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ABSTRACT 

Because of the difficulties often experienced in formulating and 
understanding large scale models, much current research is directed 
towards developing systems to support the construction and 
understanding of nanagement science models. This paper discusses 
seven different methods for representing mathematical programming 
models during the formulation phase of the modeling process. The 
approaches discussed are block-schematic, algebraic, three different 
kinds of graphical schemes, a database-oriented approach and 
Structured Modeling. We emphasize representations that have graphical 
elements suitable for incorporation in the interface to a modeling 
system. The different methods are compared using a common example and 
the transformations that allow one to go from one representation to 
another are discussed. 
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1. INTRODUCTION 

Our ability to solve large mathematical programming models has 
improved with the introduction of new algorithms and continued 
advances in computer technology. The major impediment to more 
widespread use of these models appears to be a human one. Modeling 
is a time-consuming, error-prone task that is understood by only a 
small number of management scientists (Fabozzi and Valente 119763). 
Recently, there has been an awakening of interest in the modeling 
process itself and in computer systems which directly support the 
modeler. An example of the benefits that can be obtained from the 
combination of a user friendly interface and powerful modeling 
language is given by the PLANET system at General Motors (Breitman and 
Lucas [1987] ) . 
Most mathematical programming systems (Optimizers) accept model 
definitions in the MPS format (IBM [1975]). This consists primarily 
of a list of triples in the form (Row Label, Column Label, Value). 
Although MPS format allows sparse matrices to be represented fairly 
efficiently, it is difficult for humans to develop and debug models in 
this form, (Meeraus [1984]). Over the last few decades, a number of 
systems have been developed which attempt to make the modeling task 
easier. Early systems (Matrix Generators) were essentially procedural 
programming languages that helped generate files in MPS format. Some 
examples are GAMMA (Sander and Smith [1976]), LOGS (Brown et a1 
[1987]), OMNI (Haverly Systems Inc. [1977]) and DATAFORM (Creegan, 
[i985]). Later, systems which accept problem statements in a non- 
procedural language were developed. PAM (Welch [1987]) and MIMI 
(Baker [1990]) are table-oriented languages. Non-procedural systems 
that take an algebraic approach include GAMS (Meeraus [1984]), AMPL 
(Fourer et a1 [1990]), GXMP (Dolk [1986]) and CAMPS (Lucas and Mitra 
[1985]) . 
Other recent modeling approaches include Structured Modeling 
(Geoffrion [1987]), which provides a general representation for a 
broad range of model types, and Netforms (Glover et a1 119781, 
Klingman et a1 [1989]), which are suitable for mathematical programs 
that are primarily networks. Dolk [1986] has developed a system based 
on concepts from database management systems. Krishnan [I9871 and 
Raghunathan [I9881 have designed new modeling languages based on 
artificial intelligence techniques for representing domain dependent 
knowledge. The former uses a dialogue-driven interface controlled 
largely by the computer, while the latter proposes a modeling language 
based on And-Or graphs. Some "restricted natural language" interfaces 
have also been developed. Binbasioglu and Jarke [1986] develop a 
simple Hactivity-resourcel' language for specifying problems in the 
area of manufacturing production. Greenberg [1987] has developed a 
restricted natural language system for interpreting LP models and 
results. A number of systems, effective for small applications, 
integrate optimization with the spreadsheet paradigm (Bodily [1986]). 
Finally, we have built a prototype system, LPFORM, to help modelers 
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formulate linear programming (LP) models (Murphy and Stohr El9861 and 
Ma 119881). LPFORM provides a graphic interface which uses icons to 
represent real world objects such as inventories, machines and 
transportation networks. The interface is described in Ma et a1 
119861 and has been improved and tested by Asthana [1988]. 

The great diversity of existing and proposed modeling systems makes a 
comparative analysis worthwhile. Our objective is to review these 
systems from the point-of-view of the interface presented to the user. 
In particular, we wish to investigate various methods for representing 
LP problems. In the space available, we can only review some major 
alternatives: non-procedural programming languages, graphics-oriented 
interfaces and database representations. We have chosen some typical 
systems in each of these categories and explain them in terms of a 
common example. Since all viable representations must lead to 
unambiguous model statements, it should be possible for a model 
management system to transform from one representation to another. 
The paper outlines the steps needed to perform some of these 
transformations. We also introduce lfcompactn forms for some existing 
graphic representations and illustrate some interface design features 
that should help users cope with the complexity of real world 
applications. 

Section 2 provides a general framework for comparing different 
representation schemes. Section 3 introduces an example that will be 
used to illustrate the different approaches. Sections 4 through 10, 
respectively, cover block-schematic approaches, algebraic languages, 
Activity-Constraint Graphs, Netforms, Structured Modeling, database 
representations, and the iconic approach used in LPFORM. The paper 
ends with some brief conclusions and suggestions for future research. 

2. REPRESENTATION SCHEMES IN MODELING 

In this section, we discuss the objectives of advanced modeling 
systems and the role of problem definition languages in helping to 
achieve these objectives. 

A typical design for a modeling system is shown in Figure 1. Most 
current systems contain all of the subsystems shown in the figure in, 
at least, a rudimentary form. Ideally, the interface module handles a 
variety of input and output presentation modes. The Model Processor 
accepts the user's input and produces a statement of the model in a 
form suitable for a standard Optimizer such as LINDO (Schrage [1984]) 
or IBM1s MPSX [1975]. A Solution Analyzer (e.g. Analyze, Greenberg 
[1983]) accepts the solution from the Optimizer, performs analyses, 
and provides reporting and online query facilities for the user. The 
Model Management and Database Management components provide 
information, access and maintenance facilities for models and data 
respectively (see Blanning 11982) and Date [I9871 for a discussion of 
these components). 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-89- 104 



[FIGURE 1 ABOUT HERE] 

The following are some objectives of a good modeling system: 

(1) Provide a rigorous conceptual framework for problem 
formulation. 

Allow the representation of a broad range of model types. 

( 3 )  Reduce the complexity of the modeling process. 

(4) Support all phases of the development and use of models. 

(5) Provide model-data independence. 

(6) Provide model-solver independence. 

( 7 )  Check the validity of models. 

(8) Employ modern interface techniques. 

(9) Integrate modeling with modern database techniques. 

(10) Provide powerful computational features to help generate the 
data. 

(11) Facilitate the reuse of previously developed models and 
their combination into larger models. 

(12) Provide automated documentation of models. 

(13) Explain model structure and interpret model results. 

(14) Accumulate domain dependent knowledge over time. 

The above includes the list of desirable features given by Geoffrion 
[1987]. The items in this list are self-explanatory except for items 
(5) and (6). Model-data independence, implies a separation of the 
statement of the structure of the model from the data that is to be 
used in it. Thus, the sizes of sets and values of data items can vary 
from run to run without changing the statement of the model. 
Similarly, model-solver independence implies that the statement of the 
model is in a format that does not depend on the requirements of any 
one solver or class of model. 

In considering the role of representation schemes in the achievement 
of these goals, it is important to distinguish between external and 
internal representations. An external representation scheme is used 
by the modeler to define models and to express queries to be answered 
by the model. Objectives (1) through (3) simply cannot be achieved 
without a good external representation scheme. In addition, goals (4) 
through (8) are critically affected, and the remaining objectives 
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somewhat affected, by the choice of external representation. 

On the other hand, an internal representation scheme is usually 
invisible to the user. It is used by the system to support all of the 
goals on the above list. In particular, the use of knowledge 
representation schemes from artificial intelligence can facilitate the 
attainment of goals (13) and (14). The internal representation is 
used to generate a problem statement for the optimizer, to document 
the model and to act as a database for online queries concerning the 
structure and objectives of the model. 

Although the internal and external representations are naturally 
related, there is every reason to believe that they should be 
different. The purpose of an external representation is to help the 
user. The formulation of models involves a mapping between real world 
objects and relationships and symbolic (usually mathematical) objects 
and relationships. This process is painful even for experts as it 
involves minute attention to detail. Usually, the correctness of a 
model can only be ascertained by trial runs involving much data 
processing. For nonexperts, the translation process is almost 
impossible because of their poor understanding of mathematical 
concepts such as variables and indices (Orlikowski and Dhar, [1986]). 
A major theme of current research is that a good external 
representation scheme helps users visualize the real world in 
conceptual terms and thereby facilitates the generation of correct 
models (Shneiderman [1987]). The system itself should automatically 
translate from the external to the internal representation scheme. 

Representation schemes can be discussed in terms of four dimensions: 
generality, concreteness, labor-intensiveness, and interface 
potential. Generality refers to the applicability of the technique to 
a range of management science models (both within and beyond LP). The 
other three dimensions are aspects of what is generally referred to as 
"user friendliness." 

The concreteness dimension measures how closely real world objects are 
captured. External representation schemes should be concrete in the 
sense that they should contain analogues of real world objects and 
relationships rather than mathematical objects and relationships. 
Internal representation schemes may be abstract since they portray the 
symbolic representation of the model and must, of necessity, include 
mathematical concepts. Evidence concerning the desirability of icons 
and other concrete objects that can be directly manipulated by users 
is quite strong (Shneiderman [1987]). Graphs can provide more 
concrete representations for modelers because they can reveal hidden 
facts and relationships and stimulate human thinking (Shepherd 
[1987]). A study by Carlson et a1 [1977], showed that decision makers 
seem to rely on conceptualizations and that graphs and visual 
scenarios helped improve decision making. The advent of low cost 
computer graphics technology makes interactive systems possible. For 
these reasons, our research has emphasized graphic representation 
schemes. 
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Labor-intensiveness (the amount of detailed book-keeping work required 
from the user) is a function of the complexity of the representation 
and is especially important for large problems. While graphics can 
help on the concreteness dimension, graphical representations can be 
too complex both to draw and to understand for the large mathematical 
programming models found in practice. We need to invent methods of 
computer support that allow users to draw high-level diagrams of major 
model relationships while hiding the messy details. How to provide 
useful forms of hierarchical abstraction that help, rather than 
hinder, users is a challenging area for research. 

The final dimension, interface potential, measures how well the 
representation form lends itself to the use of advanced computer 
interface design features and to support for the dynamics of the user 
interaction. Thus, the interface should provide not only a good 
medium for expression of ideas, but also support problem solving 
strategies and other features that can help users. These include: 

(1) ~ierarchical definition of the problem through top-down 
refinement. 

(2) Piece-wise model development (bottom-up development) with a 
submodel integration capability. 

(3) Reuse of previously developed models and model fragments. 

(4) Consistency and validity checking during (as well as 
subsequent to) the model construction phase. 

(5) Memory aids. 

( 6 )  Good interface characteristics including fast response and 
easy revision and modification of previous work. 

Of the above, we need elaborate only on item (2). By this, we mean 
that users should be able to define small pieces of their models in 
any order. The need to organize work in a strict order, to formally 
define objects before they are used, and to follow a rigid syntax, 
places an unnecessary burden on the user. As illustrated later, it 
seems preferable for the computer to perform the steps needed to infer 
missing problem components and to construct a properly ordered, 
consistent internal problem representation. 

In the final analysis, the choice of model representation scheme will 
depend on both the task at hand and the particular class of user 
involved. Students, engineers, managers and OR experts will have 
different needs and individual users will probably want to use 
multiple representations of the same model during the course of its 
development and use. In this paper we hope to provide some insights 
into the different types of representation and how they relate to each 
other. 
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3 .  SAMPm PROBLEM 

To compare the different languages for representing models, a sample 
problem has been taken from Schrage [1987]. This is a small problem 
but has sufficient complexity to illustrate most of the issues 
involved in developing internal and external representation schemes. 
The problem statement is as follows: 

"A farmer has 120 acres which can be used for growing wheat or corn. 
The yield is 55 bushels per acre per year of wheat or 95 bushels of 
corn. Any fraction of the 120 acres can be devoted to growing wheat 
or corn. Labor requirements are 4 hours per acre per year plus 0.15 
hour per bushel of wheat and 0.70 hour per bushel of corn. cost of 
seed, fertilizer, etc., is 20 cents per bushel of wheat produced and 
12 cents per bushel of corn produced. Wheat can be sold for $1.75 per 
bushel, and corn for $0.95 per bushel. Wheat can be bought for $2.50 
per bushel and corn for $1.50 per bushel. 

In addition, the farmer may raise pigs and/or poultry. The farmer 
sells the pigs or poultry when they reach the age of one year. A pig 
sells for $40. He measures the poultry in terms of coops. (One coop 
brings in $40 at the time of sale). One pig requires 25 bushels of 
wheat or 20 bushels of corn, plus 25 hours of labor and 25 square feet 
of floor space. One coop of poultry requires 25 bushels of corn or 10 
bushels of wheat, plus 40 hours of labor, and 15 square feet of floor 

The farmer has 10,000 square feet of floor space. He has available 
2,000 hours of his own time and another 2,000 hours from his family. 
He can hire labor at $1.50 per hour. However, for each hoar of hired 
labor, 0.15 hour of the farmer's time is required for supervision. 
How much land should be devoted to corn and how much to wheat, and in 
addition, how many pigs and/poultry should be raised to maximize the 
farmer s prof its? 

The formulation of this problem in "matrix" format is shown in Figure 
2 using numeric data. 

[FIGURE 2 ABOUT HERE] 

We now formalize the problem somewhat by defining symbolic names for 
the data. Since we are concerned with the language used for the 
external representation, the conventions used to name the objects in 
the model are important. In general, long (descriptive) names, short 
mnemonics, and comments are all essential to good modeling practice. 
Short names are useful in algebraic statements. Also, unique 
identifiers (no longer than 8 characters) have to be supplied for the 
row and column labels of data coefficients in the input to many 
optimizers, e.g. those using MPS format. These labels can be composed 
by concatenating together the short names for variables, indices and 
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data coefficients. Devising unique, meaningful short names and labels 
is a tedious job which lends itself well to computer assistance. 
Asthana [I9881 suggests a suitable set of naming conventions. It is 
assumed that the user supplies the Itlong" names for all the basic 
objects in the model. The computer then suggests short names for the 
objects and data coefficients and also provides some limited help in 
generating descriptive comments. Figure 3 illustrates these 
conventions for the Farmer's Problem. 

[FIGURE 3 ABOUT HERE] 

4 ,  BLOCK SCHEMATIC FtEPRESENTATIONS 

The earliest class of LP matrix generators (such as OMNI, GAMMA and 
DATAFORM) contain language statements to generate the data triples for 
MPS statements directly. The objects to be manipulated are data 
tables and the end result is a long list of data triples in MPS 
format. Since the columns (activities) of an LP typically intersect 
only a few rows, practitioners using these systems generally adopt a 
column-oriented view of their task. 

A more global "block-orientedtt view of the LP matrix is useful for 
understanding problem structure, and seems to be the conceptual 
representation used by many experienced practitioners (Welch [1987]). 
Block-wise formulation depends on the fact that most LP matrices are 
composed of blocks of non-zero data structures (data transformations, 
diagonals and summation rows) interspersed with blocks containing only 
zeros. Block-schematic systems provide language statements that help 
the modeler place 2 dimensional arrays of data (and special 0-1 
structures) into the larger 2 dimensional matrix of the LP tableau. 

Figure 4 shows a block-schematic formulation of the farm problem using 
the language conventions of PAM (Welch [1987]). The "Matrix 
Schematicw table near the top of the figure provides a convenient 
overview of the structure of the LP matrix and is the focal point of 
the approach. The blocks named in the body of the matrix schematic 
contain homogeneous sets of data coefficients. For example, the block 
"FAT" contains transformation coefficients giving the number of 
animals produced per bushel of grain. Alternatively, a block can 
contain a i8connection structurett of 1's or -1's that serves to connect 
other blocks or to sum up a number of activities; these are 
represented by tt/ltt and - 1  icons in the figure. Note that the 
constraint inequalities and names of the RHS coefficient blocks of the 
LP matrix are included in the block schematic. 

[FIGURE 4 ABOUT HERE] 

The blocks are located at the intersections of column strips and row 
strips. The column strips are collections of similar activities that 
are further defined in the "Columns" table. The head of the Columns 
table contains the list of column strips; immediately below this is a 
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row of short literals that are used to uniquely identify each column 
strip in the MPS statement. The remaining rows of the table list the 
domains for each column strip. The stub ({1,2,..}) serves to order 
the domains (indices). Similarly, the row strips are collections of 
similarly defined constraint rows that are further defined in the 
t l R ~ ~ ~ t t  table. 

Each block of data coefficients in the matrix schematic is described 
in a row of the "Dataw table as shown in Figure 4. The "Tablest column 
references the data table in which the data values for each block are 
stored. The "Stubtt and "Headtt columns identify the domains that index 
the rows and columns, respectively, of the block in its associated 
data table. As illustrated in the figure, blocks that have common 
domains may share the same data table. 

Note that the blocks that contain the data values define the row and 
column dimensions of the LP matrix. The connection blocks derive 
their size from their position in the matrix. Essentially, these 
blocks cause a 1 (or -1) to be inserted in the final LP matrix 
whenever a domain value in the column strip matches a domain value in 
the row strip. For example, a diagonal submatrix is generated when 
the domains of the column strip match those of the row strip. Other 
conventions in PAM allow inventory and other special matrix 
substructures to be generated. 

The block-schematic approach is graphical, matches the way many 
experienced LP modelers think, supports problem solving through its 
essentially hierarchical approach, and should be a good vehicle for 
advanced interface techniques. Because it is a declarative rather 
than procedural language, it is also probably less labor intensive 
than earlier column-oriented systems. However, the representation is 
abstract since it focuses on the end result of the formulation process 
rather than on the physical system being modeled. Experts can 
probably ttseett the real world structure in the block-schematic but 
this is difficult, if not impossible, for inexperienced users. 

5, ALGEBRAIC REPRESENTATIONS 

Using the definitions in Figure 3, the conventional algebraic 
representation for the Farmer's Problem is: 

(1) Maximize: 

Sub j ect to : 

CHAT .H < AS 
9- g g -  

- HLLT.HL + C RLTa.Ra + C HLT .H < LS 
a 4 9 9 - 

(Acres Usage) 

(Labor Usage) 
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9 

g in Grains (Grain Balance) 

a in Animals (Animal Balance) 

(Floor Usage) 

where HL HLS. 

A number of systems have been developed which accept problem 
statements in algebraic form. As mentioned earlier, these include 
GAMS, GXMP, AMPL and CAMPS. LINDO (Schrage [1984]) allows a 
restricted form of algebraic input in extended coefficient form (no 
summations or indices). Bradley and Clemence El9871 propose an 
important extension to algebraic languages in which the model objects 
are "typedM to help model and data validation through a form of 
dimensional analysis. 

Figure 5 gives a complete formulation of the farmer's problem in the 
syntax of GAMS. In GAMS, the model components such as Sets, Scalars, 
Parameters, Variables and Equations are specified in a fixed order 
using a fairly rigid syntax. In the figure, the text in small letters 
contains optional comments. The meaning of the problem statement 
should be clear to any one versed in management science. In fact, 
this is a major advantage of algebraic notation as an external 
representation scheme. Most importantly, they provide the potential 
for both model-data and model-algorithm independence. In the case of 
GAMS, these advantages are somewhat nullified because the data values 
and algorithm type are compiled with the model statement. It would 
be advantageous to support the input of data values as a separate 
process so that the same model can be run with different data 
instances. 

[FIGURE 5 ABOUT HERE] 

The use of algebraic modeling languages is a major step forward. They 
have great generality, and because they are non-procedural and 
concise, they are not labor intensive (at least as far as defining the 
structure of the model is concerned). Nevertheless, they present few 
opportunities for advanced interface features and involve abstract 
rather than concrete concepts. For these reasons, their use may be 
restricted to a small group of management scientists. Students with 
one course in LP for instance, had a hard time formulating LPs in 
algebraic notation (Orlikowski and Dhar [1986]). 

An additional disadvantage of algebraic representation schemes is that 
the physical structure of the underlying problem is not made explicit. 
Such information can be gleaned, after the fact, from the generated 
matrix, and used to determine the reasons for infeasibilities (if they 
exist) and to explain the results of the model (Greenberg [1983]). 
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However, if structural information is input directly as part of the 
model statement, the user's comprehension of the model can be enhanced 
and there are additional opportunities for the system to analyze the 
correctness of the model during the development process (Murphy et a1 
[1987]). 

6 .  ACTIVITY-CONSTRAINT GRAPHS 

An Activity-Constraint (A-C) graph for the Farmer's Problem is shown 
in Figure 6 (adapted from Schrage [I987 p. 1191 ) . Similar A-C graph 
representations have been proposed by Egli and Kohlas [I9811 and 
Hurlimann [1987]. 

[FIGURE 6 ABOUT HERE] 

Any LP can be represented as an A-C graph. There are two types of 
nodes. Activity nodes representing decision variables are depicted by 
open boxes. Constraint nodes are shown as circles. The arrows 
represent the effect of the activities on the resource levels 
associated with the constraints. If the arrow points to a constraint 
the associated activity provides an input to the constraint and 
conversely. The numerical coefficients on the arrows provide the 
values for the transformations. Thus, if the resource is an input 
(output), its level in the constraint is lowered (raised) by the value 
of the coefficient when the activity level is increased by one. 
Exogenous supply and demand values for resources are written in the 
circles. Constraint nodes with zero values represent flow balance 
equations. 

An A-C graph provides an intuitively appealing representation that can 
help users understand, construct and check a problem formulation. The 
graph can be translated in a straight-forward manner into an LP matrix 
for input to a Solver. The coefficients on the arcs associated with 
each activity form the nonzero elements in its column, while the 
values in the constraint nodes form the RHS for the problem. However, 
it is usually more convenient to formulate the constraints one-at-a- 
time. The constraint corresponding to a constraint node is formed by 
adding together terms involving each activity to which it is 
connected. Each term is formed by multiplying the coefficient on the 
arc by the symbol for the variable. We follow the convention that 
terms on incoming (supply) arcs are positive while those on outgoing 
(demand) arcs are negative. 

The major disadvantage of such graphs is that they are very labor- 
intensive, even for small problems such as that in Figure 6. (Note 
that the connections to the money resource in the objective function 
were omitted to simplify the graph). The obvious way to reduce the 
complexity of the graph is to replace coefficient values by array 
names and to use set notation to portray activity and resource types 
as in Figure 7A. 
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[FIGURE 7 ABOUT HERE] 

To reduce the visual complexity, objective function coefficients are 
written beside their associated activities. Also, explicit upper and 
lower bounds on resource levels and activities are shown symbolically 
(rather than graphically) by including symbols for the upper and lower 
limits in square brackets at the relevant nodes. Finally, the index 
sets for the coefficients have been omitted. These can be computed as 
the union of the sets associated with the Activity and Constraint at 
either end of the arc (singleton sets are treated as null for this 
purpose). Note that the indices of coefficients are simply 
identifiers for particular values. The dimensions of the sub- 
matrices corresponding to the coefficients in the larger LP matrix are 
determined by the number of constraint and activity rows. Thus, the 
coefficient, FATag, represents four non-zero values, but forms a (2 x 
4) array in the tableau of Figure 2. 

When there are relationships between elements with different values in 
the same set (as occurs with time in planning and inventory problems), 
it is necessary to replicate the A-C graph for a sufficient number of 
consecutive index values to reveal the underlying pattern. It might 
also be necessary to show the pattern for both the starting and ending 
conditions. Thus, in a finite horizon planning problem, one might 
depict all constraint and activity nodes for time periods 1, t-1, t 
and T. 

Most practical LPs include a number of "side constraintsw arising 
from policy or other requirements. Examples are generalized bounds on 
variables and constraints on ratios of variables such as: 

(2) C H < HLB and C H > HUB 
g g - 9 g - 

Fhens, corn l?hens , wheat 
> Fpigs,corn - Fpigs, wheat 

Figure 7B shows the additions to the A-C graph to accommodate these 
constraints. Constraints (2) are represented by the llBushels" 
constraint node. A lower bound constraint can be represented as a 
demand node and an upper bound as a supply node. When the two are 
merged as in the figure, the arrow becomes bi-directional. Note that 
the same coefficient applies to both directions of a bi-directional 
arrow since constraints with the same RHS index sets must have the 
same LHS (Murphy et a1 [1987]). The 'gRatiosll node in the figure 
indicates that there is a 0 constraint for each member of the 
animals set. Using the rules given above, the coefficient R for 
variable F is indexed by (Grains, Animals); the values needed to 
capture constraints (3) are given in Figure 13 below. 

While constraints such as (2) and (3) can be represented by simple 
extensions to the formalism, the resulting graph becomes less 
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"concretew since the physical flow analogy is lost. Complicated 
policy relationships between more than two variables are even more 
difficult to represent. 

Many real problems have a simple enough underlying structure to be 
represented conveniently by A-C graphs using the above conventions and 
it is easy to envision the development of an advanced A-C graph 
modeling interface using techniques similar to those developed for 
CAD-CAM applications. However, building A-C graphs is likely to be 
labor intensive for large problems and the A-C graph representation is 
not general in the sense that it would have to be extended to cover 
non-LP problems. Finally, A-C graphs are, in general, quite abstract 
as they depict the end result of the formulation process rather than 
the underlying physical model. When the underlying problem has a 
simple enough form, the A-C graphs become more concrete and a closely 
related representation has been used very successfully as discussed in 
the next section. 

7, NXTFORM GRAPHS 

Every LP model can be represented by an A-C graph because activities 
and constraints are logically paired by the technology coefficients. 
When the underlying real world problem has a network representation, 
there is only one arc entering and leaving each activity node. Thus, 
the activity nodes can be dropped without losing the uniqueness of the 
representation. Glover [I9871 has studied such problems extensively 
and has developed modeling approaches for a broad variety of 
applications as well as a coherent set of graphical conventions (see 
also Glover et a1 [I9781 and Klingman et a1 [1989]). Figure 8 
illustrates these conventions for a network representing a modified 
version of the Farmer's problem in which the labor and floor 
constraints are disconnected to obtain a network subproblem of the 
original problem (i.e. the Hg and Ra activities are modified so that 
they have only single inputs). 

[FIGURE 8 ABOUT HERE] 

In the Netform representation, activities are denoted by arcs while 
constraints are denoted by circles as before. The activities have 
associated upper and lower bounds (enclosed in parentheses), costs, 
and both head and tail multipliers. Unit values for multipliers and 
lower and upper bounds of (0,oo) on activity values are not shown 
explicitly. Networks with integer-valued activities (indicated by a # 
sign on the arc) are admissible. Omitting the non-network elements, 
Figure 8 is obtained simply from Figure 7. Multipliers at the heads 
of activities in the Netform representation correspond to activity 
output coefficients in the Resource/Activity diagram, while those at 
the tails correspond to activity input coefficients. Exogenous 
supplies and demands are shown as "dangling" arcs since they can be 
thought of as constant activities. 
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Experience with the Netform approach to modeling has been very 
positive, (Glover [ 1987 ] ) , confirming the value of graphical 
representations in the modeling process. A surprisingly large number 
of important integer and non-integer problems can be represented as 
networks. Many problems involving a time element, such as inventory 
and cash management applications, have a quite simple network 
representation. The rules for converting a Netform graph to an 
algebraic statement are straightforward being practically identical to 
those for an A-C diagram. In practical applications, side conditions, 
which do not adhere to the network restriction, may be present. These 
can be handled either by adopting the A-C representation for a part of 
the network, or by adding constraints/activities by hand to the 
algebraic statement of the network (see Glover [I9871 for details). 

Network diagrams which attempt to represent every activity and node 
are impractical for problems of even small to moderate size. Often, 
it is sufficient to develop a typical pattern of connections using a 
small number of graphical elements as an aid to writing down the 
equations in the problem statement. Figure 9 shows how the use of 
symbol names and set notation can simplify a Netform diagram and 
provide an excellent format for a computer interface. 

[FIGURE 9 ABOUT HERE] 

8. STRUCTURED MODELING 

Structured Modeling (Geoffrion [1987]) represents a major effort 
towards building a sound basis for modeling theory and practice, 
Because of space limitations we can provide only a brief overview and 
illustration. The objective of structured modeling (SM) is to develop 
a comprehensive framework to unambiguously represent all the essential 
elements of a variety of management science models. This framework of 
definitions is to be represented in the computer and to be used to 
define and generate problem statements for the Solver, to test that a 
computable, consistent problem statement has been produced, to provide 
documentation for subsequent users of the model, to afford model-data 
and model-solver independence and to allow information about parts of 
the model and their relationships to be retrieved and displayed. 

The elements in a structured model are as follows (from Geoffrion 
[1987]) : 

(1) Primitive Entity (PE): has no associated value and represents a 
thing or concept postulated as a primitive of the model (e.g. the 
lfhensw element in the Farmer's problem). 

(2) Compound Entity (CE): has no associated value and represents a 
thing or concept defined in terms of other things or concepts 
(e.g. a link between two locations in a transportation problem). 
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(3) Attribute (A) : has a constant value and represents the value of a 
property of a thing or concept (e.g. the coefficients HATg, HLT, 
etc.). 

(4) Variable Attribute (VA): similar to an Attribute except that its 
value is computed by the model (e.g. the variables HL, Bg, etc.). 

(5) Function (F): has a value that can be computed from the other 
values in the model.(e.g. the term C HATg.Hg). 

g 
(6) Test (T): similar to a function but the result must be either 

true or false (e.g. a test to see if a constraint is 
satisfied) . 

SM models are specified in a rigorously defined syntax similar to a 
programming language. In a sense, SM can be thought of as a superset 
of an algebraic language, in which the data is defined by the PE8s, 
CEts and A's and the algebraic statements by the VAts, F t s  and Tts. 
These six model elements are related because (except for the primitive 
entities) each of the groups of elements (ltgenerafl) is defined in 
terms of elements from one or more of the preceding groups. This 
observation leads to the graph in Figure 10 in which the arcs 
(conventionally directed from PE's towards T's) can be interpreted as 
"the tail item is used in the definition of the head itemw. The 
"Genusa* graph in Figure 10 is one of two principal types of graphs 
used in Structured Modeling. The other graph is a "Modular Tree" 
which depicts a hierarchical grouping of related element groups. A 
modular decomposition of the Farmer's Problem is indicated in Figure 
10 but a Modular Tree is not shown. 

[FIGURE 10 ABOUT HERE] 

Roughly speaking, the relationship between the A-C graphs in Figure 7 
and the Genus graph in Figure 10 is as follows: 

(1) The Sets (including those with a single element) of Figure 7 
are the PEs in Figure 10. 

(2) The Coefficients are the Attributes (As). 

(3) The Activity Nodes are the Variable Attributes (PAS). 

(4) Each link from a Constraint node to an Activity node in 
Figure 7 represents a term in the LP. Terms (or summations of 
terms) can be represented by functions (Fts) in Structured 
Modeling; these are shown as points in Figure 10. 

(5) Each Constraint node in Figure 7 is replaced in Figure 10 by 
a Test node and one or more Function nodes (e.g. a Function node 
might gather together all the terms in a constraint to define its 
LI-IS) . 
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The Genus graph for even a small problem is quite complicated to draw 
by hand. SM software should eventually generate these graphs 
automatically from the textual inputs. In terms of the concreteness 
dimension described earlier, SM problem statements and graphs are 
quite abstract; indeed, it is hard to discern the structure of the 
underlying problem in the graph of Figure 10. For these reasons, SM 
probably does not provide an ideal external representation for model 
specification. However, SM is obviously general across a wide range 
of modeling domains and techniques. In addition, it explicitly 
relates all the parts of a model in a consistent and complete fashion. 
It is therefore an excellent internal representation scheme and has 
been used in this way by Krishnan [1988]. This aspect of the SM model 
will be further elaborated in the next section. 

9. DATABASE REPRESENTATION SCHENES 

The need to gather and process large quantities of data during the 
model building phase and to interpret the voluminous results obtained 
from large models, has prompted research directed towards the 
integration of modern database technology with mathematical 
programming systems (Dolk [I9861 and [1988], Geoffrion [1987], Lenard 
[I9871 and Choobineh and Sena [1988]). 

There are two separate but related requirements. First, there is a 
need to record information about the structure of the model. Second, 
it is necessary to provide for the storage and manipulation of the 
data of the problem and of the results that are obtained from the 
optimizer. While model structure is probably handled best by data 
structures based on artificial intelligence techniques (Elam and 
Konsynski [1987]), the power of modern database management systems and 
query languages makes them attractive for the data manipulation 
aspects of modeling. In the following, a database approach (Date 
[1987]) will be used to illustrate the main issues for both 
requirements. 

Figure 11 gives a conceptual view of the essentials of the graph in 
Figure 7 using the notation of the Entity-Relationship model (Chen 
[1977]). An E-R diagram depicts the things of interest to the system 
as entities (boxes) and relationships between entities (diamonds). 
Entities and relationships represent classes of objects whose 
individual instances are distinguished by the values of their 
associated attributes or properties. 

[FIGURE 11 ABOUT HERE] 

Figure 11 states that each Activity entity is related to one or more 
( ! I N w )  Constraint entities and each Constraint entity is related to one 
or more (iiM") Activity entities. The Activity-Constraint relationship 
serves to relate the individual instances of the two entity sets and 
can carry information on the mathematical transformations linking each 
activity to each constraint. Also shown in Figure 11 are two entities 
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used to record the results of the optimization for each activity and 
constraint. 

Figure 12 gives a realization of this conceptual data model for the 
Farmer's Problem. We will call this the Model Schema. 

[FIGURE 12 ABOUT HERE] 

For a particular model, the model schema contains information that 
is useful in the following processing activities: 

(1) Generation of the schema (skeletal outline) for the data 
tables that will store the data and results for the problem. 

(2) Generation of both the algebraic representation of the 
problem and the MPS problem statement for input to the 
optimizer. 

(3) Updating the model when structural relationships are 
changed. 

The Activity, Constraint and Transform relations (data tables) in 
Figure 12 capture all the information in Figure 7. The Sets relation 
in the figure is redundant in the sense that it can be computed from 
the former three tables. However, it will obviously help speed 
processing. 

The Model Schema in Figure 12 contains almost the same information as 
the Structured Modeling Genus Graph in Figure 10. The Sets relation 
in the Model Schema records the mappings between the PEts and the A's 
and VA1s in the Genus Graph. The Activities, Constraints and 
Activities-Constraints relations record information concerning the F's 
and Tests in the SM representation. As shown in Murphy et a1 [1988], 
this is all the information needed to generate the algebraic form of 
the model in the case of LP1s. To represent non-linear and other 
types of models, the Model Schema can be expanded, along the lines of 
the SM graph, to include an additional Function object; this would 
store the mathematical definition of the object. A desirable feature 
of the schema in Figure 12 as an internal representation, is that it 
contains information on the network structure underlying the model. 
To do this, it uses the information contained in the Upper- and Lower- 
bound and Input-Output fields. 

Figure 13 shows a Data Schema and its instantiation with actual data 
values for the Farmer's Problem. Each set has been assigned a table 
of the same name to record set memberships. Similarly, each data 
coefficient has been assigned a database relation whose name is the 
name of the coefficient. The key (unique identifier for tuples in the 
relation) is the set of indices that describe the array position of 
the data coefficient in the LP matrix. Scalar objects have been 
treated as single element tables for uniformity of representation 
although they might be gathered together into a single table in an 
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actual implementation. 

[FIGURE 13 ABOUT HERE] 

The Data Schema can be generated automatically from an analysis of the 
Model Schema (Asthana [1988]). The skeleton outlines for each Set 
table can be generated first and filled with element values, either 
interactively by the user, or automatically from knowledge stored 
previously in the system. Once the set memberships are known, it is 
possible to automate, or partially automate, the generation of the 
keys for the data elements in the coefficient tables. Finally, the 
data coefficient values can be filled-in, either automatically or by 
interaction with the user. It should be noted that data elements with 
unit values do not have to be stored if they can be implied from the 
algebraic statement. 

The Data Schema in Figure 13 differs from the "Elemental Detail 
TablesH that are used for the same purpose in Structured Modeling (see 
Figure 14). In the former, each set and data element is represented 
by its own database table. In the latter, there is a data table for 
each Primitive and Compound Entity (i.e. for the sets) ; the 
coefficients are represented by database attributes and the elements 
of the sets by values in the same relation. It is difficult to decide 
between the two representations. The SM representation is much more 
compact, but the data schema in Figure 13 may be more flexible 
especially when data is to be shared between different models and 
modelers. Using the concept of database views (Date [1987]), it is 
possible to use one representation as the basis for the design of the 
physical database and to afford users the other view of the data 
depending on their tastes. 

[FIGURE 14 ABOUT HERE] 

From a relational database viewpoint, the matrices and higher 
dimensional arrays that are traditionally used by management 
scientists to represent the data of mathematical programs, are 
unnecessary. The relation for a coefficient stores only the non-zero 
elements in the array representation. Thus, it is a sparse 
representation that conforms closely to the MPS format used for input 
by most Optimizers. There is one table entry in Figure 13 for each 
non-zero entry in the LP matrix. Conceptually, all that is necessary 
to transform the database in Figure 13 into an MPS statement, is to 
replace the values of the keys in the relations by the appropriate 
(Row-label, Column-label) pairs. There is no need to generate arrays 
in the traditional sense unless the modeler prefers to view his/her 
model in this way. 

In summary, the Model Schema is primarily an internal representation 
while the Data Schema is both an external and internal representation. 
Since the latter involves data rather than model structure, it can be 
used in conjunction with any of the other representation schemes 
discussed in the paper. Taking a different approach, Chocjbineh and 
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Sena [1988], suggest some extensions to the popular SQL database query 
language (Astrahan and Chamberlin [1988]) to support the expression of 
algebraic constraints. This has the advantage of providing a unified 
language for both the model definition and data manipulation phases of 
modeling. The disadvantages are as listed -above for algebraic 
languages; the main drawbacks are that such languages are abstract 
rather than concrete and not as amenable to advanced interface support 
as the graphic representation schemes discussed earlier. 

10. AN ICONIC REPRESENTATION SCHEME 

The Activity-Constraint and Netform graphs are the most concrete 
(closest to the real world) representations reviewed so far. However, 
the nodes and arcs correspond directly to mathematical objects (the 
rows and columns of the model tableau) and only incidently to real 
world entities. The arguments in Section 2, and the success of 
wiconic'l interfaces in many applications (Shneiderman [1987], Ch. 5) , 
suggest the desirability of interfaces with more concrete images. 
Furthermore, even in their compact forms, the A-C and Netform graphs 
can be quite complicated implying the need for some form of 
hierarchical aggregation to simplify the problem for the user. 
The LPGRAPH (Asthana [1988]) interface to the LPFORM system attempts 
to satisfy both of these goals. It has been implemented on an IBM 
PC/AT class machine using a set of graphics tools written in the llC1t 
programming language (Expert Vision Associates [1988]). 

The iconic representation of an LP problem in LPGRAPH consists of a 
hierarchy of networks which depict the problem in increasing detail. 
At each level in the hierarchy, the network consists of one or more 
wblocksw connected by directed arcs; blocks and arcs at lower levels 
in the hierarchy inherit properties from their parents at the next 
higher level. The blocks contain collections of zero or more LP 
activities. There are two kinds of directed arcs connecting the 
blocks. A "logical link1' (shown by a thin line) indicates a flow that 
exists in the real world but is not modeled by an LP activity. An 
example is the flow of grains to animals in the farm problem, i.e. a 
material flow from one production point to another in a fixed 
sequence. A "flow link1' (shown by a thick line) represents a flow 
that is modeled by an LP activity. A transportation activity is the 
commonest example. Icons are placed within the blocks to specify the 
existence of activities. In addition to a completely general activity 
icon, more specialized inventory and resource icons are provided for 
convenience. The idea of using activity icons during the formulation 
process first appears in Dantzig [1963]. 

We use the Farmer's Problem to illustrate the main ideas. The top 
level graph consists of a single "Farm-Problemw block. The 
representation at the second level of the hierarchy is shown in Figure 
15. 

[FIGURE 15 ABOUT HERE] 
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The operation of the farm is visualized as four separate functions 
(Administration, Crops, Husbandry and Marketing) each of which 
consists of a number of activities and is represented by a block on 
the diagram. Non-transportation links (logical. links) between the 
blocks indicate the connections. As each activity icon is placed in 
its parent block, the user completes a fill-in-the-blank Activity 
screen. These are summarized in Figure 16. The user defines the 
activity index set and the input and output sets for each activity. 
To illustrate, HARVEST has "Grainsw as its activity index set (i.e. 
there is a separate decision variable for each type of grain); its 
input sets are "AcresN, "Labor" and l'Dollarsw (each of which is a 
singleton) and its output set is "Grains". As each input or output 
set is named, the system suggests a short name for the associated data 
coefficient according to the conventions in Asthana [1988]. These 
names are shown after the colons in Figure 16. They can be changed by 
the user (as has occurred for the unit coefficients in the figure). 

[FIGURE 16 ABOUT HERE] 

After the user has supplied the information in Figures 15 and 16, the 
Model Schema (Figure 12) and Data Schema (Figure 13 without the data 
values) are constructed internally. The algebraic statement (I) is 
generated and displayed using an algebraic language similar to that 
used by GAMS (see Section 3). The index matching rules provided in 
Murphy et a1 [I9871 guarantee the completeness of the resulting model. 
Set memberships and the values of data coefficients must be specified 
at some point prior to running the model. 

An entirely different strategy for defining the Farmer's Problem in 
LPFORM is to take a constraint- rather than an activity-oriented 
viewpoint. There are two ways of doing this. The first uses 
Constraint Screens that are, in a sense, the "duals" of the Activity 
screens outlined in Figure 16. Each constraint is defined in terms of 
the activities with which it interacts and the associated coefficient 
names. This approach avoids the use of mathematical notation by using 
the linearity property of LP1s and certain relationships between index 
sets, to automatically generate the algebraic problem statements. The 
second method is to input the algebraic form of the problem statement 
directly using a language similar to that provided by GAMS. It is 
useful to combine the activity- and constraint-oriented approaches 
because actual applications often require that additional constraints 
be added to standard models defined from an activity perspective. 
Thus, a user might prefer to enter the ratio constraint (3) directly 
rather than by the method indicated in Figure 16. 

Comparing Figure 7 and Figure 16 as alternative input representations 
for a computerized system, we see that only the activities have been 
defined in LPGRAPH; the user is not required to define either the 
Constraint Nodes nor the connections between the Activities and 
Constraints. This is an example of the wpiecemeal" approach to 
problem specification mentioned earlier. Its advantage is that the 
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user does less work (supplies the same information in less redundant 
form) and does not have to follow a rigid input sequence. The 
disadvantages are that users may feel uncomfortable about leaving 
things "up to the computer" and may not obtain as detailed an 
understanding about the way the model components relate. As mentioned 
earlier, preliminary results on the use of the graphics interface of 
LPGRAPH versus (its own) algebraic language are encouraging. 

TO illustrate some other features of iconic modeling, we use the 
following example: 

"Warehouses purchase and store Raw-Materials prior to their 
transportation to Factories. The Factories maintain Raw-Materials and 
Products inventories. They use Raw-Materials to produce Products 
using a production process that has been modeled previously. Finally, 
Products are transported to Markets where they are sold.'I 

The different types of entities and activities in the above problem 
are each represented, in a fairly obvious way, by an icon in Figure 
17. Given this graph, the system requests the user to fill-in forms 
for the buy and sell activities, each inventory activity, each 
transportation flow and the production model. The input screens for 
the activities are used mainly to define their inputs and outputs (as 
described above for the Fanneri s Problem) . The input screen for the 
previously stored production model asks the user to match the names 
stored in the template model to the names for the same objects in the 
new model. 

[FIGURE 17 ABOUT HERE] 

The Flow, Inventory and Resource icons represent specialized kinds of 
activities and trigger user interactions which result in the addition 
of appropriate constraints to the model (see Ma [I9881 for details). 
Resource icons are used to represent physical entities such as plant 
and equipment which are used by activities rather than consumed as 
with inventories. Other examples of LPGRAPH formulations are given in 
Ma [1988], Ma et a1 [I987 and 19891 and Asthana [1988]. 

Note that several, more complicated, graphs could be drawn to 
represent the above problem. First, one could draw a detailed 
transportation network showing individual warehouses, factories and 
markets together with all of the individual transportation routes, It 
is usually easier, however, to stop the drawing at the stage shown in 
Figure 17 and to let the detailed network connections be defined 
through the data. As a second alternative, one could draw an A-C 
graph using the conventions in Figure 7. However, this graph would be 
quite complicated as the model involves flows in both space and time. 
In effect, the LPGRAPH system automatically recognizes the network 
substructure of the problem and implicitly makes the connections of 
the underlying A-C graph as it generates the algebraic representation. 
The detailed connections of the transportation network are obtained 
from the data when the MPS format of the problem is generated. 
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The above paragraphs illustrate several features which should help the 
modeler. These include a simple, non-mathematical representation, 
hierarchical problem definition (only the top-most graph was drawn in 
this instance), bottom-up construction of the' model (use of the 
previously developed production model) and a piecemeal approach to 
problem definition (it was not necessary to adhere to a rigid order in 
defining the problem to the computer nor even to supply all the detail 
concerning interrelationships between model elements). Users are 
however, required to maintain consistent naming conventions so that 
the system can sort and assemble the components of the problem (see 
Murphy et a1 [1987], for a detailed description of how the model 
components can be generated and assembled). 

An LPFORM graph (c.f. Figure 15) can be viewed as an aggregated form 
of A-C graph (c.f. Figure 7). An A-C graph can be simulated in LPFORM 
by making the following correspondences: use LPFORM blocks containing 
a single activity to represent A-C Activity nodes, blocks containing 
no activities to represent A-C Constraint nodes, and lflogical" flows 
connecting the appropriate blocks to represent the arcs in the A-C 
graph. Note that the data coefficients appear with the activities in 
LPFORM rather than on the arcs as in an A-C graph. 

If there are no submod.el icons, the steps to transform an LPFORM graph 
into an equivalent compact A-C graph are as follows: 

(I) For each LPFORM Activity, Inventory or Resource icon, attach 
a node to the tail end of each of its input arcs and to the 
head of each of its output arcs. In the A-C diagram, these 
will represent constraints on the inputs and outputs of 
resources to activities. Replace the LPFORM activity icon by 
its open box representation in the A-C graph. 

(2) For each LPFORM block, add its index sets to the index sets 
of its activities and to the index sets of the resource nodes 
constructed in step (1). Discard the block icon. 

(3) Replace each LPFORM flow activity (arc) by an A-C activity 
icon connected to the appropriate output resource node in the 
block at the tail of the LPFORM arc and the appropriate input 
resource node in the block at the head of the LPFORM arc. 

(4) Complete the A-C graph by replacing multiple instances of 
the same constraint nodes by single instances while 
maintaining all connections. 

Thus, we can translate from one representation scheme to another 
except that we lose information on the hierarchical structure if we go 
from the iconic representation to the A-C diagram and back. 

In the special case where the model is a pure or generalized network 
problem, there is an LPFORM graph which is equivalent to the Netform 
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graph for the problem. In this graph, the LPFORM blocks and flows 
correspond, respectively, to the NETFORM resource nodes and arcs. The 
major difference between the two graphs is that exogenous supplies and 
demands are shown as blocks in LPFORM rather than as dangling arcs as 
in Netform. 

To summarize, iconic representation schemes can provide an elegant 
method for specifying large LP1s. The ability to define the problem 
piece-wise and in non-algebraic terms should also be helpful to both 
experts and nonexperts. In any case, we believe that it is fruitful 
to provide a number of different, interchangeable, representation 
schemes within a common framework. The LPGRAPH interface therefore 
combines elements from the Activity-Constraint graph, Netform, 
database and algebraic representation schemes. Preliminary results 
from an experiment which directly compared groups of users formulating 
LP problems using the graphical and algebraic languages provided by 
LPFORM, show that the former group obtained a higher percentage of 
correct solutions in a shorter time and were more satisfied with their 
experience (Asthana [1988]). The relative advantage of the graphics 
package increased with the complexity of the problem. 

11. CONCLUSIONS 

The microcomputer revolution has increased computer literacy and 
familiarity with models (at least of the spreadsheet variety). The 
current proliferation of powerful desk-top workstations in all forms 
of office and professional work provides a tremendous opportunity for 
management science. The algorithms and analytic techniques developed 
over the last forty years can now influence policy makers in a much 
broader array of applications and situations. The challenge is to 
develop software environments that will improve the productivity of 
the modeling process, the quality of the models produced and, most 
importantly, the quality of the decisions based on the use of these 
models. 

This paper has reviewed some methods for representing mathematical 
problems in graphical and/or textual formats most of which avoid the 
use of algebra or other essentially mathematical representations. As 
we have tried to show, the representations are largely equivalent in 
that transformations exist from one form into another. We believe 
however, that they differ in terms of the amount of work, skill and 
understanding that is required from users. Thus, we need both 
external and internal representations that take into account the 
cognitive limits of human beings. Because of the importance we attach 
to this issue, the paper has introduced wcompactM forms of both A-C 
graphs and Netforms. The iconic representations in the previous 
section go one step further in the sense that they are aggregated 
forms of the A-C graphs. 

In Section 2, we proposed four dimensions for characterizing external 
representation schemes: generality (the applicability of the technique 
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to a range of management science models), concreteness (how closely 
real world objects are represented), labor-intensiveness (a function 
of the complexity of the representation) and interface potential (how 
well the representation lends itself to advanced computer interface 
techniques). From the discussion in this paper it is apparent that no 
representation scheme dominates the others on all of these dimensions. 
In fact, we believe that an optimal modeling system will employ more 
than one form of external model representation. (Naturally, only one 
form of internal representation is desirable). 

Actual experience with the representation schemes discussed in this 
paper in real work environments will be necessary before their 
usefulness in promoting more effective use of modeling in 
organizations can be properly evaluated. In the final analysis, the 
choice of a particular representation scheme will depend on the 
circumstances and on the tastes of users as each method has its 
advantages and disadvantages. It is possible to build systems that 
avoid unfortunate trade-offs between user convenience, generality of 
representation and machine efficiency. Thus, one can have mixed 
representations at the user interface that allow iconic, network and 
algebraic techniques to be used to define different parts of the same 
model. The resulting external specification can then be translated 
automatically into an unambiguous and valid statement that is stored 
and analyzed internally using, for example, the techniques of 
Structured Modeling. Note that the iconic representation and 
Structured Modeling have a natural fit in their hierarchical 
structuring of problems since a block in the former is equivalent to a 
module in the latter. 

Much research remains to be done in the area of modeling interfaces. 
In our view, the greatest problem facing designers of languages to 
support the modeling process involves the trade-off between the need 
to present a precise, unambiguous input to the optimizer and the 
limited cognitive capabilities of human beings. There is a great need 
for improvement in our understanding of the issues in this area. For 
example, we have proposed: 

(1) Multiple methods for representing problems and parts of the same 
problem. 

(2) Graphic representation schemes including the use of icons. 

(3) Dynamic support for problem solving strategies such as 
hierarchical decomposition and piece-wise composition. 

The effectiveness of the above interface features is a matter for 
research. Certainly, no prima facie argument can prove their 
desirability. For example, multiple representation schemes may be 
confusing to users. Furthermore, the domain in which graphical 
representations are natural and easy to understand without training in 
operations research, is somewhat limited. In some applications, the 
entities represented by such graphs are far from concrete in the sense 
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that we have been using the term. For example, in a network 
representing a cash flow application, the nodes represent time periods 
and the arcs represent cash flows both within a period and between 
periods. Thus, there is a need to develop and experiment with 
graphical representat ions for more abstract entities and, in 
particular, to extend the techniques to include nonlinear and integer 
programming. Finally, we need a better understanding of the problem 
solving strategies of expert modelers so that we can build systems 
that can truly extend their capabilities. 

The power of modern computers, their graphic capabilities, new forms 
of man-machine communication (other than typing at a keyboard), and 
the emergence of artificial intelligence techniques, all point to an 
exciting period of research and development which will result in 
modeling workstations of tremendous power and versatility. New 
problem representation techniques will play an essential role in this 
evolution and represent an important new area of management science 
research. 
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VARIABLES: OBJECTIVE COEFFICIENTS: 

LONG 
NAME 

SHORT 
NAME DESCRIPTION NAME VALUE DESCRIPTION 

BUY B(g) Buy grain g (bushels) HLC 1.50 Hire-labor Cost ($/hour) 
HIRE-LABOR HL Hire labor (hours) BC(g) 2.50 1.50 Buy Grains Cost ($/bushel) 
HARVEST H ('3 Harvest grain g (bushels) HC(g) 0.20 0.12 Harvest Cost ($/bushel) 
FEED F(a,g) Feed animal a grain g (bushels) SP(g) 1.75 0.95 Selling Price ($/bushel) 
SELL s(g) Sell grain g (bushels) RP(a) 40 40 Raise Price ($/animal) 
RAISE R (a Raise animals a (units) 

CONSTRAINTS: RHS COEFFICIENTS: 

LONG SHORT 
NAME NAME DESCRIPTION NAME VALUE DESCRIPTION 
....................................................... .................................. 
ACRES-USAGE AU Acres balance equation (acres) AS 120 Acres supply (acres) 
LABOR-USAGE LU Labor usage (hours) HLS 13,333 Hire-Labor supply ((Hours) 
GRAIN-BALANCE GB(g) Grains balance equations (bushels) LS 4,000 Labor supply (hours) 
ANIMALS-BALANCE AB(a) Animals balance equations (units) F S 10,000 Floor supply (sq. it.) 
FLOOR-USAGE FU Floor usage (sq. it.) 
HIRE-BOUND BND Bound on hired labor (hours) 

TECHNOLOGY COEFFICIENTS: SETS : 

LONG INDEX 
NAME VALUE DESCRIPTION NAME NAME MEMBERSHIP 
---_-__---_________-------------------------------- .................................. 
HLLT 0.85 Hire-Labor/Labor Technology (hours/hour) Grains g {wheat, corn) 
HAT(g) 1/55 1/95 Harvest/Acres Technology (acres/bushel) Animals a {hens, pigs) 
HLT(9) 0.22 0.74 HarvestILabor Technology (bushels/hour) 

:(a.g) 10.1 
0*04/ 

Feed/Animals Technology (animals/bushel 
g ~ g  ,0.04 0.05 
F . ~ E  (a) 40 25 RaiseILabor Technology (hours/animal) 
$ 0 - 3  g g  .(a) 15 25 Raise/Floor Technology (sq. ft./animal) 
4 G d  
E g 2 .  
;; td e 
do 6 ,  m 
Y D  8 Figure 3 - 0 g g  E 

3 
DATA DEFINITIONS FOR FARMER'S PROBLEM 

V 



DATA Z : COLUMNS COLUMN DESCRIPTION 
x. x BUY HIRE HARVEST FEED SELL RAISE 
L B HL H F S R 
1 ANIMALS ANIMALS 
2 GRAINS GRAINS GRAINS 

DATA Z:MATRIX 
* * BUY HIRE 

PROFIT BC HLC 
AU 
L U HLLT 
G B 
A B 

/ 1 

FU 
BND / 1 

MATRIX SCHEMATIC 
HARVEST FEED SELL RAISE 

HC SP RP 
HAT 
-HLT -RLT 
11 1-1 1-1 
FAT 1-1 

RFT 

DATA Z : ROWS ROW DESCRIPTION 
* * L 1 2 
ACRES-USE A L 
LABOR-USE LU 
GRAIN-BAL GB GRAINS 
ANIMAL-BAL A B ANIMALS 
FLOOR-USE FU 

DATA Z : DATA DATA TABLE DESCRIPTIONS 

DATA 
* * 
HAT 
HLT 
FAT 
RLT 
RFT 

Z : DATA 
TABLE 
FARM 
FARM 
FAT 
FARM 
FARM 

DATA TABLE 
STUB 
GRAINS 
GRAINS 
ANIMALS 
GRAINS 
GRAINS 

DESCRIPTIONS 
HEAD 
HAT 
HLT 
GRAINS 
RLT 
RFT 

Figure 4 
BLOCK-SCHEMATIC VIEW OF FARMER'S PROBLEM 

RTY PE RHS 

< F S 
UB HLS 



SETS 
G grain /WHEATl CORN/ 
A animals /HENS,PIGS/ ; 

SCALARS 
HLLT effective hours per hired hour 1.851 
L S starting quantity of labor /4000/ 
AS acreage on farm /I201 
FS floor space /lOOOO/ 
HLC wage rate per hour /I. 501 
HLS limit on hired labor /I33331 ; 

PARAMETERS 
BC(G) buy grains cost /WHEAT 2.50 

CORN 1.50/ 
HC(G) harvest grains cost /WHEAT .20 

CORN .12/ 
SP(G) sell grains price /WHEAT 1.75 

CORN .95 / 
RP(A) raised animals price /HENS 40 

PIGS 401 
HAT(G) harvest acres per bushel /WHEAT .01818 

CORN .01053/ 
HLT(G) harvest labor per bushel /WHEAT .223 

CORN ,7421 
RLT(A) raise animals labor /HENS 40 

PIGS 251 
RFT(A) raise animals floor /HENS 15 

PIGS 2 5 1 ;  
TABLE 

FAT(A,G) feed animals technology 
WHEAT CORN 

HENS .1 .04 
PIGS .04 -05 ; 

VARIABLES 
B (G) buy grains 
HL hire labor 
H(G) harvest grain 
F(GIA) feed grain to animals 
S(G) sell grain 
R(A) raise animals 
z I 

POSITIVE VARIABLES B, HL, H, F, S, R ; 
HL-UP = HLS ; 

EQUATIONS 
PROFIT 
AU acres 
LU labor 
GB(G) grain balance 
AB(A) animal balance 
FU floor usage ; 

PROFIT.. Z =E= -SUM(G,BC(G)*B(G)) -HLC*HL 
-SUM(G,HC(G)*H(G)) 

+SUM(G,SP(G)*S(G)) +SUM(A,RP(A)*R(A)) ; 

LU.. -HLLT*HL +SUM(G,HLT(G)*H(G)) 
+SUM(A,RLT(A)*R(A)) =L= LS; 

FU.. SUM(A,RFT(A)*R(A)) =L= FS ; 

MODEL FARM /ALL/ ; 
SOLVE FARM USING LP MAXIMIZING Z ; 

Figure 5 . 
FORMULATION OF FARMERS PROBLEM IN G*,S CenterforDigitalEcOnOm~ Research 
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ACTIVITY: ACTIVITY-RESULT: 

SHORT LONG OBJECT- ACTIVITY A-LOWER A-UPPER 
NAME NAME COEFFT -SET BOUND BOUND 
-----------------------------.------------------------------ 

B(g) BUY BC(g) GRAINS 0 Inf 
H L HIRE-LABOR HLC Nil 0 HLS 
H(g) HARVEST HC(g) GRAINS 0 Inf 
F(a,g) FEED 1 ANIMALS-GRAINS 0 Inf 
S(g) SELL sP(g) GRAINS 0 Inf 
R(a) RAISE RP(a) ANIMALS 0 In f 

CONSTRAINT: 

SHORT LONG 
NAME NAME 

CONSTRAINT C-LOWER C-UPPER 
-SET -BOUND -BOUND 

SHORT OPTIMAL REDUCED A-LOWER A-UPPER 
NAME -VALUE -COST -RANGE -RANGE ......................................... 

CONSTRAINT-RESULT: 

SHORT SLACK- DUAL- C-LOWER C-UPPER 
NAME VALUE VALUE -RANGE -RANGE 

AU ACRES-USAGE Nil 0 HLS AU 
LU LABOR-USAGE Nil 0 0 LU 
GB(g) GRAINS-BALANCE GRAINS 0 0 GB(hens) 
AB(a) ANIMALS-BALANCE ANIMALS 0 LS GB (pigs 
FU FLOOR-USAGE N i 1 0 0 
Z PROFITS Nil -1nf In f 

It  

TRANSFORM: SETS : 

TRANS- INPUT- 
CONSTRAINT ACTIVITY COEFFT OUTPUT ............................................. 

HAT(g) 
HLLT 
HLT(g) 
RLT(a) 

1 
1 
1 
1 

FAT(afg) 
1 
1 

SHORT USED USE- 
NAME -BY TYPE ................................. 
GRAINS 
GRAINS 
GRAINS 
GRAINS 
GRAINS 
GRAINS 
GRAINS 
GRAINS 
GRAINS 
GRAINS 
GRAINS 
GRAINS 
ANIMALS 
ANIMALS 

71 It 

.* ,1 

Figure 12 
MODEL SCHEMA FOR FARMER'S PROBLEM 

Activity 
Activity 
Activity 
~ c t  Fvity 
Constraint 
Coefft 
Coef f t 
Coef it 
Coeff t 
Coefft 
Coef ft 
Set 
Activity 
Activity 
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GRAINS AN I MALS ANIMALS-GRAINS 

GRAINS ANIMALS GRAINS 
--------------- 

Wheat 
Corn 

Hens 
Pigs 

Hens Wheat 
Hens Corn 
Pigs Wheat 
Pigs Corn 

DATA TABLES: 

HAT Harvest/Acres Technology HLT Harvest/Labor Technology HC Harvest Grains Cost BC Buy Grains Cost 

GRAINS VALUE GRAINS VALUE 
--------------- 
Wheat 0.22 
corn 0.74 

GRAINS VALUE -------------- 
Wheat 0.20 
Corn 0.12 

GRAINS VALUE 

Wheat 1/55 
Corn 1/95 

Wheat 2.50 
Corn 1.50 

SP Sell Grains Price RLT Raise/Labor Technology RFT Raise/Floor Technology RP Raise/Animals 
Prof its 

GRAINS VALUE ANIMALS VALUE GRAINS VALUE GRAINS VALUE -------------- 
Hens 4 0 
Pigs 40 

Wheat 1.75 
Corn 0.95 

Hens 4 0 
Pigs 2 5 

Hens 15 
Pigs 2 5 

FAT Feed/Animals Technology FR Feed/Rat ios HLLT Hire-Labor/Labor Technology HLC Hire-Labor Cost 

ANIMALS GRAINS VALUE 
......................... 
Hens Wheat 0.10 
Hens Corn 0.04 
Pigs Wheat 0.04 
Pigs Corn 0.05 

ANIMALS GRAINS VALUE ........................ 
Hens Wheat -0.20 
Hens Corn 1 
Pigs Wheat -0.30 
Pigs Corn 1 

VALUE ----- 
0.85 

VALUE ----- 
1.50 

Scres 

IALUE ----- 
120 

HLS Hire-Labor Supply FS Floor Supply LS Labor Supply 

VALUE ----- 
13,333 

VALUE ----- 
4,000 

VALUE ------ 
10,000 

Figure 13 
RELATIONAL DATA BASE FOR EXTENDED FARMERS PROBLEM 
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