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ABSTRACT 

Most research in mathematical prosramming has been concerned with efficient 
computational algorithms. However, there is increasing interest in developing automated 
techniques for supporting the modeling process. This paper describes a new kind of interface 
for formulating linear programming models and explains the inference process used to 
translate problem specifications into algebrzic formulations. The main idea underlying the 
(design of the interface is to change the specification language to  a graphical rather than a 
mathematical notation. The inference process invoives the generation of algebraic terms and 
their subsequent combination into constraint equations. This relies on the syntactic 
relasionships among indices and a knowledge of the physical entities that they represent. hn 
a d v ~ i l ~ a g e  of the approach is that it facilitates the reuse of model components from previous 
models. The ideas discussed in this paper have been incorporated in a prototype system. 
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,AUTOMATED SUPPORT FOR FOR~KJLATING LINEAR PROGRQ,IS 

1. Introduction 

Linear programming (LP) models have been used to support operational and planning decisions in every 

major industry - including petroleum, steel, forestry, manufacturing, communications and banking. 

However, applications have been limited by the difficulties in model formulation, management and 

interpretation (Johnson [198?]). Rapid advances in computing have made i t  possible for us t o  solve far 

larger models than we can understand. To  maximize the benefits from the considerable progress that has 

been made in the development of efficient computational algorithms, we need t o  reduce the cost of 

modeling and improve both the quality of models and the decision processes associated with their use. 

& important research goal is to help modelers cope with the complexity of large-scale models so that 

they can devote a greater proportion of their time to understanding the subject t o  be modeled and to 

analysing model results. Since successiul modeIs can have a long Iife and can be used by many different 

people, we also need to develop procedures to automate the production of documentation during the 

model building phase and to maintain i t  during subsequent revisions. Finally, w%.need to conduct 

behavioral studies to  learn how information contained in models can be made more accessible to  users SO 

that they can gain deeper insights and make higher quality decisions. 

Research aimed a t  automating model building and management has begun to generate useful results. 

New approaches to LP  modeling and analysis are described in Balci [1985], Bisschop and Meeraus [1982], 

Breitman and Lucas [198?], Fourer, Gay and Kernighan [1987], Greenberg, Lucas, and hlitra [1986], 

Nance and Balci 119831 and Weich [l98'i]. Greenberg [I9831 describes a system for analysin, the structure 

of LPs and diagnosing problems. Geoffrion [1987] has developed a comprehensive framework for model 

building and management called structured modeling; some extensions appear in Dolk [1987] and Lenard 

[1986]. Binabsioglu and Jarke [198G] describes the use of knowledge-based techniques to help automate 
C 

the process of formulating Iinear programming models. 

There are s h  steps in using any modeling technique: recognition of a problem to be solved, identifying 

the soIution technique to be used, formulating the model, linking the model parameters to data values, 

solving the model and analysing the results. The research described in this paper is concerned with the 

formulation phase of the modeling process. The focus is on linear programming forrnlllations because 
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the) :ire a n  ini1,ortant class of models in and of themselves and because they are rich in structure. Since 

therl 21as been little work in this area, there are few guidelines as to  what funct ,~ns can and should be 

automated, and virtually no experience in designing and building an effective man/macliine interface. To  

tes; our design strategy, we are building a prototype system, LPFORhI, which helps au:smate the 

form~ilation process (Ma [1987], hlurphy and Stohr [1986]). 

This paper describes our approach to designing the man-machine interface and developing the theory 

needed t o  support enhanced modeling and analysis. The next section provides an overview of the design 

principles underlying the system and a brief description of the system itself. Section 3 describes the 

interface by means of a short example. Section 4 contains an overview of the reasoning process. Finally, 

Section 5 ex?;ains how various kinds of knowledge (about syntax. semantics, physical transformations and 

pre\-iously d :ined templates) are represented and used t o  help the formulation process. 

2 .  Overview of System 

To improve the modeling process, we must understand how people formulate and build models and how 

the computer can assist this process. Our goals are to  reduce the amount of bookkeeping required 

formrllate a model and to provide enough flexibility t o  enhance the creative processs of model building. 

Eow these goals can be achieved is a research question that  can be resolved only empirically. However, 

we h n v ~  proposed the following design strategy and are incorporating it  in a prototype system. There are 

three major components: I '  

Multiple problem representations ranging from a graphical, non-mathematical representation 
to a more traditional algebraic representation and an annotated data  dictionary. 

e Support for a number of different problem-solving strategies that  reduce the complexity of the 
formulation process (hierarchical decomposition, reuse of previously defined mode1 components 
and a non-procedural, piece-meal approach to problem specification). 

Capabilities not available in other software (relational database, consistency checking, mode1 
management). 

The interface supports several different styles of problem representation. The interplay between these 

specification modes and their potential for making the user's task less demanding requires further 

research. Some parts of the model Zpecification may be easier t o  state in one form and others in another. 

For  example, we suspect that the overall structure of a problem is most easily visualized and stated 

grapl~ically. This will certainly be true of transportation network structures - up to a certain level of 

detail. Other requirements may best be stated in terms of previously stored parcels of knowledge in the 

form of constraint and problem templates e.g. "this problem involves a product-mix and several 

tran*portation sub-problems." hlany requirements are best stated with an activity orientation - for 
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exanl,,!t: "we Lave buying, selling a d  inventorying activities a t  each of our warehouses" (ir, LPFORbl, 

three activity icons would be placed in the warehouse block). Still other problem requirements, and in 

particular, policy constraints, are best stated with a row orientation e.g. "the total tons of product 

produced in each f ~ c t o r y  has to be less than certain given limits" or "the unions require that the total 

overtime hours of each kind of labor be distributed equitably". LPFORbI supports all 01 these different 

clastsses of input although? in its wesent form, row-oriented requirements have to  be stated algebraically 

for the most part.  A simple extension will allow more English-like expressions of policy requirements. 

A major objective of the system is to  reduce the complexity of large-scale modeling by providing a 

number of automated aids and by supporting different formulation strategies. Hierarchical decomposition 

is supported by allowing the modeler to depict the problem graphically in layers of increasing detail. 

Properties of objects a t  higher levels are automatically inherited by lower level objects. This is a top- 

down approach t o  modeling. A bottom-up approach is also supported. This involves building and testing 

component models and then combining them into larger models. LPFORM automates the saving and 

reuse of models and parts of models and supports interactive queries about modeIs stored previously in 

the riiodel bank. A final strategy? is to  allow uses t o  define their model requirements as they come to 

mind rather than to impose any strict order. 

Model buiIt?ers 2150 need support for a number of laborious tasks that  must be performed during the 

modeling process. First, the LPFORXI system provides a relational database for data retrieval and 

manipulation fStohr [1986]). Second, since the formulation process itself is being supported, there are 

many opportunities to check the accuracy of the problem statement as i t  is being produced rather than 

after the final tableau has been generated (kfurphy et a1 [1987]). Finally, the model management facilities 

include an  on-line model dictionary and query facility and a method for automatically retrieving and 

combining nlode1 components to build larger models (Ma [1987]). 

LPFORM translases from an iconic problem representation to  an  algebraic statement of the model and 

finally produces the input needed by solvers such as LIhTDO (Schrage [1087]) or Bhf's ?.fPSX (DM 

[19751). Figure 2-1 shows the structure of the prototype system. 

The LPFORM Interface is being built on an IBM PC/AT class machine using a set of graphics tools 

written in the C programming language (EVA [1987]). A prototype of the LPFORhI Analyser has been 

implemented in PROLOG (Ma [1987]). The two subsystems are loosely coupled. The Interface sends the 

results of the user specification to the Analyser in the form of statements in the LPSPEC language (>la et 

a1 [1987]). Each LPSPEC statement captures a single action made by the user in the graphics interface. 

The next two sections of the paper describe these two subsystems in more detail. 
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Model-builder 
I 
V 

1 LPFO,Z- Interface 1 

I 
LPSPEC Statements 

I 
V 

I * LPFORM Analyser I 
I I 

I 
V 

MPS Statements to Optimizer 

Figure 2-1: The LPFORM System 

3. Graphical Representation 

The graphical specification language uses blocks, links and templates to aid in model formulation. A 

model 1s represented by a collection of interconnected blocks. A block is a collection of zero, one or more 

linear programming activities that are separated in space or time from other activities. Blocks provide a 

conwnient way for 3 modeler to decompose the real world. For example, one block may be a template 

representing the production of raw materials, a second may be a template representing the conversion of 

raw materials into finished products, and a third may represent consumption of finished goods. The Iinks 

between blocks represent activities involving space or time transformations. A t5mplate is an LP 

submodel that  can be simply a co1Iection of constraints or a complete LP. A number of different 

s tandar j  models - transportation, product-mix, blending and so on - are stored in the mode1 base and can 

be retrieved and combined into larger models. 

Hierarchical layers are supported by allowing blocks to  represent collections of blocks (or sub-blocks) 

plus their linkages. For example, a refinery model may be a single block in an initial LP and 

subsequentIy decomposed into blocks representing individual refinery units and links representing pipe 

connections. Finally, blocks can be replicated in either space of time. 

The graphics interface is explained in detail in M a  et a1 [1987]. Figure 3-1 shows a sample screen. 
F 

The screen contains a central work area where graphs can be drawn and three sets of commands. The 

conlr~lands in the top border are used foi mzjor operations such as loading and sa~iz.;; th:: prcblem 

statement, accessing the database, moving up and down a hierarchical level in the model, and solving the 

model to produce the algebraic formulation and then, optionally, the mathematical solution. 

The commands in the botton: border, operate on the graphical imsges in the center of the screen. These 
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I ?RCBLEf: ma:<?-and-ship 'EiiSION: 1 LAST UPCXTE. 10/06/27 1 DATA: 1 
I LOAD SAYE ?ROB-DATA DATABASE DICTIONARY UP DOVN SOLVE WIT[ I 
I I MODE: DATA I 
I LEVEL: 1 GRAPH: 1 CURRENT OP: LINK-ELOCX I REL: r I 
I FACTORIES WAREHOUSES I TAB: t I 
I - I PAR: p I 
I I X I I I I SET: Cs) I 

I 1 I I 
RAW-MATS I " 1 I I ------- >I I I I 

IUIDGETS I T I 
]-------->I------- 

I 
>I I 

DOLWZS I 1 I I ------- >I I I I 
I I I I 

I I 
I STRUCTURE: I 
I I 
I c-9: [I I 
I L-B: --> I 
IL-0-1: :--> I 
I B-10: =[I= I 
I D-I: .:. 1 
I D-C: 1-1 I 
1 D-R: o=!J 1 
I D-T: - I 
I D-A: =I- I 
I c-n: < I 

I I REP: 111 1 
I 3ACK [I FORVD [I DELETE [I UNDELETE [I SHOV-DET [I ERASE [I I OPT: -/v I 
I LINK TYPE: SPACE[] TIYE[] FLOW VAR: T- I 1 

Figure 3-1: Graphic Screen for LPFORLL 

allow the user co step backwards and forwards shrough prior model building steps, to delete znd rescore 

model components, to show the detail underlying a part of the problem representation, and to erase the 

screen. 

The commands used for modeling are on the right of the screen. The data commands !n the upper par t  
1 

of the right-border allow the user to link the symbolic mode1 to  the data either interactively during the 

terminal session or  by specifying links t o  existing data  in a database. A relational database query 

language, which is part of the interface system, is used to  perform queries and to manipulate the data. 

The commands for defining model structure are in the lower part of the right-hand border and are 

associated with icons. To  place an object on the screen, users point (with the cursor or another device 

such as a light-pen) t o  the command and then t o  a position on the screen. They are then led through a 

series of questions associated with the command or  asked to fill in an electronic form to supply necessary 

textual information. The model building commands include Create-Block (C-B), Link-Block (L-B), Def- 

Activity (D-A) and Call-Model (C-M}. The firsc command creates a block that  can be filled with an 

activity or a template, the second7inks blocks for which the output of one is an input to another, the 

third defines a linear programming activity in terms of its inputs and outputs and the fourth places a 

template (submodel) into a block. 

Figure 3-1 also shows the graph that would be constructed to  define a production and distribution 

problcm, "&fake-and-ship", in which widgets, i, are produced a t  factories, f, and shipped to warehouses, 

w. The modeler places 'block icons' for the factories and warehouses on the computer screen, links the 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-88-04 



two t~loc:is to  define the transportation activity, and then places an 'activity icon' in the factori~s block. 

,k riiose actions are performed, the user is prompted for the names of the blocks, the decision variables (X 

and T) and the inputs and outputs of the production activity. Given the problem specification shown in 

Figure 3-1 the following algebraic statement will be prol!uced: 

hiin: x C S ~  ..Y . + A x t3 C trj,w,sTj,w,i 
j f Factories i E JVtdgets j" j" 

j E Factories tu E 1.Varcitouses i E Widgets 

S t :  a X . < b  
i E JVidgets j,r,: j,: jt 

V r E Raw~t fa ts ,  j E Factories 

- X + c Tj,w,i = 0, V i E Widgets, ,f E Factories 
f'i w E 'rvarehouses 

Tj,w,i 2 dw,i~ 
j E Factories 

V i E Widgets, w E Warehouses 

The remainder of this section explains this process in more detail. LPFORlvf processes a succession of 

problern representations: (1) the graphical screen interfaces presented to  the user, (2) the LPSPEC 

lang~rsge statements, (3) an internal tableau representation, (4) the algebraic statements output to  the 

bfatrix Generator, and finally, (5) ifie &IPS form of the problem statement as input to  the solver. Figures 

3-3 through 3-6, which illustrate representations (2) and (31, contain computer outputs from a tesr, run. 

The d':sign of the user interface is discussed more fully in Ma et a1 119871. The model is developed using 

two alternative approaches. T'ne first uses basic concepts of LPFORM to construct the model from 'first 

pricciples'. In other words, the components of the model, blocks, activities, links and so on, are described 

by the user in detail as in the illustration above. The second approach to model formulation in~oives the 

use of preexisting LP  model templates that are "mapped" on t o  the Make-and-s&p problem. The 

formulations resulting From both approaches are the same. 

3.1. First Principles Approach 

Figures 3-1 through 3-5 show some of the screens generated by a user defining the hiake-and-ship 

problem from first principles. The user decomposes the problem hierarchically into two layers. The first 

layer consists of an zbstraction - there are only two blocks representing factories and warehouses and a 

single transportation link between them. The second IeveI contains the representation of all the 

individual factories and warehouses of the real problem. If it is assumed that  all factories can ship to all 

warehous~s (or if infeasible links are given infinite costs in the data) there is no need to draw the second, 
8- 

more detailed, level of the problem. Each actual factory will inherit the properties specified for the 

parent "Factories" block, each actual warehouse will inherit the properties of the "Warehouses" block 

and the system will implicitly assume a completely connected graph. If these conditions are not true, the 

connected graph is automatically generated and the user can delete edges that do not apply. 

Alternatively, if the second level graph is complex, as will be the case in many real world applications, the 

user can specify an external table that specifies the arcs. 
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Ti:+* first rtep is to define the highest level of blocks (for Factories and JVarehouses) using the 

C X - I T E - B L O C K S  (c-B)  command and to link them using the Li.VK-BLOCKS (L-B) command. 

Figure 3-1 shows the screen a t  the end of this step. 

Nest, the user specifies the production activities in the Factories blocks using the DEF-ACTfiVIES 

(D--4,: command. The screen in Figure 3-2 is obtained by pointing to the D-A command on the right of 

the screen and then to the Factories block. D--4 is modeled after the activity modeling approach in 

D a n t ~ i g  [19631, in which an activity set is defined by its inputs, outputs, activity coefficients, and 

objective coefficients (profits or costs). After the detailed specification of the activity has been completed, 

the network representation is restored, but the specified block is highlighted to  indicate that i t  is not a 

simple demand, supply or transshipment point. 

I ACTIVITY SET: vidgets- 
I ACTIVITY VAR: x- 
I INPUTS: 
I raw-mats 
I OUTPUTS: 

widgets 
OEJ. C3=7T : cst 
OBJ.ToE :cost 
ACT. CSTFTS: a 
UPPER BQUNDS: # 
 LOW^ a o w s :  # 

I UNITS . A' . * 
I MATB PROP : linear 
I ACT. TYPE : product-mix 
I 

Figure 3-2: Define Production Activity 

In the next step, the user specifies the members of the sets represented by Factories, Warehouses, 

Widgets and Rawmats using the SET command. The members of the set can be entered interactively 

(e.g. "W1, W2, W3."). or by a relational database query (e.g. "SELECT Warehouse-name FROM 

Warehouse WHERE Region = USA."). Here, Warehouses is an  external relational database table 

containing Warehouse-name and Region fields (amongst others). 

The final step in defining the ~ r o b l e m  is to  specify the direction of optimization using the OPT 

command in the lower right corner of the screen. Alter this interaction, the user saves the problem (using 

the S,-iTvTE: command in the top of the screen) and t5en seiects the SOLVE c o m m a ~ d  to generate t.he 

LPSPEC statements. 

Each of the commands in the graphic interface has a corresponding LPSPEC statement thai capt,ures 

the information provided by the user. The LPSPEC statements from the above interaction are listed in 
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Figure 3-3 in the order in which they were generated by the user. The LPSPEC command processor can 

check for missing o r  ambiguous information and request clarification from the user. 

>>>>>> Compiling LPSPEC File: mkship.fst <<<<<< 

Statement No: 1 
create~block(make~and~sbip,~factories,xarehouses]) 

Statement No: 2 4 

linx-block(spaca. explicit, [factories,varehouses] , t) 

Statement No: 3 
def~transport(vidgets,[factories.~arehouses],1,#) 

Statement NO: 4 
def-activity (factories, bidgets1 ,x ,  [ramatsl , [a]. [widgets], cst, 
cost,X,X.,#,linear.product-mix) 

Statament No: 6 
def~sat(factories,[north,south,west]) 

Statement No: 6 
def-set(warehouses, [nvh,svh,w*h]) 

Statement No: 7 
def-set (widgets, Eitl,w2,~31) 

Statement NO: 8 
def-set (ra3#mats, [rl ,r2,r31) 

SCatement No: 9 
opt'ixize(min,make~and~ship,cost,spbolic) 

Figure 3-3: LPSPEC for First  Principles Approach 

After compilation of the LPSPEC statements: the inferencing rules are invoked and the algebraic terms 

of the model are created and assembled into their proper positions in the algebraic statement by the 

LPFORhI Analyser System. Finally, the model is cross-referenced t o  its data and t o  entries in the data  

dictionary. 

The internal tableau representation (Figure 3-4) and mode1 data dictionary (Figure 3-51 are the final 

result of the reasoning process in LPFORM. 

PROBLPI/HODEL/FRAGXENT = make-and-ship. 

ROW\COL Xcf, T ( f  ,~.i) RES 
OBJ= +sir; i)cst [f: il +sCf ;w; iltrif ;w; il HIN 
Use [f ;rl +S(i>a[f :r;il < +btf;r] 
Eal[i;i! +! [f;i! - S C r ) l  [f ;u ;  i! = +O[f;',] 
Supply En; i l  +SCf)l [f ;~;il > +d[,d;i] 

Figure 3-4: InternaI Tableau for Make-and-ship hfodel 

The internaI tabIeau can be used to check the formulation. I t  has been designed to display 
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simuitaneou~l;; both the algebraic and the tablezu (block) structure of an LP problem. If che problem Is 

large, the display is spread across several screens. 

In Figure 3-1, there are columns for each decision variable and rows for the objective and each 

constraint. The columns and rows are Iabeled by the decision variables and RHS constants together witii 

their indices. Summations are identified by an 'S' followed by the list of indices over which the 

summation is t o  be performed encfosed by braces. Note that  the balance equation for widgets has been 

correctly generated by the system. 

The da ta  dictionary for the Make-and-ship model is shown in Figure 3-5. The symbols on the left 

appear in the algebraic statement. The roles of some of the constraints have been inferred by the system. 

For example, LPFORhI has recognized Factories as a "From-Block" and b as the right-hand-side of a 

" constraint. 

* Symbol convention of make-and-ship r 

Set Reference: 
SYMBOL : SET NAMZ: ................................................................ 
f : Factoriss 

Meaning: bloc&, from-block. 
r : Rawmats 

Meaning: input. 
w : Warehouses 

Meaning: to-block. 
i : Widgets 

Meaning: output, commodity. 

Activity Reference: 
SYMBOL: ACTIVITY (VARIABLE) : ................................................................ 
X ( f  . 1) : X(Factor1es ,Widgets) 
T i  : T(Factories,Warehouses,Widgets) 

Coefficient Reference: 
SYMBOL : COEFFICIE?? (DATA) : 

~ s t  [f ; I] : Cst [Factories ,Widgets] 
a[f ;r; I] : A[Factories,Rahmats. Widgets] 
[f I ]  : 1 [Factories,Warehouses,Widgetsl 

1 [f ;I] : 1 [Factories.Widgets] 
o [f ; I] : 0 [Factorles.Widgetsj 
b [f ;rj : Rhs?+"factories'rawmats [~actories ,~a~;matsl 
d[w;i] : ~hs?*~demand~warehouses~wid~ets[~areho~~es,~ldget~] 
tr[f;w;i] : ~bj?*~factories~varehouses~vidgets[Factories, 

Warehouses ,Wid*gets] 

Figure 3-5: Data Dictionary for Make-and-Ship 1 Iodel 

This is the basic representation from which problem statements for different matrix generators can be 

constructed in a straight-forward fashion. Note, however, that the problem representation abort! is 
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symbolic and contains no ir1:'ormation on data  values. This informntion must be included in the 

proLlt.m statements sent to  the 1natri.u generator. Basically, any data values input interactively by the 

user, for example, the elements of the sets in the above example, or the retrieval and data manipulation 

comrnands input by the user or  inferred by the system, are output verbatim to the nest phase of the 

modt:I generation process. More details are given in Ma et a1 [198T]. 

3.2. Model Mapping Approach 

A major goal of LPFORhl is to allow model elements developed in one project to be reused in others. 

This facilitates a bottom-up approach t o  model building in which submodels are tested and then 

conhined into larger modeis. LPFORh1, contains a number of standard templates (for Transportation, 

Blending, Product-mix, Process-selection, etc.). Alternatively, users can build their own models using the 

first principles approach and store them in the model bank for later use. 

Referring t o  Figure 3-1, i t  is intuitively obvious that  the Make-and-ship mode1 consists of J. product-mix 

problem and a transportation problem. This approach is implemented in LPFORM using the 

CALL-;LIODEL (C-M) command. Figure 3-6 shows the formulation of the same problem using the rnodel 

mapping approach. 

The C->I command "maps" the names of indices, variables and data  coefficients in the stored template 

into those that  will be used in the new model. Thus, in this example, "from-block", t~io-blockH, and 
f '  

* commodityu become, respectively, "factories", "warehouses" and "widgets". The standard templates 

are defined to be as general as possible. If the new model has no need for some of the indices in the 

stored template, they can be dropped. Conversely, the user can add indices to  a model by using the 

Replicate command (see Ma et al [198T]). 

4. Inference Process for Generating LP Models 

This section of the paper explains how statements such a s  those shown in Figures 3-3 and 3-6 are 

con~er ted  into an algebraic problem statement. To  ensure a robust and widely applicable approach, 

L P F O R q  focuses on properties that are valid across all LP's and brings in more subject-specific 

information only as needed. The properties of LPs can be divided into syntactic, semantic and domain- 

specific categories. Syntactic information consists of symbols and the rules that combine the symbols into 

a model. Semantic information incorporates knowledge about the physical entitics being represented. In 

order to provide the maximum generality, we concentrate on the physical principles that underlie all 

linear programs. These include the properties of resources, commodities and networks, and ideas from the 

field of dimensional analysis (Kurth 119721). Domain-specific information provides individual instances of 
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>>>>>> Compiliog L?SPEC File: mkship.map <<<<<< 

Statement No: L 
create~block~make~ship,[factories,warehouses]) 

Stateaent No: 2 
def-set(factories, [north,south,vest]) 

Statement No: 3 
def set~warehousss. [nvh,s~h;dwh]) - 
Statement NO: 4 
def-set(vidgets, [wi , ~ 2 , v 3 1 )  

Stzternent No: 5 
def-set(ra.mats, [rl ,r2,r31) 

Statement No: 6 
call-model(transportation.make-sh:p. 

~from~block,to~block,commodl;y],[factories,uarehouses,~idgetsl. 
Cf low1 . Ct3 , 
[gain-or-loss1 . C11) 

Statement No: 7 
call~model(prodac%~~ix,make~ship. 

[block, Input ,output] . [factories, ramats , widgets] . 
Evolumel . Cxl . 
[tech-coef ,available-input] , [a, b]) 

Statement No: 8 
optimizeCmin.make~ship,cost,spbolic) 

Figure 3-5: LPSPEC Statements for Model-Mapping Approach.. 
1' 

the general concepts and information on special requirements associated with these instances. For 

example, in a job shop application, a lathe belongs to the class "machines", which is a subclass of 

*resources" at the most general level. Associated with the class of machines may be policies and 

constraints that  can be automatically incorporated in the model by the system. Thus, domain-specific 

knowledge enhances the power of the system in aiding the formulation process. Our research to date 

concentrates on syntactic and semantic information, developing general principles applicable to  all model 

building areas. The use of domain related knowledge in formulating LPs is described in Binbasioglu and 

Jarke [1986]. 

4.1. The Reasoning Process 
A- 

The reasoning process has the following steps: 

I. The user specifies the problem using the graphic interface; LPSPEC statements are generated. 

3. The LPFOR31 Analyser parses the internal representation and performs some consistency 
checks. 

3. The network structure of the probIem is anaiysed; if the problem is a pure network, the 
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appropriate model template is invoked. 

4. If there are non-network components (e.g. producticn activities associated with one or Kore 
blocks), the appropriate constraint fragments and templates are invoked to generate she 
"model pieces". 

5 .  The mode! pieces are assembled into their positions in the algebraic representation; consistency 
checks are performed, redundant pieces are discarded and missing pieces are added. 

6. The internal representation of the algebraic statement and the model data  dictionary are 
generated. 

7. The data  coefficients in the problem statement are associated with values stored in external 
tables and relational databases. 

8. The input to  the matrix generator is generated. 

9. The output of the tableau generator is fed to  the solver and the problem is solved. 

10. A report-writer and analysis system is invoked to process the results of the LP run. 

4.3. Generation of the Model Components 

Section 3 described the various modes of input available to the user. Much of the expertese embodied in 

the system consists of rules for translating from inputs given in these different forms into the algebraic 

components of the model. The basic components in the internal representation of LP constraints are 

"mode! pieces" which are algebraic terms with their associated summations. Larger hiodel components 

such as constraints, subproblems and complete LP problems are simply collections of model pieces. This 

approach allows great flexibility in generating LPs and in combining tempIates of previousIy stored 

models into larger models. 

The various objects in the user specification each generate one or more model pieces from more 

fundsmental templates stored in the system's model base. Thus, an inventory icon results in a set of 

pieces embodying the standard inventory relationships, while a link between blocks contributes pieces 

corresponding to a transportation problem and so on. The model pieces comprising the standard 

component types are stored in a general form so that they can be tailored to fit the particular problem; 

thus, indices can be added or d roppd  as needed. 

For example, in the graphical representation in Figure 3-1, "Warehouses" is an "exogenous demand" 

block (a  block that  has inputs but no outputs or  internal activities). In the first principles approach, the 

following constraint fragment is automatically generated: > d .. This consists of one "piece" (the 
w, ;  

ineqi~ality and the coefficient). Similarly, the Def-activity command in Figure 3-3 will generate a 

consirairit fragment with two pieces: 
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C 'j,r,?i,,i 5 6j,i V r E Rawhlats, E Factories 
i E Widget a 

major area for research involves the discovery of appropriate standard components and the rules by 

which they can be generated from the user's input and synthesized into the compIete LP. 

4.3. Problem Synthesis Using Syntactic Information 

We are developing rules for combining model pieces into a complete LP using syntactic information 

consisting primarily of index and variable names Murphy et a1 [1987]). This is analogous to solving a 

jigsaw puzzle, and we call the mechanism in Step 5 above, the "Puzzler". 

We define an  index set to  be a collection of symbols denoting the indices (subscripts) associated with a 

variable or data  coefficient. Each individual index identifies a 'dimension' of the data  or variable and 

takes on values within some well-defined domain. For a given constraint and variable with coefficients in 

that constraint, let: 

V= {indices on the variable) 
C = {indices on the coefficient of the variable) 
S = {indices that are summed over their whole domain) 
P = {indices that are summed over a subset of their domain) 
& = {indices of subsets over which partial sums are taken) 
R = {indices that identify the individual constraints) 

To illustrate these definitions, consider the following example: 

then V = {i,j,k), C = {i,j,k), S = {i), P = {j), Q = {i), R = {k). 

In a properly specified LP where all indices are explicit: 

(1) R=(VUCUQ)-(SUP). 

This relationship helps LPFORM: (1) infer the complete problem from its component parts, (2) adjust 

the model when a part of the model is replicated in some dimension such as place or time, and (3) check 
F 

the correctness of the finaI formulation. 

Each model piece has row and column "labels". The row label for a piece includes its row index set 

(computed from the right-hand side of (1)) plus semantic information on the meaning of the indices and 

the physicaI units associated with the activity. The column label for a left-hand side piece consists of the 

variable name, the variable index set, V, and semantic information as for the row label. The output from 
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Steps 3 and 1, above, is a set of n ~ ~ d e l  pieces. Ln Step 5 the Puzzler sesrches th;r;ug!l these pieces to 

deter::line the unique row and column labels. This establishes the o~e ra l l  dimensions of the tableau. 

Kest: the pieces are assigned to :he tableau based on their row and column labels. RedunCsnt pieces are 

discarded and,  where possible, missing pieces are automatically generated as described belov;. Finaliy, the 

Puzzler performs some consistency checks - for example, the body of the tableau must h w e  at least one 

piece asJigned t o  every row and ~plumn.  The Puzzler can also warn the user if the modei contains 

disjoirlc subproblems. 

To illustrate the process for the hlnke-and-ship problem, consider the tableau representation in Figure 

Column Label: [X,f . i l  r T , f , w , i l  
Row Label : 

RHS 

OB J: T z 'L, catJ,Fyf,i + z E x trI,w,,xJ ,w,i 
f f w i  

lf7rl 5 ",.,;Yi.; <- bf,. 

~r,ii - x C TJ, w, i - 
J,i -I- 

- 0 
w 

Figure 4-1: Illustration of Jigsaw Puzzle Reasoning 

The first constraint is generated by the product-mix sub-problem and the third by the transportation 

sub-problem. In the second constraint, which represents the balance equation for widgets, the second 

tern1 comes from the Transporta~ion sub-problem. The first term in this constraint is supplied 

automatically by LPF0121"vf. The rule used to  do this is t o  search For matching column and row index sets 

and to suppiy a diagonal sub-matrix if no term is present in the corresponding position in the tableau. In 

this case, -1's are placed in the tableau. 

The success of this process depends on the ability to  distinguish all the rows and columns of the tableau. 

The column and row labels contain information in addition t o  the index sets because the latter do not 

necessarily contain enough information to ensure uniqueness. Some initial theoreticaI resuits concerning 

what can and cannot be done with index information are given in Murphy et a1 [198T]. 
C 

5 .  Knowledge Representation 

Knowledge representation affects both efficiency and functionality. Functionally, the system should: ( 1 )  

provide a source of knowledge about the models in the model base and their structure. (2) provide 

guidance t o  users in the selection and composition of components of larger models, (3) facilitate the 

acquisition of domain specific knowledge as outlined below. 
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Tile basic cntities of linear programs (activir;?~. constraints, resources, commodi.,ies) and other 

organizationzl entities (blocks, links, and submodels) are represented by a net-xork of frames. A frame is 

a stereotyped representation of some situation which is adjusted to a current situz~ion by changing 

certain details (Winston 119841). As a data  structure, a frame consists of "slots" containing the 

descriptive attributes of the object, default values and or procedures that should be invoked if needed, 

and relationships t o  other objects? Thus, a frame for a complete LP contains slots with information on 

the objective, activities and constraints (a product-mix model, has slots noting that the objective is to 

rnasiruize profit, the activities are production levels of different products, and the constraints are resource 

limits). In our context, another slot points to  the model pieces associated with the template. 

h discussed shove, part of the knowledge contained in LPFORLI is in the form of rules to generate the 

model pieces and to combine them into a problem statement. Other types of knowledge can be used, not 

onIy to  help translate [iom the user input t o  the final algebraic statement, but also to provide more 

intelligent support to  the mode1 builder. Three important sources of knowledge are the types of physical 

trai~sformation associated with activities, template models and domain-specific information. 

Knowledge Concerning Transformations 

Linear programming models involve three basic transformations: transformations in place, in time and 

in form. X transformation in form converts input "whats" into output "whats" while leaving place afid 

time identicaI. PIace and time transformations make analogous adjustments to *where1;,and "when". ,-Is 

shown in Figure 5-1, a transformation in form has indices corresponding to inputs and outputs, indices for 

"where" and "when" and an added index for "how" if there are alternative approaches. Transformations 

in $ace are distinguished by having indices on 'whac", "when" and "how", plus "from whereN and "to 

where". Transformations in time have indices on "what", "where" and "how1 and "from when" and 

"to when". In many cases, these indices are implicit rather than explicit - for example, production 

activities are usua1Iy index~d by their associated outputs i.e. only on the "to what" dimension. 

Compound transformations involving more than one of the fundamental transformations are possible. 

PLACE FORM TIME 

From where Where Where 
To where 

#- 

What From what What 
To what 

m e n  When From vhen 
To when 

How H o v  Hoii 

Figure 5-1: Index Roles in Transformations 
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The d a ~ ; t  structure used to represent the index set for each var:. ',le and coeffici2nt has slots for each of 

the roles in Figure 5-1. Information on the meaning of indices allows LPFORhf to improve on the 

syntactic rules for composing LPr and to detect missing model pieces in some circumstances. 

Each template h a j  an associated frame with slots recording its usage in different models and pointing to 

its component model pieces. As discussed above, users can add to the model base at any time. h query 

faciiicq- allows users to  browse through the the model base. It is possible. for example, to  retrieve all 

models using a given resource or all with a common activity. A procedure to  generate a precedence map 

of all models hsving common inputs and outputs, is being implemented. \Ve are currentIy studying the 

appropriate set of standard templates to be included in the model base. 

Domain-Specific Knowledge 

Domain-specific knowledge can be used to make the system more powerful in particular applications. 

First, the data  dictionary of general concepts (activities, resources, etc.) can be extended to include more 

term2 thereby allowing users to state their problems in more familiar language. Thus, labor can be 

reIated t o  the general concept of resource by an "is-a" relationship and specific classes of labor to the 

more generic category, labor, and so on. 

Second, the different classes of entitities can be associated with information that  either must, or might, 

be appiicable to  particular models. Thus, with labor, any union restrictions must be embodied in 

constraints in the model, while various optional work force smoothing relationships might be incorporated 

a t  the user's discretion. This will allow the system to operate as an expert assistarc sugger;ting 

possibiIities for consideration by the modeler. 

Finally, local terms can be related to an organization's data base. For example, each category of labor 

could be linked to tables containing current wage rates, standard piece rates and so on. This would allow 
F 

the system t o  automaticaily generate database retrieval statements LO link the symbolic statement of the 

problem to current data values. 
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6. Concfus ion 

Our strategy has been to develop a general approach t o  model formulation that is applicable to all LPs. 

We have done this by concentrating on syntactic and semantic properties. More powerful systems. 

suitable for non-expert users as well as expert users, will probably require the acquisition and use of 

domain-specific knowledge. C 

The prototype system is now operationctl and is able to  solve a range of problems. There are a number 

of interesting questions concerning the approach that car1 only be resolved through usage. The most 

important of these is whether the approach outlined in this paper will, in fact, improve productivity and 

lead to higher quality models. Other questions concern the effectiveness of the graphic interface in 

reducinr; the cognitive load on the modeler and improving che quality of the models produced. 

In the near future, we intend to test the LPFORhI system and to improve its capability in the linear 

programming domain. After that, we will inyestigate the possibility of applying a similar approach to 

other modeling situations. 
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