
A PROBLEM-SOLVER/TMS ARCHITECTURE
FOR GENERAL CONSTRAINT SATISFACTION PROBLEMS

by

Albert Croker

and

Vasant Dhar

Information S ysterns Department
Leonard N. Stern School of Business

New York University
90 Trinity Place

New York, NY 10006

December 1988

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Working Paper Series

CRIS #I91
GBA #89-1

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-01

Table of Contents
1. Introduction
2. Constraint Satisfaction Problems
3. System Architecture

3.1. The Problem Solver
3.2. The Truth Maintenance System

4, Implementation
4.1. Data Structures
4.2. Control Regime

5. Relationship to Other Work
5.1. Special Cases: Integer Linear Programming
5.2. Artificial Intelligence Methods
5.3. Comparison with RUP
5.4. Comparison with ATMS

6. Conclusions

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-01

Abstract

Constraints, in various forms, are ubiquitous to design problems. In this paper, we provide a formal
characterization of a generalized constraint satisfaction problem (CSP) that can be used to model many
types of design/planning problems, and the architecture of an imlemented reasoning system for solving this
problem. The architecture includes a truth maintenance system (TMS) which is specifically designed to
reason about the relationships expressed in the constraints as a problem solution evolves. The CSP
consists of two types of data. The first type of datum carresponds to assignments that are handled by the
problem solver, and the second type corresponds to constraint terms handled by the TMS. The
dependency network, representing the relationhips among constraint terms, is static and generally quite
small, depending on the number of constraint terms. Also, justifications are never manipulated (only
evaluated). This results in an architecture that makes efficient use of both space and time. The need for
efficient TMSs, even though these might deal only with certain classes of problems, is underscored by the
fact that general purpose TMSs have often been found to be highly inefficient for solving large problems.
We also show how certain instances of the generalized CSP can be formulated as an integer programming
problem, special cases of which can be solved efficiently using mathematical (integer) programming
techniques.

1. Introduction
Design problems arise in a variety of domains. Solving such problems generally requires a hierarchical

decomposition of the problem into parts, the generation or retrieval of alternatives for these parts, and the

coordination of solutions for each part into an integrated whole (Simon, 1973). This general

characterization applies to a variety of problems such as designing a fugue (Reitman, 1965), a house

(Alexander, 1964), an engineered artifact (Simon, 1973), or a business plan (Dhar and Pople, 1987).

Domain expertise is involved in deciding how best to decompose the problem, in generating alternatives,

recognizing constraints among them, and in resolving conflicts among the parts in a way that least impairs

the quality of the overall design. Abstractly, the design problem can be viewed as a process of constraint

satisfaction.

In this paper, we present an architecture of a reasoning system for a certain class of constraint

satisfaction problems. This class of problems is characterized by a decomposition of the problem into

discrete sets of competing alternatives called choice sets. The alternatives are defined in terms of

attributes that characterize the choice set. In addition, constraints defined in terms of choice set attributes

restrict the space of design solutions. Our reasoning system consists of two components: a problem

solver that contains domain knowledge, and a truth maintenance system (TMS) that keeps track of the

status of constraints and focuses the problem solver's search. We show that by exploiting structural

features of the problem and adopting a certain delineation of responsibilities between the TMS and a

problem solver, considerable simplicity in the TMS architecture and efficiency in its status assignment

algorithms is achieved. We provide a precise characterization of the overall reasoning process by

describing the algorithms corresponding to the problem solver and the TMS. We also contrast our

reasoning system with those that might be designed using other TMSs. Specifically, we show some of the

advantages of our architecture that result from exploiting the structural characteristics of the problem.

We should point out that our reasoning system does not model the entire process of problem

decomposition and constraint definition. We assume that the choice sets and constraints have been

defined for the problem solver. In effect, we are modeling only the constraint satisfaction process

component involved in solving design problems.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-01

2. Constraint Satisfaction Problems
Many types of design problems can be viewed as the task of making choices from among competing

sets of alternatives. For example, the design (specification) of a computer system might require the

selection of a processor, memory unit, operating system, etc., from among the various alternatives

available for each. In turn, each choice may entail certain tradeoffs; for example, with respect to cost,

performance, and compatibility with other components to be selected.

Often the designer is faced with a set of constraints that must be satisfied by the set of selected

choices. Again, using the computer system design example, each set of choices has an associated set of

attributes that characterize and distinguish the alternatives in the set. For example, each of the

processors that can be selected has an associated speed and cost. Assuming cost is an attribute

associated with each of the types of software and hardware components to be selected, then the

designer may be faced with a budgetary constraint. That is, the total cost of the various components

selected cannot exceed a specified amount.

A constraint satisfaction problem (CSP) is characterized by an ordered set X = {X,, X2, X3, ..., Xn} of

choice sets, and a set C = {C1, C2 C3, ..., C,,,) of constraints. Each choice set Xi = xi,* ..., xjrn)
represents a set of alternatives. Corresponding to each xi is a set of choice set attributes Ai = {A;,,, Ai,*

..., Ai,,,,J used to characterize each of the alternatives in that choice set. For example, if Xi is the choice

set consisting of a set of computer processors, as discussed above, then speed and cost are two of the

attribute values associated with this choice set, and, therefore, each processor in the set has an

associated value for this attribute.

An assignment for X is a sequence of alternatives X = cx,,,,, x2,. ..., xn,,> where x - E X1
'2 l.I/

A constraint C, E C can be viewed as a Boolean mapping from the set of assignments for X. That is,

C jxg1 Xi + {T,F). An assignment Xfor X is said to satisfy the constraint C; if CAX) = T; otherwise Xis

said to violate the constraint. An assignment for X is called a satisficing assignment for the CSP

characterized by the set of choice sets X and constraint C if V C; E C, CiX) = T.

We specify constraints in the form

t,, t* t3 ---, tn-, + tn

where each constraint term ti is a Boolean-valued expression over a set of constants and variables. We

call constraints expressed in this form dependency constraints. Each constraint term variable is specified

in the form Xi.Ai,p and denotes the value associated with attribute A;,, of the alternative selected in choice

set Xi. Thus, a constraint term states a relationship between various of the choice set attributes and

constants, and denotes (assuming each of the variables over which it is defined has a value) either the

value TRUE or the value FALSE.

A constraint, specified in the form shown above is interpreted as the material implication

tlAtZAt3A...Atn-l -+ tn

We thus call each term that occurs to the right of the arrow in a constraint an antecedent term, and the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-01

term to the left the consequent term. If each of the relationships specified by the conjuncts in the

antecedents of the constraints holds (i.e., denotes TRUE), then the relationship specified by the

consequent t, must also hold. A constraint that has no antecedent terms is called a premise constraint.

The consequent of a premise constraint must always hold.

With this notation, a constraint is satisfied if each of its terms denotes a value, and either its

consequent term denotes TRUE or at least one of its antecedent terms denotes FALSE.

The above problem description is similar to that of Dechter and Pearl (1988), Mackworth (1977), and

Nudel (1983), with some important differences. First, we consider n-ary instead of binary constraints.

Secondly, the form of these constraints and the choice sets play a central role in how responsibilities are

divided between the problem solver and TMS components of the reasoning system.

3. System Architecture
The system that we describe here incorporates a TMS, and is designed to be used for solving

problems that can be formulated as CSPs. The TMS has had a significant impact on the resulting

architecture. In this section we discuss this architecture, and the TMS that we have developed and used

in this system. The system that we describe is one component of a larger system that we have developed

for modeling and analyzing situations in support of decision making, which we view as a form of design.

The inclusion of a TMS in a problem solving system suggests a partitioning of that problem solving

system into two well-defined subsystems: a problem solver, and the TMS. This partitioning permits an

unambiguous assignment of specific responsibilities to each component. The architecture of the CSP

solving system that we describe here is consistent with this approach, and is composed of a problem

solver subcomponent and a TMS subcomponent. We describe each of these subcomponents below.

3.1. The Problem Solver
The problem solver is assigned the task of deriving a satisficing assignment for a CSP. Given a CSP

characterized by {X, C), where X is a set of choice sets, and C is a set of dependency constraints, it has

the responsibility of selecting an appropriate alternative xj,,from each of the choice sets Xi in X. Together,

the set of selected alternatives must satisfy each of the constraints in C.

The problem solver is restricted to making one selection from one choice set at a time. At each

instance, the problem solver holds a set of beliefs, these beliefs corresponding to the set of alternatives

that it has currently selected from various of the choice sets. In turn, a set of currently held beliefs, if

retained, may limit the set of alternatives that can be selected by the problem solver from those choice

sets for which a selection has yet to be made.

The limitations faced by a problem solver arise as a result of the problem's set of characterizing

constraints. Each constraint term specifies a relationship between various of the alternatives. When a

constraint term occurs on the right hand side of a constraint it defines a limitation that may have to hold at

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-01

various times during the problem solving task. Premise constraints, having no left hand side, specify

limitations that are in effect throughout problem solving, regardless of the problem solvers current state of

beliefs.

The problem solver extends its set of beliefs through the action of making selections. As the set of

beliefs expands, the problem solver becomes more limited in the future actions that it may take as a result

of the problem's characterizing set of constraints. As the number of limitations grows it may reach a point

where the problem solver cannot take any action that will not result in the violation of at least one

constraint.

In order to remedy a conflict, the problem solver must change some of its currently held beliefs,

supplanting them with other beliefs by retracting some currently selected alternatives, and substituting

other alternatives from the same choice sets. This process allows a set of beliefs to grow non-

monotonically.

Corresponding to each choice set Xi the problem solver maintains a selection variable Xi that is used to

designate the alternative that it has selected from that choice set. This compound variable consists of

one component, designated Xi.AiPp for each attribute Ay over which the associated choice set is defined.

During problem solving this variable specifies the alternative that has been selected from the associated

choice set through its components, each of which denotes an attribute value of that alternative.

At the beginning of the problem solving task each component of each selection variable is initialized to

the value UNKNOWN indicating that no alternative has been selected from any of the choice sets. For a

selection variable Xi, we represent this initial state as Xi = UNKNOWN. When the problem solver selects

an alternative from a choice set it sets each of the attribute components of the associated selection

variable to the corresponding attribute value of that alternative.

Since the problem solver can only select one alternative form one choice set at any instance, this task

must be ordered. Although the order in which alternatives from the choice sets are searched must not

affect whether or not a satisficing assignment is eventually found -- the search procedure must be

exhaustive -- it is likely to determine which of several satisficing assignment is found. In the system that

we have implemented we allow a user to bias the search by specifying a preference for the order in which

choice sets, and alternatives withing choice sets, will be considered. For the purposes of this paper this

order is not relevant and will not be discussed further.

Once the problem solver has selected an alternative form a choice set it must then determine a new set

of relationships (i.e., limitations) that must be hold among the alternatives, both those that have already

been selected, and those that will be selected. To perform this part of its task, it uses a TMS.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-01

3.2. The Truth Maintenance System
The TMS subcomponent is designed to be separate from, but interact closely with the problem solver.

With respect to control, the TMS is subordinate to the problem solver. Specifically, with each new belief

communicated to it by the problem solver, the TMS computes incrementally the relationships as

expressed by the constraint terms that must hold. Also it must be able to detect contradictions in the

current set of beliefs. The problem solver is informed of any contradictions that arise, and has the

responsibility of resolving them.

The basic unit manipulated by the TMS in carrying out its task is a constraint term node. With one

exception the TMS maintains a node for each constraint term, regardless of the number of times that

constraint term appears among the constraints. The exception to this scheme occurs when one constraint

term, say ti, is the logical negation of another constraint term 9, that is, ti = -,ti. Here one node is used to

represent both terms. A constraint term node, designated

<constraint-term-label, constraint-term-value, justifications, consequents>

consists of four components, each of which we describe below.

A constraint-term-label designates the constraint terms to which the containing node corresponds. The

constraint-term-label of a node explicitly specifies a single constraint term ti that appears in the

antecedent or consequent of one or more dependency constraints. We call this constraint term the prime

designee of the node.

In addition to its prime designee, a node designates the logical negation of its prime designee. (The

term defined by need not appear in a dependency constraint.) Two benefits derive from the ability of a

node to designate two constraint terms. First, the number of nodes needed to designate the various

constraint terms may be reduced since each constraint term and its negation does not need a unique

designator. Second, as will be shown, it provides a convenient mechanism for detecting certain

contradictions that, based on the set of beliefs, may arise among the derived relationships.

The constraint-term-value component is used to record whether or not the relationship specified by the

prime designee, and similarly its negation, is to hold. This value, one of TRUE, FALSE, UNKNOWN, or

TIF is stated with respect to the prime designee and is implicit for its negation. If constraint term ti is the

prime designee of the node, then a value of TRUE indicates that, based on the beliefs of the problem

solver, the relationship expressed by ti must hold, and, equivalently, that expressed by ti must not hold.

Similarly, a value of FALSE indicates that the relationship expressed by ti must not hold, and that that

expressed by --,ti holds. The value UNKNOWN indicates that it cannot be determined from the current set

of beliefs whether or not the relationship specified by the designees of the node must or must not hold. If

the problem solver has taken some action that leads to a contradiction in that its current set of beliefs is

such that both the relationship expressed by ti and that expressed by -,ti must hold, then the

constraint-term-value component is assigned the value TIF. As will be seen, this allows the reasoning

system to function with inconsistencies until the problem solver chooses to resolve them.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-01

The justification component provides bases for the relationships expressed by the designees of a node.

This component consists of two sub components: a set of t-justifications, and a set of f-justifications. Each

t-justification states the set of beliefs that together form a basis for the relationship specified by the prime
designee of the node holding, and thus for the relationship specified by its negation not holding. Similarly,

the f-justifications provide a basis for the relationship specified by the prime designee not holding, but the
relationship specified by the secondary designee holding. As we will discuss shortly, the justification

component is used by the TMS to establish or confirm the relationship specified by one of the designees
of the node and to detect contradictions.

The consequent component of a node identifies those constraint terms, and thus nodes, that specify

relationships whose value, that is whether or not they hold, may be affected by the current value of the
node containing this component. The identified nodes correspond to the consequent terms of those
constraints where a designee of the current node appears as an antecedent term. Thus, consequent

components establish dependencies among the designees of the constraint term nodes. A consequent

also consists of two components: a set of t-consequents, and a set of f-consequents. The t-consequents
identify those nodes having a designee whose value may be dependent on the value of the prime
designee of the current node. Similarly, the f-consequent identifies those nodes having a designee whose

value is potentially dependent on the value of the secondary designee of the current node.

In identifying constraint term nodes the values of the consequent subcomponents, in effect, define
edges between the containing node and the nodes identified by the values. These edges, along with the
constraint term nodes define a dependency net that characterizes the set of constraints from which it is
derived, and that is used for constraint propagation.

Since constraint term nodes correspond to dependency constraint terms they can, and are, created

when the CSP is specified to the system. At this time one constraint term node is created for each term

and, if present, its negation, encountered in the set of dependency constraints. The first of the two terms

encountered becomes the prime designee of the created node.

The initial value of the constraint-term-value component of a newly created node is determined by the
placement of the node's designees within the set of characterizing dependency constraints. If neither
designee appears as the consequent term of a premise constraint, then the constraint-term-value is set to

UNKNOWN, indicating that initially it is not known whether or not the relationships specified by the

designees of the node must hold.

Alternatively, the relationships specified by premise constraint terms must always hold. Thus the nodes

for which these constraints are designees must have a constraint-term-value that is not initialized to

UNKNOWN. Rather, if the prime designee of the node occurs in a premise constraint, then the

constraint-term-value is initialized to TRUE. Similarly, it is initialized to FALSE if the negation of the prime
designee occurs in a premise constraint. The occurrence of both designees of a node in premise
constraints indicates an inconsistency in the set of characterizing constraints. The system notifies the

user of such inconsistencies.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-01

The two justification subcomponents have initial values that are also determined by the nature of the

designees of the containing node. If initially the problem solver has no basis for belief in the relationship

expressed by the designees of a node, that is, the initial constraint-term-value is UNKNOWN, then

equivalently there must not be any justification for these relationships. Accordingly, the t-justification and

f-justification are both initialized to nil.

An initial constraint-term-value of TRUE or FALSE in a node corresponds to the prime designee or the

secondary designee, respectively, being a premise constraint term. For such nodes a special marker P is

used to indicate that the relationship specified by one of the designees of the node holds because it was

specified as a premise constraint. If the constraint-term-value is TRUE, then the t-justification is initialized

to the set {P) and the f-justification is initialized to nil. Similarly, if the constraint-term-value is FALSE,

then the t-justification and the f-justification are initialized to nil and {P), respectively.

4. Implementation
In this section we describe the data structures and algorithms used in implementing the overall problem

solving system. These descriptions are specified in such a way as to adhere to the principle that the TMS

module be distinct from the problem solver module in the overall reasoning system in the overall

reasoning system (McAllester, 1982). Each of the algorithms, presented here in the form of a function or

a procedure, comprise one or the other of the two modules.

The descriptions of the data structures and algorithms that we provide here are not intended to be

exhaustive. Rather, they are intended to provide a somewhat simplified, and for reasons of exposition,

ideal, view of how the system is constructed and functions. Thus the descriptions range from simple

narratives when adequate, to more formal programming language-like descriptions using both on

structured and object-oriented language conventions.

4.1. Data Structures
The basic data structures manipulated by the problem solver are those that are used to represent

choice sets. A data structure of type choice-set is a record-like object defined as

choice-set =
object of

selection: integer;
alternative : array [I ..#-of-alternatives]

of attribute-indexed records
end

The alternative in a choice set are represented as elements of the array that is defined as the second

component of a choice-set object. Each of these elements is an associative record structure (e.g.,

dictionary) that contains one value for each attribute over which the choice set is defined. The value for a

particular attribute of an alternative is retrieved by indicating the appropriate attribute name. Thus,

cs.alternative[n].A (or for brevity, cs[n].A, where attribute is understood) references the value

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-01

associated with attribute A of the na alternative in choice set cs. The first component of a choice-set

object, referenced as cs.selection, specifies the index of the alternative that has currently been selected

from choice set cs. An index value of zero is used to indicate that no alternative has currently been

selected from the specified choice-set object.

All objects of type choice-set are maintained by the problem solver. In particular, the problem solver is

responsible for setting the value of the selection slot of these objects to indicate which of the alternatives

in the corresponding choice set it has selected. In order for the TMS to be able to determine the affect of

a newly made selection (or a change in a selection) on its belief of which relationships hold, it is given

read access to each instance of an object of type choice-set. This read access is provided so as to

simplify parameter passing in the system.

The basic data structures manipulated by the TMS are objects of type c-term-node that, as described

in the previous section are defined to correspond to constraint terms. Together, instances of

c-term-node objects are used to implement a dependency net that models the set of constraints C that

characterize the target problem. A node of type c-term-node is defined as follows:

c-term-node =
object of

c-term-label: c-term-func;
c-term-value : extended-~oolean' ;
t-justif: set of support-sets;
f-justif: set of support-sets;
t-conseq: set of c-term-nodes;
f-conseq: set of c-term-nodes;

end

The c-term-label component of a c-term-node object is implemented as an extended-Boolean-valued

function (c-term-func) that is derived from the constraint term that is the prime designee of the node.

When executed this function accesses the appropriate choice-set instances (those over which the

corresponding constraint term is defined) and returns a value that results from computing the relationship

expressed by the constraint term. If too few of the choice sets over which this relationship is defined have

had alternatives selected, preventing a value of TRUE or FALSE from being returned, then UNKNOWN is

returned as the value of c-term-label.

The value of a c-term-value component can be TRUE, FALSE, UNKNOWN, or TIF. If neither designee

of the c-term-node is the consequent of a premise constraint, then the c-term-value is initialized to the

value UNKNOWN. The c-term-value component is initialized to TRUE if the prime designee of the node is

the consequent of a premise constraint, and to FALSE if the secondary designee of the node is the

consequent of premise constraint. Since the the c-term-value component reflects the current belief in the

relationship specified by a designee of the c-term-node, its value can be expected to be changed by the

TMS throughout the course of the problem solving task.

'We define an extended-holean as consisting of, depending on the context, a specified set of other values in addition to those of
TRUE and FALSE. In particular we allow the values UNKNOWN and T/F.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-01

The t-justif and f-justif components of a c-term-node object corresponds, respectively, to the t-

justification and f-justification subcomponents described in the previous section. Each of these

components is implemented as a set of objects of type support-set.

Each element of a support-set object is a structured object of type support-element consisting of two

components. The first component is an instance of a c-term-node object, and the second component is

one of the Boolean values TRUE or FALSE.

The t-justif and f-justif components of a node contain one support-set object for each problem

constraint in which the prime designee (implemented as the associated c-term-label) and its negation,

respectively, appear as the consequent term. Each object of type support-set contains one

support-element object for each antecedent term in the corresponding problem constraint

A support-set object is used by the TMS to determine if belief in the relationship specified by a

designee of the containing c-term-node is derivable from (i.e., supported by) belief in each of the

relationships specified by the antecedent terms of the corresponding problem constraint. The first

component of each support-element of a support-set identifies the c-term-node associated with one of

these antecedent terms. The second component, the Boolean value, specifies which of the two designees

of the identified c-term-node object corresponds to the antecedent term. The value TRUE indicates the

prime designee, FALSE its negation.

The t-conseq and f-conseq of a c-term-node object are implemented as sets. Each element of each of

these sets identifies a c-term-node object that has a designee that is the consequent term of a problem

constraint for which the prime designee, in the case of t-conseq, and its negation, in the case of

t-conseq, of the current node appears as an antecedent term.

4.2. Control Regime
The overall reasoning process exhibited by the interaction of the problem solver and TMS can be

characterized as a "heuristic-deduction" cycle. The problem solver, using some heuristic, selects some

alternative from a choice set. Based on this selection and the set of problem constraints the TMS makes a

series of deductions that determine what relationships must hold among various of the choice set

alternatives. When no more deductions are possible, the constraint set is said to be relaxed. If no

constraint violation (i.e., inconsistencies in the set of relationships that must hold) are detected by the

TMS, control passes back to the problem solver and the cycle resumes. If any violations are detected, the

TMS performs dependency analysis in order to determine those sets of selections, such that each set

identifies those selections that together leads to at least one of the detected violations.

The problem solver is implemented by the procedure PROBLEM-SOLVER shown below.

Procedure PROBLEM-SOLVER ()
PS-1. cs = select-unassignedcs
PS-2. if cs = undefined
PS-3. then return (true)

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-01

es.select = 1
while TMS-NOGOOD-VIOLATION (cs) = true

and cs . select I number-of (cs . alternatives)
do cs.select = cs.select + 1

if cs . select > number-of (cs .alternatives)
then
cs.select = 0
return (fail)

conflict-set-list = 0
TMS-PROPAGATE (cs, conf lict-set-list)
if not-empty (conf lict-set-list)
then

retract-list = ch~~~e(conflict-set-list)
for each choice set C in retract-list
do TMS-RETRACT (x)

while fail (PROBLEM-SOLVER)
and cs . select I number-of (cs . alternatives)

do cs-select = cs.se1ect + 1
if cs . select > number-of (cs . alternatives)
then
cs.select = 0
return (fail)

else return (true)

The function select-unassigned-cs invoked in Step PS-1 of the problem solving algorithm encodes

the heuristic for determining from which choice set an alternative will be next selected. If an alternative

has currently been selected from each choice set, this function retrurns the value undefined.

After a choice set has been selected, the problem solver attempts to select an alternative from it by

using the procedure TMS-NOGOOD-VIOLATION to successively test alternatives to find one that does

not form in conjunction with other currently selected alternatives a combination that from past experience

the TMS knows will lead to an inconsistency. (Each untenable combination of selections, called a nogood,

when first detected by the TMS is added to a list. This list of nogoods is accessed by

TMS-NOGOOD-VIOLATION in the performance of its task.)

Once the problem solver has selected a suitable alternative (i.e., one that does not lead to a

combination of selected alternatives that encompasses a nogood) it informs the TMS of this selection

through the invocation of the TMS module TMS-PROPAGATE. This module, which is described below,

controls the constraint propagation function of the TMS. If no contradictions arise from the propagation,

then the problem solver continues its task, through a recursive call to itself, by selecting another choice

set from which to select an alternative. If a contradiction is detected during propagation then

TMS-PROPAGATE provides, through its second argument, information about the combinations of

selected alternatives that led to the contradictions so that the problem solver can take appropriate action

to alleviate the problem before continuing the task of selection alternatives.

The TMS is organized as a set of modules, each performing a specific aspect of the overall TMS

function, and serving as an entry point to the TMS from the problem solver. One of these modules,

TMS-PROPAGATE, is invoked by the problem solver to effect changes in the set of relationships,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-01

expressed by constraint terms, that, based on the set of alternatives that have currently been selected,

are believed to hold.

Procedure TMS-PROPAGATE (cs, conf lict-sets)

TMS-1, for each c-term-node c in entry-nodes(cs)
do TMS-LT-PROPAGATE (c, conf lict-sets)

TMS-2. return

The procedure TMS-PROPAGATE serves as an overall control module for the propagation function of

the TMS. This module invokes the procedure TMS-LT-PROPAGATE for each c-term-node contained

within the set indexed by the choice set denoted by the parameter cs.(i.e., entry-node(cs)). This indexed

set identifies each of the constraint term nodes having a designee, and thus a label, that is defined in

terms of the indexing choice set cs. Each of these nodes serves as an entry point into the dependency

net, and allows the TMS to only have to consider those constraint term nodes that have a c-term-label

value that can be affected by the alternative that was selected by the problem solver.

The procedure TMS-LT-PROPAGATE is used to determine if the value of the c-term-label of the

constraint term node identified by its first parameter is affected by the the selected alternative. Such a

change may, depending on the set of problem constraints and the current state of the set of c-term-

nodes, necessitate the propagation of constraint term values.

Procedure TMS-LT-PROPAGATE (c, conf lict-sets)

~ 1 . if c-label = unknown or c.labe1 = c.value or c-label = t/f
L2. then return

else
~ 3 , if c. value <> unknown

then
L4. let c .value = t/f
~ 5 . assumpt-sets = CONFLICT-ASSUMPTS (c)
L6. nogoods = nogoods u assumpt-sets
L7. conflict-sets = conflict-sets u assumpts-sets

else
L8. c.value = c-label
L9. if c.labe1 = tf'Ue

then
L10. for each const-term-node x in t-conseq
L11. do TMS-JT-PROPAGATE (x, conflict-sets)

else
L12. for each const-term-node x in f-conseq
L13. do TMS-JT-PROPAGATE (x, conflict-sets)

Step L1 of TMS-LT-PROPAGATE is used to determine whether or not the propagation process should

continue for the current constraint term node. If the c-term-label component of the node evaluates to

unknown or to a value that is the same as that of the c-term-value component, or the c-term-value

component has the value t/f, then propagation does not proceed; in the first case because a value of

unknown indicates a lack of belief in whether the relationships corresonding to each of the designees of

the node should hold, in the second and third cases because the current value of the c-term-value

component indicates that propagation, if necessary, was performed during an earlier visit to the node

when this value was originally determined.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-01

Assuming that the c-term-label component evaluates to a value other than unknown, and that this

value is different from that of the c-term-value component, Step L3 of the procedure checks to see if a

conflict has occured. If a conflict has occurred, that is, the value of the c-term-value component is other

than unknown, and by by Step L1 must be different from that of the c-term-label component, then the

procedure sets c-term-value to W, and invokes the function CONFLICT-ASSUMPTS to determine the

underlying set of the problems solvers beliefs that led to the conflict.

Finally, TMSLT-PROPAGATE attempts to propagate the newly derived c-term-label value forward by

invoking TMS-JT-PROPAGATE. This procedure is invoked using each of the c-term-nodes pointed to by

the current nodes t-conseq component if the c-term-label value is true, or the tconseq component if the

c-term-label value is false.

The function CONFLICT-ASSUMPTS, when presented with a c-term-node from which a conflict has

been detected, returns a set of conflicting assumption sets. Each conflicting assumption set is a subset

of those alternatives that have currently been selected from the various choice sets by the problem solver,

and that together, in conjunction with the set of problem constraints, lead to the detected conflict. Each

such conflict set is saved as a nogood for later use by the TMS module TMS-NOGOOD-VIOLATION in its

task of helping the problem solver avoid remaking futile combinations of selections.

As an example of the formation of these nogoods consider the set of dependency constraints

where each constraint term ti is defined in terms of the single choice set i. Assume that alternatives

have been selected from each of the choice sets corresponding to the constraint terms shown above, and

that these selections lead to a conflict that is detected in the c-term-node that has tD and ~ t , as its

designees. In addition, assume that the alternative that has been selected from choice set D is such that

the relationship specified by tA holds. We could resolve the conflict by retracting belief in (i.e., some of

the selections that support) either the relationship specified by tD or that specified by 7 t D . The former

requires the retraction of the selected alternatives in choices sets D and E or choice set D and C and

either of A and B. The latter requires the retraction of the selected alternatives in either of choice sets B or

E. Graphically, these combinations can be represented by the following AND/OR graph:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-01

or
/ \

/ \
/ \

and and
/ \ \

/ \ \
D \ \

or or
/ \ / \

/ \ / \
E \ E B

and
/\

/ \
c \

or
/ \

/ \
B A

The leftmost subtree of the root (topmost or) node specifies those combinations of selected alternatives

upon which belief in the relationship specified by tD is based. Similarly, the right subtree shows the

combination of alternatives that provide support for belief in the relationship specified by -,tD.

The procedures TMSLT-PROPAGATE and TMSJT-PROPAGATE invoke CONFLICT-ASSUMPTS to

construct a set of conflict sets for each constraint term node for which a selected alternative leads to a

conflict. The union of these sets of conflict sets are returned to the problem solver which has the task of

deciding which of the selections should be retracted in order to eliminate the conflicts.

The procedure TMS-JT-PROPAGATE shown below is used by the TMS to determine if belief in the

relationship specified by one of the designees of the c-term-node denoted by the first argument of the

procedures has become newly justified. This justification of a designee is determined using the t-justif and

f-justif components of the c-term-node, with the associated designee corresponding to a consequent

constraint term. When a relationship is newly justified the c.value component of the node is set

accordingly, and, depending on that value, propagation continues through a recursive call to

TMS-JT-PROPAGATE using each of the nodes in either the t-conseq or the f-conseq component.

Procedure TMS-JT-PROPAGATE (c, conf lict-sets)

51. if not SATISFIED (t- justif) and not SATISFIED (f - justif)
52. then return
53, if SATISFIED (t- justif)

then
54. if c.value <> tnIe

then
55. if c.value = unknown

then
56. let c .value = true
57. for each cnstr-term-node x in t-conseq
58. do TMS-JT-PROPAGATE (x, conflict-sets)

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-01

else
let assumpt-sets = CONFLICT-ASSUMPTS (c)
let nogoods = nogoods u assumpt-sets
let conflict-sets = conflict-sets u assumpt-sets
if c .value = false
then
let c.value = t/f
for each const-term-node x in t-conseq

do TMS-JT-PROPAGATE (x, conflict-sets)
if SATISFIED (f - justif)
then
if c .value <> false
then

if c .value = unknown
then

let c .value = false
for each const-tern-node x in f-conseq
do TMS-JT-PROPAGATE (x, conflict-sets)

else
let assumpt-sets = CONFLICT-ASSUMPTS (c)
let nogoods = nogoods u assumpt-sets
let conflict-sets = conflict-sets u assumpt-sets
if c. value = tfue
then

let c-value = t/f
for each const-term-node x in f-conseq
do TMS-JT-PROPAGATE (x, conflict-sets)

The function SATISFIED used by TMS-JT-PROPAGATE to determine if its argument, a t-justif or

f-justif component, has a support-set that is satisfied in the sense that each of its support-elements

identifies a c-term-node that has a c-value that is equal to the value specified by the second component

of the support-element. If such a support-set is found, then SATISFIED returns the value true; otherwise it

returns the value false.

In addition to TMS-PROPAGATE, the TMS provides the problem solver with two other entry modules:

TMS-RETRACT and TMS-NOGOOD-VIOLATION. The first of these modules is used by the problem-

solver to undo the affects on the dependency net of a selection that it has retracted. The function and

structure of this module is similar to that of TMS-PROPAGATE, and will not be further elaborated on

here.

The module TMSNOGOOD-VIOLATION maintains a database of nogoods, and is used by the

problem solver to determine if a prospective alternative that it would like to select from a choice set will

lead, in conjunction with other of the alternatives that it has selected from other choice sets, to a conflict.

Unlike the other two TMS modules, TMS-NOGOOD-VIOLATION does not access any of the c-term-

nodes that make up the dependency net.

Center for Digital Economy Research
Stem School of Business
\Vorking Paper IS-89-01

5. Relationship to Other Work
Constraint satisfaction problems have been dealt with extensively in the Operations Research literature

where an additional requirement of optimality is expressed via an objective function. If the constraints and

objective function are linear, and the variables are continuous valued, the problem is easily solved using

linear programming (LP) algorithms such as the Simplex algorithm (Dantzig, 1963) or Karmarkar's new

algorithm (Karmarkar, 1984). Solving a discrete valued problem is more difficult. It involves an iterative

process where each iteration begins by first solving its LP relaxation (that is, ignoring integrality). The set

of feasible solutions of the LP relaxation form a polytope which is generally a superset of the polytope

representing integer solutions. Therefore additional constraints (sometimes called "cuts") are introduced

into the formulation to move toward the integer solutions. This is accomplished in the second step by

using either the branch and bound or the "cutting planes" technique (Gomory, 1958; Chvatal, 1973).

Grotschel and Padberg (1982) have reported remarkable success in applying specialized branch and

bound and cutting planes algorithms in solving the traveling salesman problem. In addition, Crowder et al.

(1983) have described several constraint pre-processing and cutting plane generation strategies for

general 0-1 problems that result in a dramatic reduction for and the work done by the branch and bound

step.

The constraints involved in these discrete problems, linear constraints, are special cases of those in the

constraint satisfaction problem described in this paper. Thus, certain special cases of our problem can be

solved efficiently using these methods. In the first part of this section we describe these special cases and

how they can be transformed for solution using discrete optimization methods. We also describe how our

TMS can be coupled with an optimization module to provide a useful decision support functionality. In the

second part we describe how the general problem can be modeled using other Al approaches, in

particular, other truth maintenance systems.

5.1. Special Cases: Integer Linear Programming
Since choice sets contain discrete sets of alternatives each of which may or may not be selected, each

alternative can be characterized in terms of a 0-1 variable. Constraints can then be expressed in terms of

algebraic relationships among boolean variables. Each such constraint can in turn be expressed as a

clause. For example, the constraint 7sl,s2+s, is equivalent to "s, or not-s, or s3" where each si is a

propositional variable. In this way, the problem can be expressed conveniently in conjunctive normal form.

Each clause can expressed as an inequality. For example the above clause can be expressed as
sl+(l-s2)+s, 2 1

In general, as has been noted independently by Hinton (1979) and Hooker (1988), a clause can be

expressed as the following inequality:
clxl+...+c,~,r 1-n(c)

where c is a row vector and x is a column vector, and n(c) is the number of negative elements in the

vector c. Each ci is 1,0, or -1, indicating whether xi appears, does not appear, or 7xi appears in the

clause respectively. The above notation is due to Hooker (1988).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-01

If the constraint set consists entirely of premise constraints, the problem can be formulated as a

general 0-1 integer programming problem. If all terms in the constraints are linear, we have a linear 0-1

formulation. For example, the premise "software cost is less than hardware cost", where software and

hardware are choice sets and cost is an attribute of both sets, expresses a linear constraint. In contrast, a

premise constraint such as "the ratio of hardware to software costs should be less than half the air-

conditioning equipment cost" is a non-linear (quadratic) constraint.

Non-linear cases can be solved by transforming the problem into linear form. It has been shown

(Watters, 1967) that any polynomial 0-1 program can be transformed into a linear 0-1 program by

replacing every product of 0-1 variables by a new 0-1 variable and introducing additional constraints (see

Hansen,1979). It has been recognized, however, that the number of new variables and new constraints

so introduced may be very large even for small non-linear 0-1 problems (Hansen, 1979), making them

difficult to solve.

If the set C includes non-premise dependency constraints involving terms of the form described above,

the problem can still be reduced to a 0-1 form, although the number of 0-1 constraints required to express

a dependency constraint can be large, depending on the number of terms in it and the sizes of choice

sets referenced by the terms. Essentially, each term of a dependency constraint requires enumerating the

set consisting of combinations of selections (from the choice sets referenced in the term) that satisfy the

term expression. Specifically, a constraint term involving n choice sets each with an average of k

selections can result in a set of size on the order of kn. Expressing the constraint as a whole requires

generating the cartesian product of the sets corresponding to the constraint terms. Expressing

dependency constraints using 0-1 variables could therefore result in a large number of constraints. As

with the case above involving only premise constraints, the formulation becomes even more difficult if the

constraints turn out to be non-linear, as does the effort required to solve the problem.

OR techniques have two additional drawbacks. There is no explanation, and incremental model

revision is difficult since the formulation tends to be extremely brittle (i.e. translating real-world changes

into the binary algebraic formulation is difficult). This can be a serious limitation for many problems where

even though an initially optimal solution may be desirable, decisions can be constantly subject to change

forcing decision makers to abandon optimality and make incremental changes based on pragmatic

grounds. For example, in a business plan purchased long term capital assets might not be changeable

whereas other decisions on how to deploy manpower and other resources might be relatively flexible. In

such problems, once a plan is in place, decision makers make incremental decisions in the context of an

evolving set of constraints.

For the types of problems described above, the limitations of OR techniques can be overcome to a

large extent by coupling an optimizer to a TMS. The problem solver~TMS architecture we have

implemented can be coupled easily with an optimization package to achieve a functionality that allows for

the repercussions of changes to be assessed incrementally. Specifically, if an initial optimal solution is

found, the choices that make up this solution can be communicated to the problem solver and the TMS.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-01

Conducting a what-if analysis is then straightforward since the TMS can compute the impacts of changing

decisions. A change can either "go through" (not require making changes in other parts of the

plantdesign), or result in violated constraints that are identified by the TMS. In the latter case the TMS

computes alternative fixes (represented by the AND/OR graph in the previous section) to be evaluated by

the problem solver ortand the decision maker.

5.2. Artificial Intelligence Methods
It is also possible to model the constraint satisfaction problem we have described using other TMSs --

such as Doyle's TMS (Doyle ,1979), RUP (McAllester, 1982), PROTEUS (Petrie, 1987), or the ATMS (de

Kleer, 1986). Using these systems requires a recasting of the problem and a carefully designed problem

solver.

We encountered two types of problems with Doyle's TMS. Firstly, we find the rationale for non-

monotonicity inappropriate for modeling choice problems where an alternative is selected in preference to

its competitors on the basis of a comparison by the problem solver as opposed to a lack of belief in its

competitors. Perhaps more importantly, this scheme leads to an embedding of control information in the

justification structure to be a liability, resulting in an inappropriate separation of control responsibility

between the problem solver and the TMS.

In the remainder of this section, we comment on some of the differences between our reasoning

system and those that might result by using two other well known TMSs, namely, RUP -- a justification-

based TMS, and ATMS -- an assumption-based TMS.

5.3. Comparison with RUP
RUP's TMS performs deduction using propositional logic. RUP's primitive data structures are nodes

(corresponding to RUP terms), clauses, noticers and queues. Nodes contain noticers which trigger on

events in an assertional database. More precisely, they trigger in response to the changes in the truth

value of the node, not unlike the constraint propagation process in our TMS. However, unlike our TMS

nodes which are restricted to performing constraint propagation when their term-expression value

changes, RUP noticers can contain arbitrary LISP forms. While this gives the designer considerable

flexibility, de Kleer (1986b) suggests that this flexibility can be dangerous in that it can lead to designs

where exhaustivity in search might be sacrificed inadvertently.

In order to implement our model of the constraint-based reasoning process in RUP, dependency

constraints would be implemented as noticers, with each constraint term corresponding to an antecedent

of a noticer (a RUP term). Each selection being asserted would also be a RUP term, always accessible by

the TMS. The overall problem solving cycle with a RUP-based problem solver would proceed as follows:

the problem solver would "assert" a selection and collect all noticers whose antecedent patterns' enabling

conditions were satisfied; if so, a term corresponding to the consequent would be assigned a truth value,

which could continue to trigger other noticers. When no more noticers trigger, the problem solver would

make another selection, and the cycle would repeat.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-01

The detection of contradictions would require additional machinery. RUP's TMS is basically designed

to detect logical contradictions. Specifically, contradictions are detected if all disjuncts of a clause

evaluate to false (see McAllester,l982). In contrast, we are concerned with general constraint violations.
To illustrate, if the relational expression (also viewable as a clause) "engine horsepower must be greater

than 75" is true, a contradiction would be detected if its negation is also true. Suppose that the above

expression is true because of constraint propagation, and that a selection is attempted in the engine

choice set whose horsepower value is 40. Our TMS detects this violation automatically (by recognizing

that the truth value of the c.label becomes false whereas c.value is true). Additional noticers would be

required to recognize this type of contradiction in RUP (and other TMSs), i.e. to enable the system to

recognize that a value of 40 is inconsistent with the constraint that it should be greater than 75.

Special machinery would also have to be designed and "hooked" into the TMS for performing

dependency analysis. Recall that in our TMS, if a term-value is true but no selections have been made

from its corresponding choice sets, the term-label evaluates to UNKNOWN and the corresponding choice

set is not inserted into the AND/OR structure that is handed back to the problem solver for making

retractions. To accomplish this using RUP, a user supplied routine would have to be hooked into the TMS

to perform this computation (RUP allows for extending its node structure via its plist slot, so this type of

extension of its basic machinery is possible).

5.4. Comparison with ATMS
de Kleer's ATMS (1986a) is in many ways different from all other truth maintenance systems. In

addition to justifications, each datum is labeled with the sets of assumptions (representing the contexts)

under which it holds. It is therefore easy to determine whether a datum holds in a given context. In

addition, there is no necessity that the overall database be consistent; rather, the idea is that the

consequences of multiple, possibly contradictory, worlds can be pursued simultaneously.

In ATMS language, each choice set would be represented as a disjunction of assumptions. The

primitive, control(C,, C*,..., Cn}, specifies oneof disjunction; additionally, it incorporates control information

specifying the order in which assumptions will be explored. Similarly, a set of assignments corresponds to

an ATMS environment. The set of all combinations of assignments can be viewed as a lattice structure. In

the absence of any constraints, all vertices in the lattice would represent partial or complete solutions.

Constraints have the effect of eliminating parts of the lattice as untenable. In fact, the process of

constraint satisfaction can be viewed in terms of a cycle where the problem solver hands one constraint at

a time to the TMS which goes about progressively eliminating parts of the lattice as untenable. Problem

solving terminates when there are no more constraints to imposed. This is the key idea behind de Kleer's

consumer (de Kleer, 1986b) which is "run" once, that is, it hands over a justification to the TMS, and is

discarded.

ATMS consumers are attached to TMS nodes or classes of nodes. Since class consumers are a more

parsimonious encoding of knowledge, constraints would be encoded in terms of these consumers. Each

constraint term would represent a node class. A term referencing n choice sets having an average of k

alternatives could therefore generate up to kn consumers.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-01

The ATMS can also be viewed as providing a 0-1 integer programming type of formulation, with

assumptions being boolean variables. The environment lattice is basically the search space containing all

possible sets of assignments; each justification introduced to the TMS essentially imposes a "cut" on the

(evolving) feasible region. After all justifications have been specified (in other words, after all consumers

have been run), the ATMS (environment lattice) contains all possible solutions to the problem.

While the ATMS architecture is well suited to pursuing multiple solutions, generating a single solution

can require considerable additional effort. As de Kleer (1986b) points out, fewer required solutions call for

a greater control effort. This consideration is particularly relevant for many decision-making problems

which require a single "good" solution (which the decision-maker should then be able to explore

incrementally or modify in response to changing assumptions or constraints). While the ATMS scheduler

does maintain a "single current environment" which is guaranteed to satisfy every control disjunction and

provide a single solution according to the preference order specified in each disjunction, this situation in

effect makes it function like a justification based TMS. Essentially, the overhead involved in using the

ATMS for such problems could outweigh its benefits.

6. Conclusions
The reasoning architecture we have described differs in several ways from others involving truth

maintenance systems. Fundamentallly, the problem solver and the TMS do not operate on the same data.

The datum manipulated by the problem solver is the choice-set selection, with one selection made per

cycle. The TMS performs constraint propagation but does not make selections; the data it manipulates

are the constraint term nodes (i.e. the constraints). In effect, the decision making responsibility is that of

the problem solver whereas the constraints that guide decision making are part of the TMS.

Note that constraint terms can be very general, exressing relationships among sets of selections

across choice sets. For example, a constraint involving a term of the form
hardwaresost <: (software.cost + operating-system.cost)

specifies a relationship that holds for certain combinations of hardware, software and operating systems.

As the problem solver makes selections, the TMS determines whether such relationships (and hence the

constraints they make up) hold.

The architecture exploits the structure of the problem in several ways. First, the number of constraints

of the form above is small compared to the size of the search space; thus the dependency network

maintained by the TMS is small. Second, since the dependency network directly represents the

constraints which are often completely specifiable at the start, it is compiled before problem solving

begins and remains static. A secondary source of efficiency is that the node labels contain embedded

queries to the problem solver and by evaluating the label whenever necessary, the TMS is able to

determine whether a datum holds in some solution state maintained by the problem solver. In effect, the

labels function as demons (like RUP noticers) which "fire" when necessary (when the node is involved in

constraint propagation).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-01

The architecture also offers considerable advantages from a knowledge engineering standpoint. A

major obstacle for knowledge engineers and users of complex reasoning systems is one of determining

how to construct the problem solver so that the responsibilities between it and the TMS are divided

appropriately and so that the system is exhaustive. In practice with reasoning systems that employ a

TMS, we have found that the importance and difficulty of these tasks (in particular the first) is

underestimated, and often requires the user to be familiar with the inner workings of the reasoning

system. In contrast, we have observed that users are able to specify declaratively the various knowledge

components of their constraint satisfaction problem very rapidly once the choice sets and their attributes

have been specified (although these tend to get modified as the constraints are expressed). The problem

solver and the TMS are completely transparent to the user. In effect, the complexity of the reasoning

system is largely hidden from the user. We feel that this is an important consideration that must be

addressed if complex reasoning systems are to be used in real-world applications.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-01

REFERENCES

Alexander, C., Notes on the Synthesis of Form, Harvard University Press, Cambridge, Mass 1964.

Chvatal, V., Edmonds Polytopes and a Hierarchy of Combinatorial Problems, Discrete Mathematics, 4,
1 973.

Crowder, H., Johnson,E., and Padberg, M., Solving Large-Scale Zero-One Linear Programming
Problems, Operations Research, vol31, no. 5, September-October 1983.

Dantzig , G., Linear Programming and Extensions, Princeton University Press, 1 963.

Dechter, R., and Pearl, J., Network-Based Heuristics for Constraint-Satisfaction Problems, Artificial
Intelligence, 34, 1988, pp. 1-38.

de Kleer, J., An Assumption-based TMS, Artificial Intelligence, vol28, no.2, March 1986. (1 986a)

de Kleer, J., Problem Solving With the ATMS, Artificial Intelligence, vol28, no.2, March 1986. (1986b)

Dhar, V., and Pople, H.E., Rule-Based versus Structure-Based Models for Explaining and Generating
Expert Behavior, Communications of the ACM, vol30, no.6, June 1987.

Doyle, J., A Truth Maintenance System, Artificial lntelligence, June, 1979.

Gomory, R.E., Outline of an Algorithm for Integer Solutions to Linear Programs, in R.L.Graves and
P.Wolfe, eds., Recent Advances in Mathematical Programming, McGraw-Hill, 1963.

Goodwin, J.W., A Process Theory of Non-Monotonic Inference, Proceedings of the Ninth International
Joint Conference on Artificial Intelligence, Los Angeles, CA, 1 985.

Grotschel, M., and Padberg, M., The Travelling Salesman Problem: A Guided Tour of Combinatorial
Optimization, Wiley 1982.

Hansen, P., Methods of Nonlinear 0-1 Programming, Annals of Discrete Mathematics 5, 1979, pp. 53-70.

Hinton, G.E, Relaxation and its Role in Vision, Ph.D Thesis, University of Edinburgh, 1977.

Hooker, J.N., A Quantitative Approach to Logical Inference, Decision Support Systems, vol 4, no. 1,
March 1988.

Karmarkar, N., A New Polynomial-time Algorithm for Linear Programming, Combinatorica 4, 1984.

Mackworth, A., Consistency in Networks of Relations, Artificial Intelligence, 8 (l), 1977, pp. 99-1 18.

McAllester, D., Reasoning Utility Package, Al Laboratory Memo 667, April 1982.

Nudel, B., Consistent Labeling Problems and Their Algorithms: Expected-Complexities and Theory-
Based Heuristics, Artificial Intelligence, 21, 1983, pp. 135-1 78.

Petrie, C., Russinoff, D., and Steiner, D., Proteus 2: System Description, MCC Technical Report
Al-136-87, May 1987.

Reitman, W. R., Cognition and Thought, Wiley, New York, 1965.

Simon, H., The Structure of Ill-Structured Problems, Artificial Intelligence, 4,3, September 1973.

Watters, L.J., Reduction of Integer Polynomial Programming Problems to Zero-One Linear Programming
Problems, Operations Research, 15, 1967, pp.1171-1174.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-01

