
Edward A. Stohr

Information Systems Area
Graduate School of Business Administration

90 Trinity Place
New ITorl: University
New York, T u I - 10006

February 1988

Center for Research on Information Systems
Information Systems Area

Graduate School of Business Adillinistratioll
New York University

Working Paper Series

CRIS #I72
GBA #88-4

'To be publisl~ed in: Proc. i\?-1TO ASI: iLlntl~entntica1 Afodele for Decisiort Support, Val D'Isere,
Frsnce, -August 1057.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-04

1

Table of Contents

1. Introduction
2. 0vervie.r~ of System
3. Grap'! ical Representation

3.1. First Principles Approach
3.2. Model hiapping Appmach

4. Inference Process for Generating LP Models
4.1. The Reasoning Process
4.2. Generation of the Model Components
4.3. Problem Synthesis Using Syntactic Information

5. &owledge Represencation
6. Conclusion

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-04

Figure 2-1:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-8:
Figure 4-1:
Figure 5-1:

List of Figures

The LPFORM System
Graphic Screen for LPFORkf
Define Production Activity
LPSPEC for First Principles Approach
Internal Tableau for kfake-and-ship Model
Data Dictionary fbr blake-and-Ship Model
LPSPEC Statements for Model-Mapping Approach
Illustration of Jigsaw Puzzle Reasoning
Index Roles in Transformations

Center for Digital Economy Research
Stem School of Business
IVolking Paper IS-88-04

ABSTRACT

Most research in mathematical prosramming has been concerned with efficient
computational algorithms. However, there is increasing interest in developing automated
techniques for supporting the modeling process. This paper describes a new kind of interface
for formulating linear programming models and explains the inference process used to
translate problem specifications into algebrzic formulations. The main idea underlying the
(design of the interface is to change the specification language to a graphical rather than a
mathematical notation. The inference process invoives the generation of algebraic terms and
their subsequent combination into constraint equations. This relies on the syntactic
relasionships among indices and a knowledge of the physical entities that they represent. hn
a d v ~ i l ~ a g e of the approach is that it facilitates the reuse of model components from previous
models. The ideas discussed in this paper have been incorporated in a prototype system.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-04

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-04

,AUTOMATED SUPPORT FOR FOR~KJLATING LINEAR PROGRQ,IS

1. Introduction

Linear programming (LP) models have been used to support operational and planning decisions in every

major industry - including petroleum, steel, forestry, manufacturing, communications and banking.

However, applications have been limited by the difficulties in model formulation, management and

interpretation (Johnson [198?]). Rapid advances in computing have made i t possible for us t o solve far

larger models than we can understand. To maximize the benefits from the considerable progress that has

been made in the development of efficient computational algorithms, we need t o reduce the cost of

modeling and improve both the quality of models and the decision processes associated with their use.

& important research goal is to help modelers cope with the complexity of large-scale models so that

they can devote a greater proportion of their time to understanding the subject t o be modeled and to

analysing model results. Since successiul modeIs can have a long Iife and can be used by many different

people, we also need to develop procedures to automate the production of documentation during the

model building phase and to maintain i t during subsequent revisions. Finally, w%.need to conduct

behavioral studies to learn how information contained in models can be made more accessible to users SO

that they can gain deeper insights and make higher quality decisions.

Research aimed a t automating model building and management has begun to generate useful results.

New approaches to LP modeling and analysis are described in Balci [1985], Bisschop and Meeraus [1982],

Breitman and Lucas [198?], Fourer, Gay and Kernighan [1987], Greenberg, Lucas, and hlitra [1986],

Nance and Balci 119831 and Weich [l98'i]. Greenberg [I9831 describes a system for analysin, the structure

of LPs and diagnosing problems. Geoffrion [1987] has developed a comprehensive framework for model

building and management called structured modeling; some extensions appear in Dolk [1987] and Lenard

[1986]. Binabsioglu and Jarke [198G] describes the use of knowledge-based techniques to help automate
C

the process of formulating Iinear programming models.

There are s h steps in using any modeling technique: recognition of a problem to be solved, identifying

the soIution technique to be used, formulating the model, linking the model parameters to data values,

solving the model and analysing the results. The research described in this paper is concerned with the

formulation phase of the modeling process. The focus is on linear programming forrnlllations because

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-04

the) :ire a n ini1,ortant class of models in and of themselves and because they are rich in structure. Since

therl 21as been little work in this area, there are few guidelines as to what funct ,~ns can and should be

automated, and virtually no experience in designing and building an effective man/macliine interface. To

tes; our design strategy, we are building a prototype system, LPFORhI, which helps au:smate the

form~ilation process (Ma [1987], hlurphy and Stohr [1986]).

This paper describes our approach to designing the man-machine interface and developing the theory

needed t o support enhanced modeling and analysis. The next section provides an overview of the design

principles underlying the system and a brief description of the system itself. Section 3 describes the

interface by means of a short example. Section 4 contains an overview of the reasoning process. Finally,

Section 5 ex?;ains how various kinds of knowledge (about syntax. semantics, physical transformations and

pre\-iously d :ined templates) are represented and used t o help the formulation process.

2 . Overview of System

To improve the modeling process, we must understand how people formulate and build models and how

the computer can assist this process. Our goals are to reduce the amount of bookkeeping required

formrllate a model and to provide enough flexibility t o enhance the creative processs of model building.

Eow these goals can be achieved is a research question that can be resolved only empirically. However,

we h n v ~ proposed the following design strategy and are incorporating it in a prototype system. There are

three major components: I '

Multiple problem representations ranging from a graphical, non-mathematical representation
to a more traditional algebraic representation and an annotated data dictionary.

e Support for a number of different problem-solving strategies that reduce the complexity of the
formulation process (hierarchical decomposition, reuse of previously defined mode1 components
and a non-procedural, piece-meal approach to problem specification).

Capabilities not available in other software (relational database, consistency checking, mode1
management).

The interface supports several different styles of problem representation. The interplay between these

specification modes and their potential for making the user's task less demanding requires further

research. Some parts of the model Zpecification may be easier t o state in one form and others in another.

For example, we suspect that the overall structure of a problem is most easily visualized and stated

grapl~ically. This will certainly be true of transportation network structures - up to a certain level of

detail. Other requirements may best be stated in terms of previously stored parcels of knowledge in the

form of constraint and problem templates e.g. "this problem involves a product-mix and several

tran*portation sub-problems." hlany requirements are best stated with an activity orientation - for

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-04

exanl,,!t: "we Lave buying, selling a d inventorying activities a t each of our warehouses" (ir, LPFORbl,

three activity icons would be placed in the warehouse block). Still other problem requirements, and in

particular, policy constraints, are best stated with a row orientation e.g. "the total tons of product

produced in each f ~ c t o r y has to be less than certain given limits" or "the unions require that the total

overtime hours of each kind of labor be distributed equitably". LPFORbI supports all 01 these different

clastsses of input although? in its wesent form, row-oriented requirements have to be stated algebraically

for the most part. A simple extension will allow more English-like expressions of policy requirements.

A major objective of the system is to reduce the complexity of large-scale modeling by providing a

number of automated aids and by supporting different formulation strategies. Hierarchical decomposition

is supported by allowing the modeler to depict the problem graphically in layers of increasing detail.

Properties of objects a t higher levels are automatically inherited by lower level objects. This is a top-

down approach t o modeling. A bottom-up approach is also supported. This involves building and testing

component models and then combining them into larger models. LPFORM automates the saving and

reuse of models and parts of models and supports interactive queries about modeIs stored previously in

the riiodel bank. A final strategy? is to allow uses t o define their model requirements as they come to

mind rather than to impose any strict order.

Model buiIt?ers 2150 need support for a number of laborious tasks that must be performed during the

modeling process. First, the LPFORXI system provides a relational database for data retrieval and

manipulation fStohr [1986]). Second, since the formulation process itself is being supported, there are

many opportunities to check the accuracy of the problem statement as i t is being produced rather than

after the final tableau has been generated (kfurphy et a1 [1987]). Finally, the model management facilities

include an on-line model dictionary and query facility and a method for automatically retrieving and

combining nlode1 components to build larger models (Ma [1987]).

LPFORM translases from an iconic problem representation to an algebraic statement of the model and

finally produces the input needed by solvers such as LIhTDO (Schrage [1087]) or Bhf's ?.fPSX (DM

[19751). Figure 2-1 shows the structure of the prototype system.

The LPFORM Interface is being built on an IBM PC/AT class machine using a set of graphics tools

written in the C programming language (EVA [1987]). A prototype of the LPFORhI Analyser has been

implemented in PROLOG (Ma [1987]). The two subsystems are loosely coupled. The Interface sends the

results of the user specification to the Analyser in the form of statements in the LPSPEC language (>la et

a1 [1987]). Each LPSPEC statement captures a single action made by the user in the graphics interface.

The next two sections of the paper describe these two subsystems in more detail.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-04

Model-builder
I
V

1 LPFO,Z- Interface 1

I
LPSPEC Statements

I
V

I * LPFORM Analyser I
I I

I
V

MPS Statements to Optimizer

Figure 2-1: The LPFORM System

3. Graphical Representation

The graphical specification language uses blocks, links and templates to aid in model formulation. A

model 1s represented by a collection of interconnected blocks. A block is a collection of zero, one or more

linear programming activities that are separated in space or time from other activities. Blocks provide a

conwnient way for 3 modeler to decompose the real world. For example, one block may be a template

representing the production of raw materials, a second may be a template representing the conversion of

raw materials into finished products, and a third may represent consumption of finished goods. The Iinks

between blocks represent activities involving space or time transformations. A t5mplate is an LP

submodel that can be simply a co1Iection of constraints or a complete LP. A number of different

s tandar j models - transportation, product-mix, blending and so on - are stored in the mode1 base and can

be retrieved and combined into larger models.

Hierarchical layers are supported by allowing blocks to represent collections of blocks (or sub-blocks)

plus their linkages. For example, a refinery model may be a single block in an initial LP and

subsequentIy decomposed into blocks representing individual refinery units and links representing pipe

connections. Finally, blocks can be replicated in either space of time.

The graphics interface is explained in detail in M a et a1 [1987]. Figure 3-1 shows a sample screen.
F

The screen contains a central work area where graphs can be drawn and three sets of commands. The

conlr~lands in the top border are used foi mzjor operations such as loading and sa~iz.;; th:: prcblem

statement, accessing the database, moving up and down a hierarchical level in the model, and solving the

model to produce the algebraic formulation and then, optionally, the mathematical solution.

The commands in the botton: border, operate on the graphical imsges in the center of the screen. These

Center for Digital Economy Research
Stem School of Business
Working Paper IS-88-04

I ?RCBLEf: ma:<?-and-ship 'EiiSION: 1 LAST UPCXTE. 10/06/27 1 DATA: 1
I LOAD SAYE ?ROB-DATA DATABASE DICTIONARY UP DOVN SOLVE WIT[I
I I MODE: DATA I
I LEVEL: 1 GRAPH: 1 CURRENT OP: LINK-ELOCX I REL: r I
I FACTORIES WAREHOUSES I TAB: t I
I - I PAR: p I
I I X I I I I SET: Cs) I

I 1 I I
RAW-MATS I " 1 I I ------- >I I I I

IUIDGETS I T I
]-------->I-------

I
>I I

DOLWZS I 1 I I ------- >I I I I
I I I I

I I
I STRUCTURE: I
I I
I c-9: [I I
I L-B: --> I
IL-0-1: :--> I
I B-10: =[I= I
I D-I: .:. 1
I D-C: 1-1 I
1 D-R: o=!J 1
I D-T: - I
I D-A: =I- I
I c-n: < I

I I REP: 111 1
I 3ACK [I FORVD [I DELETE [I UNDELETE [I SHOV-DET [I ERASE [I I OPT: -/v I
I LINK TYPE: SPACE[] TIYE[] FLOW VAR: T- I 1

Figure 3-1: Graphic Screen for LPFORLL

allow the user co step backwards and forwards shrough prior model building steps, to delete znd rescore

model components, to show the detail underlying a part of the problem representation, and to erase the

screen.

The commands used for modeling are on the right of the screen. The data commands !n the upper par t
1

of the right-border allow the user to link the symbolic mode1 to the data either interactively during the

terminal session or by specifying links t o existing data in a database. A relational database query

language, which is part of the interface system, is used to perform queries and to manipulate the data.

The commands for defining model structure are in the lower part of the right-hand border and are

associated with icons. To place an object on the screen, users point (with the cursor or another device

such as a light-pen) t o the command and then t o a position on the screen. They are then led through a

series of questions associated with the command or asked to fill in an electronic form to supply necessary

textual information. The model building commands include Create-Block (C-B), Link-Block (L-B), Def-

Activity (D-A) and Call-Model (C-M}. The firsc command creates a block that can be filled with an

activity or a template, the second7inks blocks for which the output of one is an input to another, the

third defines a linear programming activity in terms of its inputs and outputs and the fourth places a

template (submodel) into a block.

Figure 3-1 also shows the graph that would be constructed to define a production and distribution

problcm, "&fake-and-ship", in which widgets, i, are produced a t factories, f, and shipped to warehouses,

w. The modeler places 'block icons' for the factories and warehouses on the computer screen, links the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-04

two t~loc:is to define the transportation activity, and then places an 'activity icon' in the factori~s block.

,k riiose actions are performed, the user is prompted for the names of the blocks, the decision variables (X

and T) and the inputs and outputs of the production activity. Given the problem specification shown in

Figure 3-1 the following algebraic statement will be prol!uced:

hiin: x C S ~ ..Y . + A x t3 C trj,w,sTj,w,i
j f Factories i E JVtdgets j" j"

j E Factories tu E 1.Varcitouses i E Widgets

S t : a X . < b
i E JVidgets j,r,: j,: jt

V r E Raw~t fa ts , j E Factories

- X + c Tj,w,i = 0, V i E Widgets, ,f E Factories
f'i w E 'rvarehouses

Tj,w,i 2 dw,i~
j E Factories

V i E Widgets, w E Warehouses

The remainder of this section explains this process in more detail. LPFORlvf processes a succession of

problern representations: (1) the graphical screen interfaces presented to the user, (2) the LPSPEC

lang~rsge statements, (3) an internal tableau representation, (4) the algebraic statements output to the

bfatrix Generator, and finally, (5) ifie &IPS form of the problem statement as input to the solver. Figures

3-3 through 3-6, which illustrate representations (2) and (31, contain computer outputs from a tesr, run.

The d':sign of the user interface is discussed more fully in Ma et a1 119871. The model is developed using

two alternative approaches. T'ne first uses basic concepts of LPFORM to construct the model from 'first

pricciples'. In other words, the components of the model, blocks, activities, links and so on, are described

by the user in detail as in the illustration above. The second approach to model formulation in~oives the

use of preexisting LP model templates that are "mapped" on t o the Make-and-s&p problem. The

formulations resulting From both approaches are the same.

3.1. First Principles Approach

Figures 3-1 through 3-5 show some of the screens generated by a user defining the hiake-and-ship

problem from first principles. The user decomposes the problem hierarchically into two layers. The first

layer consists of an zbstraction - there are only two blocks representing factories and warehouses and a

single transportation link between them. The second IeveI contains the representation of all the

individual factories and warehouses of the real problem. If it is assumed that all factories can ship to all

warehous~s (or if infeasible links are given infinite costs in the data) there is no need to draw the second,
8-

more detailed, level of the problem. Each actual factory will inherit the properties specified for the

parent "Factories" block, each actual warehouse will inherit the properties of the "Warehouses" block

and the system will implicitly assume a completely connected graph. If these conditions are not true, the

connected graph is automatically generated and the user can delete edges that do not apply.

Alternatively, if the second level graph is complex, as will be the case in many real world applications, the

user can specify an external table that specifies the arcs.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-88-04

Ti:+* first rtep is to define the highest level of blocks (for Factories and JVarehouses) using the

C X - I T E - B L O C K S (c-B) command and to link them using the Li.VK-BLOCKS (L-B) command.

Figure 3-1 shows the screen a t the end of this step.

Nest, the user specifies the production activities in the Factories blocks using the DEF-ACTfiVIES

(D--4,: command. The screen in Figure 3-2 is obtained by pointing to the D-A command on the right of

the screen and then to the Factories block. D--4 is modeled after the activity modeling approach in

D a n t ~ i g [19631, in which an activity set is defined by its inputs, outputs, activity coefficients, and

objective coefficients (profits or costs). After the detailed specification of the activity has been completed,

the network representation is restored, but the specified block is highlighted to indicate that i t is not a

simple demand, supply or transshipment point.

I ACTIVITY SET: vidgets-
I ACTIVITY VAR: x-
I INPUTS:
I raw-mats
I OUTPUTS:

widgets
OEJ. C3=7T : cst
OBJ.ToE :cost
ACT. CSTFTS: a
UPPER BQUNDS: #
 LOW^ a o w s : #

I UNITS . A' . *
I MATB PROP : linear
I ACT. TYPE : product-mix
I

Figure 3-2: Define Production Activity

In the next step, the user specifies the members of the sets represented by Factories, Warehouses,

Widgets and Rawmats using the SET command. The members of the set can be entered interactively

(e.g. "W1, W2, W3."). or by a relational database query (e.g. "SELECT Warehouse-name FROM

Warehouse WHERE Region = USA."). Here, Warehouses is an external relational database table

containing Warehouse-name and Region fields (amongst others).

The final step in defining the ~ r o b l e m is to specify the direction of optimization using the OPT

command in the lower right corner of the screen. Alter this interaction, the user saves the problem (using

the S,-iTvTE: command in the top of the screen) and t5en seiects the SOLVE c o m m a ~ d to generate t.he

LPSPEC statements.

Each of the commands in the graphic interface has a corresponding LPSPEC statement thai capt,ures

the information provided by the user. The LPSPEC statements from the above interaction are listed in

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-04

Figure 3-3 in the order in which they were generated by the user. The LPSPEC command processor can

check for missing o r ambiguous information and request clarification from the user.

>>>>>> Compiling LPSPEC File: mkship.fst <<<<<<

Statement No: 1
create~block(make~and~sbip,~factories,xarehouses])

Statement No: 2 4

linx-block(spaca. explicit, [factories,varehouses] , t)

Statement No: 3
def~transport(vidgets,[factories.~arehouses],1,#)

Statement NO: 4
def-activity (factories, bidgets1 ,x , [ramatsl , [a]. [widgets], cst,
cost,X,X.,#,linear.product-mix)

Statament No: 6
def~sat(factories,[north,south,west])

Statement No: 6
def-set(warehouses, [nvh,svh,w*h])

Statement No: 7
def-set (widgets, Eitl,w2,~31)

Statement NO: 8
def-set (ra3#mats, [rl ,r2,r31)

SCatement No: 9
opt'ixize(min,make~and~ship,cost,spbolic)

Figure 3-3: LPSPEC for First Principles Approach

After compilation of the LPSPEC statements: the inferencing rules are invoked and the algebraic terms

of the model are created and assembled into their proper positions in the algebraic statement by the

LPFORhI Analyser System. Finally, the model is cross-referenced t o its data and t o entries in the data

dictionary.

The internal tableau representation (Figure 3-4) and mode1 data dictionary (Figure 3-51 are the final

result of the reasoning process in LPFORM.

PROBLPI/HODEL/FRAGXENT = make-and-ship.

ROW\COL Xcf, T (f ,~.i) RES
OBJ= +sir; i)cst [f: il +sCf ;w; iltrif ;w; il HIN
Use [f ;rl +S(i>a[f :r;il < +btf;r]
Eal[i;i! +! [f;i! - S C r) l [f ;u ; i! = +O[f;',]
Supply En; i l +SCf)l [f ;~;il > +d[,d;i]

Figure 3-4: InternaI Tableau for Make-and-ship hfodel

The internaI tabIeau can be used to check the formulation. I t has been designed to display

Center for Digital Economy Research
Stem School of Business
Working Paper IS-88-04

simuitaneou~l;; both the algebraic and the tablezu (block) structure of an LP problem. If che problem Is

large, the display is spread across several screens.

In Figure 3-1, there are columns for each decision variable and rows for the objective and each

constraint. The columns and rows are Iabeled by the decision variables and RHS constants together witii

their indices. Summations are identified by an 'S' followed by the list of indices over which the

summation is t o be performed encfosed by braces. Note that the balance equation for widgets has been

correctly generated by the system.

The da ta dictionary for the Make-and-ship model is shown in Figure 3-5. The symbols on the left

appear in the algebraic statement. The roles of some of the constraints have been inferred by the system.

For example, LPFORhI has recognized Factories as a "From-Block" and b as the right-hand-side of a

" constraint.

* Symbol convention of make-and-ship r

Set Reference:
SYMBOL : SET NAMZ: ..
f : Factoriss

Meaning: bloc&, from-block.
r : Rawmats

Meaning: input.
w : Warehouses

Meaning: to-block.
i : Widgets

Meaning: output, commodity.

Activity Reference:
SYMBOL: ACTIVITY (VARIABLE) : ..
X (f . 1) : X(Factor1es ,Widgets)
T i : T(Factories,Warehouses,Widgets)

Coefficient Reference:
SYMBOL : COEFFICIE?? (DATA) :

~ s t [f ; I] : Cst [Factories ,Widgets]
a[f ;r; I] : A[Factories,Rahmats. Widgets]
[f I] : 1 [Factories,Warehouses,Widgetsl

1 [f ;I] : 1 [Factories.Widgets]
o [f ; I] : 0 [Factorles.Widgetsj
b [f ;rj : Rhs?+"factories'rawmats [~actories ,~a~;matsl
d[w;i] : ~hs?*~demand~warehouses~wid~ets[~areho~~es,~ldget~]
tr[f;w;i] : ~bj?*~factories~varehouses~vidgets[Factories,

Warehouses ,Wid*gets]

Figure 3-5: Data Dictionary for Make-and-Ship 1 Iodel

This is the basic representation from which problem statements for different matrix generators can be

constructed in a straight-forward fashion. Note, however, that the problem representation abort! is

Center for Digital Economy Research
Stem School of Business
IVorking Paper 15-88-04

symbolic and contains no ir1:'ormation on data values. This informntion must be included in the

proLlt.m statements sent to the 1natri.u generator. Basically, any data values input interactively by the

user, for example, the elements of the sets in the above example, or the retrieval and data manipulation

comrnands input by the user or inferred by the system, are output verbatim to the nest phase of the

modt:I generation process. More details are given in Ma et a1 [198T].

3.2. Model Mapping Approach

A major goal of LPFORhl is to allow model elements developed in one project to be reused in others.

This facilitates a bottom-up approach t o model building in which submodels are tested and then

conhined into larger modeis. LPFORh1, contains a number of standard templates (for Transportation,

Blending, Product-mix, Process-selection, etc.). Alternatively, users can build their own models using the

first principles approach and store them in the model bank for later use.

Referring t o Figure 3-1, i t is intuitively obvious that the Make-and-ship mode1 consists of J. product-mix

problem and a transportation problem. This approach is implemented in LPFORM using the

CALL-;LIODEL (C-M) command. Figure 3-6 shows the formulation of the same problem using the rnodel

mapping approach.

The C->I command "maps" the names of indices, variables and data coefficients in the stored template

into those that will be used in the new model. Thus, in this example, "from-block", t~io-blockH, and
f '

* commodityu become, respectively, "factories", "warehouses" and "widgets". The standard templates

are defined to be as general as possible. If the new model has no need for some of the indices in the

stored template, they can be dropped. Conversely, the user can add indices to a model by using the

Replicate command (see Ma et al [198T]).

4. Inference Process for Generating LP Models

This section of the paper explains how statements such a s those shown in Figures 3-3 and 3-6 are

con~er ted into an algebraic problem statement. To ensure a robust and widely applicable approach,

L P F O R q focuses on properties that are valid across all LP's and brings in more subject-specific

information only as needed. The properties of LPs can be divided into syntactic, semantic and domain-

specific categories. Syntactic information consists of symbols and the rules that combine the symbols into

a model. Semantic information incorporates knowledge about the physical entitics being represented. In

order to provide the maximum generality, we concentrate on the physical principles that underlie all

linear programs. These include the properties of resources, commodities and networks, and ideas from the

field of dimensional analysis (Kurth 119721). Domain-specific information provides individual instances of

Center for Digital Economy Research
Stem School of Business
Working Paper IS-88-04

>>>>>> Compiliog L?SPEC File: mkship.map <<<<<<

Statement No: L
create~block~make~ship,[factories,warehouses])

Stateaent No: 2
def-set(factories, [north,south,vest])

Statement No: 3
def set~warehousss. [nvh,s~h;dwh]) -
Statement NO: 4
def-set(vidgets, [wi , ~ 2 , v 3 1)

Stzternent No: 5
def-set(ra.mats, [rl ,r2,r31)

Statement No: 6
call-model(transportation.make-sh:p.

~from~block,to~block,commodl;y],[factories,uarehouses,~idgetsl.
Cf low1 . Ct3 ,
[gain-or-loss1 . C11)

Statement No: 7
call~model(prodac%~~ix,make~ship.

[block, Input ,output] . [factories, ramats , widgets] .
Evolumel . Cxl .
[tech-coef ,available-input] , [a, b])

Statement No: 8
optimizeCmin.make~ship,cost,spbolic)

Figure 3-5: LPSPEC Statements for Model-Mapping Approach..
1'

the general concepts and information on special requirements associated with these instances. For

example, in a job shop application, a lathe belongs to the class "machines", which is a subclass of

*resources" at the most general level. Associated with the class of machines may be policies and

constraints that can be automatically incorporated in the model by the system. Thus, domain-specific

knowledge enhances the power of the system in aiding the formulation process. Our research to date

concentrates on syntactic and semantic information, developing general principles applicable to all model

building areas. The use of domain related knowledge in formulating LPs is described in Binbasioglu and

Jarke [1986].

4.1. The Reasoning Process
A-

The reasoning process has the following steps:

I. The user specifies the problem using the graphic interface; LPSPEC statements are generated.

3. The LPFOR31 Analyser parses the internal representation and performs some consistency
checks.

3. The network structure of the probIem is anaiysed; if the problem is a pure network, the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-04

appropriate model template is invoked.

4. If there are non-network components (e.g. producticn activities associated with one or Kore
blocks), the appropriate constraint fragments and templates are invoked to generate she
"model pieces".

5 . The mode! pieces are assembled into their positions in the algebraic representation; consistency
checks are performed, redundant pieces are discarded and missing pieces are added.

6. The internal representation of the algebraic statement and the model data dictionary are
generated.

7. The data coefficients in the problem statement are associated with values stored in external
tables and relational databases.

8. The input to the matrix generator is generated.

9. The output of the tableau generator is fed to the solver and the problem is solved.

10. A report-writer and analysis system is invoked to process the results of the LP run.

4.3. Generation of the Model Components

Section 3 described the various modes of input available to the user. Much of the expertese embodied in

the system consists of rules for translating from inputs given in these different forms into the algebraic

components of the model. The basic components in the internal representation of LP constraints are

"mode! pieces" which are algebraic terms with their associated summations. Larger hiodel components

such as constraints, subproblems and complete LP problems are simply collections of model pieces. This

approach allows great flexibility in generating LPs and in combining tempIates of previousIy stored

models into larger models.

The various objects in the user specification each generate one or more model pieces from more

fundsmental templates stored in the system's model base. Thus, an inventory icon results in a set of

pieces embodying the standard inventory relationships, while a link between blocks contributes pieces

corresponding to a transportation problem and so on. The model pieces comprising the standard

component types are stored in a general form so that they can be tailored to fit the particular problem;

thus, indices can be added or d roppd as needed.

For example, in the graphical representation in Figure 3-1, "Warehouses" is an "exogenous demand"

block (a block that has inputs but no outputs or internal activities). In the first principles approach, the

following constraint fragment is automatically generated: > d .. This consists of one "piece" (the
w, ;

ineqi~ality and the coefficient). Similarly, the Def-activity command in Figure 3-3 will generate a

consirairit fragment with two pieces:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-04

C 'j,r,?i,,i 5 6j,i V r E Rawhlats, E Factories
i E Widget a

major area for research involves the discovery of appropriate standard components and the rules by

which they can be generated from the user's input and synthesized into the compIete LP.

4.3. Problem Synthesis Using Syntactic Information

We are developing rules for combining model pieces into a complete LP using syntactic information

consisting primarily of index and variable names Murphy et a1 [1987]). This is analogous to solving a

jigsaw puzzle, and we call the mechanism in Step 5 above, the "Puzzler".

We define an index set to be a collection of symbols denoting the indices (subscripts) associated with a

variable or data coefficient. Each individual index identifies a 'dimension' of the data or variable and

takes on values within some well-defined domain. For a given constraint and variable with coefficients in

that constraint, let:

V= {indices on the variable)
C = {indices on the coefficient of the variable)
S = {indices that are summed over their whole domain)
P = {indices that are summed over a subset of their domain)
& = {indices of subsets over which partial sums are taken)
R = {indices that identify the individual constraints)

To illustrate these definitions, consider the following example:

then V = {i,j,k), C = {i,j,k), S = {i), P = {j), Q = {i), R = {k).

In a properly specified LP where all indices are explicit:

(1) R=(VUCUQ)-(SUP).

This relationship helps LPFORM: (1) infer the complete problem from its component parts, (2) adjust

the model when a part of the model is replicated in some dimension such as place or time, and (3) check
F

the correctness of the finaI formulation.

Each model piece has row and column "labels". The row label for a piece includes its row index set

(computed from the right-hand side of (1)) plus semantic information on the meaning of the indices and

the physicaI units associated with the activity. The column label for a left-hand side piece consists of the

variable name, the variable index set, V, and semantic information as for the row label. The output from

Center for Digital Economy Research
Stem School of Business
Working Paper IS-88-04

Steps 3 and 1, above, is a set of n ~ ~ d e l pieces. Ln Step 5 the Puzzler sesrches th;r;ug!l these pieces to

deter::line the unique row and column labels. This establishes the o~e ra l l dimensions of the tableau.

Kest: the pieces are assigned to :he tableau based on their row and column labels. RedunCsnt pieces are

discarded and, where possible, missing pieces are automatically generated as described belov;. Finaliy, the

Puzzler performs some consistency checks - for example, the body of the tableau must h w e at least one

piece asJigned t o every row and ~plumn. The Puzzler can also warn the user if the modei contains

disjoirlc subproblems.

To illustrate the process for the hlnke-and-ship problem, consider the tableau representation in Figure

Column Label: [X,f . i l r T , f , w , i l
Row Label :

RHS

OB J: T z 'L, catJ,Fyf,i + z E x trI,w,,xJ ,w,i
f f w i

lf7rl 5 ",.,;Yi.; <- bf,.

~r,ii - x C TJ, w, i -
J,i -I-

- 0
w

Figure 4-1: Illustration of Jigsaw Puzzle Reasoning

The first constraint is generated by the product-mix sub-problem and the third by the transportation

sub-problem. In the second constraint, which represents the balance equation for widgets, the second

tern1 comes from the Transporta~ion sub-problem. The first term in this constraint is supplied

automatically by LPF0121"vf. The rule used to do this is t o search For matching column and row index sets

and to suppiy a diagonal sub-matrix if no term is present in the corresponding position in the tableau. In

this case, -1's are placed in the tableau.

The success of this process depends on the ability to distinguish all the rows and columns of the tableau.

The column and row labels contain information in addition t o the index sets because the latter do not

necessarily contain enough information to ensure uniqueness. Some initial theoreticaI resuits concerning

what can and cannot be done with index information are given in Murphy et a1 [198T].
C

5 . Knowledge Representation

Knowledge representation affects both efficiency and functionality. Functionally, the system should: (1)

provide a source of knowledge about the models in the model base and their structure. (2) provide

guidance t o users in the selection and composition of components of larger models, (3) facilitate the

acquisition of domain specific knowledge as outlined below.

Center for Digital Economy Research
Stem School of Business
Working Paper 19-88-04

Tile basic cntities of linear programs (activir;?~. constraints, resources, commodi.,ies) and other

organizationzl entities (blocks, links, and submodels) are represented by a net-xork of frames. A frame is

a stereotyped representation of some situation which is adjusted to a current situz~ion by changing

certain details (Winston 119841). As a data structure, a frame consists of "slots" containing the

descriptive attributes of the object, default values and or procedures that should be invoked if needed,

and relationships t o other objects? Thus, a frame for a complete LP contains slots with information on

the objective, activities and constraints (a product-mix model, has slots noting that the objective is to

rnasiruize profit, the activities are production levels of different products, and the constraints are resource

limits). In our context, another slot points to the model pieces associated with the template.

h discussed shove, part of the knowledge contained in LPFORLI is in the form of rules to generate the

model pieces and to combine them into a problem statement. Other types of knowledge can be used, not

onIy to help translate [iom the user input t o the final algebraic statement, but also to provide more

intelligent support to the mode1 builder. Three important sources of knowledge are the types of physical

trai~sformation associated with activities, template models and domain-specific information.

Knowledge Concerning Transformations

Linear programming models involve three basic transformations: transformations in place, in time and

in form. X transformation in form converts input "whats" into output "whats" while leaving place afid

time identicaI. PIace and time transformations make analogous adjustments to *where1;,and "when". ,-Is

shown in Figure 5-1, a transformation in form has indices corresponding to inputs and outputs, indices for

"where" and "when" and an added index for "how" if there are alternative approaches. Transformations

in $ace are distinguished by having indices on 'whac", "when" and "how", plus "from whereN and "to

where". Transformations in time have indices on "what", "where" and "how1 and "from when" and

"to when". In many cases, these indices are implicit rather than explicit - for example, production

activities are usua1Iy index~d by their associated outputs i.e. only on the "to what" dimension.

Compound transformations involving more than one of the fundamental transformations are possible.

PLACE FORM TIME

From where Where Where
To where

#-

What From what What
To what

m e n When From vhen
To when

How H o v Hoii

Figure 5-1: Index Roles in Transformations

Center for Digital Economy Research
Stem School of Business
Working Paper IS-88-04

The d a ~ ; t structure used to represent the index set for each var:. ',le and coeffici2nt has slots for each of

the roles in Figure 5-1. Information on the meaning of indices allows LPFORhf to improve on the

syntactic rules for composing LPr and to detect missing model pieces in some circumstances.

Each template h a j an associated frame with slots recording its usage in different models and pointing to

its component model pieces. As discussed above, users can add to the model base at any time. h query

faciiicq- allows users to browse through the the model base. It is possible. for example, to retrieve all

models using a given resource or all with a common activity. A procedure to generate a precedence map

of all models hsving common inputs and outputs, is being implemented. \Ve are currentIy studying the

appropriate set of standard templates to be included in the model base.

Domain-Specific Knowledge

Domain-specific knowledge can be used to make the system more powerful in particular applications.

First, the data dictionary of general concepts (activities, resources, etc.) can be extended to include more

term2 thereby allowing users to state their problems in more familiar language. Thus, labor can be

reIated t o the general concept of resource by an "is-a" relationship and specific classes of labor to the

more generic category, labor, and so on.

Second, the different classes of entitities can be associated with information that either must, or might,

be appiicable to particular models. Thus, with labor, any union restrictions must be embodied in

constraints in the model, while various optional work force smoothing relationships might be incorporated

a t the user's discretion. This will allow the system to operate as an expert assistarc sugger;ting

possibiIities for consideration by the modeler.

Finally, local terms can be related to an organization's data base. For example, each category of labor

could be linked to tables containing current wage rates, standard piece rates and so on. This would allow
F

the system t o automaticaily generate database retrieval statements LO link the symbolic statement of the

problem to current data values.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-88-04

6. Concfus ion

Our strategy has been to develop a general approach t o model formulation that is applicable to all LPs.

We have done this by concentrating on syntactic and semantic properties. More powerful systems.

suitable for non-expert users as well as expert users, will probably require the acquisition and use of

domain-specific knowledge. C

The prototype system is now operationctl and is able to solve a range of problems. There are a number

of interesting questions concerning the approach that car1 only be resolved through usage. The most

important of these is whether the approach outlined in this paper will, in fact, improve productivity and

lead to higher quality models. Other questions concern the effectiveness of the graphic interface in

reducinr; the cognitive load on the modeler and improving che quality of the models produced.

In the near future, we intend to test the LPFORhI system and to improve its capability in the linear

programming domain. After that, we will inyestigate the possibility of applying a similar approach to

other modeling situations.

References

1. 0. Balii (1985), "Requirements for Model Development Environments," Technical Report
CS83023-R, Department of Computer Science, VPIBSU, Blacksburg, VA.

2 . M. Binbasioglu (1986), HKnowledge Based Modelling and Support for Linear Programming,"
Ph . D. Dissertation, New York University. t .

3. M. Binbasiogiu and M. Jarke (1986), "Domain-Specific DSS Tools for Knowledge-based Model
Building, " Decision Support Systems, vol 2, June- July.

4. J. Bisschop and A. Meeraus (1982f, "On the Development of a General ,Algebraic Modeling
System in a Strategic Planning Environment," ~%fath. Bog. Study 20, 1-39.

5 . R. L. Breitman and J. &I. Lucas (198T), "PLAWT: A Modeling System for Business
Planning", fnterfices, Vol 17, No 1, Jan-Feb, 1087.

6. G. B. Dantzig (1963), Linear Programming and Extensions, Princeton University Press,
Princeton, NJ.

7. D. Dolk (1987), "hlodel hianagement Systems: .A Perspective," presented a t N*ATO/,GI
Conference "Mathematical Models for Decision Support", Val DJIsere, France.

8. EVA QTVIS/GDB (l987), User hlanuai, Expert \'ision Associates, Cuper t in~ , Caiifoi-nia.

9. R. Fourer, D. M. Gay and B. W. Kernighan (1987), "XMPL: A Xtathematical Programming
Language," XT&T Bell Laboratories, Murray Hill, 3. J.

10. A. hf. Geoffrion (1987), "itin Introduction to Structured Modeling," hlanagement Science, vol

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-04

33, no. 3, pp. 5-17-585.

11. 11. J. Greenberg (1983), "A Functional Description of itU;liyZE: A Computer-&sisted
Analysis System for Linear Programming hlodels." ACrbl' TT3itlS 9, 18-56.

1.7. I]3h\.t 3Iathemstical Programming Extended '37G(XfF'SX/370). Program Reference XLanzal,
SH19-?O95. IBh1 Corporation, Paris France, 1975.

*
13. E. Johnson (1987), "Direo:ions for M.~thematical Programming Software and Integer

Pro.gramming Reformulations, " presented a t NATO/ASI Conference "hTathematicai Models
for Decision Support", Val D'lsere, France.

1-i. R. Kurth (1972)~ Dimensional Analysis and Group Theory in Astrophysics, Pergamon.

13. &I. Lenard (1986), "Representing Models as Data," Journal of hfanagement In formation
Systems, vol 2, no 4 pp. 36--:Y.

16. P. Ma fl987j, "h Intelligent Approach t o Formulating Linear Programs", Ph.D.
Dissertation, New York University.

17. P. Ma, F. H. 3lurphy and E. A. Stohr (1986), "The Science and Art of Foi.mulating Linear
Programs," 1~ti'A Journal of ALfathematics in hfanagement, (to appear).

18, P. bh, F. 3. Murphy and E. A. Stohr (1987), "Design oi a Graphics Interface for Linzar
Programming Models," Working Paper, Center for Resesrch in Information Syscems,
Graduat- School of Business Administration, New York University.

19. F. H. Murphy and E. A. Stohr (1986), "An Inte!ligenc System for Formulating Linear
Programs," Decision Support Systems, Vol 2, No 1, Jan-Feb, 1986.

$ *

20. F. H. hlurphy, E. A. Stohr and P. Ma (19871, "Composition Rules for Building Linear
Programming Models from Component Models," Working Paper, Center for Research in
Information Systems, Graduate School of Business Administration, New Yor"; University.

21. R. E. Nance and 0. Balci (1983), "The Objectives and Requirements of hiode1 Management,"
Technical Report CS8302&R, WI&SU, Blacksburg, VA.

2.7. L. Schrage (1987), Linear, Integer and Quadratic Programming with LIIVDO, Scientific
Press, Palo Alto.

23. E. A. Stohr (1985), "A Xlathematical Programming Generator System" Working Paper.
Center for Research in Information Systems, Graduate School of Business Administration,
Xew York University.

A-

2.1. J. S. 'vCTelch (1987), "P.'L'I,I--A Practitioner's Approach to hiodeling," rCfanagement Science, vol
33, no 5 pp 610-625.

25. P. H. Winston (1984), Artificial Intelligence, Addison-Wesley, Boston, XLX.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-04

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-04

