
THE BOUNDING EFFECT OF IS DESIGN TOOLS:
A CRITICAL EXAMINATION OF CASE TECHNOLOGY

Gad Ariav
Leonard N. Stern School of Business

Information Systems Department
New York University

100 Trinity Place
New York, NY 10006

and

Wanda Orlikowski
Sloan School of Management

Information Technologies Group
Massachusetts Institute of Technology

50 Memorial Drive
Cambridge, MA 02139

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Working Paper Series

CRIS #204
STI3RN #S9-36

The authors are listed alpha,betically.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-36

Page 1

The Bounding Effect of IS Design Tools:
A Critical Examination of CASE Technology

Abstract

Methodologies for information systems development bound the vocabulary of design (what are
the "thingsw that matter?), as well as control the design discourse (how should we go about
discussing them?). Computer Aided System Engineering tools - collectively refered to as "CASE
technology" --further bound the analysis and design process both semantically (e.g., the range of
available methodologies) and syntactically (8.g.. implemetation details). In this paper we explore
the effects of bounding in CASE technology. We first delineate the concept of bounding in general
terms, and then develop a more operational notion of it through the qualitative examination of an
actual use of a CASE tool. This examination resutts in a preliminaty list of concrete dimensions of
the bounding phenomenon, which is in turn used to guide a critical survey of related features in
current CASE technology, Implications for practice, education and research are discussed.

1. Introduction

The topic of computer aided software engineering (CASE) features prominently in the

contemporary agenda of the information systems (IS) community. Nevertheless, the impact of

CASE technology is still limited -- it is estimated that only 7 or 8 percent of the programmers in

the U.S. have been exposed to these tools [2]. These numbers will no doubt change -- it is

estimated that the entire installed base of CASE systems has more than doubled during 1988 141.

Common wisdom also suggests that the cummulative attention currently given to the topic and

the imminent entry of IBM to the CASE arena with its Repository system will significantly amplify

the actual effect of this technology. A thorough assessment of the potential impact of CASE tools

is therefore urgent.

This paper examines the effect of CASE technologies on the process of information system

design. Insight into the effect of CASE proves to be doubly elusive, due to the relationship

between this technology and IS design in general. Specifically, while we still try to gain a better

grasp of the process by which information systems are designed, CASE tools are already

attempting to automate it, or at least some parts of it. As any textbook on system analysis and

design rightfully argues, automation of a poorly understood task is at best a risky prospect. A

deeper understanding of the impact of CASE technology therefore ultimately hinges on our

understanding of the IS design process at large. In particular, final assessment of the

significance of the results reported in this paper can only be made in the context of the broader

discussion of the effect of IS design methodologies, of which CASE tools are a proper subset.

This study approaches a core issue in the design process -- the design methodology --

from a different perspective. Attention typically focuses on the methodology's substantive content

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-36

Page 2

-- the guidelines and imperatives it prescribes in order to facilitate the process of design.

Fundamentally, however, a design methodology is an agenda-setting mechanism, and following

any methodology implies subscribing -- knowingly or unknowingly -- to a corresponding

bounding of the design discourse. The concepts of "methodology" and "bounding" in the context

of IS design are the flip sides of the same design experience. They differ mainly in their

emphasis -- the former emphasizes the "positive" aspects of inclusion, i-e., what to focus on in a

system study, while the latter emphasizes the complementary "passive" aspects of exclusion, i.e.,

what has been left out.

Examining a methodology directly or examining its bounding effect are both a study of the

process of design, yet from diametrically opposing vantage points. The "exclusion problem" is

the dual problem of the "inclusion problem," and therefore their respective solutions are

conceptually equivalent. If done properly both approaches should yield consistent results,

although there are typically differences with respect to insight and convenience. In that respect,

studying the bounding effects highlights some of the obvious - and typically unnoticed -- effects

of IS design methodologies. Under this "duality view" the study of bounding effects ties in with the

long tradition of interest in understanding processes of design and IS design in particular.

Examining bounding effects is in essence a shift from the "foreground" to the "background" in

studying the design process. While this equally applies to the study of any design methodology,

adopting this perspective in the study of CASE technology is especially appropriate: CASE tools

quintessentially cast methodological choices in a more concrete structure, and make their limiting

nature more acute.

Since the study of bounding is relatively new, the structure of this paper reflects a careful

attempt to develop a valid operational framework for examining the bounding effects of CASE

technology. Specifically, Section 2 briefly delineates the notions of bounding and CASE

technology. Section 3 identifies actual and concrete manifestations of bounding effects as they

emerged from empirical evidence gathered at a business site where a CASE tool is being used

extensively. In light of these empirical observations Section 4 critically reviews the current state

of CASE technology through a comprehensive survey of bounding features in contemporary

CASE products. Section 5 places the previous discussions in a broader perspective, and

considers the major findings in terms of their impact on information systems practice, education

and research.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-36

Page 3

2. The Nature of Bounding in CASE Tools

In this section we first review the nature and current perceptions of CASE technology, and

then outline the concept of bounding in the context of CASE.

2.1. CASE Tools

The broad definition of CASE encompasses the use of information technology to support

the various tasks of software engineering (SE). This definition is meant to outline the class of

services addressed by these products, deliberately avoiding more refined statements of CASE

which are typically aimed at excluding competitors' products from consideration1.

As the variety of tasks collectively labeled "software engineering" is large, so is the variety

of CASE tools. CASE tools obviously differ from each other with respect to their appearance,

interaction style, range of services and specifics of implementation. In terms of their basic

functionality, CASE tools can be classified along the following three dimensions:

1. SE Tasks Addressed: Which SE activities does the tool support? The range of
possible activities starts with business analysis, continues with activities like
requirements documentation, system specification, actual software construction,
through system testing, conversion and installation.

2. The SE Process: Which generic SE processes does the tool suports? The four
commonly referred to are system development, system enhancement, system
migration, and system maintenance.

3. Extent of Integration: How well are the different parts of the CASE tool integrated?
The range of possible approaches to product integration starts with support for a
single task, through a family of loosely coupled, largely compatible set of tools, and
ending with a fully integrated tool.

The common CASE tools address only few tasks, cater to the particular nature of software

development processes, and are marked by only limited integration. The trend, though, is toward

products that provide broader support, deeper integration, in a wider variety of SE processes.

CASE tools as we know them today were first introduced in the early 1980's. They are

characterized by (1) a graphic interface for diagramming system specifications (data structures as

well as processing logic), (2) a "repository" -- a.k.a. data dictionary, system encyclopedia, or

design database -- where various system specifications are stored and maintained, and (3) a set

'As has been the case with other emerging information systems technologies, the area of CASE is currently still a
"vendor province.'

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-36

03/30/89 Page 4

of algorithms that check stored system specifications for completeness and consistency [4]. The

trend has been to augment CASE products with SE-related services like project management and

code restructuring.

2.2. The Nature of Bounding

Bounding effects are inherent in any methodology, and hence inherent in every design

methodology which fundamentally represents a vocabulary of design concepts and a pattern of

design discourse. This inherent form of bounding we refer to as constitutional bounding to reflect

the notion that the essential activity of design is constituted by a set of underlying assumptions,

concepts, norms, interests, and values - in other words, a language [S]. This level of bounding is

at the root of every formalized, disciplined approach to IS design. A comprehensive investigation

of such bounding is beyond the scope of this paper, Instead we are interested here in the forms

of bounding that are specifically implicated in design processes mediated by CASE technology.

In particular we wish to draw attention to two further levels of bounding. Methodological

bounding recognizes that each specific CASE tool supports a different set of system design

methodologies for the tasks that it addresses. Each tool thus limits the range and variety of

design approaches that can be incorporated and drawn on in the design process. This second

level of bounding is typically reinforced by organizational policy that mandates restriction to one

or a subset of design methodologies in order to provide a uniform and consistent design platform

within the organization. Implementation bounding reflects the specific constraints imposed on

design activity by the physical implementation of particular CASE tools. These physical

constraints affect the degrees of freedom offered to the designerltool user with respect to the

sequence of design attention, representation and manipulation of objects, interface

characteristics, or possible methodological "short-cuts."

These three bounding effects form a hierarchy, and their effect is cumulative and nested.

While all three levels of bounding - the constitutional, methodological, and implementation - have

implications for both the semantic (content) and the syntactic (form) aspects of design, they vary

in the extent of their influence. The constitutional and methodological bounding effects are most

clearly seen through the semantic aspects of design activities. And these are accentuated

through the mediation of CASE tools, as every such tool - implicitly or explicitly - subscribes to a

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-36

subset of design methodologies that constitute the conceptual or substantive context through

which designers/tool users enact their designs. Implementation bounding effects have explicit

and overt implications for the syntactic aspects of design, as it is at the level of implementation

that CASE tools formalize and proceduralize specific execution paths that support the design

process. The details of a specific tool implementation impose a context of use on the

designer/tool user by determining the spatial and temporal conditions within which design tasks

are executed. The form of the design activity is thus shaped by the particular technical manner

and operational environment in which a CASE tool is instantiated.

The notion of bounding is still evolving, and a rigorous definition of it has yet to emerge. In

lieu of such definition we develop in the next section an ostensive definition which highlights

semantic and syntactic bounding effects. This definition draws on the actual experiences of a

number of project teams using a specific CASE tool to develop information systems.

3. Evidence of Bounding Effects in The Use of CASE Technology

When assessing a CASE tool for its bounding potential, what aspects should be examined

more closely? In this section we respond to this question by drawing on the findings of a study

that investigated the role of a single CASE technology on a number of custom systems

development projects [-71. Four large (over a hundred developers, 2-3 years duration, average of

$1 0 million) and one small project (fifteen developers, less than a year's duration, a few hundred

thousand dollars) were studied. The empirical data were collected via multiple methods

employing extensive interviews, observation and documentation review.

The particular CASE product examined consisted of a family of capabilities operating as

loosely coupled tools which were integrated through a central data repository (the project data

dictionary) and a number of bridges that served as gateways between various tools, among them

entity-relationship models, data flow and data structure graphic editors, data definition editors,

text editors, screen and report design aids, support for reuse of standardized modules and shells,

program code generators, macro library support, job set-up assistance, testing tools, and version

control aids. The bounding effects of this CASE technology (henceforth known as ToolKit) were

evident at both the semantic and the syntactic levels of systems development. Each will be

discussed in turn.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-36

03/30/89 Page 6

3.1. Semantic Bounding Effects of ToolKit

The semantic bounding of CASE technologies refers to the effect of the repertoire of design

concepts that given technologies support. ToolKit embodies the tenets of structured design

[YourdonConst78] and supports the elaboration of program logic via Warnier-Orr data structures.

Information requirements are determined by articulating the key inputs and outputs of a system,

which are manifested via screens and reports. Databases and programs are defined around

these inputs and outputs, with database designs employing Entity-Relationship modeling (no

automated normalization is supported) and program structures being derived through Wamier-Orr

data structures by augmenting existing generic program shells. Because this monolithic

approach to systems design was the only approach supported through ToolKit, it was de facto the

only acceptable design procedure employed on the projects examined.

The use of ToolKit on systems development projects in the organization was mandated so

that analysts had little discretion over their use of the CASE technology. Because ToolKit had

automated the adherence to a particular design methodology, developers were unable to

contemplate alternative ways of approaching problems. The view of the "appropriate" design

procedure which was embedded in ToolKit was clearly recognized as a source of bounding

effects. Some of the more experienced analysts recognized that their attention had been

restricted by ToolKit. A few comments from the field capture this:
"With tools we force one path, and force everyone down that one path. I am not sure it's the right

path, but at least it's a standardized path."

"In the [design] stage there is too heavy an emphasis in the tools on the information system
externals such as screens and reports. I think our focus should rather be on designing functions.
But we tend to focus exclusively on the visual, tangible things, that is on the things that we can
measure and count. And then these things become our measure or definition of the system we're
developing. So for example we say our system is 200 screens big, not how many functions there
are, or how complex they are. And we sign-off on screens and reports, not on functions. This
affects the way you design your system and how you interact with users."

The ToolKit had an embedded methodology that directed the attention of analysts to

certain aspects of the users' problem. In particular it defined techniques for eliciting requirements

from users, prescribing the format of interview, nature of questions and method of data

representation. Analysts translated these prescriptions into a "checklist" of questions that they

used to interview users, hence prompting description of certain work experiences. In effect these

questions were posed and structured so as to evoke those responses that could be represented

in the data dictionary of ToolKit. Thus the restricted vocabulary of the design approach supported

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-36

03/30/89 Page 7

in the CASE technology sensitized developers to ask specific, directed questions, focusing their

attention on only certain aspects of the users' reality. The particular diagrams and design objects

offered by the CASE tool are therefore another contributor to semantic bounding effects.

For example, ToolKit facilitated capturing design information on data, programs, screens

and reports, via predefined forms that had been built into it. When analysts interacted with these

forms, ToolKit prompted them for the specific design information that needed to be specified. A

senior analyst suggested that this greatly influenced the requirements determination work in the

early conceptual design stage:
"I believe in separating functions from the images that the functions reflect to the outside world,

the screens and reports. But the tools make us talk to users about their inputs and outputs, their
screens and reports. The argument is that users don't understand functions; that they're only
clerks so they can only talk about screens and reports."

As a consequence of using ToolKit some of the designs were not always appropriate, as noted by

a project manager:
"Developers tend to see things only through the tools, so they don't think through the functions.

And the problem is that we start designing from screens and reports, not the functions of the
business. And we have no real sense of what people do and what they need in the business
areas. So the inputs govern what the system does, and the tools don't address the functional
thought process. That's ridiculous. We've found a whole bunch of screens and reports that are
absurd and quite useless, that don't serve any useful function."

While the above points demonstrate the bounding effect that design methodologies and

CASE technologies have on the process and outcome of design, a further consequence is impact

on the developer. A developer made to think and converse in a restricted language will be unable

to formulate solutions that extend beyond the structures available in the language. The following

quotes by two analysts reflects this consequence:
"Tools force people to think in a certain way. We all think screens and reports. So we don't have

a chance to think if things could be done a better way. ... Tools have definitely stopped me thinking
about other ways of doing things. I am not thinking myself because the tool does it all for me. We
bring a single mindset to the different projects, and so we already know what to do."

"When you rely on tools you inherently assume certain things, and hence this hinders your ability
to see other things. To make an analogy, it's like playing with a pack of cards: you have to pick a
card out of the 52 available; you can't pick the 53rd. So tools create a structure to work with, but
we fall into the trap of not seeing-beyond it."

In these cases the CASE tool has so successfully facilitated a standardized way of

executing systems development tasks, that the mere interaction with ToolKit has come to define

the work of systems development. Systems development work is seen less as active engagement

in problem-solving, and more as abstracted symbol manipulation. This perception was particularly

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-36

Page 8

noticeable among the more junior developers on the projects, who were largely unable to discern

the range of possible design directions that they had implicitly excluded from consideration

because of ToolKit's standardized approach. Indeed for the majority of the very recent recruits

who had little or no other systems experience, systems development was understood as following

the directions of ToolKit. That other ways of developing systems were possible was dimly

perceived, and the semantic bounding was poorly understood.

This discussion reflects the inevitable coupling of methodology and activity, that is, how a

given activity quickly becomes so coupled to the methodology that guides it, that it becomes

difficult and inefficient to conceive of alternative ways of doing it. A senior analyst commented:
"By using the tools we are reinforcing the methodology. But at the time of using the tools we

aren't exactly aware of how the methodology underlies the tools. So we're hiding the methodology
in the tools, and the use of tools forces our use of the methodology and promotes certain work
habits without our awareness."

Standardizing on a single design perspective leads to that perspective becoming taken-for-

granted, so that the semantic bounding effects of a CASE technology are institutionalized as

developers internalize that bounding, and make it implicit. Where action is implicit, reflection in

action is constrained, and we should expect to see less questioning of the underlying

assumptions. Lack of awareness or reflection constrains not only the outcomes of systems

development, but bounds developers' problem-solving endeavors. They do not exercise

alternative design strategies, or contemplate different views of the problem. A senior project

manager noted:
"It seems with tools it's easier to shield nonreflectiveness among developers. They can hide

behind the tools which they couldn't really do before. Thus developers using the restricted design
vocabulary of a CASE technology may not develop the design acumen or perspective that leads to
creative work."

In general throughout the projects investigated, the interaction of the analysts with ToolKit

was passive, with the tools being used to record information such as texts, diagrams, and data

descriptions, and to generate interface designs, dialog simulations, or program code. A senior

project manager expressed reservations about the long-term viability of blindly adhering to CASE

technology, which he termed:"the cookie cutter approach to systems development,"

acknowledging that:
"Design tools are not real replacements for designers, they are aids. But people start using them

as substitutes for thought. We try and leverage off our tools, so we tend to use staff at lower
levels. But these people think that if the reports and screens are designed then the design is done.
But they may not have thought things through properly. They tend to get infatuated with tools and

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-36

03/30/89 Page 9

lose sight of what the task is supposed to be. People tend to get so wrapped up in the tool they
forget to think. So we get nice pretty screens and reports, but we don? get better quality designs."

This manager's insight was confirmed by numerous observations that ToolKit appeared to

encourage developers to focus on the form of development work rather than on its content.

Within our current study such behavioral pattern will not be considered bounding effects, as

although they are obviously very real, they are not inherent in CASE technology, but rather reflect

other effects of the interaction between users and their information technology. This tendency of

CASE technology to mediate a particular interaction between developers and tools, leads us

closer to the syntactic bounding that such technology exhibits. The following subsection examines

some of the ways in which ToolKit restricted design work at the level of syntax.

3.2. Syntactic Bounding Effects of ToolKit

The experience with ToolKit highlights the role of implemented design aids as a surprising

source of some rather annoying bounding effects. As an example, ToolKit's screen design aid

suggests "ergonomic" screen designs in response to input of data items and their characteristics.

Such an algorithm relieves developers from tedious layout of screens and attention to interface

standards, as well as dramatically improving the productivity of interface design.

However a number of unanticipated consequences have emerged from use of this design

aid. First, routine screens are trivially simple to design, while nonstandard screens - which are

not accommodated in the screen design aid - appear in contrast, to be complicated and time-

consuming. In effect this restriction in the ToolKit syntax (inability to support nonstandard

screens) has made exceptions problematic, encouraging extensive avoidance behavior on the

part of the analysts. Analysts reported and were observed attempting to dissuade users from

demanding unusual screen designs that would require them to design screens outside of ToolKit,

and hence incur penalties of tedium and lost productivity. If this failed, analysts would manipulate

the ToolKit algorithm by juggling parameters in an attempt to force it to produce different designs.

A project manager commenting on this tendency, noted:
"The standards work great for simple screens, but for complex screens they're no good. So

analysts spend two days trying to fool the tool to get it to do what they want. Part of the problem is
that tools assume their standards are perfect development standards for the whole world, and you
can't adjust them to do what you need to. The rigid standards in the tools may not always best
suit the environment of a particular project."

The ToolKit experience raises interesting question about the role of integration with respect

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-36

Page 10

to syntactic bounding effects. Although the lack of integration introduces a "foreign* concern into

the process, a higher level of integration potentially tightens the tools control over the order in

which tasks are performed. For instance, ToolKit prohibits execution of tasks, unless the defined

preceding work meets the tools' completeness criteria. This ensures that production tasks are

executed in the prescribed order, and that all the relevant information is available before a task is

attempted. ToolKit further monitors the execution of tasks by doing extensive cross checking of

the design documentation, determining inconsistencies and ambiguities, warning analysts when

errors or omissions are detected. However it does not always make sense to perform tasks in a

strict sequential order. In particular the nature of design is such that it is a highly iterative process.

Iterative development (prototyping) for example, encourages constant feedback and backtracking

to accompany development.

A related source of syntactic bounding effects is the way support for design teamwork is

implemented. On a multi-person project, members are often waiting for colleagues to complete

tasks whose output they require. Analysts on the projects investigated noted that they would often

try to trick the tools by creating the appearance that a task had been completed, so that the tools

would let them get on with some other work.

In the section on semantic bounding we illustrated how methodological restriction had

encouraged a passive mode of interaction between ToolKit and developers. Such passive

interaction is accentuated by the specific manner in which ToolKit's capabilities have been

implemented. For example, the data structure editor in ToolKit, while it supports multiple

hierarchic levels, is not well suited to the size of the screens being used to represent the data

structure designs. The text always appears too small to be easily read, so that the multiple levels

of logic are difficult to understand by merely glancing at the monitor. The lack of flexible cursor

control and the small screens make easy manipulation of the data structure elements tedious and

complex. As a result attempting to derive the data structures at the machine interface proved too

onerous, and most of the developers first generated the data structure designs by hand with

paper and pencil, and then transcribed the completed designs into the data structure editor, using

this editor merely as a documentation capability. Such technical limitations -- often arbitrary --
can have a significant influence on the design process.

Syntactic bounding effects may have their own derivative behaviors, echoing similar

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-36

03130189 Page 11

comments on the behavioral patterns encouraged by ToolKit features that are dosely related to

sources of semantic bounding effects. For instance, ToolKit supports increased rework, as

editors facilitate ease of modification. A senior analyst pointed out that:
"We can do things faster and easier, so we can keep coming back to refine the work. So like

writing papers on a word processor, the tools allow iterative refinement of the designs."

But ease of refinement has unanticipated consequences, as an analyst noted:
"We have found that as with all things, the professionals have started to get carried away, doing

too much work and generating more documentation. People have a tendency to fill out forms
because they're there. So we don't get the productivity savings we should."

Since this is again an adapted behavior, rather than behavior dictated by the way the CASE tool

is implemented, we do not consider this set of phenomena within our framework.

These excerpts from an empirical study of a specific CASE technology highlight some

characteristics of CASE systems that gave rise to bounding effects in the analysis and design

process. Clearly such effects are "real," having material consequences not only for the nature of

the design process and the behaviors of designersltool users, but also for the ultimate information

system that is produced, and its users. The findings emerging out of this study led us to speculate

about the nature and extent of bounding dimensions in other CASE offerings available on the

market today. The following section reports on a survey of current CASE technologies which we

examined from the perspective of our bounding effects framework.

4. A Survey of Bounding Features of CASE Technology

The notion of comprehensive assesment of semantic and syntactic bounding in CASE

technology is yet largely undefined. The critical review in this section adopts the bounding

aspects highlighted in Section 3 above as a working definition, and focuses on the corresponding

bounding features, as further elaborated in the respective sub-sections below. The second

working assumption here is that the term "CASE technology" can be operationalized as the CASE

products that have a practically measurable share of the installed CASE base. Throughout this

section we therefore summarize potentially bounding features across products, without regard to

their identity (with very few exceptions where such generalization would be too strained). In

Section 5 below we take issue with this approach, and suggest some alternative courses for

future research.

This review is based on Chris Gane's recent survey of the CASE market [4], which

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-36

03/30/89 Page 12

identifies about 30 CASE product offerings. Figure 4-1 lists the 22 products which for all practical

purposes define the installed CASE base. Products are listed in decreasing order of their

estimated share of the installed base, along with estimates of the pace of shipment of new

systems (based on the data in [4]). In our analysis we have distinguished between what we label

the major CASE products, the top seven products that account for almost 85% of the installed

CASE base, and the remaining products. Gane's report provides a uniformly structured, concise

technical description of 25 products, based on vendors' material. The description is meant to

highlight the nature of each of the CASE products with respect to a number of dimensions, e.g.,

diagrams types supported, integration between the graphic interface and the repository, project

management services and the like. The 25 product descriptions included in the report are used

here as raw data, from which we draw some general observations about potential semantic and

syntactic bounding effects of CASE products.

4.1. Semantic Bounding in CASE Products

From the vantage point of semantic bounding effects, Section 3 pointed to the extent to

which the vocabulary of analysis and design is restricted by the CASE product, and the extent to

which the process of design is influenced or shaped by it. It is interesting to note that although the

inevitable constitutional and methodological effects on the design process featured so

prominently in designers' commentary and experience as reported in Section 3, these effects are

rarely addressed elsewhere, and in particular are not dealt with at all in the Gane's survey.

Although every CASE tool necessarily embodies -- and enforces -- some model of the analysis

and design process, our collective awareness of this subtle impact is indeed still in its infancy.

References to the design process are made only with respect to the very few CASE

products that relate to it explicitly. Knowledgeware Inc's Information Engineering Workbench

(IEW), is the more popular of these products (see Figure 4-1). IEW recognizes three stages in IS

development, namely planning, analysis, and design, with a relatively high level of integration

among the three corresponding modules. Integration is achieved primarily through an

"Encyclopedia" which is managed by an Expert System. At the time of the report IEW centered

around Entity-Relationship Diagrams (ERD) and did not support any other system development

methodologies, nor did it offer the flexibility to enter the development lifecycle at any point desired

by the user.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-36

03/30/89 Page 13

P r o d u c t

EXCEIJZRATOR
IW
VAW
D e s i g n A i d
TEAMWORK
AUTOMATE
AD/T
v s D e s i g n e r
SW/Pic t
ProKitWB
-TOOL
DEVELOPER
ERD
D e f t
Meta T o o l s
MAESTRO
TELON
C o r V i s i o n
APS
IEF
TRANSFORM
MuLTI/CAM

T o t a l

S h i p r e n t s Installed
1988 B a s e 1988

% of
Installed

Growth
i n 1988

Figure 4-1: CASE Products and Their Installed-Base Share and Growth

In the assessment of CASE design vocabulary, the two primary aspects suggested by

Section 3 as indicators of potential semantic bounding effects are the lack of a variety of "design

objects" (our label for the collection of diagram types and repository objects), as well as the

extent to which idiosyncratic design objects are used. These two aspects practically define the

content of the analysis and design activities. The operational interpretation of these aspects

guided the analysis of the population of CASE tools with respect to semantically bounding

features. Specifically we focused on (1) the number of design objects that each tool offered, (2)

the variety of design object types, and (3) the rarlty of design object (i.e., design object types

which are more unique in the sense that they are offered by one or two CASE tools only). In the

following paragraphs we refer to each of the above aspects in turn.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-36

03/30/89 Page 14

It seems that the major CASE products offer a fairly broad variety of design objects (See

Figure 4-2) -- offering between 4 and 13 diagram types, with mean of 8. When the major CASE

products are tallied with respect to their repository objects, the variance is quite unsettling -- Index

Technology's Excelerator, the single most popular CASE product offers no less than 32

repository objects, while Visual Software's Visible Analyst Workbench (VAW) offers just three. It

should be noted that one of the objects offered by VAW is "textn which does imply a rather flexible

repository. Two other products among the major seven tools do not define separate repository

objects, but rather adopt diagram concepts, refered to as "diagram objects," as their underlying

repository schema. As far as bounding effects are concerned, the more elaborate schemata

probably impose more specific bounds, as the granularity of the design data is finer and therefore

more specific and confining.

Number of
Diagrams -----------

4
Major 7
CASE 8
Tools 13

0
1

Other 2-4
CASE 6
Tools 7

9 -----------

Number of
Products

Number of
Repos. Obj. -----------

3
11-13
32

Diag . Ob j . -----------
4-11
12-29

Diag.Obj.

Number of
Products ------------

Figure 4-2: Distribution of Design Objects Offered in CASE Tools

CASE tools collectively offer a broad set of commonly defined digramming methodologies.

The seven major CASE tools offer, as expected, a selection of commonly defined diagrams types

like Data Flow Diagrams (DFD), Entity-Relationship Diagrams (ERD), Structure (or

Decomposition) Charts, Flowcharts or Process Flow Diagram, State Transition Diagrams,

Warnier-Orr Diagrams, Action Diagrams, Jackson Diagrams, Bachman Charts, DBXable

Charts, ADABAS File Charts, and Decision Tables. The remaining tools further support Nassi-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-36

03/30/89 Page 15

Shneiderman Diagrams and HIP0 Charts. Bounding features are therefore to be expected not in

the general variety of diagramming options but in the specific options selected for a particular

CASE tool. A further mitigating factor in this respect are facilities for customizing diagram types.

As it turns out five out of the seven major CASE products offer various facilities to customize

diagram types or diagram elements, while only five of the remaining products offer comparable

customizing facilities.

Based on this rudimentary analysis it seems that bounding features are not apparent in the

range of diagrams. However, six out of the seven major products included "rare" diagram types

that basically constitute a specialized tool vocabulary. The number of specialized diagram types

per tool ranges from 2 to 5, with mean of 2 to 3 diagram types. Of the remaining 18 CASE tools

analyzed, nine included only commonly defined diagrams and the rest included between 1 and 4

specialized ones. In general, it seems that the more a tool supports design activities, the more it

tends to offer specialized diagram types.

The likely effect of rarity is the introduction of "semantic influence" into the process which is

uniquely due to CASE use, and which is not inherited from widely exercised methodologies.

Sixteen such specialized diagrams were introduced by the major products alone. Examples

include Document Graphs, Booch Diagrams, Visual Real-Time Diagrams, Free-Form Graphics,

Entity Life History, On-Line Dialog Diagrams, Transaction Dialog Diagrams, Batch Run Flows,

and Module Sequencing Charts. Fifteen additional specialized diagrams were introduced by the

remaining CASE products. They include Operation Procedures, Entity Hierarchy Diagrams,

Process Dependency Diagrams, Module Networks, and Function Networks, among others. The

actual semantic bounding effects of these idiosyncratic diagram types were illustrated in Section

3 above.

Turning now to the repository, we note that it probably more than anything else, reveals the

semantic richness of a CASE tool, exposes its underlying conceptual basis, and serves as a

fundamental source for potential bounding effects. It is therefore interesting to note that besides

the expected, commonly defined repository objects, practically every product on the market

includes at least one object which is not shared by any other product. The list of these commonly

defined repository objects (typically shared by two or more CASE tools) include:
Diagram objects, problemlrequirement or requirement, external agent or entity, event, state,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-36

03130189 Page 16

entity and entity type, relationship and relationship type, record, data structure, data element or
item or field, attribute type, data store, databasedile, data flow, process, and module.

The ratio of idiosyncratic objects supported by a CASE tool to the number of design objects

in the entire repository vocabulary varies widely, from as low as 16% (one out of six), and up to

100% (four out of four). The list of those idiosyncratic objects is surprizingly long, but its

significance to the discussion of bounding effects cannot be overstated - it seems that every

CASE product introduces a different dialect, or at least a special set of nouns into the language of

systems analysis and design. Examples include:
22 different relation types, subject area, users, global attribute, application entity, cluster, panel

and screen definitions, screen system function, access modules, error handling narrative,
exchange, functional primitive, condition, set subtype, group, input, interface-memo, output,
system parameter, unit, configuration, basic data, known data, glossary item, text, and
miscellaneous.

The meaning of quite a few of these concepts is not self-evident, but for our discussion it

suffices to note that these terms exist, and that they are an integral part of the respective CASE

products. Indeed, some of them may be substantively similar to more common concepts,

however the fact that their respective vendors have elected to rename them suggests that some

differentiation might have been attempted, which in turn introduces a potential bounding effect. It

also means that every user of a particular CASE tool will have to become conversant with the

semantic behind these idiosyncratic concepts.

4.2. Syntactic Bounding In CASE Products

From the implementation perspective we are interested in arbitrary bounding features that

are part of the delivery platform, such as the extent of integration within the various parts of the

implemented CASE tool and its multiuser environment. Such syntactical bounding aspects

represent instances where the designer has to shift her attention from the task of system analysis

and design, to overcoming some "irrelevant," product specific peculiarities in data entry, display,

storage or processing. This section parallels Section 3 by examining four syntactic bounding

features, namely technical limitations, the extent of design assistance, the degree of integration,

and the support for multiple users.

Technical limitations of CASE tools reflect tool implementors' choices and are often

arbitrary in nature. Among the seven major products we find the following limitations:
75 objects per diagram, 300-500 "boxes" per diagram (implied by a 64K storage limitation per

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-36

03f30f89 Page 17

diagram), diagrams made of text symbols only, charts that cannot spread beyond the width of 120
characters, and only 6 levels of DFD explosion.

Some of the remaining products list the following technical limitations:
Diagram size that cannot exceed 11 "~15". 36"x48" or "3 by 3 screens," no more than 800

symbols per diagram, 200 symbols in another product, no more than 15 processes per diagram,
only 4 levels of DFD explosion, or 9 levels of explosion in another case, no more than 300 objects
with an average of 10 attributes each, no more than 128 attributes per object, and no more than
1 00 datasets.

Not all products were marked with limitations of the above nature. Does that mean that they are

syntactically flexible? Probably not. As the notion of bounding effects amply clarifies, limitations

and bounding effects in information systems -- which CASE products ultimately are - remain

mostly hidden, and are rarely realized in advance. They typically reflect what the designers of the

CASE tools thought were "sufficient" capacity and capabilities at the time of development.

It appears that the extent of design assistance embedded in a CASE tool introduces a

potential syntactic bounding effect. Extensive assistance implies a stricter adherance to standard

expressions, and less opportunity for the designerluser to exercise control over the process. In a

typical design process requirements and specifications are disambiguated in a gradual fashion,

but automated design assistance usually requires an early and complete specification of the

details upon which to base its conclusions. Although the trend is toward more such assistance in

CASE products, design assistance is not a common characteristic of current CASE technology.

Of the seven major CASE products only three include such a facility, focusing on diagram

consistency, affinitylsimilarity analysis, design tools for relational and hierarchical databases, as

well as flat files. Of the remaining 18 products ten do not offer any such facility, while the others

provide services like Normal Form analysis (especially 3Nf7, advice on relational data models,

support for physical database and system design, tracking (and recommending) progress in the

logical development process, consistency checking, and suggestions on modular design.

Design assistance becomes the distinguishing aspect in some of the more recent

sophisticated tools, which typically employ Artificial Intelligence resources for extensive design

support (e.g., expert system for performance-optimization). In some other cases companion

packages (like Mini-Asyst) are offered as "add-ons." However, few vendors have recently

announced specific intentions with repect to design assistance.

A characteristic bounding effect in the use of CASE tools stems from the degree of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-36

Page 18

integration -- or the lack of it -- among the various parts of the tool. Manual integration implies

artificial break points in an otherwise continuous process, break points where data from, say, the

diagramming stage, is explicitly moved forward to the next stage, e.g., a more detailed analysis or

actual design. Lack of integration has a clear bounding potential in a number of ways, key among

which are (1) the partitioning of the gradual process of analysis and design into a more discrete,

rigidly staged one, and (2) the subtle effect of a constantly forward moving process. The latter is

reflected in the notion that "integration" in a CASE tool is the automatic ability to create repository

objects from diagram elements. Nevertheless, the reverse direction is as important, and some of

the products start to address this issue as well. Too tight an integration introduces another

bounding effect, which enforces some rigid translation of, say, design data, into the next stage,

namely actual code. For example, the automatic transformation from design guidelines to a set of

program shells clearly bounds the likely path a system structure can take.

The survey which is the basis of this analysis focused on the diagram-repository linkage as

a measure of integration. Of the seven major CASE products three provide only manual

procedures of getting diagram information into the repository. The other four provide differnt

levels of integration, from "immediate automatic" to "automatic update of repository objects upon

validatien of diagram." The remaining 18 products offer similar a variety of modes of integration.

For example, four products offer no integration or limited manual procedures, two products

update the repository in response to request to SAVE a diagram, and ten offer automated or

"fully" automated integration with one or two way consistency maintenance between diagrams

and repository objects, and real-time update of repository information. It seems then that the

bounding threat of CASE technology lies more with over-integration and the appropriation of

control from the hands of the designerluser.

The last of the syntactic bounding features to be considered here is the degree of support

for team work in the design process. Design is a communication process, and a CASE tool that ---
recognizes this allows its users to interact more naturally, without demanding "irrelevant" attention

to the underlying mechanics of repository maintenance. Multiuser support can be achieved in

multiple ways and multiple degrees. As exemplified by the major CASE products -- six of which

address multiuser work -- such support can be achieved by various degrees of "locking" as well

as mechanisms for merging multiple copies into a consistent central repository. One product

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-36

Page 19

provides ancheck-out" mechanism, which locks the entire database, and thereby enforces single-

user update. Two other products lock repository information at a finer granularity, (e.g., records

or repository "parts"). Another product does not lock, but rather generates multiuser warnings

about diagram inconsistencies due to concurrent update. Finally, one CASE tool assumes

distributed work and consistently consolidates workstation versions into the central repository.

The remaining products basically replicate the range of multiuser support of the major

products. Specifically, some offer no support at all (7 tools), others define sequentialized single-

users or limit access to the data's owner (2 tools), and locking is provided at various levels, e.g.,

diagrams, sub-diagram, documents, objects, application, or release, with corresponding check-

out protocols (7 tools). One product offers locking services through the DBMS with which it is

implemented (DU1 locking), and two others either generate warning messages about possible

inconsistencies, or manage temporally synchronized access to repository versions, using time-

stamping mechanisms.

Throughout this section we have highlighted various CASE characteristics which could give

rise to bounding effects in the process of systems analysis and design. Section 3 argued that

these "threats" do materialize, and that they are "real." In the next section we turn to review the

implications of these observed effects for the various constituencies of the IS community.

5. Implications

In this paper we have gradually refined a framework for examining the nature and impact of

bounding effects in CASE technology. Refinement was initially conducted through the study of

the revealed effects in a situation of actual use of a CASE - tool, and further in the examination of a

recent snapshot of CASE technology. Not only have we demonstrated that bounding effects

have real consequences (section 3), but also that a surface examination of CASE tools can

reveal potentially bounding features (section 4).

Bounding, in itself, is not "good" or "bad", but rather needs to be recognized for what it is.

Bounding is the premise upon which design methodologies are established: "our entire ability to

attend presupposes our experiencing such discontinuities between what we focus on and what

we perceptually ignore" (p.3 in [I 01). The main cognitive function of boundaries is to provide the

basis for sorting out complex phenomena, a means to "separate supposedly discrete chunks of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-36

03/30/89 Page 20

realities from one another" (p.23 in [lo]), or, to paraphrase Russel Ackoff, the mechanism with

which we formulate the mess. The centrality of bounding in IS design is emphasized when one

notes that the word "definitionw is actually derived from the Latin word for "boundary" (finis).

Requirement definition in the various levels -- conceptual, logical and physical -- is the core of

system engineering.

In this section we review our findings and consider their implications for information

systems practice, education and research.

5.1. lmplicatlons for IS Practice

It seems that the most urgent implication for IS practitioners with respect to bounding

effects is that of awareness of their existence. The ultimate understanding of bounding effect

may well take the form of a contingency framework, as the extent to which a CASE tool may

prove constraining depends on how appropriate the supported design perspective is to the

problem at hand. Where the restricted design vocabulary available through a CASE technology

adequately captures the phenomena to be modeled, the bounding effect is enabling, that is, it

provides designers with a structure within which to focus on pertinent aspects of the problem,

resulting in a suitable design resolution of the problem. The ability to avoid too much attention to

detail allows users of CASE technology to be much more productive in certain stages of the

development life cycle.

However to the extent that the restricted design vocabulary is not adequate for modeling a

given problem, enforced use of the vocabulary will unnecessarily constrain the design solutions

generated. The restriction of the range of design objects is bounding as users' design solutions

are limited to those designs that can be conceptualized, articulated, and deliberated within the

restricted design vocabulary available in the supported design approach. CASE tools typically

cannot capture doodles, pictures, photographs, metaphors, jokes, idiograms, or audile signals.

When interviewing a user to determine information requirements, how does an analyst record

body language? Inevitably the real world information represented via the medium of CASE

technology is restricted, rationalized, standardized, and made consistent. As a consequence of

bounding developers often ignore -- sometimes deliberately, usually inadvertently - many realms

of organizational life (like conflict, contradiction and irrationality) that are not expressible in the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-36

vocabulary of the tool they are using. And it is on the basis of this sort of sanitized information

that systems are built.

The process of information systems design can be viewed from different perspectives.

One recent perspective, suggested by [I], emphasizes the affective dimension of designing,

namely that the design activity is a process through which designers become comfortable with a

set of specifications. This applies in particular to the early stages of the IS design cycle, i.e.,

conceptual design is so removed from any direct measurement of the quality of the outcome that

it must primarily rely on whether the designers are indeed "happy" with the blue print they have

come up with. Such a view of the design process emphasizes the role of design methodologies

in facilitating the convergence of the design team or individual on an agreeable design. CASE

technology, indeed as an enforcer of methodological structure, redefines the meaning of what it is

to be "emotionally comfortable" with a proposed analysis or design. Attention will typically shift

from the designers' sense of comfort to the seemingly concrete, rather visible "mechanic comfort"

expressed by the CASE tool.

The discussion of the advantages and disadvantages of CASE thechnology has to take

place within the broader framework espoused in this paper. We have postulated three levels of

bounding that CASE technologies bring to the design process: constitutional, methodological, and

implementation bounding. These three levels of bounding are engendered by various semantic

and syntactic features of the design process. Practitioners should carefully consider the

implications of acquiring a CASE tool in the light of the potential bounding effects that such

technology will introduce into their workspace. As we have tried to elucidate, bounding effects

are potentially enabling as well as constraining. A careful assessment of the organizational

context and conditions under which a given CASE tool will be used, together with a thorough

understanding of the tool's features, can provide much insight into determining its potential

bounding impact. Any consideration of the advantages and disadvantages of CASE technology

inherits the constitutional and methodological properties of its underlying design philosophy, and

amplifies these through particular implementation details. Some of the advantages and

disadvantages have been generally stated in Figure 5-1.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-36

03130189 Page 22

Boundlng Level ADVANTAGES DISADVANTAGES

CONSTITUTIONAL 'Expedites design process Imposes presuppositions about
the task and its nature

Facilitates convergence
Assumes away or ignores

Guarantees consistency some aspects of the task

Provides quality criteria

METHODOLOGICAL Eliminates search for Not every approach can
the "appropriate" achieve the same
approach level of effectiveness

in all situations

IMPLEMENTATION Provides ready-made Does not accommodate the
templates through "grey" areas of design
which design
activities can occur Forcing resolution even

where inappropriate

Figure 5-1 : The Bounding Effects of CASE Tools

5.2. lmplications for IS Education

This study ties into the ongoing deliberation in many schools about the nature of the

systems analysis and design course. In particular, what is the role and place of CASE tools in the

IS curriculum? On the one hand CASE technology is an obvious ingredient in contemporary

information systems literacy, while on the other hand CASE tools are supposedly mere tools,

namely they do not represent intellectual content that is substantively different from the

established principles of IS analysis and design. The concrete question is therefore whether to

adopt a CASE tool as a pedagogical vehicle in the systems analysis and design course.

Our findings imply that such adoption may not be very appropriate, on a number of

accounts. A relevant finding is the observation about novices and CASE tools, and the

misperceptions about systems analysis and design that tools foster in inexperienced users.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-36

Page 23

Junior anlysts equated tools with substantive design content, and avoided developing a deeper

notion of the plurality of problems and the variety of activities so characteristic of system analysis

and design. If a CASE tool is to be used throughout the IS curriculum, a danger may be that it

will promote the trivialization of the system analysis and design skills.

Further, anecdotal evidence suggests that courses that adopted a CASE tool reduced to

frustrating exercises in overcoming the syntactic bounding effects of the tool. A relatively large

proportion of class time was spent "struggling" with the specific product, emphasizing technical

matters of expression, and neglecting more conceptual tenets of system analysis and design.

In spite of all these caveats, the value of CASE technology in IS education should not be

overlooked. A CASE tool can provide the necessary concrete system analysis and design

experience upon which inexperienced analysts can start to build more elaborate concepts. In

parallel to the discussion of the value of a CASE tool to the practitioner, a CASE tool in a school

environment may allow students to experience a realistic system analysis project, while without it

they may have to limit their application to either solving "toy problems" or do only partial analysis.

An introduction of CASE technology might be effectively achieved in an advanced system

analysis and design course.

5.3. Implications for IS Research

The study has raised some interesting further questions. In light of the findings reported

here a deeper investigation into the actual use of the many CASE tools is indeed warranted.

Such an investigation should attempt to determine the actual workings out of bounding effects in

practice, and to assess the meaning of the various levels of bounding to designers in the conduct

of their work.

One specific way to approach the study of semantic bounding effects is to examine the

richness of a CASE tool vocabulary. To do this we can adopt a language system perspective.

Specifically, if we think of design objects as constituting the vocabulary of design then we can try

to assess how they facilitate the articulation and conceptualization of complex worlds. Daft and

Wigington (31 argue that language systems vary in the variety they contain for matching

environmental variety. Low variety in a vocabulary thus may produce poor problem-solving

behavior in complex environments because most of the environment is not sensed or "not seen"

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-36

03130189 Page 24

191. By positing CASE technologies as language systems, we can then examine the variety they

support by determining the extent to which restriction of variety bounds the problem space which

CASE users can meaningfully enact with the tools.

Closely related to variety is the rarity or idiosyncracity of a CASE tool's vocabulary. To the

extent that CASE technology introduces new concepts and objects -- and there is ample evidence

of this in Section 4 -- it creates its own dialect, forcing users to adopt an uncommon form of

design expression. The extent to which such syntactic conformity restricts or enables design

expressability was not examined in our study, and is an important area of future research. In

section 4 above, we speculated that such idiosyncracy was likely to increase the bounding effects

of a tool over one that implemented more widely recognized design objects. However this latter

kind of tool can lead to further bounding as well, where the common objects, because they are so

widely used, easily slip into nonreflective subconciousness. Hidden from view, such taken-for-

granted concepts exert a subtle, yet powerful influence on designer problem-solving behavior.

When such bounding is enabling and when it is restrictive clearly bears further investigation.

A working assumption adopted in Section 4 was that the term "CASE technology" can be

operationalized as the collection of CASE tools, and that observations about the state of the

technology can be made by examining this aggregate. While this seems adequate as a "first cut"

and fits the preliminary nature of the study of CASE technology in general, the approach has

obvious shortcomings. Prominent among them is the failure to discern interactions among the

different bounding features, a deeper analysis of each of the features, as well as a closer look at,

and a more universal classification of, design objects. This entails the development of a multi-

dimensional classification scheme of CASE tools, with respect to the recognized bounding

features. A useful starting point may be the functional model of IS planning and design support

technology proposed by Henderson and Cooprider (61.

Another aspect of CASE is that it is computerized support for the process of system design,

and therefore has -- potentially -- side effects similar to the effects managerial information

systems (e.g., DSS) commonly have on the tasks they purportedly support. Silver [8] has

examined a feature of DSS he terms "restrictiveness," which seems closely related to the concept

of bounding. An examination of the similarity and dissimilarity between the two concepts could

broaden the understanding and significance of both.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-36

Page 25

6. Conclusions

The media through which the design process is executed -- methodologies, languages,

aids, and CASE tools, apparently do impact the message. To large extent this is intended - the

role of these design media in improving the quality of the resulting information system has always

been a cornerstone of IS practice, education and research. Questions, if raised, dealt with how

well they function, or whether one approach is indeed better than another. Bounding effects, -
however, have remained largely implicit. "Nothing evades our attention so persistently as that

which is taken for granted" noted Gustav Ichheiser, which might explain why this rather obvious

perspective of IS design has not been more widely or rigorously addressed so far. The study of

bounding effects indeed represents a complex change between "figure" and "ground" in the study

of IS design, and introduces new opportunities for better understanding of this domain.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-36

Page 26

References

Ariav, G. and Calloway, L.J.
An Examination of the Use of Dialog Charts In Specifying Conceptual Models of Dialogs.
Technical Report, lnformation Systems Department, New York University, July, 1988.

Carlyle, R.E.
Where Methodology Falls Short.
Datamation 34(24):179-191, December, 1988.

Daft, R.L. and Wiginton, J.C.
Language and Organization.
Academy of Management Review 4:179-191,1979.

Gane, C.
Computer Aided Software Engineering: The Methodologies, The Products, The Future.
Technical Report, Rapid System Development, Inc., 21 1 West 56th St., New York, N.Y.

1001 9,1988.

Giddens, A.
New Rules of Sociological Method.
Basic Books, Inc., New York, NY, 1976.

Henderson, J.C. and Cooprider, J.G.,
Dimensions of I/S Planning and Design Technology.
Technical Report 181, CISR, Massachusetts Institute of Technology, September, 1988.

Orlikowski, W.J.
lnformation Technology and Post-Industrial Organizations: An Examination of the

Computer-Meditation of Production Work.
PhD thesis, Stern School of Business, New York University, 1988.
(Unpublished).

Silver, M.S.
On The Restrictiveness of Decision Support Systems.
Technical Report 4-88, Information Systems Research Program, UCLA, November, 1987

Weick, K.E.
Organizational Communication: Towards a Research Agenda.
Communication and Organizations: An Interpretive Approach.
Sage Publications, Beverly Hills, CA., 1983, pages 7-29.

Zerubavel, E.
The Fine Line: Boundaries and the Classification of Social Realities.
The Free Press, New York, NY, 1989.
(Draft, in Preparation).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-36

