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ABSTRACT 

Many authors have described search techniques for the satisficing assignment problem: the problem of 

finding an interpretation for a set of discrete variables that satisfies a given set of constraints. In this paper 

we present a formal specification of dependency directed backtracking as applied to this problem. We 

also generalize the satisficing assignment problem to include limited resource constraints that arise in 

operations research and industrial engineering. We discuss several new search heuristics that can be 

applied to this generalized problem, and give some empirical results on the performance of these 

heuristics. 
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1. introduction 
In this paper, we provide a description of a general purpose dependency directed backtracking 

algorithm that is applicable to a type of problem referred to as the satisficing assignment problem (SAP), 

(Knuth, 1 975; Gashnig, 1979). This problem has also been referred to as the consistent labeling problem 

(Haralick and Shapiro, 1980) and the constraint satisfaction problem (Fikes, 1970). Many problems in 

Artificial Intelligence and Operations Research can be viewed as instances or special cases of such a 

problem. Broadly, a satisficing assignment problem involves determining an interpretation for a discrete 

set of variables, that is, assigning a value to each variable, such that the interpretation satisfies a given 

set of constraints. 

Several search algorithms have been proposed for solving the satisficing assignment problem. These 

include tree search techniques such as backtracking (Knuth, 1975) and its variants (Gashnig 1974, 1979), 

and filtering techniques such as Waltz's (1 975) arc-consistency and Montanari's (1 979) path-consistency 

algorithms. As Nudel (1 983) notes, filtering can reduce the number of assignments of values to variables 

that must be explored, but is not guaranteed to find a solution. Tree search alone guarantees to find all 

solutions but suffers from thrashing (Bobrow and Raphael, 1974; Mackworth, 1977). An analysis of 

several tree search, filtering, and hybrid techniques can be found in Haralick and Elliot (1980) and Nudel 

(1 983). 

Over the last few years, dependency directed backtracking, first proposed by Stallman and Sussman 

(1977), has been receiving increasing attention as a method for reducing the thrashing behavior 

associated with tree search programs. This method associates justification information with each 

assignment, and uses this information for adjusting beliefs in assignments when constraints are violated 

(de Kleer et. al, 1977; Doyle, 1979; McAllester, 1982; Goodwin, 1985; de Kleer, 1986). While there are 

differences in the motivations and reasoning methods underlying the various dependency directed 

reasoning formalisms, a common feature is their ability to eliminate parts of the search space by 

"localizing" the assignments responsible for the violation, and avoiding future maneuvers that lead to 

inclusion of these nogood sets of assignments. In this paper, we show that dependency directed 

backtracking can be used to reduce search in satisficing assignment problems. Specifically, we show how 

justifications associated with the assignment of values to variables can be used to identify specific 

assignments that are responsible for the violation of constraints. By avoiding assignments that include 

these nogood assignments, large parts of the search space can be excluded from consideration. 

One of our objectives is to provide a formal specification of dependency directed backtracking as 

applied to the satisficing assignment problem. We also generalize this problem by including a new type of 

constraint, one that arises frequently in operations research and industrial engineering. Specifically, each 

assignment of a value to a variable has associated with it a set of values, each of which specifies the 

amount of a specific resource consumed by that assignment. An acceptable solution is one where the 

total of each resource consumed by the assignments does not exceed the available amount of that 

resource. Resource constraints provide a way of guiding the search process by avoiding assignments that 

lead to consumption of large amounts of resources that are in short supply (Dhar and Quayle, 1985). 
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Preliminary empirical results that we have obtained indicate some of the savings in search that are 

achievable using knowledge about resource constraints. 

The remainder of this paper is organized as follows: a description and formal definition of the SAP is 

presented in Section 2. Section 3 provides a description of three functionally equivalent backtracking 

algorithms, two from the literature, and one that we propose. Included with the presentation of our 

backtracking algorithm is a discussion of possible heuristics that can be encoded into it. We conclude 

with a brief discussion of certain extensions to our backtracking algorithm that we are currently pursuing. 

2. Problem Definition 
The research presented in this paper has been motivated by an attempt at partially automating the 

generation of business models to support decision-making in business organizations. Approaches 

generally adopted for this purpose by researchers in Operations Research and Industrial Engineering 

have involved the design of optimization models, typically linear programming models, formulated in 

terms of continuous variables relevant to the problem domain. If the problem requires the introduction of 

discrete boolean variables, an integer programming formulation becomes necessary. However, if a 

significant number of discrete boolean variables are involved, the formulation can become cumbersome 

to specify and difficult to solve. Further, if no objective function can be specified, as is the case with 

satisficing problems (Simon, 1947), even an integer programming formulation is impossible. For such 

problems, optimization techniques become difficult to apply. 

A satisficing assignment problem, SAP, is characterized by a demmposition of the overall problem into 

discrete sets of competing alternatives and making choices from each of these sets in the presence of a 

set of constraints. A satisficing solution is one where a selection has been made from each set of 

competing alternatives such that no constraint is violated. Formally, a SAP can be defined as follows: 

Let X = {x,, x2, ..., xnf be a set of variables. Associated with each xi is a set 

of ni alternatives (values), one of which must be assigned to the variable xi. 

A constraint over the set of variables Xis a restriction on the set of values that can be simultaneously 

assigned to a specified subset of these variables. More specifically, we define a discrete constraint P(xi, 
1 

x. ..., x. ) to be a subset of the tuples in the Cartesian product 
2 Im 

and is the set of all permissible simultaneous assignments to the variables xi,, x .  ..., x. . An 
'2' Im 

assignment p is a function over the variables x,, xz, ..., x,, satisfying p(xj E Di. A partial assignment over 

a set of variables is an assignment over some subset of those variables. A variable over which an 

assignment or partial assignment is defined is called an assigned variable. An assignment p is said to 
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4 

satisfy the discrete constraint P over the variables xi , x .  ..., x .  if 
1 l2' '"I 

For example, consider a flexible manufacturing scenario involving four machines, denoted C, M, B, and 

F, one for each of the operations of cutting, milling, buffing, and finishing, respectively. Each machine 

can be configured in one of three ways with each configuration being characterized by a processing time 

and a processing cost. We also associate an identifier with each configuration. Figure 2-1 shows the 

configurations associated with each of the four machines. 

cutting (C) 
confiq.  time cost  

c l  2 0 5 
c2 5 20 
c3 10 10 

buffing (B) 
confiq.  time cost  

b1 8 10 
b2 10 8 
63 5 12 

milling (M) 
confiq. the c o s t  

m l  10 10 

finishing (F) 
conf i s .  time cos t  

f1 6 8 

Figure 2-1 : Manufacturing Machine Configurations 

We assume that only certain combinations of configurations are possible for manufacturing a given 

product. Specifically, consider the following two constraints: 
1. The time required in finishing the product must be greater than one-third the sum of the 

cutting and milling times. 

2. The time required for buffing must not exceed the cutting time. 

Each of these constraints limits the permissible combination of machine configurations. For example, 

the choice of configurations c l  and ml for the cutting and milling machines, respectively, will require 

configuration f3 for the finishing machine. With the second constraint, any configuration of the cutting 

machine can be used with configuration b3 of the buffing machine, whereas configuration c2 is disallowed 

with configurations b l  and b2. 

In addition to the discrete constraints defined above, we define a second type of constraint called a 

resource constraint. Each variable xi has associated with it a set of cost tables, each of which is a 

mapping from Di to real numbers. A resource constraint is expressed as an inequality of the form 
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where for a given resource, Ri, Tjri is the cost table associated with the variable xi An assignment p 

satisfies the above resource constraint if the sum of the costs assigned to the values of the variables is 

less than the given bound cj of that resource. 

As an example of a resource constraint, suppose that in the manufacturing scenario described above 

the total time allowed for the processing of a product on the four machines must not exceed 27 time units 

(say minutes). We express this constraint as: 

time(C)+time(K@+time(B>ttime(F) 2 27 

The generalized SAP defined in this paper consists of a set of discrete variables and a set of 

associated alternatives for each variable, a set of discrete constraints, and a set of resource constraints. 

Since it is possible to determine the set of tuples that satisfy a given resource constraint, each resource 

constraint could be transformed into a discrete constraint. However, a resource constraint typically 

involves a large number of variables, and explicitly storing the set of tuples can be prohibitively expensive. 

Furthermore, a resource constraint contains useful information that would be lost in transforming it into a 

discrete constraint. Specifically, the resource constraint gives the cost of individual variable assignments, 

information that is not explicitly represented in the corresponding discrete constraint. This information can 

be useful in backtracking when a constraint violation occurs when some resource bounds are exceeded. 

3. Search and Backtracking 
In this section, we present three backtracking algorithms that utilize varying degrees of knowledge in 

determining a backtracking point. The simplest of these, chronological backtracking, is completely 

uninformed. This is followed by a description of the dependency directed backtracking formalism that 

makes use of dependency information for backtracking. We conclude the section with our description of a 

heuristic dependency directed backtracking algorithm, which in addition to making use of discrete 

constraints, utilizes resource constraints to determine the most appropriate backtracking maneuver. 

3.1. Chronological Backtracking 
Following Knuth (1975), we view the chronological backtracking approach as one where all attempts 

are made to extend a given partial assignment into a satisficing assignment before an alternative partial 

assignment is explored. This approach, which we present present below as Procedure SA-SEARCH, 

extends a partial assignment (including the empty assignment) into a satisficing assignment if such an 

extension exists. When invoked with a partial assignment p of the problem variables Procedure SA- 

SEARCH will either return a satisficing assignment that is an extension of p, or the value fail. The value 

fail, which we use to denote the empty assignment to the problem variables, indicates that no such 

extension exists, that is, every attempt to extend the partial assignment represented by p leads to the 

- 
- 
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violation of some problem constraint. 

Initially SA-SEARCH (Step SA-1) checks to see if its argument, the partial assignment p, violates any 

constraints. If a violation is detected, then SA-SEARCH returns the value fail (i.e., an empty assignment). 

If no constraints are violated, SA-SEARCH next selects an unassigned variable xi (Step SA-3) to which it 

assigns a value that is used in an attempt to recursively extend the partial assignment p (Steps SA-4 and 

SA-5). If this attempt fails, successively assigns values to xi, each of which is used in an attempt to 

recursively extend the partial assignment p (Step SA-6). This successive assignment of values terminates 

when a satisficing assignment is found, or when there remains no additional values that can be assigned 

to x,. If found, the satisficing assignment is returned by SA-SEARCH, otherwise the value fail is returned. 

Procedure SA-SEARCH (p ) 

SA-1. i f  some c o n s t r a i n t  P i s  v i o l a t e d  by p t hen  return ( f a i l ) .  
SA-2. if a l l  v a r i a b l e s  Xi have been a s s igned  a va lue  

t h e n  return ( p )  . 
SA-3. S e l e c t  Xi, a v a r i a b l e  no t  a s s igned  a va lue  by p .  
SA-4. let  j=l. 
SA-5. let  p' = SA-SEARCH ( p  [x i  = vii] ) . 
SA-6. wh i l e  fail (p ')  & j < ni do 

begin  
j= j+l 
p' = SA-SEARCH ( p [x i  = vi,,] ) 

end 
SA-7. return (p ' )  

Figure 3-1 illustrates the behavior of SA-SEARCH on the problem of determining a satisficing set of 

configurations for the four machines introduced as part of the manufacturing scenario in the last section. 

In this figure we use the symbols "*" to indicate the occurrence of a constraint violation, and "I" to 

indicate a satisficing solution. 

As Figure 3-1 indicates, chronological backtracking results in a lot of wasted work since the reasons for 

failure are not recorded. If a bad choice is made early in the search, unfruitful parts of the search space 

are explored. In the following subsection we illustrate how dependency directed backtracking uses 

information about failures to focus search to more relevant parts of the search space. 

3.2. Dependency Directed Backtracking 
In the context of a set of discrete constraints a partial assignment can be extended in one of two ways. 

It can be extended by making an "assumption", that is, selecting some unassigned variable and assigning 

it a value from the set of available choices. It can also be extended by making a "deduction", that is, 

assigning values to unassigned variables by propagating forward the consequences of the currently made 

set of assumptions. The assignment of a value to a variable through a deduction, thus, is always 

dependent on the assumption-based assignment of values to other variables. 

'Given a function f ,  (x=d is the function P that agrees wittr f on all variables other than x to which it assigns the value y. 

- 
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1. C = c l  
2. C = c l ,  
3. c = c 1 ,  
4. C = c l ,  
5. c: = c1, 
6. C = c1, 
7. C = c l ,  
8. C = c l ,  
9. C = cl, 
10. C = c1, 
11. C = c l ,  
12. C = cl, 
13. C = c l ,  
14. C = cl, 
15. C = c l ,  
16. C = c l ,  
17. C = c l ,  
18. C = c l ,  
20. C = c l ,  
21. C = cl, 
22. C = cl, 
23. C = c l ,  
24. C = c l ,  
25. C = c l ,  
26. C = c l ,  
27. C = c l ,  
28. C = c l ,  
29. C = c l ,  
30. C = c l ,  
31. C = c l ,  
32. C = c l ,  
33. C = c l ,  
34. C = c l ,  
35. C = c l ,  
36. C = c l ,  
37. C = c l ,  
38. C = c l ,  
39. C = c l ,  
40. C = cl, 
41. C = c l ,  
42. C = c2 
43. c = c 2 ,  
44. C = c2, 
45. C = c2, 
46. C = c2, 
47. C = c2, 
48. C = c2, 
49. C = c2, 
50. C = c2, 
51. C = c2, 
52. C = c2, 
53. C = c2, 

M = m l  
M = ml, 
M = ml, 
M = ml, 
M = ml, 
M = ml, 
M = ml, 
M = ml, 
M = ml, 
M = ml, 
M = ml, 
M = ml, 
M = ml, 
M = m2 
M = m2, 
M = m2, 
M = m2, 
M = m2, 
n = m2, 
M = m2, 
M = m2, 
M = m2, 
M = m2, 
M = m2, 
M = m2, 
M = m2, 
M = m 3  
M = m3, 
M = m3, 
M = m3, 
M = m3, 
M = m3, 
M = m3, 
M = m3, 
M = m3, 
M = m3, 
M = m3, 
M = m3, 
M = m3, 

M = m l  
M = ml, 
M = ml, 
M = ml, 
M = ml, 
M = ml, 
M = ml, 
M = ml, 
M = ml, 
M = ml, 
M = ml, 

B = b l  
B = b l ,  
B = b l ,  
B = b l ,  
B = b2 
B = b2, 
B = b2, 
B = b2, 
B = b3 
B = b3, 
B = b3, 
B = b3, 

B = b l  
B = b l ,  
B = b l ,  
B = b l ,  
B = b2 
B = b2, 
B = b2, 
B = b2, 
B = b3 
B = b3, 
B = b3, 
B = b3, 

B = b l  
B = b l ,  
B = b l ,  
B = b l ,  
B = b2 
B = b2, 
B = b2, 
B = b2, 
B = b3 
B = b3, 
B = b3, 
B = b3, 

B = b l  
B = b l ,  
B = b l ,  
B = b l ,  
B = b2 
B = b2, 
B = b2, 
B = b2, 
B = b3 
B = b3, 

Figure 3-1 : Trace of SA-SEARCH on Machine Configuration Problem 

The underlying reason for which a specific value is assigned to a variable in a partial assignment 
function p is referred to as a justification. Formally, a justification assignment S for p is a function that 

associates with each assigned variable xi of p a non-empty set of assignment terms. An assignment term 
is a statement of the form xk=v where xk is an assigned variable of p, and v E Dk. The intent of a 
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justification assignment is to specify the set of assumptions underlying each assigned variable. A value v 

assigned to the variable xi is said to be assumed (it justifies itself) if Sfxi)  = {x,=vj, otherwise it is said 10 be 

deduced. 

We characterize dependency directed backtracking with the Procedure DDSA-SEARCH shown below. 

In contrast to SA-SEARCH, this procedure makes use of a justification assignment S that associates with 

each assigned variable the set of assumptions underlying its current value assignment. When a constraint 

violation occurs, this information is used to determine the set of assumptions that led to the violation, 

enabling a more informed decision about what value assignment to retract. 

Initially DDSA-SEARCH, in Step DDSA-1, invokes Procedure DDSA-CLOSURE. This procedure 

(described below) performs the "deduced" extension of the partial assignment specified by its first 

argument, and checks for constraint violations. When in Steps DDSA-6 and DDSA-7 the assignment of a 

value v to a variable x is assumed, its justification (x=vj is recorded as part of the justification assignment 

S. Once a variable has been assigned a value an attempt is made to extend the resulting partial 

assignment into a satisficing assignment through a recursive call to DDSA-SEARCH. 

Procedure DDSA-SEARCH (p, S) 

DDSA-1. let <pl, S f >  := DDSA-CLOSURE (p, S) 
DDSA-2. if fail (pl ) 

then return (fail) 
DDSA-3. if all variables Xi have been assigned a value 

then return ( p l ) .  
DDSA-4. Select Xi, a variable not assigned a value. 
DDSA-5. let j = 1 
DDSA-6. let <p" , S"> = DDSA-SEARCH (p '  [x i  = v;,,] , S ' [ x .  I = {xi = v i i j ]  ) 
DDSA-7. while fail (p" )  & j < ni do 

begin 
j = j + l  
let <p", S"> = 

DDSA-SEARCH (p f  [x i  = viPi] , SF [x i  = {xi = v i , j ]  ) 
end 

DDSA-8. return (pl*, sl*) 

In carrying out its task of'constraint propagation of a partial assignment p, Procedure DDSA-CLOSURE 

makes use of the notion of an open discrete constraint. A discrete constraint P is called open under a 

partial assignment p if all variables in P but one are assigned values by p, and there is only one possible 

value v for the remaining variable x such that x=v satisfies P. In this case we call the assignment of v to x 

the derivable assignment for P under p. For each open discrete constraint under the partial assignment 

denoted by its argument p, DDSA-CLOSURE attempts to successively extend p by the assignment 

derivable from that constraint, 

The violation of a discrete constraint P occurs as a result of the collective assignment of specific values 

to the variables over which the constraint is defined. When a discrete constraint is violated, the collective 

set of justifications for the assigned variables of the constraint is taken to be the cause of the untenability 

since -for each variable its value assignment was either assumption-based, and thus is contained within 

- 
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the set of justifications, or deduced from assum$ions represented by the set of justifications. 

The collective set of justifications is constructed using the function ASSUMPT. When presented with a 

set of assigned variables, its first argument, this function extracts for each variable in the set the 

justification assignment specified by the second argument. It then returns the union of these results. 

The set of justifications returned by ASSUMPT denotes a partial assignment that cannot be extended 

into a satisficing assignment. This set of justifications is placed in a set labeled NOGOOD. The set 

NOGOOD serves the role of a "memory" that is used to avoid making the same mistake twice; that is, 

repeating a set of assignments that is known to lead to the eventual violation of a constraint. The set 

NOGOOD is said to be violated by a partial assignment p if p is an extension of any partial assignment in 

NOGOOD. 

In Step DDSAC-5 of Procedure DDSA-CLOSURE, the assignment of a value to a variable is deduced 

from an open discrete constraint d. In this case the justification recorded consists of the union of the set 

of justifications associated with each of the assigned variables in the open discrete constraint d. 

Procedure DDSA-CLOSURE (p, S) 

DDSAC-1. if NOGOOD is violated by p 
then return (fail) 

DDSAC-2. if some constraint P is violated by p 
then 

begin 
let c$ = the set of assigned variables in P 
let NOGOOD = NOGOOD $ ASSUMPT (Q, SI2 
return (fail) 
end 

DDSAC-3. if there are no open discrete constraints 
then return (<p, s>) 

DDSAC-4. let d be an open discrete constraint 
let Xi = v - .  be the derivable assignment, & 

1.l 
let W be the set of justifications of the assignments in d 

DDSAC-5. return (DDSA-CLOSURE (p [x,=virj] , s [x,=W] ) ) 

We illustrate in Figure 3-2 the behavior of the dependency directed backtracking algorithms using once 

again the manufacturing example. In this figure we use the symboi "===>" to indicate an application of 

DDSA-CLOSURE. (The line following this symbol shows the status of assignments to the variables in p 

after application of DDSA-CLOSURE.) 

The advantages of dependency directed backtracking over standard backtracking can be summarized 

as follows. Chronological backtracking, shown in SA-SEARCH, is a depth-first tree search. In contrast, 

the algorithms DDSA-SEARCH and DDSA-CLOSURE use dependency information to reduce search. 

Specifically, in DDSA-CLOSURE either constraint propagation occurs -- in which case justifications are 

recorded for each assignment, or a violation is detected during constraint propagation -- in which case 

 h he operator 63 inserts its second operand, a set, into its first operand, also a set. For example, {a, b} + {c, 4 = {a, b} u {(c, 4). 
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1. C = c l  
2: C = cl, M = ml -> 
3. C = c1, M = ml, F = f3 * N O D  = {{cl, ml)} 
4. C = c1, M = m2 -> 
5. C = cl, M = m2, F = f3 * NOGWD P {Id, ml), {cl, m2f) 
6. C = cl, M = m3 -> 
7. C = cl, M = m3, F = f3 * NOGOOD = {{cl, ml), {cl, m2}, {cl, m3)f 
8. C = c 2 - >  
9. C = c2, M = m3 
10. C = c2, M = m3, B = bl 
11. C = c2, M = m3, B = bl, F = fl I 

Figure 3-2: Trace of DDSA-SEARCH on Machine Configuration Problem 

backtracking occurs. In effect, constraint violations can be detected earlier than in the tree search 

algorithm SA-SEARCH. Further, when a violation is detected, dependency directed backtracking focuses 

on the assumptions culpable for the violation. By recording sets of assumptions responsible for constraint 

violations as nogoods, and ensuring that no extension of such sets is attempted, parts of the search 

space that are guaranteed not to contain a solution are eliminated from further consideration. 

3.3. Heuristic Dependency Directed Backtracking 
In this section, we extend the dependency directed backtracking algorithm discussed in the last section 

by providing for the ability to incorporate heuristics that make use of information gleaned from the 

consumption of resources associated with assigned values. Incorporating heuristics into the dependency 

directed backtracking algorithm makes it sensitive toward discriminating among the assumed values 

assigned to variables in untenable situations. 

A feature of the dependency directed backtracking technique is that when an untenable situation 

arises, the underlying set of assumptions that led to that situation are treated uniformly; no attempt is 

made to assess their relative culpabilities. Often there is some discretion as to which of the assumptions 

should be retracted. However, in order to select, and then retract, the most appropriate culprit a metric is 

needed to determine the relative degrees of culpability of the various underlying assumptions. 

When assessing the culpability of assumptions in untenable situations, it is useful to distinguish 

between the two types of constraints that we have defined earlier: discrete constraints and resource 

constraints. In particular, if it is known that the untenability of a partial assignment resulted from the 

violation of a resource constraint, it becomes possible to contrast different backtracking maneuvers 

according to the extent to which they alleviate the violated resource constraint. The Procedure HDDSA- 

SEARCH presented below extends DDSA-SEARCH to allow the incorporation of different backtracking 

maneuvers that are sensitive to the degree of assumption culpability for the violation of a resource 

constraint. 
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Before attempting an assumption-based extension to the partial assignment denoted by it first 

argument, Procedure HDDSA-SEARCH first invokes Procedure HDDSA-CLOSURE. This procedure, 

similar to its dependency directed backtracking counterpart performs constraint propagation and checks 

for any constraint violation that occurs. However, unlike DDSA-CLOSURE, in the event of a constraint 

violation, HDDSA-CLOSURE returns one of two values that identify the type of constraint that was 

violated. The value failND is returned when the violation of a NOGOOD or a discrete constraint occurs. 

When the violation of a resource constraint occurs, the value failR is returned. 

In order to determine if failND or failR has been returned, HDDSA-SEARCH uses the two Boolean 

functions failND and failR, respectively. If the current partial assignment causes the value failND to be 

returned, then HDDSA-SEARCH returns the value fail. This action is the same as that that would be taken 

by the dependency directed backtracking algorithm in the previous section. 

If the current partial assignment leads to the violation of a resource constraint, then HDDSA-SEARCH 

takes several actions to remedy the violation. First using the function ASSUMPT, it determines the set of 

assumptions underlying the partial assignment. Using a heuristic implemented in the function CHOOSE, it 

next determines the assignment having the "greatest" culpability for the constraint violation. The function 

CHOOSE is passed four arguments that it can use in making its determination: the current partial 

assignment p, the corresponding justification assignment S, the underlying set of assumptions derived 

from the partial assignment A, and an identifier of the violated resource constraint, (We discuss some 

possible heuristics later in this section.) 

Next HDDSA-SEARCH invokes the function RETRACT. This function is used to retract values 

assigned to a set of variables. This set of variables consists of the variable specified in the third 

parameter of the call to RETRACT (i.e., the value returned by CHOOSE), and those variables having 

values that are deduced as a result of the value assigned to this specified variable. The function call 

RETRACT(p, S, x), where p is a partial assignment with justification assignment S, and x is  an assigned 

variable with x=v: 
retracts the value and justification assigned to x, and 

for each assigned variable xi where x=v E S(xj) 
retracts the value and justification assigned to xi 

After retraction the search process continues since there still remain unassigned variables. 
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Procedure HDDSA-SEARCH [p, S) 

HDDSA-1. let <pl , S t  > : = HDDSA-CLOSURE (p, S )  
HDDSA-2. if fail,, (p '  ) 

then return (fail) 
HDDSA-3. if failR (P'  ) 

then 
begin 
let j be identifier of violated resource constraint 
let + = the set of assigned variables in p '  
let A = ASSUMPT ($, S )  
let x = CHOOSE(p, S,  A, j) 
let <pr , S t  > = RETRACT(pl, S t ,  X) 
end 

HDDSA-4. if there are no unassigned variables Xi 

then return (pl ) 
HDDSA-5. Select xi, a variable not assigned a value. 
HDDSA-6. let j = 1 
HDDSA-7. let <Pw1 S"> = 

HDDSA-SEARCH (p '  [xi= v~,,], S '  [x;={x~= vi,j] ) 

HDDSA-8. while fait (p") & j < ni do 
begin 
j = j + l  
let <pW, S"> = 

HDDSA-SEARCH (pl [xi = vi,,] , s [xi = {xi = v;,)] ) 

end 
HDDSA-9. refUl'n (p" ,  S * ' )  

One can show that the recursion in Procedure HDDSA-SEARCH always terminates. More specifically, 

suppose that the recursion did not terminate. In this case the procedure HDDSA-SEARCH would call 

itself to an infinite recursive depth. But every time the procedure calls itself recursively it either calls itself 

on a larger partial assignment or the Procedure HDDSA-CLOSURE returned fail,. Partial assignments 

can be no larger than the number of variables in the problem. Therefore, in order for Procedure HDDSA- 

SEARCH to call itself to an infinite recursive depth Procedure HDDSA-CLOSURE must return fail, an 

infinite number of times. But this cannot happen because each time HDDSA-CLOSURE returns failR it 

creates a new nogood. Since there are only finitely many possible nogoods Procedure HDDSA- 

CLOSURE cannot return fail, an infinite number of times. 

If Procedure HDDSA-SEARCH returns a non-failing variable assignment then this assignment is a 

solution to the constraint problem. On the other hand, one can show that for any given variable 

assignment p and justification assignment S, if HDDSA-SEARCH@, S) returns fail then no solution of the 

constraints satisfies the assignments in ASSUMPT(p, S). More specifically, note that if HDDSA-SEARCH 

returns fail, then it must have returned from either Step HDDSA-2 or Step HDDSA-9. If the procedure 

returns from HDDSA-2 then the Procedure HDDSA-CLOSURE has deduced that no solution satisfies the 

assignments in ASSUMPT(p, S). If the Procedure HDDSA-SEARCH returns fail from Step HDDSA-9 then 

every recursive call in steps HDDSA-7 and HDDSA-8 must return fail. One can assume that the recursive 

calls to HDDSA-SEARCH behave as specified. If all of these recursive calls return fail then no solution of 

the constraints satisfies the assignments in ASSUMPT(pl, S'). But ASSUMPT(p' S') is a subset of 

ASSUMPT(p S). 
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Procedure HDDSA-CLOSURE (p, S) 

HDDSAC-1. if some discrete constraint P is violated by p 
then 
begin 
let @ = the set of assigned variables in P 
let NOGOOD = NOGOOD 83 ASSUMPT ($, S) 
return (fail,,) 
end 

if NOGOOD is violated by p 
then 
return (fail,,) 

if some resource constraint R j  is violated by p 
then 
begin 
let @ = the set of assigned variables in p 
let NOGOOD = NOGOOD @ ASSUMPT (@, S) 
return ( fail,) 
end 

HDDSAC-2. if there are no open discrete constraints 
then return (<p, s>) 

HDDSAC-3. let d be an open discrete constraint 
let Xi = Virj be the derivable assignment, & 

let W be the set of justifications of the assignments in d 
HDDSAC-4 . return (HDDSA-CLOSURE (p [x,=vi,,] , s [x,=Wl ) 

Next we identify three heuristics that could be used to select an assignment to be retracted, and the 

corresponding versions of CHOOSE used to implement them. The function cost invoked by CHOOSE 
returns the amount of a resource, identified by its second argument, that is consumed by the partial 

assignment specified by its first argument. 

HEURISTIC 1: Compare all competitors of an assumed assignment and its dependents with all other 

assumed assignments and their dependents on the extent to which they free up the resource whose 

consumption has been exceeded. 
Procedure CHOOSE (p,S,A,R) 

C-1. for each Xi in the set of assumptions A do 
begin 
let pf = RETRACT(~,S,X~) 
let min(i) = Cost (p' [x,=vi,,l , R) 
for k = 2 to nido 

if cost(pr [xi=v;,,] ,R) < min(i) 
then min(i) = cost(pt [x;=v;,k] ,R) 

end 
C-2. bestmin=i /*where xi is assigned a value by p * /  
C-3. for each Xi assigned a value by p do 

if min(i) < min(bestmin) 
then bestmin=i 

C-4 . return (xbestmin) 

HEURISTIC 2: Compare only the assumed assignments and their dependents on the extent to which 

they free up the resource whose consumption has been exceeded. 
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Procedure CHOOSE ( p , ~ , ~ , ~ )  

C-1 .  f o r  each  Xi i n  t h e  s e t  of assumptions A do 
- 

begin  
l e t  p1 = RETRACT (p,  S, xi) 
l e t  min( i )  = cost(pl [x,=viri1 , R )  
end 

C-2.  l e t  b e s t h i  /*where xi i s  a s s igned  a va lue  by p * /  
C-3.  f o r  each  Xi a s s igned  a va lue  by p do 

i f  min ( i ) < min ( bestmin) 
t h e n  bestmi-i 

C-4.  return (xbestmin) 

HEURISTIC 3: Compare only the assumed assignments, ignoring dependencies, on the extent to 

which they free up the resource whose consumption has been exceeded. 

Procedure CHOOSE @,S,A,R) 

C-1. l e t  bestmi-i / *  where xi i s  a s s igned  a va lue  by p * /  
C-2 .  f o r  each Xi i n  t h e  set of assumptions A do 

if T ~ ,  i (Xi) < T ~ ,  bestrnin (Xbestrnin) 
t h e n  bestmimi 

C-3.  return (xbestmin) 

The ordering of the three heuristics reflects a decreasing amount of computation required in 

backtracking situations. The first requires an extensive enumeration of all possible backtracking 

maneuvers and computation of resource requirements associated with each maneuver, whereas the last 

one uses a simple scheme requiring little computation. 

The behavior of the heuristic algorithms with the manufacturing example is illustrated in Figure 3-3. In 

this simple case, the three heuristics for CHOOSE result in the same behavior. 

1. C = cl 
2. C = c1, M = ml -> 
3. C = cl, M = ml, F = f3 * NCGOOD = {{cl, ml)}  
4. C = c2 
5. C = c2, M = ml 
6. C = c2, M = ml, B = bl 
7. C = c2, M = ml, B = bl, F = fl I 

Figure 3-3: Trace of HDDSA-SEARCH on Machine Configuration Problem 

As shown by this figure, C (i.e., selecting a different configuration for the cutting machine) is preferred 

to M as the backtracking point since it "better" addresses the particular constraint violated, the constraint 

involving the scarce resource. With large problems, we have found the savings in search resulting from 

the application of such heuristic knowledge substantial. 
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4. Conclusion 
The importance of effective heuristics for reducing search has been long recognized in the Al and 

Management Science literature. In this paper, we have provided a formal specification for an important 

search technique, namely, dependency directed backtracking, as it applies to satisficing assignment 

problems. Many search problems in various problem domains can be viewed as instances of the SAP. 

We have also generalized the classical SAP and described several heuristics that can be used to limit 

the amount of backtracking that is associated with search. Traditionally, satisficing assignment problems 

have been defined in terms of what we have called discrete constraints; we have extended this problem 

definition by providing for resource consumption constraints. In this extended problem definition, a 

satisficing solution is one that satisfies the discrete and resource constraints. With respect to the resource 

constraints, it is necessary that the assignment not result in the use of more of a resource than is 

available. 

The inclusion of the resource consumption constraint allows for a further extension of the problem. 

Specifically, an objective function can be formulated to specify that the solution must be "optimal" in its 

use of the resources. For example, an objective function could state that minimum amounts of resources 

be consumed, subject to the resource and discrete constraints. In this way, the satisficing problem 

becomes transformed into an optimization problem. This transformed problem can be solved using the 

branch and bound technique augmented with knowledge about the NOGOOD set. Specifically, by using 

the NOGOOD set, the branch and bound procedure can rule out paths that are known to be untenable. 

However, this efficiency is achieved at the expense of an additional structure that grows with each 

backtracking maneuver. As a next step in this research, we intend to study these tradeoffs in more detail. 
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