
OBJECTS IN TIME

by

James Clifford

and

Albert Croker

Information Systems Area
Leonard N. Stern School of Business

New York University
90 Trinity Place

New York, NY 10006

October 1988

Center for Research on Information Systems
Information Systems Area

Leonard N. Stern. School of Business
New York University

Working Paper Series

CRIS #I90
GBA #88-99

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-99

Objects in Time

James Cliford and Albert Croker

Information Systems Area
Graduate School of Business Administration

New York University
New York, New York 10006

Abstract

Two recent lines of database research. proceeding independently, have been
concerned with providing a richer, more intuitive view of information at the user
level. Historical database research has focused on ways to provide users with a
view of information anchored and evolving in the temporal dimension. Object-
oriented database research focuses on encapsulating both the structure and the
behavior of the objects that users intend to model. In this paper we explore how
these two lines of research might be brought together. providing to the user the
representation and management of objects in tzme.

I. Introduction

Various proposals have been made for incorporating a temporal component into a database
system [BADFVS2,McI<SG,TAIS7]. Usually these proposals have been defined as extensions
to the relational data model. In this paper we discuss the modeling of historical data in the
context of an object-oriented data model.

Most ob ject-oriented systems (see, for example, [Di t 861 and [MSOPSG]) owe their origins
to the programming language Smalltalk [GRS3]. Objects, the basic data constructs used in
these systems, have proven to be both a powerful and flexible modeling construct. The power
of objects arise in part from their ability to encapsulate both structure and behavior. The
flexibility with which objects can be used as modeling constructs is due to the sets of data
types that can be combined to define objects, the ability to nest the structure of objects. and
the ability to encapsulate operations or methods on these objects in the manner of abstract
data types. Objects are defined as consisting of values that are themselves objects; this
nesting terminates with a set of primitive objects. such as integers. reals, and characters.
that are built into the system. Thus an object that is used to represent an employee entity
can include a component, say salary, whose value is an object representing the salary of that
employee.

Object-oriented databases, like other types of databases, are used to model some aspect
of the world. Each relevant entity and relationship in the modeled world is represented
as an object in the database. Over time the various entities and relationships modeled by

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-99

the system may change. For example, when modelling employee entities, it is likely that
employees may change departments, and that their salaries can be expected to change from
time to time.

The traditional view of a database is that its state reflects that of the world at some
specific, real or imaginary, instance of time; this instance being determined by the last
update t o the database. With each update the previous state of the database is lost. In
contrast to this view, the state of a historical database models the world as it exists and has
existed over some specified period of time [CkV83]. If the equating of database objects with
entities and relationships is to be retained in the context of an object-oriented database.
then i t is necessary for these objects to model the evolution of these real world objects over
time.

In this paper we show how database objects can be defined in such a way that they can
be viewed meaningfully in the context of a historical database. We call objects that are
defined in this way historical objects. In addition to defining historical objects we also
address various issues relating to their use in representing historical data. Pl;e do not present
a formal model for integrating a treatment of time with a treatment of data as objects; to do
so would be premature. Rather we discuss. from an intuitive point of view. those temporal
aspects and properties which we believe ought to be captured by any system intended to
represent our intuitive notions of "objects" and how they exist in time.

In the remainder of this paper we define what we mean by a historical object. and discuss
several issues related both to the structure and to the manipulation of such historica1 objects.

2 . Historical Objects

2.1. Introduction

Like the entities and relationships that they model, an object is characterized by some set
of properties. We shall refer to these properties as attributes.' For example, if an object
O corresponds to some employee, say Karen, then the attributes of 0: iV;1iVIE, SALARY,
DEPT, and IWGR correspond to similarly named properties of the entity that is Karen.

The notion of a key is not inherent to objects. It is possible for two objects of the same
type to denote the same values for their corresponding attributes. In lieu of the standard
notion of a key, objects are distinguished by an essence. (We discuss object essences in the
next section.)

Under the traditional view of a database an attribute of an object denotes a single value,
that is for consistency also viewed as an object. The attribute S.4LrlRY in the object
representing the employee Karen denotes what we will assume to be Iiaren's current salary.

lThe equivalent term used in Smalltaik is i n s t ance variable.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-88-99

The other attributes in this object are interpreted similarly.

However, in the context of a historical database, if, for example, Karen has been employed
and therefore relevant to the world being modeled by the database since "January 1, 1980",
then it becomes reasonable to query the database about her salary on any day during hes
employment. Thus, unless some specific instance in time is understood or otherwise inferred,
the denotation of "Karen's Salary" can be viewed as being not a single value, but all of her
salaries during the time she was employed, that is, her salary history.

In order to accommodate this view we define a historical object as an object whose
attributes denote functional values. These functions, which, again for consistency, are them-
selves objects, define a correspondence between objects of type time to objects of the appro-
priate type, for example objects of type salary, department, or name.

Often an entity or relationship is relevant to a database for only some restricted periocl
of time. The period of time for which a historical object models an entity or relationship is
called the lifespan of that object. The domain of the function denoted by an attribute of
an object is restricted to exactly those times in the lifespan of that object. (If modifications
to a database scheme are to be allowed then it may be desirable to change - for instance, to
extend - the definition of an object lifespan. However, this topic is beyond the scope of this
paper. [CCS'i] presents an extended relational model with tuple and schema lifespans.)

2.2. Object Identity

A major issue when dealing with objects is the issue of object identity - how are we to
distinguish different objects. Indeed this issue is not a new one. In earlier data models the
notion of a key was used to so distinguish different records or tuples. In Iogic the issue of the
"essence" of something addresses the same idea - what property of an object is essential to its
being itself, so that anything with that property must be that thing, and anything without
that property cannot be that thing. (The issues of object identity, existence, cross-world
identification, and object counterparts have a long history in the philosophical literature,
e.g. [Lew6S7Mon74b,KriSO] .)

Chen and Warren [CWS8] are specifically concerned with this issue; our approach differs
considerably from theirs by the introduction of the notion of an essence. We believe that each
object must have an essence, which is a time-invariant identifier shared by no other object.
One refers to an object by means of its essence. If two essences are equal then by definition
they refer to the same object. Component properties of objects - such as an attribute
SALARY- have as their value functions from time objects (referred to by their essence)
to some other type of object (referred to by its essence). They are, in the terminology of
logic, intensions. ([Mon74a,Ga175]). The essence of these functions, for example a SALARY
function, are in general not directly known to the user - instead they would be referred to
indirectly as the value of some property of a more essential object, say li'aren, whose essence
the user would know.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-99

Now the issue addressed by Chen and Warren is how to tell whether two partially-specified
intensions are 'the same. We would contend that two intensions are the same if and only if
they are the value of some nonessential property of the same essential object; otherwise. even
though extensionally they may be equal (i.e., have the same value for every time) they are
not equal. However if these two intensions are created as different by the user, they would
have two different essences and thus, though as functions they might be extensionally equal,
as objects they are not the same. Thus John's SALARY is never Mary's SALARY. though
they might always be earning the same money.

These issues motivate the following definitions:

1, It is essential that a system be able to maintain the integrity of object identity. Since
user-defined keys are notoriously not time-invariant, for example, even people's social
security numbers have had to be changed, our system will need to create and manage
time-invariant object identifiers. We call such an identifier an essence.

2. Equally relevant to the management of objects over time is the maintenance of when
that object existed. We call this information the lifespan of the object. Since an
object may have temporally disjoint periods of existence, a lifespan consists of a set of
disjoint intervals of time; such an intervaI is calIed an incarnation.

3. If E is an essence, we denote the lifespan of E as E.1.

4. The essence of each primitive object is simply its name, and the lifespan of each
~rimitive object is {[-a, +cQ]}.

2.3. Object Structure

Various proposals for representing data as objects have incorporated different constructors
for defining complex object types (or classes) from the primitive types. Common esamples
of these constructors are record construction and set (or collection) construction. \Vi thou t
examining any particular such constructor, let us assume that some complex object type 0
is defined in terms of n simpler object types. I.e.,

where the symbol "+" is to be interpreted generically as any such constructor. When
instantiated, a complex object has its own distinct essence. Any of the operations on objects
can of course be applied to complex objects.

Note, however, that when a new object E of type 0 is created, consisting of the n
component objects El, E2,. . . , E n of types 01, 02, . . . ,On, respectively, the constraint

must always be satisfied; an object can exist only while its components exist.

4

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-99

Relationships, too. are complex objects. However objects can certainly exist in time i r l -

dependently of the relationships they form. Thus the following restriction should be irnposecl
upon relationships:

E.Z c_ E1.En E,.I n . . . n E,.Z

Relationships pose another interesting situation where it is perhaps best to leave the
choice of representation up to the user. Consider, for example, the two marriages of Elizabeth
Tavlor and Richard Burton. Are these two distinct objects (with, therefore, two essences) or
are they two incarnations of the same marriage? Either representation should be possible.

Note that as a consequence of this: the following holds:

[Ea = El + E2 -!- . . . + En] A [Eo = El + E2 + . . . + En] +t [E, = Ei7]

i.e., not only can there be different relationships defined in terms of the same underl~.ing
objects. but there can even be different instances of the same relationship between the same
objects.

3. Manipulating Historical 0 b ject s

The entity or relationship modeled by an object is assumed to be relevant to the clatabase
during certain periods of time. These time periods are reflected in the incarnations of tile
object's lifespan. Each incarnation begins with a time when the object becomes newly
"existing" from the perspective of the application, and terminates with the execution of nn

operation that "kills" that existence.

An object is brought into being with the operation2 C R E A T E . The method used to
define the C R E A T E operation. if so written. could also define the initial values of the
attributes of the instantiated object. CREATE(X, B) returns a new essence E which

. C T - .
uniquely identifies a new object of type X; the lifespan E.I is {[B. now) j. Moreover. i r ,i is
a compound object type. say X = + X2 + . . . i- lL then n essences El i E? -i- . . . -+ E7;
are also generated with the same lifespan as E.I.

The execution of a KILL operation, implemented with the appropriate object method.
terminates the most recently opened incarnation in the referenced object's lifespan.
KILL(E,D) finds the object with essence E and. assuming it has lifespan {[B1, Dl], [B2, D,] :
. . .. , [B,, now)}, updates its lifespan to {[Bt, Dl], [B2, DZ], . . ., [B,, Dl). If E is a com-
pound object of type X and X = Xl + -Y2 + . . . -+ X, then the lifespans of the n essences
El + E2 + . . . + En are also updated.

After an object has been KXLLed (but not removed) from a database it may neces-
sary to R E I N C A R N A T E it. For example, an employee may subsequently he reilirecl.
The affect of a reincarnation of an object is to extend its lifespan by beginning a new

'The term used in Smalltalk for an operation is message.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-99

incarnation. (This incarnation will be terminated by the next subsequent KILL oper-
ation that is executed on the object.) Only objects that have been ~reviousl?; CRE-
ATEd can be REINCARNATEd. R E I N C A R N A T E (8 , B) finds the object with essence
E and. assuming it has lifespan ([B1,D1],[B2,D2], . . . , I B,, Dl), updates its lifespan to
([B1, Dl], [B2, D2], . . . , [Bn7Dn], [B.now)). If E is a compound object of type S and S =
XI +,G + . . . -+ ,Y, then the lifespans of the n essences El $ E2 t . . . + E, are also upciateti.

It may sometimes be necessary to merge or I D E N T I F Y two descriptions into one
because two supposedly distinct objects are now realized to be in fact the same object.
IDENTIFY (El , E2) finds the objects with essences El and E2 and. assuming that the ob-
ject descriptions are .'compatible"3, creates a new object with the merged descriptions of El
and E2 and gives it the essence El; the essence E2 is no longer useable except as an alias for

El ;

It may be necessary, though perhaps forbidden in certain highly sensitive applications. to
delete or D E S T R O Y permanently any trace of an object from the system. DESTROY i Ei
finds the object with essence E and. removes it from the system. The essence E is tilereafter
and forever unusable. Once DESTROYed an object cannot be REINCARNATEd.

.4ccess to the attributes of historical objects is achieved in the conventional way, througii
the specification and invocation of the appropriate method. However, because of the struc-
ture of historical objects the value of an accessed attribute may have to be manip~liateti
further.

Assume that the expression 0 A is used to invoke the method that retrieves t he value
denoted by attribute A of object 0. When the method invoked is that of an historical oi>ject
then the object that is accessed is a function. For example, if KXREN is the name of tile
historical object modeling the empioyee Karen. then KXREN salary returns the function
that represents Karen's salary history, and thus associates a salary with each time in the
lifespan of Karen.

Since the fi~nctions denoted by the attributes of historical objects are themselves objects
thev can, and do, have methods associated with them. In particular, we assume that eacii
such function object 3 includes a method that when invoked by the expression 3 at: t z n e
returns the value that 3 associates with the time denoted by t ime . The expression K X R E N
salary at: "March 1, 1981" returns the value of Karen's salary on the specified date.

Similarly attribute updates are accomplished using an expression of the form (3 ,1 at:
t i m e put: value. This expression updates object (3 by extending the function denoted by
attribute A so that it associates with t i m e the value specified by value.

3What this means is an issue in its own right; see [CCSS] for further details on this issue.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-99

4. Conclusion

We believe that it is inconceivable to successfully develop an object-oriented model of data
without providing for the modelling of the temporal dimension of objects. This paper repre-
sents a modest beginning toward amalgamating these two lines of research, object-orientation
and historical data modelling, thereby providing users with the ability to model objects in
time.

References

[BADWS2] A. Bolour, T. L. Anderson, L. J. Deketser, and H. K. T Wong. The role of time
in information processing: a survey- ACM SIGLWOD Record, 12(3):2S-4s. April
1982.

[CCS'i] J. Clifford and A. Croker. The historical relational data model (hrdrn) and
algebra based on lifespans. In Proc. Third International Conference on Data
Engineering, pages 528-537, IEEE, Los Xngeles, February 1987.

[CWSSJ J. Clifford and D.S. Warren. Formal semantics for time in databases. AC;"\l
Trans. on Database Systems, 6(2):214-254, June 1983.

[CWSS] W. Chen and D.S. Warren. Objects as Intensions. Technical Report, Dept. of'
Computer Science, SUNY at Stony Brook, 1955.

[DitS6] Proc. International Workshop on Object-Oriented Databases. Pacific Grove, C X .
September 1986.

{Gal751 D. Gallin. Intensional and Higher-Order illodal Logic. North-Holland, Amster-
dam, 1975.

[GRS3] A. Goldberg and D. Robson. Smalltalk-80: The Language and its Impiernenta-
tion. Addison-Wesley, Reading, MA, 1983.

[KriSO] S. Kripke. Naming and Necessity. Harvard University Press, Cambridge, MA,
1980.

[Lew68] D. Lewis. Counterpart theory and quantified modal logic. The Journal of Phi-
losophy, 65(5):113-126, March 1968.

[McK86] E. McKenzie. Bibliography: temporal databases. il CiVI SIGlkfOD Record,
15(4):40-52, December 1986.

[Mon74a] R. Montague. Formal Philosophy: Selected Papers of Richard ~Vfontague. Yale
University Press, New Haven, 1974.

Center for Digital Economy Research
S t em School o f Business
Working Paper 19-88-99

[i'donT.l.b] R. Montague. On the il'ature of Certain Philosophical Entities, pages 148-187.
Yale University Press, New Haven, 1974.

[MSOPSG] D. Maier, J. Stein, A. Otis, and A. Purdy. Development of an object-oriented
dbms. In Proc. of the Conference on Object-Oriented Programming Systems,
Languages and Applications, pages 472-482, September- October 1986.

[TAI87] AFCET. Temporal Aspects in Infomation Systems, May 1987.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-88-99

