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Abstract 

Constraints, in various forms, are ubiquitous to design problems. In this paper, we provide a formal 
characterization of a generalized constraint satisfaction problem (CSP) that can be used to model many 
types of design/planning problems, and the architecture of an imlemented reasoning system for solving this 
problem. The architecture includes a truth maintenance system (TMS) which is specifically designed to 
reason about the relationships expressed in the constraints as a problem solution evolves. The CSP 
consists of two types of data. The first type of datum carresponds to assignments that are handled by the 
problem solver, and the second type corresponds to constraint terms handled by the TMS. The 
dependency network, representing the relationhips among constraint terms, is static and generally quite 
small, depending on the number of constraint terms. Also, justifications are never manipulated (only 
evaluated). This results in an architecture that makes efficient use of both space and time. The need for 
efficient TMSs, even though these might deal only with certain classes of problems, is underscored by the 
fact that general purpose TMSs have often been found to be highly inefficient for solving large problems. 
We also show how certain instances of the generalized CSP can be formulated as an integer programming 
problem, special cases of which can be solved efficiently using mathematical (integer) programming 
techniques. 

1. Introduction 
Design problems arise in a variety of domains. Solving such problems generally requires a hierarchical 

decomposition of the problem into parts, the generation or retrieval of alternatives for these parts, and the 

coordination of solutions for each part into an integrated whole (Simon, 1973). This general 

characterization applies to a variety of problems such as designing a fugue (Reitman, 1965), a house 

(Alexander, 1964), an engineered artifact (Simon, 1973), or a business plan (Dhar and Pople, 1987). 

Domain expertise is involved in deciding how best to decompose the problem, in generating alternatives, 

recognizing constraints among them, and in resolving conflicts among the parts in a way that least impairs 

the quality of the overall design. Abstractly, the design problem can be viewed as a process of constraint 

satisfaction. 

In this paper, we present an architecture of a reasoning system for a certain class of constraint 

satisfaction problems. This class of problems is characterized by a decomposition of the problem into 

discrete sets of competing alternatives called choice sets. The alternatives are defined in terms of 

attributes that characterize the choice set. In addition, constraints defined in terms of choice set attributes 

restrict the space of design solutions. Our reasoning system consists of two components: a problem 

solver that contains domain knowledge, and a truth maintenance system (TMS) that keeps track of the 

status of constraints and focuses the problem solver's search. We show that by exploiting structural 

features of the problem and adopting a certain delineation of responsibilities between the TMS and a 

problem solver, considerable simplicity in the TMS architecture and efficiency in its status assignment 

algorithms is achieved. We provide a precise characterization of the overall reasoning process by 

describing the algorithms corresponding to the problem solver and the TMS. We also contrast our 

reasoning system with those that might be designed using other TMSs. Specifically, we show some of the 

advantages of our architecture that result from exploiting the structural characteristics of the problem. 

We should point out that our reasoning system does not model the entire process of problem 

decomposition and constraint definition. We assume that the choice sets and constraints have been 

defined for the problem solver. In effect, we are modeling only the constraint satisfaction process 

component involved in solving design problems. 
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2. Constraint Satisfaction Problems 
Many types of design problems can be viewed as the task of making choices from among competing 

sets of alternatives. For example, the design (specification) of a computer system might require the 

selection of a processor, memory unit, operating system, etc., from among the various alternatives 

available for each. In turn, each choice may entail certain tradeoffs; for example, with respect to cost, 

performance, and compatibility with other components to be selected. 

Often the designer is faced with a set of constraints that must be satisfied by the set of selected 

choices. Again, using the computer system design example, each set of choices has an associated set of 

attributes that characterize and distinguish the alternatives in the set. For example, each of the 

processors that can be selected has an associated speed and cost. Assuming cost is an attribute 

associated with each of the types of software and hardware components to be selected, then the 

designer may be faced with a budgetary constraint. That is, the total cost of the various components 

selected cannot exceed a specified amount. 

A constraint satisfaction problem (CSP) is characterized by an ordered set X = {X,, X2, X3, ..., Xn} of 

choice sets, and a set C = {C1, C2 C3, ..., C,,,) of constraints. Each choice set Xi = xi,* ..., xjrn) 
represents a set of alternatives. Corresponding to each xi is a set of choice set attributes Ai = {A;,,, Ai,* 

..., Ai,,,,J used to characterize each of the alternatives in that choice set. For example, if Xi is the choice 

set consisting of a set of computer processors, as discussed above, then speed and cost are two of the 

attribute values associated with this choice set, and, therefore, each processor in the set has an 

associated value for this attribute. 

An assignment for X is a sequence of alternatives X =  cx,,,,, x2,. ..., xn,,> where x - E X1 
'2 l.I/ 

A constraint C, E C can be viewed as a Boolean mapping from the set of assignments for X. That is, 

C jxg1  Xi + {T,F). An assignment Xfor X is said to satisfy the constraint C; if CAX) = T; otherwise Xis 

said to violate the constraint. An assignment for X is called a satisficing assignment for the CSP 

characterized by the set of choice sets X and constraint C if V C; E C, CiX) = T. 

We specify constraints in the form 

t,, t* t3 ---, tn-, + tn 

where each constraint term ti is a Boolean-valued expression over a set of constants and variables. We 

call constraints expressed in this form dependency constraints. Each constraint term variable is specified 

in the form Xi.Ai,p and denotes the value associated with attribute A;,, of the alternative selected in choice 

set Xi. Thus, a constraint term states a relationship between various of the choice set attributes and 

constants, and denotes (assuming each of the variables over which it is defined has a value) either the 

value TRUE or the value FALSE. 

A constraint, specified in the form shown above is interpreted as the material implication 

tlAtZAt3A...Atn-l -+ tn 

We thus call each term that occurs to the right of the arrow in a constraint an antecedent term, and the 
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term to the left the consequent term. If each of the relationships specified by the conjuncts in the 

antecedents of the constraints holds (i.e., denotes TRUE), then the relationship specified by the 

consequent t, must also hold. A constraint that has no antecedent terms is called a premise constraint. 

The consequent of a premise constraint must always hold. 

With this notation, a constraint is satisfied if each of its terms denotes a value, and either its 

consequent term denotes TRUE or at least one of its antecedent terms denotes FALSE. 

The above problem description is similar to that of Dechter and Pearl (1988), Mackworth (1977), and 

Nudel (1983), with some important differences. First, we consider n-ary instead of binary constraints. 

Secondly, the form of these constraints and the choice sets play a central role in how responsibilities are 

divided between the problem solver and TMS components of the reasoning system. 

3. System Architecture 
The system that we describe here incorporates a TMS, and is designed to be used for solving 

problems that can be formulated as CSPs. The TMS has had a significant impact on the resulting 

architecture. In this section we discuss this architecture, and the TMS that we have developed and used 

in this system. The system that we describe is one component of a larger system that we have developed 

for modeling and analyzing situations in support of decision making, which we view as a form of design. 

The inclusion of a TMS in a problem solving system suggests a partitioning of that problem solving 

system into two well-defined subsystems: a problem solver, and the TMS. This partitioning permits an 

unambiguous assignment of specific responsibilities to each component. The architecture of the CSP 

solving system that we describe here is consistent with this approach, and is composed of a problem 

solver subcomponent and a TMS subcomponent. We describe each of these subcomponents below. 

3.1. The Problem Solver 
The problem solver is assigned the task of deriving a satisficing assignment for a CSP. Given a CSP 

characterized by {X, C), where X is a set of choice sets, and C is a set of dependency constraints, it has 

the responsibility of selecting an appropriate alternative xj,,from each of the choice sets Xi in X. Together, 

the set of selected alternatives must satisfy each of the constraints in C. 

The problem solver is restricted to making one selection from one choice set at a time. At each 

instance, the problem solver holds a set of beliefs, these beliefs corresponding to the set of alternatives 

that it has currently selected from various of the choice sets. In turn, a set of currently held beliefs, if 

retained, may limit the set of alternatives that can be selected by the problem solver from those choice 

sets for which a selection has yet to be made. 

The limitations faced by a problem solver arise as a result of the problem's set of characterizing 

constraints. Each constraint term specifies a relationship between various of the alternatives. When a 

constraint term occurs on the right hand side of a constraint it defines a limitation that may have to hold at 
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various times during the problem solving task. Premise constraints, having no left hand side, specify 

limitations that are in effect throughout problem solving, regardless of the problem solvers current state of 

beliefs. 

The problem solver extends its set of beliefs through the action of making selections. As the set of 

beliefs expands, the problem solver becomes more limited in the future actions that it may take as a result 

of the problem's characterizing set of constraints. As the number of limitations grows it may reach a point 

where the problem solver cannot take any action that will not result in the violation of at least one 

constraint. 

In order to remedy a conflict, the problem solver must change some of its currently held beliefs, 

supplanting them with other beliefs by retracting some currently selected alternatives, and substituting 

other alternatives from the same choice sets. This process allows a set of beliefs to grow non- 

monotonically. 

Corresponding to each choice set Xi the problem solver maintains a selection variable Xi that is used to 

designate the alternative that it has selected from that choice set. This compound variable consists of 

one component, designated Xi.AiPp for each attribute Ay over which the associated choice set is defined. 

During problem solving this variable specifies the alternative that has been selected from the associated 

choice set through its components, each of which denotes an attribute value of that alternative. 

At the beginning of the problem solving task each component of each selection variable is initialized to 

the value UNKNOWN indicating that no alternative has been selected from any of the choice sets. For a 

selection variable Xi, we represent this initial state as Xi = UNKNOWN. When the problem solver selects 

an alternative from a choice set it sets each of the attribute components of the associated selection 

variable to the corresponding attribute value of that alternative. 

Since the problem solver can only select one alternative form one choice set at any instance, this task 

must be ordered. Although the order in which alternatives from the choice sets are searched must not 

affect whether or not a satisficing assignment is eventually found -- the search procedure must be 

exhaustive -- it is likely to determine which of several satisficing assignment is found. In the system that 

we have implemented we allow a user to bias the search by specifying a preference for the order in which 

choice sets, and alternatives withing choice sets, will be considered. For the purposes of this paper this 

order is not relevant and will not be discussed further. 

Once the problem solver has selected an alternative form a choice set it must then determine a new set 

of relationships (i.e., limitations) that must be hold among the alternatives, both those that have already 

been selected, and those that will be selected. To perform this part of its task, it uses a TMS. 
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3.2. The Truth Maintenance System 
The TMS subcomponent is designed to be separate from, but interact closely with the problem solver. 

With respect to control, the TMS is subordinate to the problem solver. Specifically, with each new belief 

communicated to it by the problem solver, the TMS computes incrementally the relationships as 

expressed by the constraint terms that must hold. Also it must be able to detect contradictions in the 

current set of beliefs. The problem solver is informed of any contradictions that arise, and has the 

responsibility of resolving them. 

The basic unit manipulated by the TMS in carrying out its task is a constraint term node. With one 

exception the TMS maintains a node for each constraint term, regardless of the number of times that 

constraint term appears among the constraints. The exception to this scheme occurs when one constraint 

term, say ti, is the logical negation of another constraint term 9, that is, ti = -,ti. Here one node is used to 

represent both terms. A constraint term node, designated 

<constraint-term-label, constraint-term-value, justifications, consequents> 

consists of four components, each of which we describe below. 

A constraint-term-label designates the constraint terms to which the containing node corresponds. The 

constraint-term-label of a node explicitly specifies a single constraint term ti that appears in the 

antecedent or consequent of one or more dependency constraints. We call this constraint term the prime 

designee of the node. 

In addition to its prime designee, a node designates the logical negation of its prime designee. (The 

term defined by need not appear in a dependency constraint.) Two benefits derive from the ability of a 

node to designate two constraint terms. First, the number of nodes needed to designate the various 

constraint terms may be reduced since each constraint term and its negation does not need a unique 

designator. Second, as will be shown, it provides a convenient mechanism for detecting certain 

contradictions that, based on the set of beliefs, may arise among the derived relationships. 

The constraint-term-value component is used to record whether or not the relationship specified by the 

prime designee, and similarly its negation, is to hold. This value, one of TRUE, FALSE, UNKNOWN, or 

TIF is stated with respect to the prime designee and is implicit for its negation. If constraint term ti is the 

prime designee of the node, then a value of TRUE indicates that, based on the beliefs of the problem 

solver, the relationship expressed by ti must hold, and, equivalently, that expressed by ti must not hold. 

Similarly, a value of FALSE indicates that the relationship expressed by ti must not hold, and that that 

expressed by --,ti holds. The value UNKNOWN indicates that it cannot be determined from the current set 

of beliefs whether or not the relationship specified by the designees of the node must or must not hold. If 

the problem solver has taken some action that leads to a contradiction in that its current set of beliefs is 

such that both the relationship expressed by ti and that expressed by -,ti must hold, then the 

constraint-term-value component is assigned the value TIF. As will be seen, this allows the reasoning 

system to function with inconsistencies until the problem solver chooses to resolve them. 
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The justification component provides bases for the relationships expressed by the designees of a node. 

This component consists of two sub components: a set of t-justifications, and a set of f-justifications. Each 

t-justification states the set of beliefs that together form a basis for the relationship specified by the prime 
designee of the node holding, and thus for the relationship specified by its negation not holding. Similarly, 

the f-justifications provide a basis for the relationship specified by the prime designee not holding, but the 
relationship specified by the secondary designee holding. As we will discuss shortly, the justification 

component is used by the TMS to establish or confirm the relationship specified by one of the designees 
of the node and to detect contradictions. 

The consequent component of a node identifies those constraint terms, and thus nodes, that specify 

relationships whose value, that is whether or not they hold, may be affected by the current value of the 
node containing this component. The identified nodes correspond to the consequent terms of those 
constraints where a designee of the current node appears as an antecedent term. Thus, consequent 

components establish dependencies among the designees of the constraint term nodes. A consequent 

also consists of two components: a set of t-consequents, and a set of f-consequents. The t-consequents 
identify those nodes having a designee whose value may be dependent on the value of the prime 
designee of the current node. Similarly, the f-consequent identifies those nodes having a designee whose 

value is potentially dependent on the value of the secondary designee of the current node. 

In identifying constraint term nodes the values of the consequent subcomponents, in effect, define 
edges between the containing node and the nodes identified by the values. These edges, along with the 
constraint term nodes define a dependency net that characterizes the set of constraints from which it is 
derived, and that is used for constraint propagation. 

Since constraint term nodes correspond to dependency constraint terms they can, and are, created 

when the CSP is specified to the system. At this time one constraint term node is created for each term 

and, if present, its negation, encountered in the set of dependency constraints. The first of the two terms 

encountered becomes the prime designee of the created node. 

The initial value of the constraint-term-value component of a newly created node is determined by the 
placement of the node's designees within the set of characterizing dependency constraints. If neither 
designee appears as the consequent term of a premise constraint, then the constraint-term-value is set to 

UNKNOWN, indicating that initially it is not known whether or not the relationships specified by the 

designees of the node must hold. 

Alternatively, the relationships specified by premise constraint terms must always hold. Thus the nodes 

for which these constraints are designees must have a constraint-term-value that is not initialized to 

UNKNOWN. Rather, if the prime designee of the node occurs in a premise constraint, then the 

constraint-term-value is initialized to TRUE. Similarly, it is initialized to FALSE if the negation of the prime 
designee occurs in a premise constraint. The occurrence of both designees of a node in premise 
constraints indicates an inconsistency in the set of characterizing constraints. The system notifies the 

user of such inconsistencies. 
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The two justification subcomponents have initial values that are also determined by the nature of the 

designees of the containing node. If initially the problem solver has no basis for belief in the relationship 

expressed by the designees of a node, that is, the initial constraint-term-value is UNKNOWN, then 

equivalently there must not be any justification for these relationships. Accordingly, the t-justification and 

f-justification are both initialized to nil. 

An initial constraint-term-value of TRUE or FALSE in a node corresponds to the prime designee or the 

secondary designee, respectively, being a premise constraint term. For such nodes a special marker P is 

used to indicate that the relationship specified by one of the designees of the node holds because it was 

specified as a premise constraint. If the constraint-term-value is TRUE, then the t-justification is initialized 

to the set {P) and the f-justification is initialized to nil. Similarly, if the constraint-term-value is FALSE, 

then the t-justification and the f-justification are initialized to nil and {P), respectively. 

4. Implementation 
In this section we describe the data structures and algorithms used in implementing the overall problem 

solving system. These descriptions are specified in such a way as to adhere to the principle that the TMS 

module be distinct from the problem solver module in the overall reasoning system in the overall 

reasoning system (McAllester, 1982). Each of the algorithms, presented here in the form of a function or 

a procedure, comprise one or the other of the two modules. 

The descriptions of the data structures and algorithms that we provide here are not intended to be 

exhaustive. Rather, they are intended to provide a somewhat simplified, and for reasons of exposition, 

ideal, view of how the system is constructed and functions. Thus the descriptions range from simple 

narratives when adequate, to more formal programming language-like descriptions using both on 

structured and object-oriented language conventions. 

4.1. Data Structures 
The basic data structures manipulated by the problem solver are those that are used to represent 

choice sets. A data structure of type choice-set is a record-like object defined as 

choice-set = 
object of 

selection: integer; 
alternative : array [I ..#-of-alternatives] 

of attribute-indexed records 
end 

The alternative in a choice set are represented as elements of the array that is defined as the second 

component of a choice-set object. Each of these elements is an associative record structure (e.g., 

dictionary) that contains one value for each attribute over which the choice set is defined. The value for a 

particular attribute of an alternative is retrieved by indicating the appropriate attribute name. Thus, 

cs.alternative[n].A (or for brevity, cs[n].A, where attribute is understood) references the value 
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associated with attribute A of the na alternative in choice set cs. The first component of a choice-set 

object, referenced as cs.selection, specifies the index of the alternative that has currently been selected 

from choice set cs. An index value of zero is used to indicate that no alternative has currently been 

selected from the specified choice-set object. 

All objects of type choice-set are maintained by the problem solver. In particular, the problem solver is 

responsible for setting the value of the selection slot of these objects to indicate which of the alternatives 

in the corresponding choice set it has selected. In order for the TMS to be able to determine the affect of 

a newly made selection (or a change in a selection) on its belief of which relationships hold, it is given 

read access to each instance of an object of type choice-set. This read access is provided so as to 

simplify parameter passing in the system. 

The basic data structures manipulated by the TMS are objects of type c-term-node that, as described 

in the previous section are defined to correspond to constraint terms. Together, instances of 

c-term-node objects are used to implement a dependency net that models the set of constraints C that 

characterize the target problem. A node of type c-term-node is defined as follows: 

c-term-node = 
object of 

c-term-label: c-term-func; 
c-term-value : extended-~oolean' ; 
t-justif: set of support-sets; 
f-justif: set of support-sets; 
t-conseq: set of c-term-nodes; 
f-conseq: set of c-term-nodes; 

end 

The c-term-label component of a c-term-node object is implemented as an extended-Boolean-valued 

function (c-term-func) that is derived from the constraint term that is the prime designee of the node. 

When executed this function accesses the appropriate choice-set instances (those over which the 

corresponding constraint term is defined) and returns a value that results from computing the relationship 

expressed by the constraint term. If too few of the choice sets over which this relationship is defined have 

had alternatives selected, preventing a value of TRUE or FALSE from being returned, then UNKNOWN is 

returned as the value of c-term-label. 

The value of a c-term-value component can be TRUE, FALSE, UNKNOWN, or TIF. If neither designee 

of the c-term-node is the consequent of a premise constraint, then the c-term-value is initialized to the 

value UNKNOWN. The c-term-value component is initialized to TRUE if the prime designee of the node is 

the consequent of a premise constraint, and to FALSE if the secondary designee of the node is the 

consequent of premise constraint. Since the the c-term-value component reflects the current belief in the 

relationship specified by a designee of the c-term-node, its value can be expected to be changed by the 

TMS throughout the course of the problem solving task. 

'We define an extended-holean as consisting of, depending on the context, a specified set of other values in addition to those of 
TRUE and FALSE. In particular we allow the values UNKNOWN and T/F. 
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The t-justif and f-justif components of a c-term-node object corresponds, respectively, to the t- 

justification and f-justification subcomponents described in the previous section. Each of these 

components is implemented as a set of objects of type support-set. 

Each element of a support-set object is a structured object of type support-element consisting of two 

components. The first component is an instance of a c-term-node object, and the second component is 

one of the Boolean values TRUE or FALSE. 

The t-justif and f-justif components of a node contain one support-set object for each problem 

constraint in which the prime designee (implemented as the associated c-term-label) and its negation, 

respectively, appear as the consequent term. Each object of type support-set contains one 

support-element object for each antecedent term in the corresponding problem constraint 

A support-set object is used by the TMS to determine if belief in the relationship specified by a 

designee of the containing c-term-node is derivable from (i.e., supported by) belief in each of the 

relationships specified by the antecedent terms of the corresponding problem constraint. The first 

component of each support-element of a support-set identifies the c-term-node associated with one of 

these antecedent terms. The second component, the Boolean value, specifies which of the two designees 

of the identified c-term-node object corresponds to the antecedent term. The value TRUE indicates the 

prime designee, FALSE its negation. 

The t-conseq and f-conseq of a c-term-node object are implemented as sets. Each element of each of 

these sets identifies a c-term-node object that has a designee that is the consequent term of a problem 

constraint for which the prime designee, in the case of t-conseq, and its negation, in the case of 

t-conseq, of the current node appears as an antecedent term. 

4.2. Control Regime 
The overall reasoning process exhibited by the interaction of the problem solver and TMS can be 

characterized as a "heuristic-deduction" cycle. The problem solver, using some heuristic, selects some 

alternative from a choice set. Based on this selection and the set of problem constraints the TMS makes a 

series of deductions that determine what relationships must hold among various of the choice set 

alternatives. When no more deductions are possible, the constraint set is said to be relaxed. If no 

constraint violation (i.e., inconsistencies in the set of relationships that must hold) are detected by the 

TMS, control passes back to the problem solver and the cycle resumes. If any violations are detected, the 

TMS performs dependency analysis in order to determine those sets of selections, such that each set 

identifies those selections that together leads to at least one of the detected violations. 

The problem solver is implemented by the procedure PROBLEM-SOLVER shown below. 

Procedure PROBLEM-SOLVER ( )  
PS-1. cs = select-unassignedcs 
PS-2. if cs = undefined 
PS-3. then return (true) 
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es.select = 1 
while TMS-NOGOOD-VIOLATION (cs) = true 

and cs . select I number-of (cs . alternatives) 
do cs.select = cs.select + 1 

if cs . select > number-of (cs .alternatives) 
then 
cs.select = 0 
return ( fail) 

conflict-set-list = 0 
TMS-PROPAGATE (cs, conf lict-set-list) 
if not-empty (conf lict-set-list) 
then 

retract-list = ch~~~e(conflict-set-list) 
for each choice set C in retract-list 
do TMS-RETRACT (x) 

while fail (PROBLEM-SOLVER) 
and cs . select I number-of (cs . alternatives) 

do cs-select = cs.se1ect + 1 
if cs . select > number-of (cs . alternatives) 
then 
cs.select = 0 
return (fail) 

else return (true) 

The function select-unassigned-cs invoked in Step PS-1 of the problem solving algorithm encodes 

the heuristic for determining from which choice set an alternative will be next selected. If an alternative 

has currently been selected from each choice set, this function retrurns the value undefined. 

After a choice set has been selected, the problem solver attempts to select an alternative from it by 

using the procedure TMS-NOGOOD-VIOLATION to successively test alternatives to find one that does 

not form in conjunction with other currently selected alternatives a combination that from past experience 

the TMS knows will lead to an inconsistency. (Each untenable combination of selections, called a nogood, 

when first detected by the TMS is added to a list. This list of nogoods is accessed by 

TMS-NOGOOD-VIOLATION in the performance of its task.) 

Once the problem solver has selected a suitable alternative (i.e., one that does not lead to a 

combination of selected alternatives that encompasses a nogood) it informs the TMS of this selection 

through the invocation of the TMS module TMS-PROPAGATE. This module, which is described below, 

controls the constraint propagation function of the TMS. If no contradictions arise from the propagation, 

then the problem solver continues its task, through a recursive call to itself, by selecting another choice 

set from which to select an alternative. If a contradiction is detected during propagation then 

TMS-PROPAGATE provides, through its second argument, information about the combinations of 

selected alternatives that led to the contradictions so that the problem solver can take appropriate action 

to alleviate the problem before continuing the task of selection alternatives. 

The TMS is organized as a set of modules, each performing a specific aspect of the overall TMS 

function, and serving as an entry point to the TMS from the problem solver. One of these modules, 

TMS-PROPAGATE, is invoked by the problem solver to effect changes in the set of relationships, 
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expressed by constraint terms, that, based on the set of alternatives that have currently been selected, 

are believed to hold. 

Procedure TMS-PROPAGATE (cs, conf lict-sets) 

TMS-1, for each c-term-node c in entry-nodes(cs) 
do TMS-LT-PROPAGATE (c, conf lict-sets) 

TMS-2. return 

The procedure TMS-PROPAGATE serves as an overall control module for the propagation function of 

the TMS. This module invokes the procedure TMS-LT-PROPAGATE for each c-term-node contained 

within the set indexed by the choice set denoted by the parameter cs.(i.e., entry-node(cs)). This indexed 

set identifies each of the constraint term nodes having a designee, and thus a label, that is defined in 

terms of the indexing choice set cs. Each of these nodes serves as an entry point into the dependency 

net, and allows the TMS to only have to consider those constraint term nodes that have a c-term-label 

value that can be affected by the alternative that was selected by the problem solver. 

The procedure TMS-LT-PROPAGATE is used to determine if the value of the c-term-label of the 

constraint term node identified by its first parameter is affected by the the selected alternative. Such a 

change may, depending on the set of problem constraints and the current state of the set of c-term- 

nodes, necessitate the propagation of constraint term values. 

Procedure TMS-LT-PROPAGATE (c, conf lict-sets) 

~ 1 .  if c-label = unknown or c.labe1 = c.value or c-label = t/f 
L2. then return 

else 
~ 3 ,  if c. value <> unknown 

then 
L4. let c .value = t/f 
~ 5 .  assumpt-sets = CONFLICT-ASSUMPTS (c) 
L6. nogoods = nogoods u assumpt-sets 
L7. conflict-sets = conflict-sets u assumpts-sets 

else 
L8. c.value = c-label 
L9. if c.labe1 = tf'Ue 

then 
L10. for each const-term-node x in t-conseq 
L11. do TMS-JT-PROPAGATE (x, conflict-sets) 

else 
L12. for each const-term-node x in f-conseq 
L13. do TMS-JT-PROPAGATE (x, conflict-sets) 

Step L1 of TMS-LT-PROPAGATE is used to determine whether or not the propagation process should 

continue for the current constraint term node. If the c-term-label component of the node evaluates to 

unknown or to a value that is the same as that of the c-term-value component, or the c-term-value 

component has the value t/f, then propagation does not proceed; in the first case because a value of 

unknown indicates a lack of belief in whether the relationships corresonding to each of the designees of 

the node should hold, in the second and third cases because the current value of the c-term-value 

component indicates that propagation, if necessary, was performed during an earlier visit to the node 

when this value was originally determined. 
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Assuming that the c-term-label component evaluates to a value other than unknown, and that this 

value is different from that of the c-term-value component, Step L3 of the procedure checks to see if a 

conflict has occured. If a conflict has occurred, that is, the value of the c-term-value component is other 

than unknown, and by by Step L1 must be different from that of the c-term-label component, then the 

procedure sets c-term-value to W, and invokes the function CONFLICT-ASSUMPTS to determine the 

underlying set of the problems solvers beliefs that led to the conflict. 

Finally, TMSLT-PROPAGATE attempts to propagate the newly derived c-term-label value forward by 

invoking TMS-JT-PROPAGATE. This procedure is invoked using each of the c-term-nodes pointed to by 

the current nodes t-conseq component if the c-term-label value is true, or the tconseq component if the 

c-term-label value is false. 

The function CONFLICT-ASSUMPTS, when presented with a c-term-node from which a conflict has 

been detected, returns a set of conflicting assumption sets. Each conflicting assumption set is a subset 

of those alternatives that have currently been selected from the various choice sets by the problem solver, 

and that together, in conjunction with the set of problem constraints, lead to the detected conflict. Each 

such conflict set is saved as a nogood for later use by the TMS module TMS-NOGOOD-VIOLATION in its 

task of helping the problem solver avoid remaking futile combinations of selections. 

As an example of the formation of these nogoods consider the set of dependency constraints 

where each constraint term ti is defined in terms of the single choice set i. Assume that alternatives 

have been selected from each of the choice sets corresponding to the constraint terms shown above, and 

that these selections lead to a conflict that is detected in the c-term-node that has tD and ~ t ,  as its 

designees. In addition, assume that the alternative that has been selected from choice set D is such that 

the relationship specified by tA holds. We could resolve the conflict by retracting belief in (i.e., some of 

the selections that support) either the relationship specified by tD or that specified by 7 t D .  The former 

requires the retraction of the selected alternatives in choices sets D and E or choice set D and C and 

either of A and B. The latter requires the retraction of the selected alternatives in either of choice sets B or 

E. Graphically, these combinations can be represented by the following AND/OR graph: 
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The leftmost subtree of the root (topmost or) node specifies those combinations of selected alternatives 

upon which belief in the relationship specified by tD is based. Similarly, the right subtree shows the 

combination of alternatives that provide support for belief in the relationship specified by -,tD. 

The procedures TMSLT-PROPAGATE and TMSJT-PROPAGATE invoke CONFLICT-ASSUMPTS to 

construct a set of conflict sets for each constraint term node for which a selected alternative leads to a 

conflict. The union of these sets of conflict sets are returned to the problem solver which has the task of 

deciding which of the selections should be retracted in order to eliminate the conflicts. 

The procedure TMS-JT-PROPAGATE shown below is used by the TMS to determine if belief in the 

relationship specified by one of the designees of the c-term-node denoted by the first argument of the 

procedures has become newly justified. This justification of a designee is determined using the t-justif and 

f-justif components of the c-term-node, with the associated designee corresponding to a consequent 

constraint term. When a relationship is newly justified the c.value component of the node is set 

accordingly, and, depending on that value, propagation continues through a recursive call to 

TMS-JT-PROPAGATE using each of the nodes in either the t-conseq or the f-conseq component. 

Procedure TMS-JT-PROPAGATE (c, conf lict-sets) 

51. if not SATISFIED (t- justif) and not SATISFIED (f - justif) 
52. then return 
53, if SATISFIED (t- justif) 

then 
54. if c.value <> tnIe 

then 
55. if c.value = unknown 

then 
56. let c .value = true 
57. for each cnstr-term-node x in t-conseq 
58. do TMS-JT-PROPAGATE (x, conflict-sets) 
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else 
let assumpt-sets = CONFLICT-ASSUMPTS (c) 
let nogoods = nogoods u assumpt-sets 
let conflict-sets = conflict-sets u assumpt-sets 
if c .value = false 
then 
let c.value = t/f 
for each const-term-node x in t-conseq 

do TMS-JT-PROPAGATE (x, conflict-sets) 
if SATISFIED (f - justif) 
then 
if c .value <> false 
then 

if c .value = unknown 
then 

let c .value = false 
for each const-tern-node x in f-conseq 
do TMS-JT-PROPAGATE (x, conflict-sets) 

else 
let assumpt-sets = CONFLICT-ASSUMPTS (c) 
let nogoods = nogoods u assumpt-sets 
let conflict-sets = conflict-sets u assumpt-sets 
if c. value = tfue 
then 

let c-value = t/f 
for each const-term-node x in f-conseq 
do TMS-JT-PROPAGATE (x, conflict-sets) 

The function SATISFIED used by TMS-JT-PROPAGATE to determine if its argument, a t-justif or 

f-justif component, has a support-set that is satisfied in the sense that each of its support-elements 

identifies a c-term-node that has a c-value that is equal to the value specified by the second component 

of the support-element. If such a support-set is found, then SATISFIED returns the value true; otherwise it 

returns the value false. 

In addition to TMS-PROPAGATE, the TMS provides the problem solver with two other entry modules: 

TMS-RETRACT and TMS-NOGOOD-VIOLATION. The first of these modules is used by the problem- 

solver to undo the affects on the dependency net of a selection that it has retracted. The function and 

structure of this module is similar to that of TMS-PROPAGATE, and will not be further elaborated on 

here. 

The module TMSNOGOOD-VIOLATION maintains a database of nogoods, and is used by the 

problem solver to determine if a prospective alternative that it would like to select from a choice set will 

lead, in conjunction with other of the alternatives that it has selected from other choice sets, to a conflict. 

Unlike the other two TMS modules, TMS-NOGOOD-VIOLATION does not access any of the c-term- 

nodes that make up the dependency net. 
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5. Relationship to Other Work 
Constraint satisfaction problems have been dealt with extensively in the Operations Research literature 

where an additional requirement of optimality is expressed via an objective function. If the constraints and 

objective function are linear, and the variables are continuous valued, the problem is easily solved using 

linear programming (LP) algorithms such as the Simplex algorithm (Dantzig, 1963) or Karmarkar's new 

algorithm (Karmarkar, 1984). Solving a discrete valued problem is more difficult. It involves an iterative 

process where each iteration begins by first solving its LP relaxation (that is, ignoring integrality). The set 

of feasible solutions of the LP relaxation form a polytope which is generally a superset of the polytope 

representing integer solutions. Therefore additional constraints (sometimes called "cuts") are introduced 

into the formulation to move toward the integer solutions. This is accomplished in the second step by 

using either the branch and bound or the "cutting planes" technique (Gomory, 1958; Chvatal, 1973). 

Grotschel and Padberg (1982) have reported remarkable success in applying specialized branch and 

bound and cutting planes algorithms in solving the traveling salesman problem. In addition, Crowder et al. 

(1983) have described several constraint pre-processing and cutting plane generation strategies for 

general 0-1 problems that result in a dramatic reduction for and the work done by the branch and bound 

step. 

The constraints involved in these discrete problems, linear constraints, are special cases of those in the 

constraint satisfaction problem described in this paper. Thus, certain special cases of our problem can be 

solved efficiently using these methods. In the first part of this section we describe these special cases and 

how they can be transformed for solution using discrete optimization methods. We also describe how our 

TMS can be coupled with an optimization module to provide a useful decision support functionality. In the 

second part we describe how the general problem can be modeled using other Al approaches, in 

particular, other truth maintenance systems. 

5.1. Special Cases: Integer Linear Programming 
Since choice sets contain discrete sets of alternatives each of which may or may not be selected, each 

alternative can be characterized in terms of a 0-1 variable. Constraints can then be expressed in terms of 

algebraic relationships among boolean variables. Each such constraint can in turn be expressed as a 

clause. For example, the constraint 7sl,s2+s, is equivalent to "s, or not-s, or s3" where each si is a 

propositional variable. In this way, the problem can be expressed conveniently in conjunctive normal form. 

Each clause can expressed as an inequality. For example the above clause can be expressed as 
sl+(l-s2)+s, 2 1 

In general, as has been noted independently by Hinton (1979) and Hooker (1988), a clause can be 

expressed as the following inequality: 
clxl+...+c,~,r 1-n(c) 

where c is a row vector and x is a column vector, and n(c) is the number of negative elements in the 

vector c. Each ci is 1,0, or -1, indicating whether xi appears, does not appear, or 7xi appears in the 

clause respectively. The above notation is due to Hooker (1988). 
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If the constraint set consists entirely of premise constraints, the problem can be formulated as a 

general 0-1 integer programming problem. If all terms in the constraints are linear, we have a linear 0-1 

formulation. For example, the premise "software cost is less than hardware cost", where software and 

hardware are choice sets and cost is an attribute of both sets, expresses a linear constraint. In contrast, a 

premise constraint such as "the ratio of hardware to software costs should be less than half the air- 

conditioning equipment cost" is a non-linear (quadratic) constraint. 

Non-linear cases can be solved by transforming the problem into linear form. It has been shown 

(Watters, 1967) that any polynomial 0-1 program can be transformed into a linear 0-1 program by 

replacing every product of 0-1 variables by a new 0-1 variable and introducing additional constraints (see 

Hansen,1979). It has been recognized, however, that the number of new variables and new constraints 

so introduced may be very large even for small non-linear 0-1 problems (Hansen, 1979), making them 

difficult to solve. 

If the set C includes non-premise dependency constraints involving terms of the form described above, 

the problem can still be reduced to a 0-1 form, although the number of 0-1 constraints required to express 

a dependency constraint can be large, depending on the number of terms in it and the sizes of choice 

sets referenced by the terms. Essentially, each term of a dependency constraint requires enumerating the 

set consisting of combinations of selections (from the choice sets referenced in the term) that satisfy the 

term expression. Specifically, a constraint term involving n choice sets each with an average of k 

selections can result in a set of size on the order of kn. Expressing the constraint as a whole requires 

generating the cartesian product of the sets corresponding to the constraint terms. Expressing 

dependency constraints using 0-1 variables could therefore result in a large number of constraints. As 

with the case above involving only premise constraints, the formulation becomes even more difficult if the 

constraints turn out to be non-linear, as does the effort required to solve the problem. 

OR techniques have two additional drawbacks. There is no explanation, and incremental model 

revision is difficult since the formulation tends to be extremely brittle (i.e. translating real-world changes 

into the binary algebraic formulation is difficult). This can be a serious limitation for many problems where 

even though an initially optimal solution may be desirable, decisions can be constantly subject to change 

forcing decision makers to abandon optimality and make incremental changes based on pragmatic 

grounds. For example, in a business plan purchased long term capital assets might not be changeable 

whereas other decisions on how to deploy manpower and other resources might be relatively flexible. In 

such problems, once a plan is in place, decision makers make incremental decisions in the context of an 

evolving set of constraints. 

For the types of problems described above, the limitations of OR techniques can be overcome to a 

large extent by coupling an optimizer to a TMS. The problem solver~TMS architecture we have 

implemented can be coupled easily with an optimization package to achieve a functionality that allows for 

the repercussions of changes to be assessed incrementally. Specifically, if an initial optimal solution is 

found, the choices that make up this solution can be communicated to the problem solver and the TMS. 
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Conducting a what-if analysis is then straightforward since the TMS can compute the impacts of changing 

decisions. A change can either "go through" (not require making changes in other parts of the 

plantdesign), or result in violated constraints that are identified by the TMS. In the latter case the TMS 

computes alternative fixes (represented by the AND/OR graph in the previous section) to be evaluated by 

the problem solver ortand the decision maker. 

5.2. Artificial Intelligence Methods 
It is also possible to model the constraint satisfaction problem we have described using other TMSs -- 

such as Doyle's TMS (Doyle ,1979), RUP (McAllester, 1982), PROTEUS (Petrie, 1987), or the ATMS (de 

Kleer, 1986). Using these systems requires a recasting of the problem and a carefully designed problem 

solver. 

We encountered two types of problems with Doyle's TMS. Firstly, we find the rationale for non- 

monotonicity inappropriate for modeling choice problems where an alternative is selected in preference to 

its competitors on the basis of a comparison by the problem solver as opposed to a lack of belief in its 

competitors. Perhaps more importantly, this scheme leads to an embedding of control information in the 

justification structure to be a liability, resulting in an inappropriate separation of control responsibility 

between the problem solver and the TMS. 

In the remainder of this section, we comment on some of the differences between our reasoning 

system and those that might result by using two other well known TMSs, namely, RUP -- a justification- 

based TMS, and ATMS -- an assumption-based TMS. 

5.3. Comparison with RUP 
RUP's TMS performs deduction using propositional logic. RUP's primitive data structures are nodes 

(corresponding to RUP terms), clauses, noticers and queues. Nodes contain noticers which trigger on 

events in an assertional database. More precisely, they trigger in response to the changes in the truth 

value of the node, not unlike the constraint propagation process in our TMS. However, unlike our TMS 

nodes which are restricted to performing constraint propagation when their term-expression value 

changes, RUP noticers can contain arbitrary LISP forms. While this gives the designer considerable 

flexibility, de Kleer (1986b) suggests that this flexibility can be dangerous in that it can lead to designs 

where exhaustivity in search might be sacrificed inadvertently. 

In order to implement our model of the constraint-based reasoning process in RUP, dependency 

constraints would be implemented as noticers, with each constraint term corresponding to an antecedent 

of a noticer (a RUP term). Each selection being asserted would also be a RUP term, always accessible by 

the TMS. The overall problem solving cycle with a RUP-based problem solver would proceed as follows: 

the problem solver would "assert" a selection and collect all noticers whose antecedent patterns' enabling 

conditions were satisfied; if so, a term corresponding to the consequent would be assigned a truth value, 

which could continue to trigger other noticers. When no more noticers trigger, the problem solver would 

make another selection, and the cycle would repeat. 
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The detection of contradictions would require additional machinery. RUP's TMS is basically designed 

to detect logical contradictions. Specifically, contradictions are detected if all disjuncts of a clause 

evaluate to false (see McAllester,l982). In contrast, we are concerned with general constraint violations. 
To illustrate, if the relational expression (also viewable as a clause) "engine horsepower must be greater 

than 75" is true, a contradiction would be detected if its negation is also true. Suppose that the above 

expression is true because of constraint propagation, and that a selection is attempted in the engine 

choice set whose horsepower value is 40. Our TMS detects this violation automatically (by recognizing 

that the truth value of the c.label becomes false whereas c.value is true). Additional noticers would be 

required to recognize this type of contradiction in RUP (and other TMSs), i.e. to enable the system to 

recognize that a value of 40 is inconsistent with the constraint that it should be greater than 75. 

Special machinery would also have to be designed and "hooked" into the TMS for performing 

dependency analysis. Recall that in our TMS, if a term-value is true but no selections have been made 

from its corresponding choice sets, the term-label evaluates to UNKNOWN and the corresponding choice 

set is not inserted into the AND/OR structure that is handed back to the problem solver for making 

retractions. To accomplish this using RUP, a user supplied routine would have to be hooked into the TMS 

to perform this computation (RUP allows for extending its node structure via its plist slot, so this type of 

extension of its basic machinery is possible). 

5.4. Comparison with ATMS 
de Kleer's ATMS (1986a) is in many ways different from all other truth maintenance systems. In 

addition to justifications, each datum is labeled with the sets of assumptions (representing the contexts) 

under which it holds. It is therefore easy to determine whether a datum holds in a given context. In 

addition, there is no necessity that the overall database be consistent; rather, the idea is that the 

consequences of multiple, possibly contradictory, worlds can be pursued simultaneously. 

In ATMS language, each choice set would be represented as a disjunction of assumptions. The 

primitive, control(C,, C*,..., Cn}, specifies oneof disjunction; additionally, it incorporates control information 

specifying the order in which assumptions will be explored. Similarly, a set of assignments corresponds to 

an ATMS environment. The set of all combinations of assignments can be viewed as a lattice structure. In 

the absence of any constraints, all vertices in the lattice would represent partial or complete solutions. 

Constraints have the effect of eliminating parts of the lattice as untenable. In fact, the process of 

constraint satisfaction can be viewed in terms of a cycle where the problem solver hands one constraint at 

a time to the TMS which goes about progressively eliminating parts of the lattice as untenable. Problem 

solving terminates when there are no more constraints to imposed. This is the key idea behind de Kleer's 

consumer (de Kleer, 1986b) which is "run" once, that is, it hands over a justification to the TMS, and is 

discarded. 

ATMS consumers are attached to TMS nodes or classes of nodes. Since class consumers are a more 

parsimonious encoding of knowledge, constraints would be encoded in terms of these consumers. Each 

constraint term would represent a node class. A term referencing n choice sets having an average of k 

alternatives could therefore generate up to kn consumers. 
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The ATMS can also be viewed as providing a 0-1 integer programming type of formulation, with 

assumptions being boolean variables. The environment lattice is basically the search space containing all 

possible sets of assignments; each justification introduced to the TMS essentially imposes a "cut" on the 

(evolving) feasible region. After all justifications have been specified (in other words, after all consumers 

have been run), the ATMS (environment lattice) contains all possible solutions to the problem. 

While the ATMS architecture is well suited to pursuing multiple solutions, generating a single solution 

can require considerable additional effort. As de Kleer (1986b) points out, fewer required solutions call for 

a greater control effort. This consideration is particularly relevant for many decision-making problems 

which require a single "good" solution (which the decision-maker should then be able to explore 

incrementally or modify in response to changing assumptions or constraints). While the ATMS scheduler 

does maintain a "single current environment" which is guaranteed to satisfy every control disjunction and 

provide a single solution according to the preference order specified in each disjunction, this situation in 

effect makes it function like a justification based TMS. Essentially, the overhead involved in using the 

ATMS for such problems could outweigh its benefits. 

6. Conclusions 
The reasoning architecture we have described differs in several ways from others involving truth 

maintenance systems. Fundamentallly, the problem solver and the TMS do not operate on the same data. 

The datum manipulated by the problem solver is the choice-set selection, with one selection made per 

cycle. The TMS performs constraint propagation but does not make selections; the data it manipulates 

are the constraint term nodes (i.e. the constraints). In effect, the decision making responsibility is that of 

the problem solver whereas the constraints that guide decision making are part of the TMS. 

Note that constraint terms can be very general, exressing relationships among sets of selections 

across choice sets. For example, a constraint involving a term of the form 
hardwaresost <: (software.cost + operating-system.cost) 

specifies a relationship that holds for certain combinations of hardware, software and operating systems. 

As the problem solver makes selections, the TMS determines whether such relationships (and hence the 

constraints they make up) hold. 

The architecture exploits the structure of the problem in several ways. First, the number of constraints 

of the form above is small compared to the size of the search space; thus the dependency network 

maintained by the TMS is small. Second, since the dependency network directly represents the 

constraints which are often completely specifiable at the start, it is compiled before problem solving 

begins and remains static. A secondary source of efficiency is that the node labels contain embedded 

queries to the problem solver and by evaluating the label whenever necessary, the TMS is able to 

determine whether a datum holds in some solution state maintained by the problem solver. In effect, the 

labels function as demons (like RUP noticers) which "fire" when necessary (when the node is involved in 

constraint propagation). 
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The architecture also offers considerable advantages from a knowledge engineering standpoint. A 

major obstacle for knowledge engineers and users of complex reasoning systems is one of determining 

how to construct the problem solver so that the responsibilities between it and the TMS are divided 

appropriately and so that the system is exhaustive. In practice with reasoning systems that employ a 

TMS, we have found that the importance and difficulty of these tasks (in particular the first) is 

underestimated, and often requires the user to be familiar with the inner workings of the reasoning 

system. In contrast, we have observed that users are able to specify declaratively the various knowledge 

components of their constraint satisfaction problem very rapidly once the choice sets and their attributes 

have been specified (although these tend to get modified as the constraints are expressed). The problem 

solver and the TMS are completely transparent to the user. In effect, the complexity of the reasoning 

system is largely hidden from the user. We feel that this is an important consideration that must be 

addressed if complex reasoning systems are to be used in real-world applications. 
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