
REPRESENTATION SCHEMES FOR MATHEMATICAL
PROGRAMMING MODELS

Frederick H. Murphy

Edward A. Stohr

Ajay Asthana

STERN #IS-89-1 04

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

REPRESENTATION SCHEMES FOR MATHEMATICAL
PROGRAMMING MODELS

Frederick H. Murphy
School of Business
Temple University
Philadelphia, PA

Edward A. Stohr
Leonard N. Stem School of Business

New York University
New York. NY 10012

Ajay Asthana
Leonard N. Stern School of Business

New York University
New York, NY 100 12

Revised: June 19, 1990

Working Paper Series
STERN #IS-89- 104

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

ABSTRACT

Because of the difficulties often experienced in formulating and
understanding large scale models, much current research is directed
towards developing systems to support the construction and
understanding of nanagement science models. This paper discusses
seven different methods for representing mathematical programming
models during the formulation phase of the modeling process. The
approaches discussed are block-schematic, algebraic, three different
kinds of graphical schemes, a database-oriented approach and
Structured Modeling. We emphasize representations that have graphical
elements suitable for incorporation in the interface to a modeling
system. The different methods are compared using a common example and
the transformations that allow one to go from one representation to
another are discussed.

Key words: Modeling, mathematical programming, graphics

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-104

1. INTRODUCTION

Our ability to solve large mathematical programming models has
improved with the introduction of new algorithms and continued
advances in computer technology. The major impediment to more
widespread use of these models appears to be a human one. Modeling
is a time-consuming, error-prone task that is understood by only a
small number of management scientists (Fabozzi and Valente 119763).
Recently, there has been an awakening of interest in the modeling
process itself and in computer systems which directly support the
modeler. An example of the benefits that can be obtained from the
combination of a user friendly interface and powerful modeling
language is given by the PLANET system at General Motors (Breitman and
Lucas [1987]) .
Most mathematical programming systems (Optimizers) accept model
definitions in the MPS format (IBM [1975]). This consists primarily
of a list of triples in the form (Row Label, Column Label, Value).
Although MPS format allows sparse matrices to be represented fairly
efficiently, it is difficult for humans to develop and debug models in
this form, (Meeraus [1984]). Over the last few decades, a number of
systems have been developed which attempt to make the modeling task
easier. Early systems (Matrix Generators) were essentially procedural
programming languages that helped generate files in MPS format. Some
examples are GAMMA (Sander and Smith [1976]), LOGS (Brown et a1
[1987]), OMNI (Haverly Systems Inc. [1977]) and DATAFORM (Creegan,
[i985]). Later, systems which accept problem statements in a non-
procedural language were developed. PAM (Welch [1987]) and MIMI
(Baker [1990]) are table-oriented languages. Non-procedural systems
that take an algebraic approach include GAMS (Meeraus [1984]), AMPL
(Fourer et a1 [1990]), GXMP (Dolk [1986]) and CAMPS (Lucas and Mitra
[1985]) .
Other recent modeling approaches include Structured Modeling
(Geoffrion [1987]), which provides a general representation for a
broad range of model types, and Netforms (Glover et a1 119781,
Klingman et a1 [1989]), which are suitable for mathematical programs
that are primarily networks. Dolk [1986] has developed a system based
on concepts from database management systems. Krishnan [I9871 and
Raghunathan [I9881 have designed new modeling languages based on
artificial intelligence techniques for representing domain dependent
knowledge. The former uses a dialogue-driven interface controlled
largely by the computer, while the latter proposes a modeling language
based on And-Or graphs. Some "restricted natural language" interfaces
have also been developed. Binbasioglu and Jarke [1986] develop a
simple Hactivity-resourcel' language for specifying problems in the
area of manufacturing production. Greenberg [1987] has developed a
restricted natural language system for interpreting LP models and
results. A number of systems, effective for small applications,
integrate optimization with the spreadsheet paradigm (Bodily [1986]).
Finally, we have built a prototype system, LPFORM, to help modelers

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-104

formulate linear programming (LP) models (Murphy and Stohr El9861 and
Ma 119881). LPFORM provides a graphic interface which uses icons to
represent real world objects such as inventories, machines and
transportation networks. The interface is described in Ma et a1
119861 and has been improved and tested by Asthana [1988].

The great diversity of existing and proposed modeling systems makes a
comparative analysis worthwhile. Our objective is to review these
systems from the point-of-view of the interface presented to the user.
In particular, we wish to investigate various methods for representing
LP problems. In the space available, we can only review some major
alternatives: non-procedural programming languages, graphics-oriented
interfaces and database representations. We have chosen some typical
systems in each of these categories and explain them in terms of a
common example. Since all viable representations must lead to
unambiguous model statements, it should be possible for a model
management system to transform from one representation to another.
The paper outlines the steps needed to perform some of these
transformations. We also introduce lfcompactn forms for some existing
graphic representations and illustrate some interface design features
that should help users cope with the complexity of real world
applications.

Section 2 provides a general framework for comparing different
representation schemes. Section 3 introduces an example that will be
used to illustrate the different approaches. Sections 4 through 10,
respectively, cover block-schematic approaches, algebraic languages,
Activity-Constraint Graphs, Netforms, Structured Modeling, database
representations, and the iconic approach used in LPFORM. The paper
ends with some brief conclusions and suggestions for future research.

2. REPRESENTATION SCHEMES IN MODELING

In this section, we discuss the objectives of advanced modeling
systems and the role of problem definition languages in helping to
achieve these objectives.

A typical design for a modeling system is shown in Figure 1. Most
current systems contain all of the subsystems shown in the figure in,
at least, a rudimentary form. Ideally, the interface module handles a
variety of input and output presentation modes. The Model Processor
accepts the user's input and produces a statement of the model in a
form suitable for a standard Optimizer such as LINDO (Schrage [1984])
or IBM1s MPSX [1975]. A Solution Analyzer (e.g. Analyze, Greenberg
[1983]) accepts the solution from the Optimizer, performs analyses,
and provides reporting and online query facilities for the user. The
Model Management and Database Management components provide
information, access and maintenance facilities for models and data
respectively (see Blanning 11982) and Date [I9871 for a discussion of
these components).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

[FIGURE 1 ABOUT HERE]

The following are some objectives of a good modeling system:

(1) Provide a rigorous conceptual framework for problem
formulation.

Allow the representation of a broad range of model types.

(3) Reduce the complexity of the modeling process.

(4) Support all phases of the development and use of models.

(5) Provide model-data independence.

(6) Provide model-solver independence.

(7) Check the validity of models.

(8) Employ modern interface techniques.

(9) Integrate modeling with modern database techniques.

(10) Provide powerful computational features to help generate the
data.

(11) Facilitate the reuse of previously developed models and
their combination into larger models.

(12) Provide automated documentation of models.

(13) Explain model structure and interpret model results.

(14) Accumulate domain dependent knowledge over time.

The above includes the list of desirable features given by Geoffrion
[1987]. The items in this list are self-explanatory except for items
(5) and (6). Model-data independence, implies a separation of the
statement of the structure of the model from the data that is to be
used in it. Thus, the sizes of sets and values of data items can vary
from run to run without changing the statement of the model.
Similarly, model-solver independence implies that the statement of the
model is in a format that does not depend on the requirements of any
one solver or class of model.

In considering the role of representation schemes in the achievement
of these goals, it is important to distinguish between external and
internal representations. An external representation scheme is used
by the modeler to define models and to express queries to be answered
by the model. Objectives (1) through (3) simply cannot be achieved
without a good external representation scheme. In addition, goals (4)
through (8) are critically affected, and the remaining objectives

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

somewhat affected, by the choice of external representation.

On the other hand, an internal representation scheme is usually
invisible to the user. It is used by the system to support all of the
goals on the above list. In particular, the use of knowledge
representation schemes from artificial intelligence can facilitate the
attainment of goals (13) and (14). The internal representation is
used to generate a problem statement for the optimizer, to document
the model and to act as a database for online queries concerning the
structure and objectives of the model.

Although the internal and external representations are naturally
related, there is every reason to believe that they should be
different. The purpose of an external representation is to help the
user. The formulation of models involves a mapping between real world
objects and relationships and symbolic (usually mathematical) objects
and relationships. This process is painful even for experts as it
involves minute attention to detail. Usually, the correctness of a
model can only be ascertained by trial runs involving much data
processing. For nonexperts, the translation process is almost
impossible because of their poor understanding of mathematical
concepts such as variables and indices (Orlikowski and Dhar, [1986]).
A major theme of current research is that a good external
representation scheme helps users visualize the real world in
conceptual terms and thereby facilitates the generation of correct
models (Shneiderman [1987]). The system itself should automatically
translate from the external to the internal representation scheme.

Representation schemes can be discussed in terms of four dimensions:
generality, concreteness, labor-intensiveness, and interface
potential. Generality refers to the applicability of the technique to
a range of management science models (both within and beyond LP). The
other three dimensions are aspects of what is generally referred to as
"user friendliness."

The concreteness dimension measures how closely real world objects are
captured. External representation schemes should be concrete in the
sense that they should contain analogues of real world objects and
relationships rather than mathematical objects and relationships.
Internal representation schemes may be abstract since they portray the
symbolic representation of the model and must, of necessity, include
mathematical concepts. Evidence concerning the desirability of icons
and other concrete objects that can be directly manipulated by users
is quite strong (Shneiderman [1987]). Graphs can provide more
concrete representations for modelers because they can reveal hidden
facts and relationships and stimulate human thinking (Shepherd
[1987]). A study by Carlson et a1 [1977], showed that decision makers
seem to rely on conceptualizations and that graphs and visual
scenarios helped improve decision making. The advent of low cost
computer graphics technology makes interactive systems possible. For
these reasons, our research has emphasized graphic representation
schemes.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

Labor-intensiveness (the amount of detailed book-keeping work required
from the user) is a function of the complexity of the representation
and is especially important for large problems. While graphics can
help on the concreteness dimension, graphical representations can be
too complex both to draw and to understand for the large mathematical
programming models found in practice. We need to invent methods of
computer support that allow users to draw high-level diagrams of major
model relationships while hiding the messy details. How to provide
useful forms of hierarchical abstraction that help, rather than
hinder, users is a challenging area for research.

The final dimension, interface potential, measures how well the
representation form lends itself to the use of advanced computer
interface design features and to support for the dynamics of the user
interaction. Thus, the interface should provide not only a good
medium for expression of ideas, but also support problem solving
strategies and other features that can help users. These include:

(1) ~ierarchical definition of the problem through top-down
refinement.

(2) Piece-wise model development (bottom-up development) with a
submodel integration capability.

(3) Reuse of previously developed models and model fragments.

(4) Consistency and validity checking during (as well as
subsequent to) the model construction phase.

(5) Memory aids.

(6) Good interface characteristics including fast response and
easy revision and modification of previous work.

Of the above, we need elaborate only on item (2). By this, we mean
that users should be able to define small pieces of their models in
any order. The need to organize work in a strict order, to formally
define objects before they are used, and to follow a rigid syntax,
places an unnecessary burden on the user. As illustrated later, it
seems preferable for the computer to perform the steps needed to infer
missing problem components and to construct a properly ordered,
consistent internal problem representation.

In the final analysis, the choice of model representation scheme will
depend on both the task at hand and the particular class of user
involved. Students, engineers, managers and OR experts will have
different needs and individual users will probably want to use
multiple representations of the same model during the course of its
development and use. In this paper we hope to provide some insights
into the different types of representation and how they relate to each
other.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

3 . SAMPm PROBLEM

To compare the different languages for representing models, a sample
problem has been taken from Schrage [1987]. This is a small problem
but has sufficient complexity to illustrate most of the issues
involved in developing internal and external representation schemes.
The problem statement is as follows:

"A farmer has 120 acres which can be used for growing wheat or corn.
The yield is 55 bushels per acre per year of wheat or 95 bushels of
corn. Any fraction of the 120 acres can be devoted to growing wheat
or corn. Labor requirements are 4 hours per acre per year plus 0.15
hour per bushel of wheat and 0.70 hour per bushel of corn. cost of
seed, fertilizer, etc., is 20 cents per bushel of wheat produced and
12 cents per bushel of corn produced. Wheat can be sold for $1.75 per
bushel, and corn for $0.95 per bushel. Wheat can be bought for $2.50
per bushel and corn for $1.50 per bushel.

In addition, the farmer may raise pigs and/or poultry. The farmer
sells the pigs or poultry when they reach the age of one year. A pig
sells for $40. He measures the poultry in terms of coops. (One coop
brings in $40 at the time of sale). One pig requires 25 bushels of
wheat or 20 bushels of corn, plus 25 hours of labor and 25 square feet
of floor space. One coop of poultry requires 25 bushels of corn or 10
bushels of wheat, plus 40 hours of labor, and 15 square feet of floor

The farmer has 10,000 square feet of floor space. He has available
2,000 hours of his own time and another 2,000 hours from his family.
He can hire labor at $1.50 per hour. However, for each hoar of hired
labor, 0.15 hour of the farmer's time is required for supervision.
How much land should be devoted to corn and how much to wheat, and in
addition, how many pigs and/poultry should be raised to maximize the
farmer s prof its?

The formulation of this problem in "matrix" format is shown in Figure
2 using numeric data.

[FIGURE 2 ABOUT HERE]

We now formalize the problem somewhat by defining symbolic names for
the data. Since we are concerned with the language used for the
external representation, the conventions used to name the objects in
the model are important. In general, long (descriptive) names, short
mnemonics, and comments are all essential to good modeling practice.
Short names are useful in algebraic statements. Also, unique
identifiers (no longer than 8 characters) have to be supplied for the
row and column labels of data coefficients in the input to many
optimizers, e.g. those using MPS format. These labels can be composed
by concatenating together the short names for variables, indices and

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

data coefficients. Devising unique, meaningful short names and labels
is a tedious job which lends itself well to computer assistance.
Asthana [I9881 suggests a suitable set of naming conventions. It is
assumed that the user supplies the Itlong" names for all the basic
objects in the model. The computer then suggests short names for the
objects and data coefficients and also provides some limited help in
generating descriptive comments. Figure 3 illustrates these
conventions for the Farmer's Problem.

[FIGURE 3 ABOUT HERE]

4 , BLOCK SCHEMATIC FtEPRESENTATIONS

The earliest class of LP matrix generators (such as OMNI, GAMMA and
DATAFORM) contain language statements to generate the data triples for
MPS statements directly. The objects to be manipulated are data
tables and the end result is a long list of data triples in MPS
format. Since the columns (activities) of an LP typically intersect
only a few rows, practitioners using these systems generally adopt a
column-oriented view of their task.

A more global "block-orientedtt view of the LP matrix is useful for
understanding problem structure, and seems to be the conceptual
representation used by many experienced practitioners (Welch [1987]).
Block-wise formulation depends on the fact that most LP matrices are
composed of blocks of non-zero data structures (data transformations,
diagonals and summation rows) interspersed with blocks containing only
zeros. Block-schematic systems provide language statements that help
the modeler place 2 dimensional arrays of data (and special 0-1
structures) into the larger 2 dimensional matrix of the LP tableau.

Figure 4 shows a block-schematic formulation of the farm problem using
the language conventions of PAM (Welch [1987]). The "Matrix
Schematicw table near the top of the figure provides a convenient
overview of the structure of the LP matrix and is the focal point of
the approach. The blocks named in the body of the matrix schematic
contain homogeneous sets of data coefficients. For example, the block
"FAT" contains transformation coefficients giving the number of
animals produced per bushel of grain. Alternatively, a block can
contain a i8connection structurett of 1's or -1's that serves to connect
other blocks or to sum up a number of activities; these are
represented by tt/ltt and - 1 icons in the figure. Note that the
constraint inequalities and names of the RHS coefficient blocks of the
LP matrix are included in the block schematic.

[FIGURE 4 ABOUT HERE]

The blocks are located at the intersections of column strips and row
strips. The column strips are collections of similar activities that
are further defined in the "Columns" table. The head of the Columns
table contains the list of column strips; immediately below this is a

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

row of short literals that are used to uniquely identify each column
strip in the MPS statement. The remaining rows of the table list the
domains for each column strip. The stub ({1,2,..}) serves to order
the domains (indices). Similarly, the row strips are collections of
similarly defined constraint rows that are further defined in the
t l R ~ ~ ~ t t table.

Each block of data coefficients in the matrix schematic is described
in a row of the "Dataw table as shown in Figure 4. The "Tablest column
references the data table in which the data values for each block are
stored. The "Stubtt and "Headtt columns identify the domains that index
the rows and columns, respectively, of the block in its associated
data table. As illustrated in the figure, blocks that have common
domains may share the same data table.

Note that the blocks that contain the data values define the row and
column dimensions of the LP matrix. The connection blocks derive
their size from their position in the matrix. Essentially, these
blocks cause a 1 (or -1) to be inserted in the final LP matrix
whenever a domain value in the column strip matches a domain value in
the row strip. For example, a diagonal submatrix is generated when
the domains of the column strip match those of the row strip. Other
conventions in PAM allow inventory and other special matrix
substructures to be generated.

The block-schematic approach is graphical, matches the way many
experienced LP modelers think, supports problem solving through its
essentially hierarchical approach, and should be a good vehicle for
advanced interface techniques. Because it is a declarative rather
than procedural language, it is also probably less labor intensive
than earlier column-oriented systems. However, the representation is
abstract since it focuses on the end result of the formulation process
rather than on the physical system being modeled. Experts can
probably ttseett the real world structure in the block-schematic but
this is difficult, if not impossible, for inexperienced users.

5, ALGEBRAIC REPRESENTATIONS

Using the definitions in Figure 3, the conventional algebraic
representation for the Farmer's Problem is:

(1) Maximize:

Sub j ect to :

CHAT .H < AS
9- g g -

- HLLT.HL + C RLTa.Ra + C HLT .H < LS
a 4 9 9 -

(Acres Usage)

(Labor Usage)

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

9

g in Grains (Grain Balance)

a in Animals (Animal Balance)

(Floor Usage)

where HL HLS.

A number of systems have been developed which accept problem
statements in algebraic form. As mentioned earlier, these include
GAMS, GXMP, AMPL and CAMPS. LINDO (Schrage [1984]) allows a
restricted form of algebraic input in extended coefficient form (no
summations or indices). Bradley and Clemence El9871 propose an
important extension to algebraic languages in which the model objects
are "typedM to help model and data validation through a form of
dimensional analysis.

Figure 5 gives a complete formulation of the farmer's problem in the
syntax of GAMS. In GAMS, the model components such as Sets, Scalars,
Parameters, Variables and Equations are specified in a fixed order
using a fairly rigid syntax. In the figure, the text in small letters
contains optional comments. The meaning of the problem statement
should be clear to any one versed in management science. In fact,
this is a major advantage of algebraic notation as an external
representation scheme. Most importantly, they provide the potential
for both model-data and model-algorithm independence. In the case of
GAMS, these advantages are somewhat nullified because the data values
and algorithm type are compiled with the model statement. It would
be advantageous to support the input of data values as a separate
process so that the same model can be run with different data
instances.

[FIGURE 5 ABOUT HERE]

The use of algebraic modeling languages is a major step forward. They
have great generality, and because they are non-procedural and
concise, they are not labor intensive (at least as far as defining the
structure of the model is concerned). Nevertheless, they present few
opportunities for advanced interface features and involve abstract
rather than concrete concepts. For these reasons, their use may be
restricted to a small group of management scientists. Students with
one course in LP for instance, had a hard time formulating LPs in
algebraic notation (Orlikowski and Dhar [1986]).

An additional disadvantage of algebraic representation schemes is that
the physical structure of the underlying problem is not made explicit.
Such information can be gleaned, after the fact, from the generated
matrix, and used to determine the reasons for infeasibilities (if they
exist) and to explain the results of the model (Greenberg [1983]).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

However, if structural information is input directly as part of the
model statement, the user's comprehension of the model can be enhanced
and there are additional opportunities for the system to analyze the
correctness of the model during the development process (Murphy et a1
[1987]).

6 . ACTIVITY-CONSTRAINT GRAPHS

An Activity-Constraint (A-C) graph for the Farmer's Problem is shown
in Figure 6 (adapted from Schrage [I987 p. 1191) . Similar A-C graph
representations have been proposed by Egli and Kohlas [I9811 and
Hurlimann [1987].

[FIGURE 6 ABOUT HERE]

Any LP can be represented as an A-C graph. There are two types of
nodes. Activity nodes representing decision variables are depicted by
open boxes. Constraint nodes are shown as circles. The arrows
represent the effect of the activities on the resource levels
associated with the constraints. If the arrow points to a constraint
the associated activity provides an input to the constraint and
conversely. The numerical coefficients on the arrows provide the
values for the transformations. Thus, if the resource is an input
(output), its level in the constraint is lowered (raised) by the value
of the coefficient when the activity level is increased by one.
Exogenous supply and demand values for resources are written in the
circles. Constraint nodes with zero values represent flow balance
equations.

An A-C graph provides an intuitively appealing representation that can
help users understand, construct and check a problem formulation. The
graph can be translated in a straight-forward manner into an LP matrix
for input to a Solver. The coefficients on the arcs associated with
each activity form the nonzero elements in its column, while the
values in the constraint nodes form the RHS for the problem. However,
it is usually more convenient to formulate the constraints one-at-a-
time. The constraint corresponding to a constraint node is formed by
adding together terms involving each activity to which it is
connected. Each term is formed by multiplying the coefficient on the
arc by the symbol for the variable. We follow the convention that
terms on incoming (supply) arcs are positive while those on outgoing
(demand) arcs are negative.

The major disadvantage of such graphs is that they are very labor-
intensive, even for small problems such as that in Figure 6. (Note
that the connections to the money resource in the objective function
were omitted to simplify the graph). The obvious way to reduce the
complexity of the graph is to replace coefficient values by array
names and to use set notation to portray activity and resource types
as in Figure 7A.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

[FIGURE 7 ABOUT HERE]

To reduce the visual complexity, objective function coefficients are
written beside their associated activities. Also, explicit upper and
lower bounds on resource levels and activities are shown symbolically
(rather than graphically) by including symbols for the upper and lower
limits in square brackets at the relevant nodes. Finally, the index
sets for the coefficients have been omitted. These can be computed as
the union of the sets associated with the Activity and Constraint at
either end of the arc (singleton sets are treated as null for this
purpose). Note that the indices of coefficients are simply
identifiers for particular values. The dimensions of the sub-
matrices corresponding to the coefficients in the larger LP matrix are
determined by the number of constraint and activity rows. Thus, the
coefficient, FATag, represents four non-zero values, but forms a (2 x
4) array in the tableau of Figure 2.

When there are relationships between elements with different values in
the same set (as occurs with time in planning and inventory problems),
it is necessary to replicate the A-C graph for a sufficient number of
consecutive index values to reveal the underlying pattern. It might
also be necessary to show the pattern for both the starting and ending
conditions. Thus, in a finite horizon planning problem, one might
depict all constraint and activity nodes for time periods 1, t-1, t
and T.

Most practical LPs include a number of "side constraintsw arising
from policy or other requirements. Examples are generalized bounds on
variables and constraints on ratios of variables such as:

(2) C H < HLB and C H > HUB
g g - 9 g -

Fhens, corn l?hens , wheat
> Fpigs,corn - Fpigs, wheat

Figure 7B shows the additions to the A-C graph to accommodate these
constraints. Constraints (2) are represented by the llBushels"
constraint node. A lower bound constraint can be represented as a
demand node and an upper bound as a supply node. When the two are
merged as in the figure, the arrow becomes bi-directional. Note that
the same coefficient applies to both directions of a bi-directional
arrow since constraints with the same RHS index sets must have the
same LHS (Murphy et a1 [1987]). The 'gRatiosll node in the figure
indicates that there is a 0 constraint for each member of the
animals set. Using the rules given above, the coefficient R for
variable F is indexed by (Grains, Animals); the values needed to
capture constraints (3) are given in Figure 13 below.

While constraints such as (2) and (3) can be represented by simple
extensions to the formalism, the resulting graph becomes less

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

"concretew since the physical flow analogy is lost. Complicated
policy relationships between more than two variables are even more
difficult to represent.

Many real problems have a simple enough underlying structure to be
represented conveniently by A-C graphs using the above conventions and
it is easy to envision the development of an advanced A-C graph
modeling interface using techniques similar to those developed for
CAD-CAM applications. However, building A-C graphs is likely to be
labor intensive for large problems and the A-C graph representation is
not general in the sense that it would have to be extended to cover
non-LP problems. Finally, A-C graphs are, in general, quite abstract
as they depict the end result of the formulation process rather than
the underlying physical model. When the underlying problem has a
simple enough form, the A-C graphs become more concrete and a closely
related representation has been used very successfully as discussed in
the next section.

7, NXTFORM GRAPHS

Every LP model can be represented by an A-C graph because activities
and constraints are logically paired by the technology coefficients.
When the underlying real world problem has a network representation,
there is only one arc entering and leaving each activity node. Thus,
the activity nodes can be dropped without losing the uniqueness of the
representation. Glover [I9871 has studied such problems extensively
and has developed modeling approaches for a broad variety of
applications as well as a coherent set of graphical conventions (see
also Glover et a1 [I9781 and Klingman et a1 [1989]). Figure 8
illustrates these conventions for a network representing a modified
version of the Farmer's problem in which the labor and floor
constraints are disconnected to obtain a network subproblem of the
original problem (i.e. the Hg and Ra activities are modified so that
they have only single inputs).

[FIGURE 8 ABOUT HERE]

In the Netform representation, activities are denoted by arcs while
constraints are denoted by circles as before. The activities have
associated upper and lower bounds (enclosed in parentheses), costs,
and both head and tail multipliers. Unit values for multipliers and
lower and upper bounds of (0,oo) on activity values are not shown
explicitly. Networks with integer-valued activities (indicated by a #
sign on the arc) are admissible. Omitting the non-network elements,
Figure 8 is obtained simply from Figure 7. Multipliers at the heads
of activities in the Netform representation correspond to activity
output coefficients in the Resource/Activity diagram, while those at
the tails correspond to activity input coefficients. Exogenous
supplies and demands are shown as "dangling" arcs since they can be
thought of as constant activities.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

Experience with the Netform approach to modeling has been very
positive, (Glover [1987]) , confirming the value of graphical
representations in the modeling process. A surprisingly large number
of important integer and non-integer problems can be represented as
networks. Many problems involving a time element, such as inventory
and cash management applications, have a quite simple network
representation. The rules for converting a Netform graph to an
algebraic statement are straightforward being practically identical to
those for an A-C diagram. In practical applications, side conditions,
which do not adhere to the network restriction, may be present. These
can be handled either by adopting the A-C representation for a part of
the network, or by adding constraints/activities by hand to the
algebraic statement of the network (see Glover [I9871 for details).

Network diagrams which attempt to represent every activity and node
are impractical for problems of even small to moderate size. Often,
it is sufficient to develop a typical pattern of connections using a
small number of graphical elements as an aid to writing down the
equations in the problem statement. Figure 9 shows how the use of
symbol names and set notation can simplify a Netform diagram and
provide an excellent format for a computer interface.

[FIGURE 9 ABOUT HERE]

8. STRUCTURED MODELING

Structured Modeling (Geoffrion [1987]) represents a major effort
towards building a sound basis for modeling theory and practice,
Because of space limitations we can provide only a brief overview and
illustration. The objective of structured modeling (SM) is to develop
a comprehensive framework to unambiguously represent all the essential
elements of a variety of management science models. This framework of
definitions is to be represented in the computer and to be used to
define and generate problem statements for the Solver, to test that a
computable, consistent problem statement has been produced, to provide
documentation for subsequent users of the model, to afford model-data
and model-solver independence and to allow information about parts of
the model and their relationships to be retrieved and displayed.

The elements in a structured model are as follows (from Geoffrion
[1987]) :

(1) Primitive Entity (PE): has no associated value and represents a
thing or concept postulated as a primitive of the model (e.g. the
lfhensw element in the Farmer's problem).

(2) Compound Entity (CE): has no associated value and represents a
thing or concept defined in terms of other things or concepts
(e.g. a link between two locations in a transportation problem).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

(3) Attribute (A) : has a constant value and represents the value of a
property of a thing or concept (e.g. the coefficients HATg, HLT,
etc.).

(4) Variable Attribute (VA): similar to an Attribute except that its
value is computed by the model (e.g. the variables HL, Bg, etc.).

(5) Function (F): has a value that can be computed from the other
values in the model.(e.g. the term C HATg.Hg).

g
(6) Test (T): similar to a function but the result must be either

true or false (e.g. a test to see if a constraint is
satisfied) .

SM models are specified in a rigorously defined syntax similar to a
programming language. In a sense, SM can be thought of as a superset
of an algebraic language, in which the data is defined by the PE8s,
CEts and A's and the algebraic statements by the VAts, F t s and Tts.
These six model elements are related because (except for the primitive
entities) each of the groups of elements (ltgenerafl) is defined in
terms of elements from one or more of the preceding groups. This
observation leads to the graph in Figure 10 in which the arcs
(conventionally directed from PE's towards T's) can be interpreted as
"the tail item is used in the definition of the head itemw. The
"Genusa* graph in Figure 10 is one of two principal types of graphs
used in Structured Modeling. The other graph is a "Modular Tree"
which depicts a hierarchical grouping of related element groups. A
modular decomposition of the Farmer's Problem is indicated in Figure
10 but a Modular Tree is not shown.

[FIGURE 10 ABOUT HERE]

Roughly speaking, the relationship between the A-C graphs in Figure 7
and the Genus graph in Figure 10 is as follows:

(1) The Sets (including those with a single element) of Figure 7
are the PEs in Figure 10.

(2) The Coefficients are the Attributes (As).

(3) The Activity Nodes are the Variable Attributes (PAS).

(4) Each link from a Constraint node to an Activity node in
Figure 7 represents a term in the LP. Terms (or summations of
terms) can be represented by functions (Fts) in Structured
Modeling; these are shown as points in Figure 10.

(5) Each Constraint node in Figure 7 is replaced in Figure 10 by
a Test node and one or more Function nodes (e.g. a Function node
might gather together all the terms in a constraint to define its
LI-IS) .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

The Genus graph for even a small problem is quite complicated to draw
by hand. SM software should eventually generate these graphs
automatically from the textual inputs. In terms of the concreteness
dimension described earlier, SM problem statements and graphs are
quite abstract; indeed, it is hard to discern the structure of the
underlying problem in the graph of Figure 10. For these reasons, SM
probably does not provide an ideal external representation for model
specification. However, SM is obviously general across a wide range
of modeling domains and techniques. In addition, it explicitly
relates all the parts of a model in a consistent and complete fashion.
It is therefore an excellent internal representation scheme and has
been used in this way by Krishnan [1988]. This aspect of the SM model
will be further elaborated in the next section.

9. DATABASE REPRESENTATION SCHENES

The need to gather and process large quantities of data during the
model building phase and to interpret the voluminous results obtained
from large models, has prompted research directed towards the
integration of modern database technology with mathematical
programming systems (Dolk [I9861 and [1988], Geoffrion [1987], Lenard
[I9871 and Choobineh and Sena [1988]).

There are two separate but related requirements. First, there is a
need to record information about the structure of the model. Second,
it is necessary to provide for the storage and manipulation of the
data of the problem and of the results that are obtained from the
optimizer. While model structure is probably handled best by data
structures based on artificial intelligence techniques (Elam and
Konsynski [1987]), the power of modern database management systems and
query languages makes them attractive for the data manipulation
aspects of modeling. In the following, a database approach (Date
[1987]) will be used to illustrate the main issues for both
requirements.

Figure 11 gives a conceptual view of the essentials of the graph in
Figure 7 using the notation of the Entity-Relationship model (Chen
[1977]). An E-R diagram depicts the things of interest to the system
as entities (boxes) and relationships between entities (diamonds).
Entities and relationships represent classes of objects whose
individual instances are distinguished by the values of their
associated attributes or properties.

[FIGURE 11 ABOUT HERE]

Figure 11 states that each Activity entity is related to one or more
(! I N w) Constraint entities and each Constraint entity is related to one
or more (iiM") Activity entities. The Activity-Constraint relationship
serves to relate the individual instances of the two entity sets and
can carry information on the mathematical transformations linking each
activity to each constraint. Also shown in Figure 11 are two entities

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

used to record the results of the optimization for each activity and
constraint.

Figure 12 gives a realization of this conceptual data model for the
Farmer's Problem. We will call this the Model Schema.

[FIGURE 12 ABOUT HERE]

For a particular model, the model schema contains information that
is useful in the following processing activities:

(1) Generation of the schema (skeletal outline) for the data
tables that will store the data and results for the problem.

(2) Generation of both the algebraic representation of the
problem and the MPS problem statement for input to the
optimizer.

(3) Updating the model when structural relationships are
changed.

The Activity, Constraint and Transform relations (data tables) in
Figure 12 capture all the information in Figure 7. The Sets relation
in the figure is redundant in the sense that it can be computed from
the former three tables. However, it will obviously help speed
processing.

The Model Schema in Figure 12 contains almost the same information as
the Structured Modeling Genus Graph in Figure 10. The Sets relation
in the Model Schema records the mappings between the PEts and the A's
and VA1s in the Genus Graph. The Activities, Constraints and
Activities-Constraints relations record information concerning the F's
and Tests in the SM representation. As shown in Murphy et a1 [1988],
this is all the information needed to generate the algebraic form of
the model in the case of LP1s. To represent non-linear and other
types of models, the Model Schema can be expanded, along the lines of
the SM graph, to include an additional Function object; this would
store the mathematical definition of the object. A desirable feature
of the schema in Figure 12 as an internal representation, is that it
contains information on the network structure underlying the model.
To do this, it uses the information contained in the Upper- and Lower-
bound and Input-Output fields.

Figure 13 shows a Data Schema and its instantiation with actual data
values for the Farmer's Problem. Each set has been assigned a table
of the same name to record set memberships. Similarly, each data
coefficient has been assigned a database relation whose name is the
name of the coefficient. The key (unique identifier for tuples in the
relation) is the set of indices that describe the array position of
the data coefficient in the LP matrix. Scalar objects have been
treated as single element tables for uniformity of representation
although they might be gathered together into a single table in an

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

actual implementation.

[FIGURE 13 ABOUT HERE]

The Data Schema can be generated automatically from an analysis of the
Model Schema (Asthana [1988]). The skeleton outlines for each Set
table can be generated first and filled with element values, either
interactively by the user, or automatically from knowledge stored
previously in the system. Once the set memberships are known, it is
possible to automate, or partially automate, the generation of the
keys for the data elements in the coefficient tables. Finally, the
data coefficient values can be filled-in, either automatically or by
interaction with the user. It should be noted that data elements with
unit values do not have to be stored if they can be implied from the
algebraic statement.

The Data Schema in Figure 13 differs from the "Elemental Detail
TablesH that are used for the same purpose in Structured Modeling (see
Figure 14). In the former, each set and data element is represented
by its own database table. In the latter, there is a data table for
each Primitive and Compound Entity (i.e. for the sets) ; the
coefficients are represented by database attributes and the elements
of the sets by values in the same relation. It is difficult to decide
between the two representations. The SM representation is much more
compact, but the data schema in Figure 13 may be more flexible
especially when data is to be shared between different models and
modelers. Using the concept of database views (Date [1987]), it is
possible to use one representation as the basis for the design of the
physical database and to afford users the other view of the data
depending on their tastes.

[FIGURE 14 ABOUT HERE]

From a relational database viewpoint, the matrices and higher
dimensional arrays that are traditionally used by management
scientists to represent the data of mathematical programs, are
unnecessary. The relation for a coefficient stores only the non-zero
elements in the array representation. Thus, it is a sparse
representation that conforms closely to the MPS format used for input
by most Optimizers. There is one table entry in Figure 13 for each
non-zero entry in the LP matrix. Conceptually, all that is necessary
to transform the database in Figure 13 into an MPS statement, is to
replace the values of the keys in the relations by the appropriate
(Row-label, Column-label) pairs. There is no need to generate arrays
in the traditional sense unless the modeler prefers to view his/her
model in this way.

In summary, the Model Schema is primarily an internal representation
while the Data Schema is both an external and internal representation.
Since the latter involves data rather than model structure, it can be
used in conjunction with any of the other representation schemes
discussed in the paper. Taking a different approach, Chocjbineh and

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

Sena [1988], suggest some extensions to the popular SQL database query
language (Astrahan and Chamberlin [1988]) to support the expression of
algebraic constraints. This has the advantage of providing a unified
language for both the model definition and data manipulation phases of
modeling. The disadvantages are as listed -above for algebraic
languages; the main drawbacks are that such languages are abstract
rather than concrete and not as amenable to advanced interface support
as the graphic representation schemes discussed earlier.

10. AN ICONIC REPRESENTATION SCHEME

The Activity-Constraint and Netform graphs are the most concrete
(closest to the real world) representations reviewed so far. However,
the nodes and arcs correspond directly to mathematical objects (the
rows and columns of the model tableau) and only incidently to real
world entities. The arguments in Section 2, and the success of
wiconic'l interfaces in many applications (Shneiderman [1987], Ch. 5) ,
suggest the desirability of interfaces with more concrete images.
Furthermore, even in their compact forms, the A-C and Netform graphs
can be quite complicated implying the need for some form of
hierarchical aggregation to simplify the problem for the user.
The LPGRAPH (Asthana [1988]) interface to the LPFORM system attempts
to satisfy both of these goals. It has been implemented on an IBM
PC/AT class machine using a set of graphics tools written in the llC1t
programming language (Expert Vision Associates [1988]).

The iconic representation of an LP problem in LPGRAPH consists of a
hierarchy of networks which depict the problem in increasing detail.
At each level in the hierarchy, the network consists of one or more
wblocksw connected by directed arcs; blocks and arcs at lower levels
in the hierarchy inherit properties from their parents at the next
higher level. The blocks contain collections of zero or more LP
activities. There are two kinds of directed arcs connecting the
blocks. A "logical link1' (shown by a thin line) indicates a flow that
exists in the real world but is not modeled by an LP activity. An
example is the flow of grains to animals in the farm problem, i.e. a
material flow from one production point to another in a fixed
sequence. A "flow link1' (shown by a thick line) represents a flow
that is modeled by an LP activity. A transportation activity is the
commonest example. Icons are placed within the blocks to specify the
existence of activities. In addition to a completely general activity
icon, more specialized inventory and resource icons are provided for
convenience. The idea of using activity icons during the formulation
process first appears in Dantzig [1963].

We use the Farmer's Problem to illustrate the main ideas. The top
level graph consists of a single "Farm-Problemw block. The
representation at the second level of the hierarchy is shown in Figure
15.

[FIGURE 15 ABOUT HERE]

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

The operation of the farm is visualized as four separate functions
(Administration, Crops, Husbandry and Marketing) each of which
consists of a number of activities and is represented by a block on
the diagram. Non-transportation links (logical. links) between the
blocks indicate the connections. As each activity icon is placed in
its parent block, the user completes a fill-in-the-blank Activity
screen. These are summarized in Figure 16. The user defines the
activity index set and the input and output sets for each activity.
To illustrate, HARVEST has "Grainsw as its activity index set (i.e.
there is a separate decision variable for each type of grain); its
input sets are "AcresN, "Labor" and l'Dollarsw (each of which is a
singleton) and its output set is "Grains". As each input or output
set is named, the system suggests a short name for the associated data
coefficient according to the conventions in Asthana [1988]. These
names are shown after the colons in Figure 16. They can be changed by
the user (as has occurred for the unit coefficients in the figure).

[FIGURE 16 ABOUT HERE]

After the user has supplied the information in Figures 15 and 16, the
Model Schema (Figure 12) and Data Schema (Figure 13 without the data
values) are constructed internally. The algebraic statement (I) is
generated and displayed using an algebraic language similar to that
used by GAMS (see Section 3). The index matching rules provided in
Murphy et a1 [I9871 guarantee the completeness of the resulting model.
Set memberships and the values of data coefficients must be specified
at some point prior to running the model.

An entirely different strategy for defining the Farmer's Problem in
LPFORM is to take a constraint- rather than an activity-oriented
viewpoint. There are two ways of doing this. The first uses
Constraint Screens that are, in a sense, the "duals" of the Activity
screens outlined in Figure 16. Each constraint is defined in terms of
the activities with which it interacts and the associated coefficient
names. This approach avoids the use of mathematical notation by using
the linearity property of LP1s and certain relationships between index
sets, to automatically generate the algebraic problem statements. The
second method is to input the algebraic form of the problem statement
directly using a language similar to that provided by GAMS. It is
useful to combine the activity- and constraint-oriented approaches
because actual applications often require that additional constraints
be added to standard models defined from an activity perspective.
Thus, a user might prefer to enter the ratio constraint (3) directly
rather than by the method indicated in Figure 16.

Comparing Figure 7 and Figure 16 as alternative input representations
for a computerized system, we see that only the activities have been
defined in LPGRAPH; the user is not required to define either the
Constraint Nodes nor the connections between the Activities and
Constraints. This is an example of the wpiecemeal" approach to
problem specification mentioned earlier. Its advantage is that the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

user does less work (supplies the same information in less redundant
form) and does not have to follow a rigid input sequence. The
disadvantages are that users may feel uncomfortable about leaving
things "up to the computer" and may not obtain as detailed an
understanding about the way the model components relate. As mentioned
earlier, preliminary results on the use of the graphics interface of
LPGRAPH versus (its own) algebraic language are encouraging.

TO illustrate some other features of iconic modeling, we use the
following example:

"Warehouses purchase and store Raw-Materials prior to their
transportation to Factories. The Factories maintain Raw-Materials and
Products inventories. They use Raw-Materials to produce Products
using a production process that has been modeled previously. Finally,
Products are transported to Markets where they are sold.'I

The different types of entities and activities in the above problem
are each represented, in a fairly obvious way, by an icon in Figure
17. Given this graph, the system requests the user to fill-in forms
for the buy and sell activities, each inventory activity, each
transportation flow and the production model. The input screens for
the activities are used mainly to define their inputs and outputs (as
described above for the Fanneri s Problem) . The input screen for the
previously stored production model asks the user to match the names
stored in the template model to the names for the same objects in the
new model.

[FIGURE 17 ABOUT HERE]

The Flow, Inventory and Resource icons represent specialized kinds of
activities and trigger user interactions which result in the addition
of appropriate constraints to the model (see Ma [I9881 for details).
Resource icons are used to represent physical entities such as plant
and equipment which are used by activities rather than consumed as
with inventories. Other examples of LPGRAPH formulations are given in
Ma [1988], Ma et a1 [I987 and 19891 and Asthana [1988].

Note that several, more complicated, graphs could be drawn to
represent the above problem. First, one could draw a detailed
transportation network showing individual warehouses, factories and
markets together with all of the individual transportation routes, It
is usually easier, however, to stop the drawing at the stage shown in
Figure 17 and to let the detailed network connections be defined
through the data. As a second alternative, one could draw an A-C
graph using the conventions in Figure 7. However, this graph would be
quite complicated as the model involves flows in both space and time.
In effect, the LPGRAPH system automatically recognizes the network
substructure of the problem and implicitly makes the connections of
the underlying A-C graph as it generates the algebraic representation.
The detailed connections of the transportation network are obtained
from the data when the MPS format of the problem is generated.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

The above paragraphs illustrate several features which should help the
modeler. These include a simple, non-mathematical representation,
hierarchical problem definition (only the top-most graph was drawn in
this instance), bottom-up construction of the' model (use of the
previously developed production model) and a piecemeal approach to
problem definition (it was not necessary to adhere to a rigid order in
defining the problem to the computer nor even to supply all the detail
concerning interrelationships between model elements). Users are
however, required to maintain consistent naming conventions so that
the system can sort and assemble the components of the problem (see
Murphy et a1 [1987], for a detailed description of how the model
components can be generated and assembled).

An LPFORM graph (c.f. Figure 15) can be viewed as an aggregated form
of A-C graph (c.f. Figure 7). An A-C graph can be simulated in LPFORM
by making the following correspondences: use LPFORM blocks containing
a single activity to represent A-C Activity nodes, blocks containing
no activities to represent A-C Constraint nodes, and lflogical" flows
connecting the appropriate blocks to represent the arcs in the A-C
graph. Note that the data coefficients appear with the activities in
LPFORM rather than on the arcs as in an A-C graph.

If there are no submod.el icons, the steps to transform an LPFORM graph
into an equivalent compact A-C graph are as follows:

(I) For each LPFORM Activity, Inventory or Resource icon, attach
a node to the tail end of each of its input arcs and to the
head of each of its output arcs. In the A-C diagram, these
will represent constraints on the inputs and outputs of
resources to activities. Replace the LPFORM activity icon by
its open box representation in the A-C graph.

(2) For each LPFORM block, add its index sets to the index sets
of its activities and to the index sets of the resource nodes
constructed in step (1). Discard the block icon.

(3) Replace each LPFORM flow activity (arc) by an A-C activity
icon connected to the appropriate output resource node in the
block at the tail of the LPFORM arc and the appropriate input
resource node in the block at the head of the LPFORM arc.

(4) Complete the A-C graph by replacing multiple instances of
the same constraint nodes by single instances while
maintaining all connections.

Thus, we can translate from one representation scheme to another
except that we lose information on the hierarchical structure if we go
from the iconic representation to the A-C diagram and back.

In the special case where the model is a pure or generalized network
problem, there is an LPFORM graph which is equivalent to the Netform

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

graph for the problem. In this graph, the LPFORM blocks and flows
correspond, respectively, to the NETFORM resource nodes and arcs. The
major difference between the two graphs is that exogenous supplies and
demands are shown as blocks in LPFORM rather than as dangling arcs as
in Netform.

To summarize, iconic representation schemes can provide an elegant
method for specifying large LP1s. The ability to define the problem
piece-wise and in non-algebraic terms should also be helpful to both
experts and nonexperts. In any case, we believe that it is fruitful
to provide a number of different, interchangeable, representation
schemes within a common framework. The LPGRAPH interface therefore
combines elements from the Activity-Constraint graph, Netform,
database and algebraic representation schemes. Preliminary results
from an experiment which directly compared groups of users formulating
LP problems using the graphical and algebraic languages provided by
LPFORM, show that the former group obtained a higher percentage of
correct solutions in a shorter time and were more satisfied with their
experience (Asthana [1988]). The relative advantage of the graphics
package increased with the complexity of the problem.

11. CONCLUSIONS

The microcomputer revolution has increased computer literacy and
familiarity with models (at least of the spreadsheet variety). The
current proliferation of powerful desk-top workstations in all forms
of office and professional work provides a tremendous opportunity for
management science. The algorithms and analytic techniques developed
over the last forty years can now influence policy makers in a much
broader array of applications and situations. The challenge is to
develop software environments that will improve the productivity of
the modeling process, the quality of the models produced and, most
importantly, the quality of the decisions based on the use of these
models.

This paper has reviewed some methods for representing mathematical
problems in graphical and/or textual formats most of which avoid the
use of algebra or other essentially mathematical representations. As
we have tried to show, the representations are largely equivalent in
that transformations exist from one form into another. We believe
however, that they differ in terms of the amount of work, skill and
understanding that is required from users. Thus, we need both
external and internal representations that take into account the
cognitive limits of human beings. Because of the importance we attach
to this issue, the paper has introduced wcompactM forms of both A-C
graphs and Netforms. The iconic representations in the previous
section go one step further in the sense that they are aggregated
forms of the A-C graphs.

In Section 2, we proposed four dimensions for characterizing external
representation schemes: generality (the applicability of the technique

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

to a range of management science models), concreteness (how closely
real world objects are represented), labor-intensiveness (a function
of the complexity of the representation) and interface potential (how
well the representation lends itself to advanced computer interface
techniques). From the discussion in this paper it is apparent that no
representation scheme dominates the others on all of these dimensions.
In fact, we believe that an optimal modeling system will employ more
than one form of external model representation. (Naturally, only one
form of internal representation is desirable).

Actual experience with the representation schemes discussed in this
paper in real work environments will be necessary before their
usefulness in promoting more effective use of modeling in
organizations can be properly evaluated. In the final analysis, the
choice of a particular representation scheme will depend on the
circumstances and on the tastes of users as each method has its
advantages and disadvantages. It is possible to build systems that
avoid unfortunate trade-offs between user convenience, generality of
representation and machine efficiency. Thus, one can have mixed
representations at the user interface that allow iconic, network and
algebraic techniques to be used to define different parts of the same
model. The resulting external specification can then be translated
automatically into an unambiguous and valid statement that is stored
and analyzed internally using, for example, the techniques of
Structured Modeling. Note that the iconic representation and
Structured Modeling have a natural fit in their hierarchical
structuring of problems since a block in the former is equivalent to a
module in the latter.

Much research remains to be done in the area of modeling interfaces.
In our view, the greatest problem facing designers of languages to
support the modeling process involves the trade-off between the need
to present a precise, unambiguous input to the optimizer and the
limited cognitive capabilities of human beings. There is a great need
for improvement in our understanding of the issues in this area. For
example, we have proposed:

(1) Multiple methods for representing problems and parts of the same
problem.

(2) Graphic representation schemes including the use of icons.

(3) Dynamic support for problem solving strategies such as
hierarchical decomposition and piece-wise composition.

The effectiveness of the above interface features is a matter for
research. Certainly, no prima facie argument can prove their
desirability. For example, multiple representation schemes may be
confusing to users. Furthermore, the domain in which graphical
representations are natural and easy to understand without training in
operations research, is somewhat limited. In some applications, the
entities represented by such graphs are far from concrete in the sense

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

that we have been using the term. For example, in a network
representing a cash flow application, the nodes represent time periods
and the arcs represent cash flows both within a period and between
periods. Thus, there is a need to develop and experiment with
graphical representat ions for more abstract entities and, in
particular, to extend the techniques to include nonlinear and integer
programming. Finally, we need a better understanding of the problem
solving strategies of expert modelers so that we can build systems
that can truly extend their capabilities.

The power of modern computers, their graphic capabilities, new forms
of man-machine communication (other than typing at a keyboard), and
the emergence of artificial intelligence techniques, all point to an
exciting period of research and development which will result in
modeling workstations of tremendous power and versatility. New
problem representation techniques will play an essential role in this
evolution and represent an important new area of management science
research.

Acknowledgements:

The authors wish to thank the referees and Dan Dolk and Arthur
Geoffrion for their helpful suggestions. This research was supported
by the Arnoco and Shell oil companies.

Asthana, A., "LPGRAPH: An Expert System for Graphically Formulating
Linear Programs", Ph.D. Thesis, New York University (1988).

Astrahan, M. M., and D. D. Chamberlin, ItImplementation of a
Structured Programming Language", Communications of the ACM, Vol.
18, No. 10, (October 1988), pp. 580-588.

Baker, T. E., "Integrating AI/OR/Database Technology for Production
Planning and Scgeduling", Technical Report, Chesapeake Decision
Sciences, New Providence, New Jersey (1990).

Binbasioglu, M. and Jarke, M., Domain Specific Tools for Knowledge-
Based Modelingn, Decision Support Systems, Vol. 2 (1986).

Blanning, R. W., "A Relational Framework for Model Management in
Decision Support Systemsw, DSS-82 Transactions (1982), pp. 16-28.

Bodily, S., "Spreadsheet Modeling as a Stepping Stone1t, Interfaces,
Vol. 16, No. 5 (1986), pp. 34-52.

Bradley, Gordon H. and Robert D. Clemence, Jnr., "A Type Calculus
for Executable Modeling Languages", IMA Journal of Mathematics and
Management, Vol. 1, 1987, pp. 277-291.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

Breitman, R. L. and J. M. Lucas, **PLANETS: a Modeling System for
Business Planningw, Interfaces, Vol. 17, No. 1 (Jan-Feb 1987).

Brown, R. W., W. D. Northup and J. F. Shapiro, ftLOGS: A Modeling and
Optimization System for Resource Planning". In: Computer Methods to
Assist Decision Making, New York, North-Holland (1987).

Carlson, E., B. Grace and J. Sutton, "Case Studies of End User
Requirements for Interactive Problem S~lving~~, MIS Quarterly, Vol 1,
No 1, (March 1977).

Chen, P. P. S., "The Entity-Relationship Model: Towards a Unified
View of DataM, ACM Transactions on Database Systems, Vol. 1, No l.,
(March 1976), pp. 9-36.

Choobineh, Joobin, and James A. Sena, "A Data Sublanguage for
Formulation of Linear Mathematical Models", Proc. Twenty
First Annual Hawaii Conference on System Sciences, Kana, Hawaii
(1988), pp. 340-348.

Creegan, J. B. Jr., gtDataform: A Model Management System", Ketron
Management Science, Inc., Arlington, Virginia, November (1985).

Dantzig, George B., Linear Programming and Extensions, Princeton
University Press, Princeton, N.J. (1963).

Date, C. J., An Introduction to Database Systems, Addison-Wesley,
Reading, Mass. (1987).

Dolk, D., "A Generalized Model Management System for Mathematical
Programming", ACM Transactions on Mathematical Software, Vol. 12,
No. 2 (June 1986), pp. 619-628.

Dolk, D., "Model Management and Structured Modeling: The Role of an
Information Resource Dictionary System", Connuunications of the ACM,
Vol. 31, No. 6 (June 1988), pp.704-718.

Egli, G. H. and J. Kohlas, "A Policy Model for Planning Alimentary
Self-Sufficiency in Switzerlandvr, J. of Operational Research, pp. 312-
322, (1981).

Elam, J. J. and B. Konsynski, "Using Artificial Intelligence to
Enhance the Capabilities of Model Management Systems", Decision
Sciences, Vol. 18 (1987), pp. 487-502.

Expert Vision Associates, "EVA UIMS/GDB, User Manual", Cupertino,
California (1988).

Fabozzi, J. F., and J. Valente, ltMathematical Programming in
American Companies: A Surveyn, Interfaces, Vol. 7, No. 1 (November
1976).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

Fourer , R. , D. M. Gay and B. W. Kernighan, ItA Modeling Language for
Mathematical Programming", Management Science, Vol. 36, No. 5, pp.519-
544 (1990).

Geoffrion, A. M., "Introduction to Structured Modelingtg, Management
Science, Vol. 33, No. 5 (1987), pp. 547-588.

Glover, Fred, "Notes on Netformstl, University of Colorado, Boulder
(1987).

Glover, Fred, John Hultz and Damin Klingman, "Improved Computer-Based
Planning Techniquestt, Part I, Interfaces, Vol. 8, No. 4, pp. 16-25,
and Part 11, Interfaces, Vol 9, No. 4, pp 12-20 (1978).

Greenberg, H. J., "A Functional Description of ANALYZE: A Computer-
Assisted Analysis System for Linear Programming ModelsM, ACM
Transactions on Mathematical Software, Vol. 9, No. 1 (1983)~ pp. 18-
56.

Greenberg, H. J., Natural Language Discourse Model to Explain
Linear programming Models and Solutions", Decision Support Systems,
V O ~ . 3, (1987), pp. 333-342.

Haverly Systems Inc., tlOMNI Linear Programming System: User Manual and
Operating Manualtf, Denville, N. J. (1977) .
Hurlimann, Tony, LPL: A Structured Language for Modeling Linear
Programs, Verlag Peter Lang AG, Bern (1987) , Ch. 4.

IBM Corporation, "IBM Mathematical Programming Language Extended/370
(MPSX/37O) ", Program Reference Manual, SH19-1095, Paris, France
(1975).

Klingman, Darwin, Fred Glover and Nancy Phillips, tfNetform Modeling
and ~pplications~, Working Paper, Center for Business Decision
Analysis, The University of Texas at Austin, (June 1989).

Krishnan, R., "Knowledge-Based Aids for Model Constructionw, P~.D.
Thesis, University of Texas, Austin (1987).

Lenard M., "An Object-Oriented Approach to Model Managementtf, Proc.
Twentieth Hawaii International Conference on System Sciences, Vol I,
January 1987, pp. 509-515.

Lucas C. and G. Mitra, "CAMPS: Preliminary User Manualtv, Dept. of
Mathematics and Statistics, Brunei University, U.K. (July 1985).

Ma, Pai-chun, "An Intelligent Approach Towards Formulating Linear
Programstt, Ph.D. Thesis, New York University (1988).

Ma, P., F. H. Murphy and E. A. Stohr, "A Graphics Interface for Linear
Programmingtt, Communications of the ACM, Vol 32, No 8 (August 1989) ,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

pp. 996-1012.

Ma, P., F. H. Murphy and E. A. Stohr, "Computer-Assisted Formulation
of Linear Programs", IMA Journal of Mathematics in Management, Vol
2, September (1987).

Meeraus, A., "General Algebraic Modeling System (GAMS): User's
Guide, Version l.Otl, Development Research Center, World Bank (1984).

Murphy, F. H , and E. A. Stohr, nAn Intelligent System for Formulating
Linear Programstg, Decision Support Systems, Vol. 2, No.
1 (Jan-Feb 1986).

Murphy, F. H., E. A. Stohr and P. Ma, ttComposition Rules for
Building Linear Programs from Component Models", Working Paper No.
148, Center for Research in Information Systems, Graduate School of
Business Administration, New York University, New York (1987).

Orlikowski, W. and V. Dhar, vImposing Structure on Linear
Programming Problems: an Empirical Analysis of Expert and Novice
Modelstt, Proc. National Conference on Artificial Intelligence,
Philadelphia, Pennsylvania (August 1986).

Raghunathan, Srinivasan, "An Intelligent Decision Support System for
Model Formulationtt, Working Paper, University of Pittsburgh (1987).

Sander, R. L. and M.G. Smith, "A Description of Bonner & Moore's GAMMA
Systemvv, No. CSH-007, Bonner & Moore Software Systems, Houston, Texas,
(1976).

Shneiderman, B., Designing the User Interface: Strategies for
Effective Human-Computer Interaction, Addison-Wesley, Reading,
Mass. (1987) .
Schrage, Linus, Linear, Integer and Quadratic Programming with
LINDO, Scientific Press, Palo Alto, (1987).

Shepherd, R. N., "Recognition Memory for Words, Sentences and
Picturesw, J. of Verbal Learning and Verbal Behavior, Vol. 6, No.
2, (February 1987), pp. 156-163.

Welch, James S. , Jr., "PAM: A Practitionera s Gcide to Modelingtv,
Management Science, Vol. 33, No. 5 (May 1987), pp. 610-625.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

I I
I k l
l a , l
I N 1
I .r(I
I E l
I -4 I

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

V l V l ll II I1 I1 V l V l

I::

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

VARIABLES: OBJECTIVE COEFFICIENTS:

LONG
NAME

SHORT
NAME DESCRIPTION NAME VALUE DESCRIPTION

BUY B(g) Buy grain g (bushels) HLC 1.50 Hire-labor Cost ($/hour)
HIRE-LABOR HL Hire labor (hours) BC(g) 2.50 1.50 Buy Grains Cost ($/bushel)
HARVEST H ('3 Harvest grain g (bushels) HC(g) 0.20 0.12 Harvest Cost ($/bushel)
FEED F(a,g) Feed animal a grain g (bushels) SP(g) 1.75 0.95 Selling Price ($/bushel)
SELL s(g) Sell grain g (bushels) RP(a) 40 40 Raise Price ($/animal)
RAISE R (a Raise animals a (units)

CONSTRAINTS: RHS COEFFICIENTS:

LONG SHORT
NAME NAME DESCRIPTION NAME VALUE DESCRIPTION
...
ACRES-USAGE AU Acres balance equation (acres) AS 120 Acres supply (acres)
LABOR-USAGE LU Labor usage (hours) HLS 13,333 Hire-Labor supply ((Hours)
GRAIN-BALANCE GB(g) Grains balance equations (bushels) LS 4,000 Labor supply (hours)
ANIMALS-BALANCE AB(a) Animals balance equations (units) F S 10,000 Floor supply (sq. it.)
FLOOR-USAGE FU Floor usage (sq. it.)
HIRE-BOUND BND Bound on hired labor (hours)

TECHNOLOGY COEFFICIENTS: SETS :

LONG INDEX
NAME VALUE DESCRIPTION NAME NAME MEMBERSHIP
---_-__---_________--------------------------------
HLLT 0.85 Hire-Labor/Labor Technology (hours/hour) Grains g {wheat, corn)
HAT(g) 1/55 1/95 Harvest/Acres Technology (acres/bushel) Animals a {hens, pigs)
HLT(9) 0.22 0.74 HarvestILabor Technology (bushels/hour)

:(a.g) 10.1
0*04/

Feed/Animals Technology (animals/bushel
g ~ g ,0.04 0.05
F . ~ E (a) 40 25 RaiseILabor Technology (hours/animal)
$ 0 - 3 g g .(a) 15 25 Raise/Floor Technology (sq. ft./animal)
4 G d
E g 2 .
;; td e
do 6 , m
Y D 8 Figure 3 - 0 g g E

3
DATA DEFINITIONS FOR FARMER'S PROBLEM

V

DATA Z : COLUMNS COLUMN DESCRIPTION
x. x BUY HIRE HARVEST FEED SELL RAISE
L B HL H F S R
1 ANIMALS ANIMALS
2 GRAINS GRAINS GRAINS

DATA Z:MATRIX
* * BUY HIRE

PROFIT BC HLC
AU
L U HLLT
G B
A B

/ 1

FU
BND / 1

MATRIX SCHEMATIC
HARVEST FEED SELL RAISE

HC SP RP
HAT
-HLT -RLT
11 1-1 1-1
FAT 1-1

RFT

DATA Z : ROWS ROW DESCRIPTION
* * L 1 2
ACRES-USE A L
LABOR-USE LU
GRAIN-BAL GB GRAINS
ANIMAL-BAL A B ANIMALS
FLOOR-USE FU

DATA Z : DATA DATA TABLE DESCRIPTIONS

DATA
* *
HAT
HLT
FAT
RLT
RFT

Z : DATA
TABLE
FARM
FARM
FAT
FARM
FARM

DATA TABLE
STUB
GRAINS
GRAINS
ANIMALS
GRAINS
GRAINS

DESCRIPTIONS
HEAD
HAT
HLT
GRAINS
RLT
RFT

Figure 4
BLOCK-SCHEMATIC VIEW OF FARMER'S PROBLEM

RTY PE RHS

< F S
UB HLS

SETS
G grain /WHEATl CORN/
A animals /HENS,PIGS/ ;

SCALARS
HLLT effective hours per hired hour 1.851
L S starting quantity of labor /4000/
AS acreage on farm /I201
FS floor space /lOOOO/
HLC wage rate per hour /I. 501
HLS limit on hired labor /I33331 ;

PARAMETERS
BC(G) buy grains cost /WHEAT 2.50

CORN 1.50/
HC(G) harvest grains cost /WHEAT .20

CORN .12/
SP(G) sell grains price /WHEAT 1.75

CORN .95 /
RP(A) raised animals price /HENS 40

PIGS 401
HAT(G) harvest acres per bushel /WHEAT .01818

CORN .01053/
HLT(G) harvest labor per bushel /WHEAT .223

CORN ,7421
RLT(A) raise animals labor /HENS 40

PIGS 251
RFT(A) raise animals floor /HENS 15

PIGS 2 5 1 ;
TABLE

FAT(A,G) feed animals technology
WHEAT CORN

HENS .1 .04
PIGS .04 -05 ;

VARIABLES
B (G) buy grains
HL hire labor
H(G) harvest grain
F(GIA) feed grain to animals
S(G) sell grain
R(A) raise animals
z I

POSITIVE VARIABLES B, HL, H, F, S, R ;
HL-UP = HLS ;

EQUATIONS
PROFIT
AU acres
LU labor
GB(G) grain balance
AB(A) animal balance
FU floor usage ;

PROFIT.. Z =E= -SUM(G,BC(G)*B(G)) -HLC*HL
-SUM(G,HC(G)*H(G))

+SUM(G,SP(G)*S(G)) +SUM(A,RP(A)*R(A)) ;

LU.. -HLLT*HL +SUM(G,HLT(G)*H(G))
+SUM(A,RLT(A)*R(A)) =L= LS;

FU.. SUM(A,RFT(A)*R(A)) =L= FS ;

MODEL FARM /ALL/ ;
SOLVE FARM USING LP MAXIMIZING Z ;

Figure 5 .
FORMULATION OF FARMERS PROBLEM IN G*,S CenterforDigitalEcOnOm~ Research

Stem School of Business
IVorking Paper IS-89- 104

Center for Digital Economy
Stem School of Business
IVorking Paper IS-89- 104

Research

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

$
l.a
Err
a

-

cn

3
n
Z
A
LEI

--

m
z
H
A
d
13
LEI

--

d
0
m
cd
crl
a

--

a
Z
A
I3
LEI

-
. .
V)
W
d
3
a
0 r:

LI H
1 crl
D W
-4 a
Err 0

E 5:

2
Center for Digital Economy Research *
Stem School of Business
IVorking Paper IS-89- 104

I I
I h I
I Z I
I H I

I I d 2
I h 3 I
l m w I
I Z W I
l o & I
I U I I
I I

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

ACTIVITY: ACTIVITY-RESULT:

SHORT LONG OBJECT- ACTIVITY A-LOWER A-UPPER
NAME NAME COEFFT -SET BOUND BOUND
-----------------------------.------------------------------

B(g) BUY BC(g) GRAINS 0 Inf
H L HIRE-LABOR HLC Nil 0 HLS
H(g) HARVEST HC(g) GRAINS 0 Inf
F(a,g) FEED 1 ANIMALS-GRAINS 0 Inf
S(g) SELL sP(g) GRAINS 0 Inf
R(a) RAISE RP(a) ANIMALS 0 In f

CONSTRAINT:

SHORT LONG
NAME NAME

CONSTRAINT C-LOWER C-UPPER
-SET -BOUND -BOUND

SHORT OPTIMAL REDUCED A-LOWER A-UPPER
NAME -VALUE -COST -RANGE -RANGE ...

CONSTRAINT-RESULT:

SHORT SLACK- DUAL- C-LOWER C-UPPER
NAME VALUE VALUE -RANGE -RANGE

AU ACRES-USAGE Nil 0 HLS AU
LU LABOR-USAGE Nil 0 0 LU
GB(g) GRAINS-BALANCE GRAINS 0 0 GB(hens)
AB(a) ANIMALS-BALANCE ANIMALS 0 LS GB (pigs
FU FLOOR-USAGE N i 1 0 0
Z PROFITS Nil -1nf In f

It

TRANSFORM: SETS :

TRANS- INPUT-
CONSTRAINT ACTIVITY COEFFT OUTPUT ...

HAT(g)
HLLT
HLT(g)
RLT(a)

1
1
1
1

FAT(afg)
1
1

SHORT USED USE-
NAME -BY TYPE
GRAINS
GRAINS
GRAINS
GRAINS
GRAINS
GRAINS
GRAINS
GRAINS
GRAINS
GRAINS
GRAINS
GRAINS
ANIMALS
ANIMALS

71 It

.* ,1

Figure 12
MODEL SCHEMA FOR FARMER'S PROBLEM

Activity
Activity
Activity
~ c t Fvity
Constraint
Coefft
Coef f t
Coef it
Coeff t
Coefft
Coef ft
Set
Activity
Activity

11 *r

I, 11

GRAINS AN I MALS ANIMALS-GRAINS

GRAINS ANIMALS GRAINS

Wheat
Corn

Hens
Pigs

Hens Wheat
Hens Corn
Pigs Wheat
Pigs Corn

DATA TABLES:

HAT Harvest/Acres Technology HLT Harvest/Labor Technology HC Harvest Grains Cost BC Buy Grains Cost

GRAINS VALUE GRAINS VALUE

Wheat 0.22
corn 0.74

GRAINS VALUE --------------
Wheat 0.20
Corn 0.12

GRAINS VALUE

Wheat 1/55
Corn 1/95

Wheat 2.50
Corn 1.50

SP Sell Grains Price RLT Raise/Labor Technology RFT Raise/Floor Technology RP Raise/Animals
Prof its

GRAINS VALUE ANIMALS VALUE GRAINS VALUE GRAINS VALUE --------------
Hens 4 0
Pigs 40

Wheat 1.75
Corn 0.95

Hens 4 0
Pigs 2 5

Hens 15
Pigs 2 5

FAT Feed/Animals Technology FR Feed/Rat ios HLLT Hire-Labor/Labor Technology HLC Hire-Labor Cost

ANIMALS GRAINS VALUE
.........................
Hens Wheat 0.10
Hens Corn 0.04
Pigs Wheat 0.04
Pigs Corn 0.05

ANIMALS GRAINS VALUE
Hens Wheat -0.20
Hens Corn 1
Pigs Wheat -0.30
Pigs Corn 1

VALUE -----
0.85

VALUE -----
1.50

Scres

IALUE -----
120

HLS Hire-Labor Supply FS Floor Supply LS Labor Supply

VALUE -----
13,333

VALUE -----
4,000

VALUE ------
10,000

Figure 13
RELATIONAL DATA BASE FOR EXTENDED FARMERS PROBLEM

rl
a a
3
LO

1 0
W I O

0 3 1 0

F > I d

I
il l
A l
X I m m m m
H I C C D D
Z l 0, a,-4.4
A I 3 : T E L E L

EL l tnm
rn 1 F O I

0
111
a
c-7
I W I O
0, D l t n
LI i l l
-4 & I 4
3: > I

ll W I O
3 1 0

O i l l 0 n rn A l -
;1 3 . 1 -

LI
0
Q
(d
il
I W l t n
0, S I C 0
LI i l l .
-4 A 1 0
x 3 . 1

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

.. I .. I
a t a 1
8 I $ 1
i l l A I
C r l d l

I I

& i
z I
H I -
a I E
0: I

?-I

A A A
b l b l U I
d l i l l i l l
3 : l 9 1 T I

I I I

m i a i
w I a I
ell $ 1 a 1
U I 4 1 4 1
A l 141 i l l

I I 0 1
I I n 1

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

I I
1 1 1 . I

m i - - . . . I
W I - . I
H I II I e: l I
0 1 I
k l I
U l r e: l 2
a I I

I I

A
II
II

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89- 104

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-104

