
DESIGNING INTERACTIVE USER INTEIWACES: DIALOG CHARTS
AND AN ASSESSMENT OF THEIR USE

IN SPECIFYING CONCEPTUAL MODELS OF DIALOGS

Gad Ariav
Leonard N. Stern School of Business
Department of Information Systems

New York University
40 West 4th Street

New York, NY 10012

Linda Jo Calloway
Graduate School of Business Administration
Information and Communications Systems

Fordham University
113 West 60th Street

New York, NY 10023

August 1989

Working Paper Series
STERN IS-89-105

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

Page i

Table of Contents
1. Introduction: The Management of UserlSystem Dialogs
2. The DCs Approach to the Conceptual Modeling of Dialogs

2.1. The ~ i a l o g Charts Notation
- -

2.2. DC Models of Dialog Situations
3. Studying The Usefulness of a Conceptual Design Tool
4. The Usefulness of the DCs

4.1. Distribution of Codings
4.2. Category by Category Summary of Mentions
4.3. Relationships Among Categories

5. Further lnterpretatlon and Emerging Questions
6. Conclusion

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

Abstract

Page 1

The conceptual design of user interfaces focuses on arriving at a specification
of the structure of the dialog, independent of any particular implementation
approach. There is common agreement as to the importance of this activity to
both IS professionals and end-users, but few -- if any -- modeling methods
were developed to specifically support the process of conceptual design, and
the usefulness of such methods has not been adequately addressed. This
paper introduces the Dialog Charts (DCs), and documents a preliminary
examination of their perceived usefulness by designers of userlsystem
interaction who actually used them. The DCs yield high level dialog schemas
that are abstract enough to support the conceptual design of dialog control
structures. In a uniform diagraming framework they combine the concept of
dialog independence, distinguish between the dialog parties, provide for
hierarchical decomposition and enforce a structured control flow. The
usefulness of the DCs has been studied empirically in a qualitative inquiry.
Recalled experiences of designers were captured and analyzed to ascertain
the concept of usability, as well as assess the usability of the DCs. Usability
has emerged from this study as a set of 38 concerns that operationalizes the
broader aspects of purpose of use, design stage, impact on product structure,
impact on design process, and attitudinal patterns. In general, the Dialog
Charts were found by these dialog designers to be a useful, exhibiting the
essential attributes of tools for conceptual modeling.

Categories and Subiect Descriptors:
D.2.1 [Software Engineering]: RequirementslSpecifications--methodologies;
D.2.2 [Software Engineering]: Tools and Techniques--user interfaces; 1.3.6
[Computer Graphics]: Methodology and Techniques; H.1.2 [Information
Systems]: UserlMachine Systems--design

General Terms: Conceptual Design, Evaluation

Additional Key Words and Phrases: Dialog models, human-computer
interaction, qualitative research

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

Page 1

I . Introduction: The Management of UserlSystem Dialogs

The intensifying discussion of conceptual dialog models is a direct result of the recent

consolidation of a widely supported dialog management framework. This framework partitions

systemluser dialog into three linked generic functions: the handling of syntax, the handling of

control and the handling of the applications (Figure 1-1). This conceptualization essentially

underlies a wide array of contemporary views of dialog management, expressed in various

terminologies (e.g., [34], 131, [31], [16], [I], [35], [I71 [32], [I31 and 1151). The set of dialog

concerns is parcelled out as follows: the syntaxdefines the valid set of user inputs ("gestures"),

and captures presentation aspects, including the delivery of outputs to the user; the handling of

the applications entails the definition of the interface to the required application modules and the

passing of information to and from these modules; finally, the control aspect of dialog

management is concerned with the maintenance and enforcement of the dialog structure,

practically defining the set of interaction contexts and the permissible sequences of user-system

activities.

END
USER

APPLICATION
AND
COM P UTATlON
MODULES

- -

Figure 1-1: The Generic Structure of Dialog Management

+ 4

This tripartite view of dialog management implies that essentially, the dialog structure of a

system can be designed independently. A model of the control structure of the dialog is,

therefore, a stable abstraction of the dialog: it outlines possible sequences of systemluser

interactions without being bound to the specific implementation details like the interaction style or

implemented appearance of the user interface. Following this logic, the control structure of the

dialog corresponds most closely to what might be considered to be the dialog's conceptual

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

DIALOG MANAGEMENT

Presentation
(Syntax)

. t ,H

Dialog
Control

t

Application
1 nterface

Page 2

model. Such a conceptual model captures a structure of the dialog that is as close as possible to

the user's functional view of the task or tasks. The model is then translated concurrently into

more detailed and formal implementation models of both the syntax and the application, which

are translated in turn into a concrete physical model.

Generally, there seem to be three typical approaches for designing dialog structures; those

which focus on a correct design process, those which prescribe a proper set of dialog attributes,

and finally those which provide tools for dialog modeling and analysis. Proceduralapproaches

describe sequences of activities that dialog designers should follow. These approaches

sometimes use formal or informal representations, but the emphasis is on how to approach the

design and on how to decompose the task (e.g., [7], and [26]). Guidelines sets are loose

collections of principles, policies and rules to be used in dialog design (e.g., [42], [12], [29], [30],

[36j and [38]). A "guideline" advises about the proper conduct for the dialog; for instance,

"Control should always remain with the user." Analytic methods employ an abstract and

somewhat formal representations of the interaction, along with rules for manipulating these

representations. The Dialog Charts, the topic of this paper, belong primarily to this last category.

The general state of the art of conceptual modeling of dialogs is rather problematic: "While

there is nearly universal agreement that [conceptual design] is the most critical point in the

process, there is also a nearly universal lack of adequate tools and formalisms to aid the designer

at that task" (p.314 in [33]). Jim Miller in [37] further identifies the support for the process of

design as a "real bottleneck" in the areas of interface design and development: "If the role of

interfaces is to help users understand and work with the semantics of a task domain, we need

tools that will let interface designers represent these domains and make their important properties

explicit in the interface." (p.199).

This paper presents and examines an approach for the specification of this type of dialog

model. Although several methods have been suggested for modeling and specifying

human/computer interactions, they are often oriented towards programmers. These methods

typically address implementation aspects of dialog design, and furthermore, they do not directly

support the process of dialog design. The conceptual modeling of dialogs and the Dialog Charts

directly address these concerns.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

Page 3

The Dialog Charts (abbreviated henceforth as "DCs"), are introduced in Section 2, together

with some discussion of the nature of conceptual modeling of dialogs. A manifestation of the

early formative stage which characterizes the area of conceptual modeling of dialogs is the lack

of commonly accepted criteria for assessing the impact of a modeling approach. Section 3

outlines a qualitative and comprehensive research methodology which aims at revealing salient

aspects of "usefulness" in actual use of conceptual modeling tools. Section 4 documents the pilot

application of this approach in an empirical investigation of usefulness of the DCs, and

summarizes its findings. The discussion in Section 5 highlights the main results of this study, and

puts them in somewhat broader perspective.

2. The DCs Approach to the Conceptual Modeling of Dialogs

A tool for conceptual modeling of an application or an aspect of it, like the Dialog Charts, is

fundamentally a method for solving high level design problems. It provides a medium for

translating a set of informal user requirements into more concrete and specific constructs that

further guide the development of the application [21].

In developing the elusive notion of conceptual models of dialogs, analogous concerns in

the area of database design provide some useful insights. The contemporary view of database

design clearly differentiates among three tiers of models [40]: the conceptual model, the

implementation model, and the physical model. The database design process is therefore viewed

as the gradual refinement of system specifications through the development of a consistent set of

corresponding models (Figure 2-1). Conceptual models (e.g., Entity Relationship Model), capture

users' views and outline fundamental system requirements; these models are ideally expressed

in ways which are directly examinable by users. Implementation models (e.g., Network Model)

add formality and precision within the framework established by the conceptual model. Moving

closer to the realm of computing, physical models further ascertain the feasibility of the system by

translating the implementation model into concrete data and software structures, relating them to

available hardware options.

The analogy, it seems, can form a useful agenda for the discussion of proposed methods

for constructing conceptual dialog models. By far the most influential conceptual data model is

Chen's Entity/Relationsh@ Model (ERM) [6]. Date's critical remarks concerning this model

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

07/29/89 Page 4

Figure 2-1: Model Hierarchy in Database Design Processes

(pp.611-612 in [8]) are of particular interest. Specifically, ERM is said to be vague, imprecise,

loose and not well-defined; its definition may not meet all the requirement considered necessary

to qualify as "true" data model; it is said to be a "thin layer on top" of the much more rigorous

relational data model; that it leaves crucial modeling aspects implicit; and that its popularity could

be attributed to the diagramming technique. One can argue that it is precisely these deficiencies

that make the ERM so useful as a method for conceptual design: They directly correspond to the

quintessential attributes of the early stages of the analysis and design of database applications.

The Dialog Charts discussed in this paper were similarly conceived to facilitate the early

stages in the design of dialog structures, and critiques like the above can be rightly leveled at

them. Nevertheless, the charts seem to provide an effective vocabulary for the specification of

conceptual dialog models and for solving dialog design problems.

2.1. The Dialog Charts Notation

The principles that underlie the Dialog Charts reflect the variety of concerns relevant to the

design of userlsystem interaction. Specifically, the concepts formulated as the framework for the

Command Language Grammar [28] are used in the DCs to identify the structural elements of

humanlcomputer interactions. The design discourse assumed and supported by the DCs is

made of cycles among the basic design activities of goal elaboration, design generation and

design evaluation, until a satisfactory specification is found [23]. Finally, the types of control flows

in the DCs and their diagrammatic nature correspond to some key notions of the Syntax Charts

1201.

_, physical
model

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

implementation
model

, conceptual
model

-b _,

Six distinct constructs make up the DC notation. They are associated with a set of graphic

symbols (Figure 2-2).

1. A decomposable user activity, i.e., a composite gesture (indicated by a box).

2. A non-decomposable user activity, i.e., "terminal" (an oval).

3. A decomposable system activity, i.e., a program (a double box).

4. A non-decomposable system activity, i.e., a reasonably "closed" and well-defined
subroutine (a double oval).

5. An activity that combines user activities and system activities, i.e., a task or a
method that involves user and system interaction. Such tasks could be either user-
led or system-led (indicated by different combinations of a half single, half double
box).

6. Direction of flow (indicated by an arrow). The basic flows permissible are selection,
iteration, sequence and case. These can be combined arbitrarily.

The arrows represent the directions of the sequences, and thereby play a critical role in the

DCs' capacity to explicate structure. By limiting the repertory of flows to those commonly

associated with structured programming approaches, a measure of desired quality is enforced on

the result of the design. Specifically, structured flows can aid in identifying robust dialog logic and

modular dialog design. Similar arguments have motivated the inclusion of these constructs in

lower levels of dialog modeling (e.g., [2]). Junctions in the diagrams represent decision points,

and are resolved by whomever holds the initiative at that point. The party (i.e., either user or

system) whose range of actions is specified in the routes that branch out of the junction holds the

dialog initiative and selects the actual dialog path to be followed. This approach requires the

adherence to a consistency constraint, namely that all the paths that emanate from a junction will

be either all user-led or all system-led. It also brings out the fundamental decision on the

assignment of dialog initiative, and explicitly calls for its resolution.

The DCs focus on "holistic" description of the dialog, following a "top-down" design

process. The major manipulation in dialog charting is the transformation of an element in a dialog

chart into a detailed chart. More formally, a transformation is a gradual or marginal modification

of a consistent set of schemas into another consistent set of schemas. Specialization and

generalization transformations [I 11 correspond to the refinement of DC "boxes" into their

underlying elements and regrouping DC elements into an aggregate dialog element, respectively.

The range of these manipulations and the associated rules have been kept intentionally limited, to

preserve simplicity. The rules are that any box can be further decomposed. It can be

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

Page 6

ICONSISYMBOLS

decomposable

atomic :

Connect~on symbolsare lines wlthanows: -F'

user only

CONTROL STRUCTURES, glven in user-Onty ~ b 0 l s
sequence iteration

userlsystern

user-led systemled

nun=

selectton

-+

system only

Figure 2-2: Dialog Charts notations and icons

decomposed into more boxes or into boxes and ovals, or into ovals. However, once a box is

either "all user" (i.e., single-lined box), or "all system" (i.e., double-lined box), it can only be

decomposed into more boxes and ovals of the same kind. Ovals are atomic and can't be further

decomposed. An additional restriction -- the consistent initiative constraint -- applies to the choice

of the first ("left-most") element in the decomposition of usertsystem activities or "mixed party"

tasks: This leading element has to reflect the definition of the original task as either user-led or

system-led. For instance, the decomposition of a user-led task should start with only user

activities or user-led mixed-party tasks.

A classical issue in design, and especially in conceptual design, is how deeply should the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

07/29/89 Page 7

structure be decomposed. A related issue is when an element is declared as a terminal rather

than as a further decomposable. There is no clear stopping rule for the elaboration process.

Design common sense, however, indicates that the process should stop either when further

decomposition does not offer new relevant insights, or when the element represents a library

module or "canned" procedure.

The specification of error handling procedures within the structure may tend to obfuscate

designers' and programmers' views of the underlying structure. To avoid this confusion, the DCs

generally follow the notions embedded in the Syntax Charts of Jensen and Wirth and support the

concept of designing only the permissible dialogs [20]. Error handling procedures are added to

the DCs as annotations at the appropriate system level.

The DCs focus exclusively on conceptual dialog modeling, and address its essential

aspects by integrating simple visual concepts, structured flows, hierarchical decomposition and

distinguishable dialog parties. According to [I 11 the purpose of conceptual models of user

interfaces is to provide (1) an abstract representation of dialogs (i.e., be a basis for a setof

functionally equivalent interface implementations), (2) a specification for the development of user

interface software, (3) a means to ascertain correctness and completeness, (4) a means to

evaluate the design with respect to speed of use and ease of learning, and (5) a run time help to

the user. The DCs seem to address all these concerns, with a lesser emphasis on the last.

While no single tenet of the DCs is in itself novel (as clearly indicated by the citations

earlier in this section), their integration in the context of dialog design is. The Charts were

initially developed in 1982 and were used since then in numerous projects of system

development where interactive decision support systems and online database systems were

designed. The DCs are typically taught and demonstrated in about an hour of formal instruction,

during which sufficient proficiency is gained.

2.2. DC Models of Dialog Situations

The two examples in this section demonstrate the use of the DCs in the design of new

dialogs or the analysis of existing ones. First, the DCs are applied to the conceptual design of a

LOGIN command in a Military Message System (Section 6.4 in [I 91). In a second example the

DCs are used to model and describe the structure of basic dialog of the popular Lotus 1-2-3

product. For demonstration purposes this section focuses on simple examples.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

07/29/89 Page 8

In the LOGIN task a user enters into a.dialog with a computer in order to establish a

session [I 91. The specific scenario is as follows: The user enters his or her name. If the system

doesn't recognize the name, the user is prompted to try again. When the user enters a valid

name, the system prompts for a password. The user gets two tries to enter a correct password

and proceed. If an incorrect password is entered twice, the user must begin the whole command

again. On receipt of a correct password, the user must select a security level for the session,

which must be no higher than the user's security clearance. "If he enters a level that is too high,

he is prompted to reenter it, until he enters an appropriate level. If he does not enter an

appropriate security level, he is given the default level unclassified." (p.44 in [19]). Note that the

specification is somewhat ambiguous with respect to the dialog logic -- there are two

consequences of entering an inappropriate security level.

Figure 2-3: MMS LOGIN Session, Topmost level DC

-+

The DCs for this scenario are provided in Figures 2-3 through 2-5, with each figure

representing a different level of system elaboration. Figure 2-3 represents the topmost view of

the session. It allows the designer to partition clearly the overall flow into well defined concerns.

In some cases, the first level of elaboration may be enough. However, in order to gain more

insight into the LOGIN procedure a further decomposition should be worked out. Figure 2-4

includes two successive levels of elaboration for the box numbered 2 in Figure 2-3. In another

example, Figure 2-5 represents a second and third level "explosion" of the box numbered 3 in

Figure 2-3.

Note how the use of the structured DCs forces the designer to disambiguate the verbal

description of the session. In the DC, the interpretation is explicit: The user is either allowed to

indicate no security clearance, or is allowed to enter a valid security clearance level.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

establish
security
levei 3

1

get a valid
password

2
,-

get a valid
user name ,

Page 9

~ncorrect, try
one more time

2.2

-+

check the second
password entry b

7 7 7

Figure 2-4: Levels 2 and 3 DCs for "Password Getting" subtask

- enterand check
password

2.1

The complete set of DCs for the LOGIN session shows which system modules and

subroutines need to be programmed, those in double-lined symbols. The collection of the double

boxes and ovals therefore serves as a preliminary blueprint for the detailed design of the

applications and the application processor. If, however, all double boxes and ovals are removed

from the charts, the remaining set of connected user actions (i.e., the single-lined elements)

constitutes a broad definition of the user interface syntax, as it practically identifies the complete

valid user-generated syntax.

login msg.
(negative or

A (partial) description and analysis of the popular spreadsheet package 1-2-3 (by Lotus

Development Corporation) is conducted in Figures 2-6 through 2-8. In Figure 2-6 the top level of

interaction is specified, indicating clearly the extent of choices available to the user. Figure 2-7 is

an explosion of the user-led task labeled Commands in Figure 2-6, highlighting the choices

available to the user at that stage. Figure 2-8 further elaborates on the structure of the function

Copy that has been offered to the user at the Commands level dialog.

This analysis of an existing dialog highlights some interesting observations about the DCs.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

07/29/89 Page 10

I request an

y security level
3.3

1
unclassified
session 3.2

check level
security level C

-

a lower security

3.3.3

Figure 2-5: Levels 2 and 3 DCs for "Security Establishing" subtask

As far as the explication of the extent of control goes, the three figures are visibly different -- the

taller the figure, the looser is the structure, and the user has to confront a wider set of choices.

This in itself is neither "good" nor "bad", but rather indicates instances in the design where

tradeoffs between freedom and confusion should be evaluated. The structure of the Copy

command is markedly different from the other two -- it is closer to a linear, tightly controlled

sequence, with relatively limited extent of user choices in carrying out the task involved. The DCs

also render explicit the lack of "structuredness" in the sequence of activities that leads to quitting

the session (the "extra" exit from the bottom box in Figures 2-6 and 2-7). Again, the DCs bring

the unstructured sequences to the designers attention, adding it to the design agenda. The final

decision whether to retain that structure or "correct" it is a question the designer has to ultimately

decide.

security level

I validate the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

b+

Page 11

Enter
Informztion

Spreadsheet '-dmp+ through Navigale the dA
spreadsheet 3

K

function key

Figure 2-6: DCs for Top Level Lotus 1-2-3 Dialog

-, 4 Worksheet \/---I

File -i

1 :f$gnd5, 1

escape e

-+

Figure 2-7: DCs for Lotus 1-2-3 Command Dialog

Range 5 3

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

07/29/89 Page 12

Figure 2-8: DCs for Lotus 1-2-3 Copy Dialog

Another comment relates to the wide range of implementation possibilities addressed with

a DCs-based model. As it turns out, each of the three dialog models in Figures 2-6 through 2-8 is

implemented in a different interaction style: the top-level dialog is implemented as an unprompted

interaction, the Command follows primarily a menu-style interaction (or as a pulldown menu in

some 1-2-3 "clones"), with an alternate unprompted and abbreviated style, while the Copy

command is implemented in a Question/Answer style, with direct manipulation being an optional

type of user's gestures. The actual decision about interaction style is probably affected

somewhat by the fundamental properties of the dialog as they are picked-up by the DCs, but the

determining factor is a set of assumptions about the user. Otherwise, the sharp difference

between the implementation of the top-level and the Command dialogs cannot be easily

explained.

3. Studying The Usefulness of a Conceptual Design Tool

How dialog designers actually use conceptual design tools? Apparently, we know very little

about it: "Most people who have built tools for interface development claim that these tools

enhance designer performance. The authors are not aware of any empirical evidence to support

these claims" (p.233 in 1181). There is, therefore, a need to address first the issue of how the use

of conceptual design tools can be or should be studied. In this section we outline a

corresponding research approach, and highlight the deliberations that underlie it.

There are two basic premises. The primary is that to be "useful" to the designer, a tool

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

07/29/89 Page 14

Q1. Purpose
Gathering intelligence, goal elaboration, design generation, design evaluation,
communication

Q2. Stage
Documentation and analysis, /ogical/conceptual design, implementation design,
programming/coding, testing

Q3. Product
Hierarchical and modularity structure, control structure, data structure/architecture

Q4. Process
Design philosophy, constraints

Q5. Attitudinal Patterns
Learning, task performance, subjective satisfaction, retention, errors

Figure 3-1 : The Original Seed Categories

The overall research strategy adopted here can be classified as "qualitative." In seeking

broad but valid responses to the above questions our approach draws primarily on concepts of

grounded theory [I 41, [24], qualitative analysis methods [27], and qualitative content analysis [22].

In Section 4 we present the results of applying this methodology in studying a team of designers

who had just concluded a system development project in which they used the Dialog Charts.

The experimental setting for data collection is a field experiment [25], and the experimental

task is the analysis, design, development and demonstration of an interactive computer-based

application. It is assumed that the participants have reviewed various methodologies for

disciplined design of information systems and their components (e.g., databases and user

interfaces).

As indicated above, the main objective while capturing the data is to solicit designers

perceptions of the DCs in an unobtrusive fashion. Following the completion of the development

of their system, the designers participate in an open-ended, semi-structured and funneled

interview with a hidden-agenda 151, [I 01, [39]. In such an interview questions are prespecified, but

the answers are not, and the broad range of.questions masks the identity of the actual topic

under study. The funneled interview begins by asking questions about a general area or domain,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

and then pursues areas that have been mentioned by the interviewed team more specifically.

The results of this approach are that each issue on the interview's hidden agenda is approached

with the broadest and most open questions first. These are followed by more specific questions,

often rephrased according to the specific language used by the informants.

The first segment of the interview establishes the overall context (i.e., What does the

system do?), and then focuses on the work that the team accomplished in the various stages of

system development -- from conceptual design all the way to actual coding. The second segment

of the interview raises two issues. It starts with a discussion of the problems encountered in

specifying, designing and implementing the dialog. It then brings up the topic of design tools, and

future intentions regarding tools that have been used. Throughout the interview no direct focus is

placed on the tool under study (the DCs in this research), in order to preserve the hidden agenda,

and to guarantee that information about how the designer used it is, to the extent possible,

voluntary. The audio-taped interviews provide the raw data for analysis.

Basically, qualitative analysis consists of progressively reducing and categorizing raw data

into various forms of display, i.e., "an organized assembly of information that permits conclusion

drawing" [27]. The analysis is an iterative process of data reduction, display, and conclusion

refinement. In this way, the data which at first seems vague and inchoate gradually becomes

more explicit and "grounded" [14]. Initial data reduction of the taped interview is achieved

through a structured content analysis; i.e., the tracking, extraction, transcription and

categorization of explicit "mentions" of the tool. A mention, hence the basic unit of analysis in this

study, is a group of utterances made by the designers about the tool, within a design context and

categorization. A change in the broad context or major category signals the end of the mention.

Mentions occurred in sequences, i.e., one or more mentions that are contiguous.

The mentions are then encoded by studying their relationship to the concept of usefulness,

as operationalized by the set of five research concerns and their corresponding topical

categories, as listed earlier. The encoded mention frames either fit in any of the existing

categories or a new category is declared. In the process, the initial categories could be

partitioned or combined, and new ones could be added, as new properties and value sets are

noted as suggested by the mentions that are encountered during data collection, reduction and

analysis [27]. A mention can relate to more than one question or category. Mentions are then

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

07/29/89 Page 16

studied to establish data-context relationships, where the mentions are the independent variable

and the context targets appear as the dependent variables 1221. By grouping mentions according

to their categories, tallying them and comparing their contents, the general categories assume

specific, concrete, and grounded meaning. By studying mention frequencies, design concerns

can be sorted out, reaffirmed or refuted.

The basic assumption is that mentions, because of the unobtrusive data collection

approach, faithfully represent and reveal the perceptions of the designer. Making inferences from

mentions about actual use is problematic -- the linkage between mentions of use and actual

usage is not directly observable. For example, it is possible that some users will not voluntarily

mention using the tool. In this case we assume that although the tool was used, it is unlikely that

it is perceived as either useful or as significant part of the development process.

The empirical research reported in the next section is an analysis of a single site, a case

study of sorts, which tries to ascertain the feasibility of the research method, as well as develop

initial appreciation for the usefulness of the DCs. Even though a case study is scientifically

"weaker", it is nevertheless rich and unconstrained, as befits the preliminary state of

understanding of the usefulness of dialog design tools and the processes of dialog design. In

particular we attempted to determine whether or not the initial seed categories appeared to

represent the ways the designer used the Dialog Charts, and whether the basic questions were

sufficient to cover the broad areas where the Dialog Charts were mentioned.

4. The Usefulness of the DCs

This section summarizes the pilot application of the approach outlined in Section 3 to

explore the usefulness of the Dialog Charts in conducting system design activities. The DCs

were well received by their users in varied design situations and a wide range of applications in

literally hundreds of systems developed in and outside academia. Nevertheless, there was no

methodical basis for substantiating this anecdotal evidence, or for identifying the reasons for the

popularity of the DCs.

Data were gathered in a field experiment, which occurred over a period of about three

months. The experimental task was the design and development of an interactive database

application. The application's scope, complexity and development mode were realistic -- a team-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

07/29/89 Page 17

based development setting of a system of about 1000 lines of high-level code. The team was

made up of 4 undergraduate students in their senior year, all Information Systems majors, who

were enrolled in a course on the analysis and design of interactive systems. The interviewer was

an outsider who did not participate in any of the previous stages of the experiment itself.

Participants' inexperience (relative to practicing information systems professionals) does

not in itself limit the generalizability of the results. In the era of end-user computing many

designers of interactive systems, especially those engaged in the early stages of system

definition and task specifications, are probably less thoroughly trained in systems design. As it

turned out, most of the participants took up jobs that required them to participate immediately in

designing interactive systems.

To highlight the nature of the qualitative data analysis, the summary of the findings is

presented in three complementary fashions. Following a brief discussion of the broad distribution

of mentions into categories, we consider the observations category by category. Finally, we

comment about the observed relationships among the categories indicated by the data.

4.1. Distribution of Codings

In all, there were 49 mentions of the Dialog Charts throughout the 90 minutes long

interview. The 49 mentions received 80 category codings, We considered a mention as "reliably

coded" if there was no disagreement about the applicability of the codings, although there might

be other codings that could apply.

Figure 4-1 summarizes the mentions of the DCs by the team and underscores the richness

of the information that is under study.

By far, the majority of the coded mentions related to purpose and attitudinal patterns.

With respect to the purpose of use category, Dialog Charts were mentioned most frequently in

the context of design generation. While this could be expected, somewhat unexpected was the

intensity of mentioning the use of the tool for the communication of design information. Although

communicating has been noted as a characteristic of a usable development methodology [41],

there was no requirement that the team use DCs as a communications vehicle.

The large number of mention categorizations under attitudinal patterns came as a

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

Page 18

cocais by sub-category

Con1 el;borarlon
Coals lnto sub-gorla

Deslgn generrclon
DCn u step b ~ f O r e pseudocode
9uerl.s ma proapta
Menus
Desrgnrng the *user Interface*
User or ientr t lon rn lneerfoce desrgn
Error processing
COdtn (l

Desrgn er8luatzon
For completeness
nenu StruCfur.8
Flow of control

coEm~~1cr t ion
To lacer s t w e s
Logical to physical
Logrcal to codrng
Logical to w n t e n u r c e

strs.
Docllaentatlon aad analys1.
Logtcal or Conceptual desrgn
Pnys~crl/Impleaentation design
codzng
Testing

"Y.lnt;Unaace
Products s t ructures

General aodulu /h i s rucEtca l
DCs a8 r mp. dlagraa

*User orlentatton u, product
Control s t ructure
Data 8tructure/data flow

Process of desxgn --
Con8t r ;~n ts on Qe81gn

TEoughts forced Into 8oaethtng concrete
Help l p u n t u n strong control

Phll080ph]r Of design
Dist~ngurah the pu ' t i es
Topaom decorpositton
I te ra t ton

Att l tudlnal B.Ct@rUs
Lsuning

Dial06 CEart8/rhould hare l e u n e d r U u e e u l r e r
Recrll/retsntion
Tvlr perforamce

Tim to do u n w / l t t t , l e
Ti8e to do DC./lots. Because -h.d* U, re-ao thmm

*fur corpreh.n8iBility
Su all levels of depth
S w control s t ruc ture

hsbfectxve a ~ r i s i r c t r o n / d l s s a c r s f ~ t i o ~
f q u a d to rue M8
(torprr8.d. becruse tbol rueful
MJectfTes Tauable . r p o r t m t . e t c
Confident i n code

Figure 4-1 : Tabulation of Mention Codings

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

Page 19

surprise: subjective satisfaction was the context for 17 of the codings. Eight of these referred to

the DCs as valuable and important, while 4 referred to the surprise of the team by the usefulness

of DCs.

No major categories had to be added, but some remained "unmentioned." Since this is

only the first of a series of sites to be studied, no categories were formally dropped at this time.

For instance, there was no mention of the use of the DCs for the purpose of intelligence

gathering. A few secondary categories emerged (they are marked with an asterisk in Figure 4-1).

For instance, the DCs were mentioned in connection to system maintenance, a system

development stage that was originally thought to be removed from a conceptual design tool.

Designing with a User orientation was identified as a characteristic of dialog design products,

and task clarity and comprehensibility was an aspect of attitudinal patterns that did not seem to

be captured by the original seed categories. All third-level categorizations were suggested by key

words in the empirical data. They basically refine their corresponding categories and give them a

more precise and concrete interpretation.

As stated in Section 3 above, the second segment of the interview focused more directly on

dialog design. Counter to our expectations, the extent of mentioning the DCs in the two

segments of the interview was similar. The total number in the first segment was 27 mentions

and 44 codings, in 11 sequences. During the second segment, in which somewhat more direct

questions were posed, there were 22 mentions in 12 sequences, which were coded into 35

categories. Figure 4-2 shows the mention breakdown by segment.

One interpretation is that the team has formed fairly stable opinion about the DCs, and

therefore related to them consistently across the different modes of evidence gathering.

4.2. Category by Category Summary of Mentions

In the following paragraphs, the content of mentions in each category is summarized and

illustrated by examples. The mentions are reproduced in their entirety in [4], and the numbers in

the parentheses following mention quotations refer to the mention's chronological sequence

number.

Purpose. The categories mentioned under purpose were Goal elaboration, Design

generation, Design evaluation and Communication.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

07129189 Page 20

Sequences Mentions Codings ...

Segment I 11 27 44

...
Segment I1 12 22 36

...

Figure 4-2: Tally of sequences, mentions and codes by interview segment

Goal elaboration includes decomposing goals into potential sub-solutions or subgoals.

They described using DCs to "differentiate between system -- response or function, and user

response or function, or something that's a combination of both" (29). The products of goal

eiaboration are the functional requirements of the system. This design process and its resuits are

as paraphrased in the following mention:

- ... You start out with the very simplest, the highest level ... break that down,
and you go down and down and down until you hit the lowest level, You hit
every possible situation.

- You can't explode anymore.
- Until you don't need to prompt the user for anymore information.
- ... and you can just perform the necessary functions. (30)

Design generation was the most frequent context in which the team mentioned the DCs.

The DCs were mentioned in the context of designing queries and prompts, menus, the "user

interface", the control structure, the code, and error handling. The DCs are a conceptual design

tool, and it was a surprise that the team used them at the most detailed level of design--designing

the code. Perhaps they might have used another tool vocabulary if one had been available to

them, but they did not express any feelings that they felt the need of a design vocabulary more

specifically targeted towards implementation design or physical design (coding).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

07129189 Page 21

Early on the team mentioned designing queries andprompts in conjunction with a user

orientation towards eliciting necessary details from a user during system operation:

- ...y ou have to set up queries, or questionlanswer things, whether its menus or
whatever. Somehow, the system has to egg-on the user, know what I mean?
Lead them into what the system means.

- How the system will prompt you into getting to what you want.
- That's the whole idea behind the Dialog Charts. (3)

This context of user orientation surfaced elsewhere in the interview, particularly in

reference to the design generation of the dialog. In response to the question "how did you go

about specifying and designing your interface?" the team answered,

- How you would most feel comfortable if you would put yourself in the user
role.

- That basically came out of the Dialog Charts too ... (28)

One recurring theme in the interview was the surprise expressed at the usefulness of the

DCs. It surfaced while discussing menu design, in the logical design phase of the interview: "We

really did use them [the DCs] as far as designing menus" (12) and "The menus really came out of

that [the DCs]" (25).

It is interesting to note that the team extended the DC design vocabulary to designing error

processing. One mention in particular described how the team had integrated error processing

with general control structure design. As indicated in Section 2 above, the DCs avoid cluttering

the description of the dialog with its entire collection of alternative paths of error handling. The

team further noted:

- ... I don't know whether it's supposed to include it or not, but we included the
error, because -- well I don't know, to be quite honest with you, but we got
very familiar with it [dialog charting] ... l mean we just thought that it was just a
logical extension of it. (43)

Apparently the team felt free to change the tool to suit their purposes, which indicates the

team's familiarity and comfort with the DCs

Finally, the team mentioned using the DCs, among other design products, in coding their

system:
- ... We took our Dialog Charts, and our files, and our menus that we designed,

and we ... actually started to code them. Coded the record layouts, coded the
file description statements.

- Set up the user interface.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

Page 22

- Coded the menus, yes. (27)

The mentions of the DCs in the context of design evaluation seem to reemphasize the

familiarity that the team found with the charts, because they could use them in a flexible fashion,

and even comment on suggested improvements to the design process. They mentioned using

Dialog Charting in an iterative fashion to evaluate their designs for completeness:

- ... What we found was the Dialog Charts really needed to be an interactive
process. Because as you go through them and through them and through
them --

- You realize things that you haven't thought about before ...(2 0)

The team also commented that DCs were used to reevaluate their menu hierarchy. For

example, one comment was, "...we had originally gone back to the original menu, and then

decided that that's boring" (34). They were apparently satisfied with their restructuring, because

as the mention continues, they note that the control structure of the system had become "more

flexible" and "efficient".

The DCs were often mentioned in the context of communication from task to task. The

DCs were used to derive menus, as input to the coding phase, and in determining how to prompt

the user. Succinctly: "They really gave us a basis for so many of the next steps." (37". As one

member commented, when there was a question of the value of the different design tools (i.e.,

dataflow diagrams, flow charts and dialog charts), the DCs "seemed to be the most helpful ...

because when we did get into the later stages, we did actually use them. Much to my surprise."

(10). Similar comments were repeated later in the conversation.

Interestingly, one team member, while indicating his intention to use the DCs in the future,

focused on using them to communicate with users and in system maintenance:

-... In terms of helping them maintain their system, I do keep in the back of my
mind the Dialog Charts, which I thought were great. In terms of helping
explain myself to them, what ideas I had. Whereas before maybe it was just
kind of haphazard. Now I have some structure for explaining, and why I'm
thinking what I'm thinking. (48)

Stage. References in this category were scant. Nevertheless, three of the four mentions

related to communicating information among the various system development stages; for

example, after the team commented on realizing the value of the DCs, they were asked "What

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

07/29/89 Page 23

was the value?" and the responses were "Just for the later stage, and actual physical design."

(221, and "It helped in the implementation. How we were going to prompt the user." (23). A third

mention related to communicating to system maintainers (48), and the last indicated confidence

in the coding stage (36).

Product. Mentions in this category link the use of the DCs to the structure of the resulting

system architecture and dialog structure. The DCs were described by the team as "like a sketch

of coding" (4), "a beefed up data flow diagram with the user in it" (7), and "a map of the system"

(24). The team made an interesting comparative comment:

- ... we never used those data flow diagrams because they were all disjointed.
- You know. This [the DCs] is at least connected and you could see different

levels ... (6).

Typical references to the Control Structure were:

- It's like diagrams of how the system should work. At what point you would
intercept the user to get a response. And based on that response what
would be the next step. (5)

- You kinda see the flow of everything.
- ... And try to get an idea of what information you did have to prompt the user

for ... (6).
- ...y ou saw all the levels of depth. You saw all things that you would really

have to do and ask for to perform the functions that you proposed. (31).

The DC vocabulary is not intended to be used as a language for modeling data structure

and architecture. Nevertheless, the following mention indicates that they helped in conceiving

data structure as well as the general hierarchical and modular structure of the system:

- [you saw] which information you needed to determine which file you had to
access, what calculations needed to be done on the data." (32)

Process. References to how using Dialog Charts put constraints on the design noted how

"You were forced to put all the ideas you had into something concrete" (17), and how the charts

helped the team "to keep a very strong control over what was going on." (35). Comments about

the direction and philosophy of design were made in mention (30), where the DCs were brought

up in the context of the functional decomposition of the system until "you hit every possible

situation", and also that it is decomposed according to party (29). Recapping mention (2) in

design evaluation, the team put forth the idea that the specification of the DCs really needed to be

an Iterative process.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

Page 24

Attitudinal Patterns. The main theme that cut through the mentions in this category is

that the DCs were found to be surprisingly valuable. It is interesting to note that the value was

not discovered until the charts were used during stages subsequent to the conceptualllogical

design. The team mentioned that the DCs allowed them to feel "confident in our code" and made

them feel that the tasks of implementation went fast. Specifically, all of the Learning mentions

point out that the usefulness of the DCs was not apparent to the team until the later stages of the

development process, where they were actually used, e.g.,

- I think we would have concentrated more on getting those right the first time,
instead of going back and having to redo them, not knowing the value of
them the first time ... cause we did, we went back and did them, like twice.
(16)-

Three more mentions express the view in a similar fashion. It looks as though the team

experienced the value of the DCs when they learned that the tool would concretely guide them in

building their system.

Redoing Dialog Charts and some record descriptions was credited with positive &k

performance in the following mention:

- ... after we had gone back, the physical [design] worked out very well.
- Very well, see how fast it went though.
- Yea, but if we hadn't gone back we would have been stuck.
- I think we would have really trudged through that one, so it paid off.
- Yea, that's for sure".
probe: and what did you redo again?
- Um -- the Dialog charts. That was the main one. And some record

descriptions. (44).

The team related to the ease in which menu design is derived from dialog charts (26), and also

mentioned the DCs in the context of Task clarity and comprehensibility. For example:

- Because, you saw all the levels of depth. You saw all the things that you
would really have to do and ask for to perform the functions that you
proposed. (31).

- The main thing is that it helped us to -- see the control. (33).

The team members certainly seemed to derive Subjective satisfaction from using the

Dialog Charts. It was expressed in the intent to use the Dialog Charts in the future, in their happy

surprise at their usefulness, and in the perception of the DCs as valuable.

The idea that the DCs proved to be useful surprised and pleased the team, and they

mentioned it four times. One mention is interesting in particular:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

07/29/89 Page 25

- probably the best way to show the contrast is that in the beginning, like when
you first starting programming, they made you do flow charts. and you were
supposed to do a flow charts before you programmed, and most people
programmed and then drew the flow charts afterwards

- So, I mean, this was totally the opposite.
- ... that's why it's so surprising. For once, we actually used it further on. (41).

They were also surprised that the Dialog Charts functioned as a mapping tool for system

structure: "And it really is a true map, which is -- surprising." (24). The value and importance of

the dialog charts were mentioned three times, twice in connection with the learning process. For

example:

- But I think, when we went to the next step, we realized how valuable they
were.

- Right ...
- And then we redid them. (1 7).

4.3. Relationships Among Categories

Generally speaking, a relationship is some GO-occurance of categories within a mention.

As indicated earlier, mentions were categorized with the minimal number of categories, but in

some cases more than one category adequately keyed the mention. Figure 4-3 summarizes the

co-occurance of categories in coded mentions. In the following paragraphs we briefly comment

on some interesting double-coded mentions in the current set of data.

purpose

stage

product

process

attitude

purpose stage product process attitude

Figure 4-3: Tally of Multiple-Coded Mentions, by Category

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

Page 26

Purpose of using the DCs linked to Stage with respect to communicating information

among stages of design. In particular, one mention indicates that the DCs "helped in the

implementation" (23). Another mention linked Product to Purpose in reference to the results of

designing the control structure: "It's like a diagram of how the system should work" (5). Yet

another evidenced a user orientation while designing the queries: "...you have to know the kind of

user you're dealing with and formulate those queries accordingly." (3).

Co-mentions of purpose with attitudinal patterns occurred 4 times, which interestingly

centered on communication. Two such multiple-coded mentions indicate surprise because the

DCs were helpful or useful in later stages of system implementation (10) and (38). One used the

term "valuable" about the role of DCs in "so many" following steps. A fourth mention related DCs

to the ease of menu design (26).

Product linked to process in a mention that expressed the constraint that the DCs forced

them to put their ideas into "something concrete" (14). It also linked to attitudinal patterns in

three mentions. In (24), the team expressed surprise by the idea that the DCs are a "true map" of

the system, and (31) relates similarly to clarity of the structure and functions. User orientation in

designing the product is expressed in (49), along with the intention to use DCs in the future: "No

doubt about that." (49). One Process mention linked with attitudinal patterns. The DCs

"helped us to see the control" as well as "to keep a strong control over what was going on" (35).

Four Attitudinal patterns mentions linked to other aspects in that category. All four are learning

mentions, three of which are linked to the value and importance subcategory, and the fourth

mention was linked with taskperformance.

By now the richness of the data gleaned from this single team's experience is apparent.

What do all these observations really mean? In the following discussion section we attempt to

interpret our findings and relate them to issues currently on the evolving agenda of conceptual

dialog modeling.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

Page 27

5. Further Interpretation and Emerging Questions

Sections 2 and 4 above present and examine the DCs as an approach to the conceptual

design of dialogs. This section focuses on the more significant findings of the empirical study,

and attempts to discuss them in the broader perspective of conceptual modeling of dialogs.

Stated differently a question arises as to whether or not a meaningful abstraction of an interaction

is specifiable. In the ongoing debate (e.g., in [37]), some argue that a user/system interaction

cannot be usefully abstracted, and that any attempt to strip it of application or implementation

detail renders such descriptions worthless.

Our study addresses the question as to whether or not conceptual modeling appears to

work in practice. Although it relates to a single team only and is necessarily preliminary, the

empirical portion of this study does support the case for conceptual design of dialogs. Designers

have addressed, in their reference to the DCs, the fundamental attributes of conceptual models

and their use.

Conspicuously, a frequent reference was made by the team to the DCs in the context of

communicating between the logical and subsequent stages of system building. This idea relates

directly to the essential role of conceptual modeling as guiding the design by establishing the

conceptual framework within which the dialog is gradually refined and ultimately translated into

concrete data and software structures. Furthermore, the general recognition of the value of the

DCs was tied to using the tool as a vehicle for learning -- "going back and modifying" -- and

evolving a system description and specification. The team's reference to the use of the DCs as a

tool for evaluation is also interesting, since evaluation per se was not part of the project, and the

evaluation process requires conceptual design that is directly and easily examinable by users.

The team also indicated a number of times that the DCs brought in the end-users as a focus of

the modeling process, making them an un-ignorable part of the design deliberation,

Modeling in general, and conceptual modeling of computer based implementations in

particular, are typically "disturbing" in the sense that they neglect concrete details. Dealing with

abstraction can easily create dissatisfaction and frustration. In this light designers' emotional

responses to the DCs are very relevant and rather interesting -- seventeen mentions reflected

various forms of subjective satisfaction with the DCs. The team, members of which had taken

part in a number of system development efforts before, expected the DCs to be "ritualistic" like

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

07/29/89 Page 28

other conceptual design tools. In fact, they expressed surprise that the DCs were actually

advantageous and valuable, and that they actually used them during later stages of design

It is interesting that another frequent comment of the team was with respect to the

relationship between the implementation and conceptual designs. As an example, it occurred to

the team that the DCs capture the essence of the menu in a convenient fashion. This

observation seems to support the idea of developing dialogs through the separate specification of

logical, implementation and physical dialog models, a process which has become a cornerstone

of system development in computerized environments. The same empirical evidence could be

equally construed as supporting the role of conceptual modeling in the dialog framework as the

guidance for the actual syntactical realization of the interface.

Given that there is no well-defined, validated theory to guide the evaluation of

methodologies and tool vocabularies for designing conceptual dialog models, it is very difficult to

assess the effectiveness of our research approach. What could be safely stated is that the

approach in this paper to the examination of the DCs' usefulness is comprehensive. However

rudimentary in scope, the categorizations put forth in this study appear to encompass the nature

of the requirements with respect to a conceptual design tool vocabulary. The methodology for

enriching the categorization scheme also appears to adequately capture the descriptions of the

process provided by designers.

As befits a qualitative inquiry, one of the significant results of the study is the identification

of further research questions. A primary concern is the relationship between usefulness and

usabilityof a conceptual design tool in general and the DCs in particular. A study of a single

situation addresses usability in a limited fashion. Not all situations are amenable to the DCs, so

the essence of the question is in ascertaining the limits of the tool's applicability, e.g., what type of

design situations are easily expressed by the DCs and which range of applications calls for DC

use. There is a need for a rigorous assessment of the relationship between the variety of tasks

and contexts in which tools are used and the perceived usefulness of tools. Such an examination

will allow the prediction of a tool's behavior in a particular design environment, and also allow the

designer to select appropriate design situations for using the tool. The empirical part of this study

is currently being repeated with more teams 141. Ultimately, it is going to address the concepts of

usefulness and usability more directly. Upon analysis of more and varied cases it will become

clearer in which situations the DCs are perceived more valuable.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

Page 29

6. Conclusion

The broad interpretation of the contemporary dialog framework presents a rather

compelling argument for the importance of the dialog structure as the intermediate entity, one that

bridges between the two other components, and which encapsulates the linkages between the

presentation and the application. The Dialog Charts yield a high-level dialog description that is

abstract enough to be useful for more than one implementation technique or strategy. The DCs

also combine two types of decompositions in the same hierarchy, namely a functional

decomposition, which is a common design practice, and a decomposition of parties, which is a

distinct dialog modeling requirement. They model the functional requirements of the system,

capture the sequencing and control of the interaction, while clearly differentiating between user

gestures (i.e., the inputs) and system responses (i.e., the outputs). The DCs were described with

high degree of satisfaction, they facilitated the learning of the system context, and provide a

vehicle for communicating design information throughout the process of system development.

Although the target tool in this study is the Dialog Charts, the research is an in-depth study

of the dialog design process. How do people go about dialog design? What are the requirements

for designing dialog structure and control processor components? Ultimately these insights will

form the basis for a set of assessment criteria to guide the development and evaluation of dialog

design methodologies, and the development of sounder and more robust human/computer

interaction.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

References

Page 30

Ariav, G. and Ginzberg, M.
DSS Design: A Systemic View of Decision Support.
Communications of the ACM 283 045--1052,1985.

Benbasat, I. and Wand, Y.
A structured approach to designing human-computer dialogues.
International Journal of Man-Machine Studies 21 :105--126, 1984.

Britton, K.H., Parker, R.A., and Parnas, D.L.
A procedure for designing abstract interfaces for device interface modules.
Proc. 5th Int. Conference Software Engineering , 1981 .

Calloway, L.
An Approach for Assessing Tools for Designing Dialog Structures: A Study of the Dialog

Charts.
PhD thesis, New York University, 1989.

Campbell, D.T. and Stanley, J.C.
Experimental and Quasi-experimental designs for research.
Rand McNally, Chicago, 1963.

P. P.-S. Chen.
The Entity-Relationship Model -- Toward a unified View of Data.
ACM 7-ODS 1 , No. 1 :9-36, March, 1976.

Cheriton, D.R.
Man-Machine Interface Design for Timesharing Systems.
In Proceedings: Annual Conference of the Association for Computing Machinery, pages

362-366. Houston, Texas, October 20-22, 1976.

Date, C.J.
An Introduction to Database Systems, Volume I , 4ed.
Addison-Wesley, Reading, Massachusetts, 1986.

Davis, F.D. and Olson, J.R.
Integrating User Motivation and Task Performance Theories of Information Systems

Design.
Technical Report, The University of Michegan, April, 1986.

Dunnette, M.D. (editor).
Handbook of Industrial and Organizational Psychology.
Rand McNally, 1976.

Foley, J., Gibbs, C., Kim, W.C., Kovacevic, S.
A Knowledge-Based User Interface Management System.
In Chi88 Conference Proceedings: Human Factors in Computing Systems, pages

67--72. Washington, D.C., May 15-1 9, 1988.

Gaines, B.R. and Facey, P.V.
Some experience in interactive system development and application.
In Proceedings of the IEEE Vo163(6), pages 894-91 1. June, 1975.

Gaines, B.R. and Shaw, M.L.G.
From timesharing to the sixth generation: the development of human-computer

interaction. Part II.
international Journal of Man-Machine Studies 24:101-123, 1986.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

Page 31

[14] Glaser, B. and Strauss, A.L.
The Discovery of Grounded Theory: Strategies for Qualitative Research.
Aldine, Chicago, 1967.

[15] Green, M.
A Survey of Three Dialogue Models.
ACM Transactions on Graphics 5, No. 3:244-275, 1 986.

[I 61 Hartson,H.R., Johnson, D., and Ehrick, R.W.
A Human-Computer Dialogue Management System.
In Proceedings of INTERACT '84, First IFIP Conference on Human-Computer Interaction.

september, 1984.

[17] Hayes, P.J., Szekely, P.A., Lerner, R.A.
Design Alternatives for User Interface Management Systems Based on Experience with

Cousin.
In CHI '85 Proceedings. ACM, April, 1985.

[18] Hix, D. and Hartson, H.R.
An Interactive Environment for Dialogue Development: Its design, use and evaluation-or-

Is AIDE useful?
In CHI '86 Proceedings. ACM, April, 1 986.

[19] Jacob, R.J.K.
Survey and Examples of Specification Techniques for User-Computer Interfaces.
Technical Report NRL Report 8948, Naval Research Laboratory, Washington, D.C., April,

1986.

[20] Jensen, K. and Wirth, N.
Pascal User Manual and Report, Second Edition.
Springer-Verlag, New York, 1978.

[21] King, R. and McLeod, D.
A Database Design Methodology and Tool for lnformation Systems.
ACM Trans. on Office lnformation Systems 3(1):2-21, January, 1985.

[22] Krippendorff, K.
Content Analysis: An Introduction to its Methodology.
Sage, Beverly Hills, CA., 1980.

[23] Malhotra, A., Thomas, J.C., Carroll, J.M. and Miller, L.A.
Cognitive Processes in Design.
International Journal of Man-Machine Studies 12 no 2:119-140, February, 1980.

[24] Martin, P.Y. and Truner, B.A.
Grounded Theory and Organizational Research.
The Journal of Applied Behavioral Science 22, No. 2.1 41 --157, 1986.

[25] McGrath, J., Martin, Joanne, Kulka, Richard A.
Judgement Calls in Research.
Sage, Beverly Hills, 1982.

[26] Mehlmann, M.
When People Use computers: An Approach to Developing an Interface.
Prentice Hall, Inc., Engiewood Cliffs, N.J., 1981.

[27] Miles, M.B. and Huberman, A.M.
Qualitative Data Analysis, A sourcebook of new methods.
Sage, Beverly Hills, CA., 1984.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

Page 32

Moran, T.P.
The Command Language Grammar: A Representation for the User lnterface of

lnteractive Computer Systems.
International Journal of Man-Machine Studies 15:pages 3--50, 1981 .

Morse, A.
Some Principles For the Effective Display of Data.
Computer Graphics 13(2):94-101, August, 1 979.

Nickerson, R.S.
Why interactive computer systems are sometimes not used by people who might benefit

from them.
International Journal of Man-Machine Studies 15:469-483, 1981 .
Norman, D.A.
Design principles for human-computer interfaces.
In CHI '83 Proceedings, pages 28-34. ACM, December, 1983.

Olsen, D.R., Jr.
Presentational, Syntactic and Semantic Componenets of lnteractive Dialogue

Specifications.
User lnterface Management Systems.
Springer-Verlag, Germany, 1985, pages 125--136.

Olsen, D.R., Jr.
Whither (or wither) UIMS?
In CHI '87 Proceedings, pages 31 1-31 4. ACM, April, 1987.

Parnas, D.L.
On the use of transition diagrams in the design of user interface for a interactive computer

system.
In Proceedings of the 24th National ACM Conference, pages 379-385. ACM, New York,

Pfaff, G.E., Ed.
User Interface Management Systems.
Sprinter-Verlag: Berlin, 1985.

Reitman, J.O.
Expanded Design procedures for learnable, usable interfaces.
In CHI '85 Proceedings. ACM, San Francisco, April, 1983.

Rosenberg, J., Hill, R., Miller, J., Shewmake, D.
UIMSs: Threat or Menace? (Panel).
In Chi88 Conference Proceedings: Human Factors in Computing Sys tems, pages 197.

Washington, D.C., May 15-1 9, 1988.

Shneiderman, B.
Software Psychology: Human factors in computer and information systems.
Little Brown and Co., Boston, MA., 1980.

Spradley, J.P.
The Ethnographic Inten/iew.
Hold, Rinehart and Winston, 1979.

Teorey, T.J., and Fry, J.P.
The logical record access approach to database design.
A CM Computing Surveys 1 2, 1 980.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

Page 33

[41] Wasserman, A.I. and Shewmake, D.T.
Rapid Prototyping of Interactive Information Systems.
Technical Report, Medical lnformation Science: UC, San Francisco, 1982.

1421 Williges, B.H. and Williges, R.C.
Dialog design considerations for interactive computer systems.
Human Factors Review: 1984.
Human Factors Society, Santa Monica, California, 1984.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-89-105

