the

various TMSs.

It should be nated that the constraint terms can be constraints themselves, expressing relationships

among sets of selections across choice sets. For example, a constraint involving a term of the form

hardware-.cost < (software.cost + operating-system.cost)

specifies a relationship that holds for certain combinations of hardware, software and operating systems

(as the problem solver makes selections, the CDR determines whether such relationships, and hence the

constraints they make up, hold). Since the terms can be arbitrarily nested Boolean expressions, higher

order constraints are easily expressed. In general, the number of constraints of the form above is small

compared to the size of the search space. Thus the dependency network maintained by our reasoner is

small, resulting in an efficient constraintdriven module.

Page 18
-

-

Center for Digital Economy Research
Stem School of Businer- -- ~ >.,

IVorking Paper IS-90-09

6.3. Operations Research Approaches
Constraint - satisfaction problems have been dealt with extensrvely in the Operations Research literature

where an additional requirement of optimality is expressed via an objective function. If the constra~nts and

objective function are linear, and the variables are continuous valued, the problem is easily solved using

linear programming (LP) algorithms such as the Simplex algorithm (Dantzig, 1963) or Karmarkar's new

algorithm (Karmarkar, 1984). Solving a discrete valued problem is more difficult. It involves an ilerat~ve

process where each iteration begins by first solving its LP relaxation (that is, ignoring integrality). The set

of feasible solutions of the LP relaxation form a polytope which is generally a superset of the polytope

representing integer solutions. Therefore additional constraints (sometimes called "cuts") are introduced

into the formulation to move toward the integer solutions. This is accomplished in the second step by

using either the branch and bound or the "cutting planes" technique (Gomory, 1958; Chvatal, 1973).

Gfotschel and Padberg (1 982) have reported remarkable success in applying specialized branch and

bound and cutting planes algorithms in solving the traveling salesman problem. In addition, Crowder et al.

(1983) have described several constraint pre-processing and cutting plane generation strategies for

general 0-1 problems that result in a dramatic reduction in the work done by the branch and bound step.

The constraints involved in these discrete problems, linear constraints, are special cases of those in the

constraint satisfaction problem described in this paper. Thus, certain special cases of our problem can be

solved efficiently using these methods. In the remainder of this section we describe these special cases

and how they can be transformed for solution using discrete optimization methods. We also describe how

our TMS can be coupled with an optimization module to provide a useful decision support functionality.

Since choice sets contain discrete sets of alternatives each of which may or may not be selected, each

alternative can be characterized in terms of a 0-1 variable. Constraints can then be expressed in terms of

algebraic relationships among Boolean variables. Each such constraint can in turn be expressed as a

clause. For example, the constraint -,sI,s2--+s3 is equivalent to ' 3 , or not-s, or s3" where each si is a

propositional variable. In this way, the problem can be expressed conveniently in conjunctive normal form.

Each clause can be expressed as an inequality. For example the above clause can be expressed as

s1+(1-s2)+s3 2 1

In general, as has been noted independently by Hinton (1979) and Hooker (1988), a clause can be

expressed in the form:

clsl+ ...+ c,s, 2 1-n(c)

where c is a row vector and s is a column vector, and n(c) is the number of negative elements in the

vector c. Each ci is 1,0, or -1, indicating whether si appears, does not appear, or -.lsi appears in the

clause, respectively. The above notation is due to Hooker (1988).

If the constraint set consists entirely of premise constraints, the problem can be formulated as a

general 0-1 integer programming problem. I f all terms in the constraints are linear, we have a linear 0-1

formulation. For example, the premise "software cost is less than hardware cost", where software and

hardware are choice sets and cost is an attribute of both sets, expresses a linear constraint. In contrast, a

Page 19

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-09

premise constraint such as "the ratio of hardware to software costs should be less than half the air-

conditioning equipment cost"is a non-linear (quadratic) constraint.

Non-linear cases can be solved by transforming the problem into linear form. It has been shown

(Wagers, 1967) that any polynomial 0-1 program can be transformed into a linear 0-1 program by

replacing every product of 0-1 variables by a new 0-1 variable and introducing additional constraints (see

Hansen,1979). It has been recognized, however, that the number of new variables and new constrarnts

so introduced may be very large even for small non-linear 0-1 problems (Hansen, 1979), making them

difficult to solve.

If the set C includes non-premise dependency constraints involving terms of the form described above,

the problem can still be reduced to a 0-1 form, although the number of 0-1 constraints required to express

a dependency constraint can be large, depending on the number of terms in it and the sizes of chorce

sets referenced by the terms. Essentially, each term of a dependency constraint requires enumerating the

set consisting of combinations of selections (from the choice sets referenced in the term) that satisfy the

term expression. Specifically, a constraint term involving n choice sets each with an average of k

selections can result in a set of size on the order of k". Expressing the constraint as a whole requires

generating the Cartesian product of the sets corresponding to the consrraint terms. Expressrng

dependency constraints using 0-1 variables could therefore result in a large number of constraints. As

with the case above involving only premise constraints, the formulation becomes even more difficult if the

constraints turn out to be non-linear, as does the effort required to solve the problem.

OR techniques have two additional drawbacks. There is no explanation, and incremental model

revision is difficult since the formulation tends to be extremely brittle (i.e. translating real-world changes

into the binary algebraic formulation is difficult). This can be a serious limitation for many problems wnere

even though an initially optimal solution may be desirable, decisions can be constantly subject to change

forcing decision makers to abandon optimality and make incremental changes based on pragmatic

grounds. These issues have been discussed at length by Dhar and Ranganathan (1989) in the context of

a course scheduling type of constraint satisfaction problem.

The limitations of OR techniques can be overcome to a some extent by coupling an optimizer to a
constraint reasoning module such as our CDR. The architecture that we have implemented can be

coupled with an optimization package to achieve a functionality that allows for the repercussions of

changes to be assessed incrementally. Specifically, if an initial optimal solution is found, the cholces that

make up this solution can be communicated to the problem solver and the CDR. Conducting a what-lf

analysis is then straightforward since the CDR can compute the impacts of changing decisions. A change

can either "go through" (not require making changes in other parts of the solution), or result in violated

constraints, identified by the CDR. In the latter case the CDR computes alternative fixes (represented by

the AND/OR graph in the previous section) to be evaluated by the problem solver or/and the dectsion

maker.

Page 20
-

-
- - . -

Center for D~gltal Economy Research
Stem School o f Busmess
IVorkmg Paper IS-90-09

7. Concfuding Remarks - -

wehave provided precrse descriptions of the class of problems modeled by our arch~tecture and the

algor~thms corresponding to the problem solver and the constra~nt-directed reasoner. We also described

how (and why) the tasks in problem solving are distr~buted between them.

Our objectives have been to design an architecture that has the expressive power to represent a

general cfass of constraint satisfaction problems, to solve such problems efficiently, and for the solution to

be incrementally modifiable. In addition, the modeling primitives are powerful and simple enough to

enable a user to describe a problem as naturally as possible. Our architecture has been mot~vared in

large part out of frustration in trying to achieve these objectives simultaneously with existing tools.

A common drawback of most At tools that we have witnessed is that the knowledge engineer or user

has difficulty in fitting the problem into the primitives provided by the tool. For example, we have found

that in systems that use TMSs, it is often unclear how the problem solver should be designed so that the

interactions (and responsibilities) between it and the TMS are demarcated correctly. In practice, we have

found that the importance and difficulty of such decisions is often underestimated, and that it is often

necessary for knowledge engineers (or users) to familiarize themselves with the inner workings of the tool

to make good design decisions. in contrast, we have observed that users of our system are able to

quickly specify declaratively the various knowledge components of their constraint satisfaction problem

once the choice sets and their attributes have been specified (although these tend to get modified as the

constraints are expressed). The problem solver and the CDR are completely transparent to the user, an

important consideration in designing complex reasoning systems for real-world applications.

Page 21

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-09

- .

REFERENCES

Alexander, C., Notes on the Synthesis of Form, ~arvard University Press, Cambridge, Mass 1964.

Chvatal, V., Edmonds Polytopes and a Hierarchy of ~ombinatorial Problems, Discrete Mathematics. 4,
1973.

Croker, A., Dhar, V., and McAllester, D., Dependency Directed Backtracking for Generalized Satisficing
Assignment Problems, to appear in Management Science. Available as Technical Report 190, Department
of Informatian Systems, NYU, 1988.

Crowder, H., Johnson,E., and Padberg, M., Solving Large-Scale Zero-One Linear Programming
Problems, Operations Research, vol31, no. 5, September-October 1983.

Dantzig, G., Linear Programming and Extensions, Princeton University Press, 1963.

Dechter, R., and Pearl, J., Network-Based Heuristics for Constraint-Satisfaction Problems, Artificial
lnteiligence, 34, 1 988, pp. 1 -38.

Dechter, R. Methodolgy for CSPs, Workshop on Constraint Processing, IJCAI, Detroit, MI, August 1989.

Dhar, V., and Pople, H.E., Rule-Based versus Structure-Based Models for Explaining and Generating
Expert Behavior, Communications of the ACM, vol30, no.6, June 1987.

Dhar, V., and Ranganathan, P., Experiments with an Integer Programming Formulation of an Expert
System, MCC Technicai Report ACA-AI-022-89, Austin, Texas, February 1989.

Doyle, J., A Truth Maintenance System, Artificial Intelligence, June, 1979.

Freuder, E.C., Synthesizing Constraint Expressions, Communications of the ACiW, 21,11, November,
1978.

Gomory, R.E., Outline of an Algorithm for Integer Solutions to Linear Programs, in R.L.Graves and
P.WoJfe, eds.. Recent Advances in Mathematical Programming, Mffiraw-Hill, 1963.

Goodwin, J.W., A Process Theory of Non-Monotonic Inference, Proceedings of the Ninth international
Joint Conference on Artificial Intelligence, Los Angeles, CA, 1 985.

Grotschei, M., and Padberg, M., The Travelling Salesman Problem: A Guided Tour of Combinatorial
Optimization, Wiley 1982.

Hansen, P., Methods of Nonlinear 0-1 Programming, Annals of Discrete Mathematics 5, 1979, pp. 53-70.

Hinton, G.E. Relaxation and its Role in Vision, Ph.5 Thesis, University of Edinburgh, 1977

Hooker, J.N., A Quantitative Approach to Logical Inference, Decision Support Systems, voi 4, no. 1,
March 1988.

Karmarkar, N., A New Polynomial-time Algorithm for Linear Programming, Combinatorica 4, 1984.

Mackworth, A., Consistency in Networks of Relations, Artificial Intelligence, 8 (I) , 1977, pp. 99-t 18.

McAllester, D., Reasoning Utility Package, Al Laboratory Memo 667, Aprii 1982.

Montanari, U., Networks of Constraints: Fundamental Properties and Application to Picture Processing,
Information Science, 7. 1974.

Montanari, U., Rossi, F., Constraint Relaxation May be Perfect, Artificial Intelligence, forthcoming

Nudel, B., Consistent Labeling Problems and Their Algorithms: Expected-Complexities and Theory-
Based Heuristics, Artificial Intelligence, 21, 1983, pp. 135-1 78.

Page 22
- -
- -

- -

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-09

Petrie, C., Russinoff, D., and Steiner, D., Proteus 2: System Description, MCC ~ e c h n ~ c a l Report
Al-136-87, May 1987.

Reinfrank, M., Lecture Notes o n Reason Maintenance Systems. Technical Report INF2 ARM-5-88,
Siemens AG, Munich, West Germany, 7 988.

Reitman, W. R., Cognition and Thought, Wiley, New York, 1965.

Simon, H., The Structure of Ill-Structured Problems, Artificial Intelligence, 4,3, September 1973.

Watters, L.J., Reduction of Integer Polynomial Programming Problems to Zero-One Linear Programming
Problems, Operations Research, 15, 1967, pp.1171-1174.

Page 23
-

Center for Digital Economy Research

- - " . - Stem School of Business
Working Paper IS-90-09

Table of Contents
1. Introduction
2. The Constraint Satisfaction Problem

2.1. Definitions
2.2. Efficiency and Representation Issues in CSPs

3. The Problem Solver
4. The Constraint-Directed Reasoner
5. Implementation

5.1. Data Structures
5.2. Algorithms
5.3. Incrementality
5.4. Explanation

6. Relationship to Other Work
6.1. Relationship to Relaxation Methods
6.2. Relationship to Truth Maintenance Systems
6.3. Operations Research Approaches

7. Concluding Remarks

Page i

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-09

