
TEMPORAL LOGIC AS A
SIMULATION LANGUAGE

Alexander Tuzhiliii
Information Systems Department

Leonard N. Stern School of Business
New York University

40 West 4th Street, Room 624
New York, New York 10003

October, 1990

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Working P a ~ e r Series

STERN IS-90-22

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-22

Temporal Logic as a Simulation Language

Alexander Tuzhilin

Information Systems Department
Stern Scfiool of Business

New York University
40 West 4th Street, Room 624

New York, NY 10003
phone: 212-998-4203

e-mail: tuzhilinernd. gba.nyu. edu

Abstract

We advocate the use of temporal logic instead of the first-order logic in rules of
knowledge-based simulation systems. We argue that this provides several advantages
that will be discussed in the paper. We show how temporal logic is used in simulation
by considering language PTL based on temporal logic programming.

1 Introduction

Recently, there has been substantial interest developed in knowledge-based simulation meth-

ods. Books by Elzas, 0ren and Zeigler [EOZS~, ~ 0 ~ 8 9 1 and volumes 17 and 18 of the Sim-

ulation Series [LASG, LB871 contain many articles on the subject. Also, Rothenberg [Rot891

presents a recent tutorial of the area. Many knowledge-based simulation systems provide

support for rule-based and object-oriented paradigms combined with a support for powerful

knowledge representation schemes such as frames. Examples of commercial systems of this

type are SIMKIT [Int85] and Simulation Craft [SFBB86].

The rule-based component of these systems is typically based on a logic programming

language, e.g. PROLOG, or on a production system, e.g. 0PS5 [BFI<86]. Therefore, rules

used in the knowledge-based simulation methods described above are based on the first-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-22

order logic since logic programming languages and production systems have their roots in

the first-order logic.

Since simulation methods deal with processes evolving in time and since the first-order

logic does not support time directly, the knowledge-based simulation methods must pro-

vide an explicit support for time. For example, most of the methods explicitly define and

manipulate a system clock and provide some form of event scheduling.

In this paper, we propose to use a predicate temporal logic instead of the first-order

logic in the rule-based simulation methods. To that extent, we consider a language PTL

[Tuz90] constituting a rule-based fragment of temporal logic and explain how PTL can be

viewed as a simulation language. Since temporal logic is a logic of time, we will see that

there is no need to define time explicitly as a parameter in rules in the simulation methods

based on temporal logic. In particular, there is no need to maintain a system clock and

schedule events in PTL since both of these tasks become the implementation issues of the

language and should not concern the user of PTL. Better support for time and a higher level

of declarativeness constitute only one advantage of simulation methods based on temporal

logic over the methods based on the first order logic. Other important advantages will be

presented in Section 3.

In this paper, we mainly advocate the use of temporal logic in knowledge-based simu-

lation systems. To make a real simulation system based on temporal logic, it is important

to extend PTL with additional features. For example, it is important to provide a support

for object-oriented programming, develop a good user friendly syntax, possibly, based on

natural language, a good user interface, and provide a support for advanced knowledge-

representation schemes, e.g. frames. Such extensions will further increase modeling capa-

bilities of the language. However, the treatment of these issues is beyond the scope of this

paper and constitutes a topic of current research.

To make the paper self-contained, we briefly review PTL [TuzSO] in the next section.

PTL as a Simulation Language

In order to define PTL, we introduce the following preliminary concepts from temporal

logic. The books by Icroger [Kro87] and Rescher and Urquhart [RU71] provide a good

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-22

introduction to temporal logic. First, we use standard temporal operators of necessity (a)

and past necessity (w), possibility (0) and past possibility (*), next (0) and previous (a)
IE(ro87, RU71]. Since predicates are defined over time in temporal logic, it means that the

temporal operators generate predicates that are also defined over time. For example, CIA is

true at time t if A is true at time t and at all times after time t; oA is true at time t if

A is true either at time t or at some time after t; and oA is true at time t if A is true at

time t + 1. Similarly, we can define past "mirror" images of these operators. Second, we

introduce two new temporal operators of bounded necessity @ and bounded possibility OT

together with their past mirror images. e A is true at time t if A is true from time t up

to but not including t i- T and is false at time t + T. OT A is true at time t if there is t',

such that t < t' < t + T and A is true at t'. Examples of various temporal operators will be

provided in Example 1.

A PTL program is a set of temporal clauses. A temporal clause has the form BODY -4

HEAD, where BODY is any temporal logic formula with only the past temporal operators

appearing in them; and HEAD is a conjunction of next-literals, necessity and bounded

necessity operators and their negations. As Example 1 shows, conjunctions in the head of

a rule will be denoted with semicolon (;). It follows from this definition that the body of a

rule refers to the current moment of time and to the past, whereas the head of a rule refers

strictly to the future. In addition, PTL supports negations both in the head and the body

of a rule.

Next, we provide examples of PTL rules, as presented in [Tuz90], and explain various

points about PTL using this example.

Example 1 A Flexible Manufacturing System (FMS) manufactures certain products such

as car engines, electronic boards, or electrical appliances. In this example, we assume that an

FMS performs only assembly operations on unfinished units. The initial part of an assembly

is brought into the system through the load-unload station. Then it is carried among various

manufacturing units, called cells, where the assembly process takes place. For example, in

case an FMS manufactures toasters, one cell can be responsible for making the outer body

of a toaster, another for installing heating elements in it, another for assemblying knobs on

the front panel of a toaster, and still another one for attaching the front door to it. A special

vehicle, called an Automatic Guidance Vehicle (AGV), carries incomplete assemblies among

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-22

@L2(ASM, C) A lLZ(ASA4, C) A D(AGV, C) A (VASMt)1L1(ASM', AGV)

-+ o L1 (ASM, AGV)

Note the usage of temporal operators past possibility (*) and future bounded necessity

(m) in rules R1 and R3. *L2(ASM, C) means that the assembly ASM was located in the

cell C at some time in the past; mMOV(AGV, C) means that the vehicle AGV is moved to

the cell C for T time units. Also note the usage of negations (1) both in heads and bodies

of rules.

The meaning of a PTL program is associated, as in the case of a logic program, with

a certain model of that program [TuzSO]. In case of temporal logic, a model of a program

is defined in terms of the instances of program predicates taken at all the moments of time;

in addition, the rules in the program must be true at all the moments of time as well. In

other words, a model of a PTL program can be considered as a trajectory of all the program

predicates over time. If program predicates represent a state of a system then the trajectory

of its values can be viewed as a simulation trace and the PTL program as a simulation

program producing the trace.

A PTL program can have many models in general. In order to be able to select a unique

model of a PTL program, [TuzSO] introduces inf lat ionary and boundary conditions. These

two conditions reduce the class of all the models of a PTL program to a unique model which

becomes the meaning of the program.

To summarize, a PTL program has a unique model (determined by inflationary and

boundary conditions) and this model can be interpreted as a simulation trace of the program.

Notice that we did not provide any way to compute the simulation trace. We simply

stated that such a trace exists for any PTL program. Because PTL does not specify how

to compute the simulation trace of a program and only defines the trace in t e r m s of the

program, it provides an example of a declarative rule-based simulation language. As will

be stated in the conclusion, efficient methods to compute the simulation trace of a PTL

program constitute the topic of current research.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-22

3 Advantages of PTL as a Rule-Based Simulation Lan-
guages

In Section 2 we proposed to use rules based on temporal logic as opposed to the first order

logic in knowledge-based simulation systems. Usage of temporal logic improves simulation

capabilities of knowledge-based systems because of the following reasons.

1. Temporal logic produces more declarative simulation programs. A simulation trace is

the model of a program. Therefore, there is no need for a user to define any compu-

tational mechanisms in a program such as instructions on how to maintain a system

clock or an event queue. As Example 1 shows, the simulation trace of the program

specified by rules R1 - R4 is uniquely defined by these rules and by initial conditions

and does not depend on anything else.

2, Temporal logic provides powerful mechanisms to describe state transitions. The body

of a rule can depend not only on the current state of the system but also on its past

history (by using past bounded and unbounded possibility and necessity operators).

Also, the head of the rule can describe not only what happens to the system at the

next moment of time but also at more distant future instances. This can be achieved

by using temporal operators of necessity, bounded necessity and multiple nexts.

3. In [Tuz90], a systematic and declarative query language for PTL programs was pro-

posed. This language is also based on temporal logic. For example, a query "Find all

assemblies that will visit cell Co within the next 20 minutes" on a PTL program from

Example 1 can be expressed in this query language as

This language can also be viewed as a query language on simulation traces.

Therefore, temporal logic can be used both for simulating behavior of a system and for

asking queries about its behavior. This means that temporal logic provides '.'.seamless"

integration between the simulation method and the query language about the results

of the simulation since both of them are based on temporal logic.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-22

4. Temporal logic can support partial simulations. Traditionally, when a query is asked

about a system being simulated, a simulation is run first and then the query is asked

on the simulation trace being produced. If the query language referred to in item 3 is

combined with PTL then we can ask a query first and then run the simulation only

on the part of the system pertinent to the query. For example, if we want to know

if an assembly leaves a cell within the next 10 minutes, probably, there is no need

to simulate the behavior of the entire FMS. It may suffice to simulate the processes

within a single cell for 10 minutes thus producing a partial simulation of an FMS for

the query asked.

5. The same formalism of temporal logic can be used not only for describing behavior of

a system and asking queries about this behavior, but also for specifying dynamic con-

straints on the behavior. A dynamic constraint (Bro81, CPB81, CF84, Via881 imposes

restrictions on possible instances of predicates over time. For example, a dynamic con-

straint can state that the salary of an employee cannot decrease over time. As [CF84]

advocates, temporal logic is well-suited for the specification of dynamic constraints.

6. Temporal logic constitutes a solid and well-studied formalism. Therefore, rules based

on temporal logic have a solid theoretical foundation.

7. PTL can be reduced to the first-order logic and to production systems [BFK86] in the

degenerate case when no temporal operators are used in the body of a rule and only

next (0) temporal operators are used in the head [TuzSO]. Therefore, PTL is compatible

with these two formalisms and inherits their strong properties.

For all the reasons listed above, temporal logic improves simulation capabilities of

knowledge-based systems and, therefore, can be used instead of the first-order logic in these

systems.

Related Work

There has been much work done on using rule-based systems in simulation. Books by

Elzas, 0ren and Zeigler [EdZ86, ~ 0 ~ 8 9 1 and volumes 17 and 18 of the Simulation Series

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-22

[LA86, LB871 contain many articles on the subject. However, none of these rule-based

systems use temporal logic.

The use of temporal logic to model behavior of Computer Integrated Manufacturing Sys-

tems was suggested by Chaudhury and Rao [CR88] and by Huber and Buenz [HD89]. Huber

and Buenz used Allen's interval-based temporal logic to specify constraints on production

schedules; however, they have not used it as a method to generate computations. Chaudhury

and Rao [CR88] suggested the possibility of using temporal logic for the conceptual modeling

of CIA4 systems.

As was stated before, the language PTL was introduced in [TuzgO]. This language

is related to the work on temporal logic programming [AM89, Bau89, Gab89, KI.(N+907

FKTMo86, Most361 and constitutes an extension of this work to support requirements for

modeling reactive systems. See [Tuz9O] for more details on comparison of PTL with the

referenced work on temporal logic programming.

5 Conclusion and Work in Progress

In the paper we argue that temporal logic is well-suited for knowledge-based simulations.

It provides a highly declarative method of modeling behavior, has powerful mechanism to

describe state transitions, supports partial simulations, can be used for the specification of

query languages and dynamic integrity constraints, and provides a sound theoretical basis

for knowledge-based simulation systems.

We also considered language PTL [Tuz9O] and showed how it can be used to simulate

behavior of an FMS.

We are currently working on two issues. First, we are trying to extend PTL to support

object-oriented programming and advanced knowledge representation methods. Second, we

are trying to find efficient methods to compute simulation traces of PTL programs.

References

[AM891 M. Abadi and Z. Manna. Temporal logic programming. Journal of Symbolic

Computation, 8:277-295, 1989.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-22

[BauSS] M. Baudinet. Temporal logic programming is complete and expressive. In Symp.

on Principles of Programming Languages, pages 267-280, 1989.

[BFK86] L. Brownston, R. Farrell, and E. Kant. Programming Expert Systems in OPS5:

an Introduction to Rule-Based Programming. Addison-Wesley, 1986.

[BroSl] M. Brodie. On modelling behavioral semantics of databases. In International

Conference on Very Large IJatabases, pages 32-42, 1981.

[CF84] Marco A Casanova and Antonio L. Furtado. On the description of database

transition constraints using temporal languages. In Advances in Database The-

ory, pages 211-236. Plenum Press, 1984. vol. 2.

[CPBSl] S. Ceri, G. Pelagatti, and G. Bracchi. Structured methodology for designing

static and dynamic aspects of database applications. Information Systems,

6:31-45, 1981.

[CR88] A. Chaudhury and H. R. Rao. Conceptual modeling in computer integrated

manufacturing systems. In M.D. Oliff, editor, Expert Systems and Intelligent

Manufacturing, pages 265-276. Elsevier Science Publishing Co., 1988.

[EOZSG] M.S. Elzas, T.I. oren, and B.P. Zeigler, editors. Modelling and Simulation

Methodology in the Artificial Intelligence Era. North-Holland, 1986,

[EOZS~] M.S. Elzas, T.I. oren, and B.P. Zeigler, editors. Modelling and Simulation

Methodology: ICnowledge Systems' Paradigms. North-Holland, 1989.

[FKTMo86] M. Fujita, S. Keno, H. Tanaka, and T. Moto-oh. Tokio: Logic programming

language based on temporal logic and its compilation to Prolog. In Third In-

ternational Conference on Logic Programming, pages 695-709. Springer-Verlag,

1986. LNCS 225.

(Gabs91 D Gabbay. The declarative past and imperative future: Executable temporal

logic for interactive systems. In B. Banieqbal, H. Barringer, and A. Pnueli,

editors, Proceedings of Colloquium on Temporal Logic in Specification, pages

402-450. Springer-Verlag, 1989. LNCS 398.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-22

[HD89] A. Huber and Buenz D. Using GRAI to specify expert systems for the control

and the supervision of flexible flow lines. In J. Browne, editor, li'nowledge Based

Production Management Systems, pages 295-308. Elsevier Science Publishers,

1989.

[Int85] IntelliCorp, Mountain View, Calif. The SIMIi3T System: Knowledge-Based

Sirnulation Tools in KEE, 1985.

[KI<N+90] D. Kato, T. Kikuchi, R. Nakajirna, J. Sawada, and H. Tsuiki. Modal logic

programming. In VDM and Z - Formal Methods in Software Development.

Springer-Verlag, 1990. LNCS 428.

[Kro87] Fred Kroger. Temporal Logic of Programs. Springer-Verlag, 1987. EATCS

Monographs on Theoretical Computer Science.

[LA861 P. Luker and H.H. Adelsberger, editors. Intelligent Simulation Environments,

volume 17. SCS Simulation Series, 1986.

[LB87] P. Luker and G. Birtwistle, editors. Simulation and Artificial Intelligence, vol-

ume 18. SCS Simulation Series, 1987.

[Mos86] B. Moszkowski. Ezecuting Temporal Logic Programs. Cambridge University

Press, Cambridge, England, 1986.

[Rot891 J. Rothenberg. Tutorial: Artificial intelligence and simulation, In E.A. MacNair,

K. J. Musselman, and P. Heidelberger, editors, Proceedings of the SCS Winter

Simulation Conference, 1989.

[RU71] Nicholas Rescher and Alasdair Urquhart. Temporal Logic. Springer-Verlag,

1971.

[SFBB86] N. Sathi, M. Fox, V. Baskaran, and J. Bouer. Simulation Craft: An artificial

intelligence approach to the simulation life cycle. In Proceedings of the SCS

Summer Simulation Conference, 1986.

[Tuz90] A. Tuzhilin. Programming reactive systems in temporal logic. Working Paper

IS-90-21, Stern School of Business, NYU, 1990.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-22

[Via8S] V. Vianu. Database survivability under dynamic constraints. Acta Informatics,

25:55-S4, 1988.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-22

