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Abstract 
Most large systems development efforts proceed in a top-down fashion where initial 

specifications and requirements are incorporated into a high-level design, followed by 
programs based on this design. However, a major part of the software life-cycle effort is 
devoted to maintenance. While several existing methodologies aid in the initial phases of 
requirements and specification, they have proven to be of little value for maintenance. 
Changes in user requirements are often translated directly to the level of code, divorcing 
i t  from the high level design it was based on. After a few such changes, the programs 
may not correspond to any formal high-ievel design, making subsequent maintenance 
difficult. We argue that maintenance must be based on the knowledge used in 
synthesizing the high-level design. This requires a development environment where the 
knowledge about high-level designs is formally represented, and raises the question 
about how this knowledge will be acquired by the support environment in the first 
place. In this paper, we present a model that enables the support environment to acquire 
design knowledge through "learning by observation" of a designer engaged in  specifying 
a high-level design. The knowledge that the learning system begins with is a generic 
object for expressing design decisions. Based on the input provided by the designer, and 
a limited interactive querying process, it constructs and continuously refines a 
taxonomic classification of appiication-specific knowledge and rules a t  an appropriate 
level of generality that capture the rationale of the design. This knowledge can be used 
subsequently for maintaining system designs and recognizing design situations similar to 
the ones i t  has knowledge about. 

KEYWORDS: Knowledge-based Systems Maintenance, Software life cycle, 
knowledge acquisition and learning, object-oriented design. 
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1. The Systems Maintenance ProbIern 

Systems maintenance refers to changes that  have to be made to computer programs after they 

have been delivered to a user. While there exist several well-established techniques that help in 

. structuring the initial specification acd high-level logical design, they prove to be of marginal value 

for maintenance. Fundamentally, this is because much of the semantics of the application domain 

are implicit in the primitives/structures that  constitute the initial design supported by these 

techniques. This has two related consequences. First, the ramifications of specifications or 

requirements changes are not readily apparent a t  the design and hence the program level, and must 

be assessed completely by the designer. This requires the designer to  alternate continua1Iy between 

the high level design and the low level programs, an activity which is cumbersome and prone to 

error. A consequence of this situation is that  i t  encourages changes to be made directly a t  the level 

of code, thereby throwing the conceptual design and programs out of sync, rendering the design 

useIess for purposes of maintenance. Over time, the relationship between the design and code can 

loosen considerably, placing a heavy burden on the designer to  remember the associations between 

the application domain and the code; if this individual's involvement with the system ceases, 

making changes can become extremely difficult. 

Our position is that while maintenance ultimately involves managing changes a t  the level of code, 

i t  can be greatly facilitated if we first attend to maintaining accurate higher level design 

specifications on which the programs are based. Coupling maintenance to design requires a 

development environment (henceforth environment) where application-specific knowledge about 

dependencies among various parts of the high-level design and the general bases for them can be 

accumuIated in an appropriate form and used to reason about subsequent design changes. An 

important component of such an environment is a learning or knowledge acquisition mechanism 

that  can extract the general bases for dependencies among design decisions expressed by the 

designer/analyst. This application-specific knowledge can be used subsequently in maintaining an 

increasingly complex software design, and in detecting similarities between new design situations 

and ones i t  has already encountered. 

In this paper we present an implemented model for knowledg+acquisition/learning that is part of 

the larger environment we are developing for systems development and maintenance (Dhar & 

Jarke, 1985). A primitive object-oriented language is used for describing the high-level design in 

terms of situations (a set of attribute-value pairs) and design decisions/actions. A complete design 

is viewkd a s  a set of "examples", each consisting of situation-action pairs. The learning process 

involves generating hypotheses about associations between design situations and actions, and an  

iterative refinement of these hypotheses based on successive examples. Further, in situations where 
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i t  is not possible to sufficiently constrain the plausible generalizations arising out of the examples, 

some of these generalizations can be eiiminated via an intelligent querying process. Functionally, 

the queries can be viewed as generating examples that help discriminate among the hypothesized 

generalizations. 

2. Representing Designs 

Getting started on a design requires putting aside the details and the procedural aspects of the 

problem. A common technique for imposing structure on a problem is to break i t  down into 

connections among abstract .black boxes*, and label these boxes and connections to designate 

features of the problem. Gradually, the function and structure of these components becomes 

specified. Over the last two decades, several methods have been developed for expressing designs. 

A limitation of most of these schemes, however, is that the semantics associated with their 

primitives and hence the application-specific labels attached to them is not precise. Further, the 

structure of programs can become language-dependent. These factors have led researchers to  design 

high-level object-oriented specification languages which allow for data  independence, and have a 

formal semantics associated with high-level design primitives so that they are machine interpretable 

(for example TAXIS (Borgida et.al. (1984)); Belkhouche & Urban (1986)). 

Our approach toward developing a comprehensive design environment is in the spirit of these 

latter approaches, and involves the design of a set of ontological primitives for specifying designs. 

We are interested in extending the advantages of the object-oriented representation to very high 

level design specifications that have traditionally been expressed using other methodologies such as 

structured design. In this paper a limited subset of this language, namely, a set of structured 

object types is used to represent designs in terms of dataflows and transformations of dataflows. 

This scheme resembles structured design methods using dataflow diagrams (deMarco, 1979; Gane & 

Sarson, 1979; Yourdon & Constantine, 1979). However, we should stress that  our model of learning 

is independent of any particular design method, and in this respect, the Structured Design 

Methodology is used for illustrative purposes only. 

2.1. Design Primitives 

In Structured Analysis, systems designs are described in terms of data  flow diagrams a t  various 

levels of abstraction. A data flow diagram is a network where the nodes represent transformations 

on data, external entities, or  data  stores (files), and directed arcs represent the data  flows from one 

node to another. Process nodes are frequently caIled "bubbles*; each bubble can be'decomposed 

into a lower-level data flow diagram. Bubbles a t  the bottom level have associated mini-specs on 
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which the program designs are based. Data flow and data store information is managed in data 

dictionaries. In order to keep the discussion simple, we iimit ourselves to dataflows and 

transformations on them. Both dataflows and transformations are represented as structured 

objects. 

IJl this representation, a design decision (also called an action) is a transformation that is required 

because of certain attributes of a dataflow. That is, the dataflow constitutes a situation, and the 

transformation is an action.' The learning task, as we shall shortly illustrate, is one of 

distinguishing between the important and the incidental attributes of the dataflow. Once this is 

done, a generalization of the situation can be constructed that incorporates in it the important 

features while ignoring the incidental. 

2.2. An Example  Set of Design Decisions 

For purposes of illustration, we use the following example in this paper. We assume that an 

organization has a central computerized sales accounting system (the one being designed and/or 

maintained) that processes sales data from its two branches, one in New York and the other in 

London. These branches generate three types of sales invoices, namely, directrsales-invoices, 

assigned-sales-invoices, and statistical-sales-invoices which indicate different types of sales. These 

invoices are computerized, that is, are accessible from a magnetic tape, o r  directly from disk. 

Further, New York invoices are formated according to some scheme whereas London invoices are 

un formated, because of which they must go through a convert operation before they can be 

processed, Since both offices generate computerized invoices, they can be automatically loaded into 

the system for processing; if the invoices had been non-computerized (i.e. paper invoices), manual 

editing and entry wouId first be required. A small fragment of a high-level design corresponding to 

the above description is presented in figure l a ,  with a decomposition of part of figure l a  in figure 

lb. The symbols have their usual meanings (see deMarco, 1979). 

3. The Objective: Synthesizing the Generalization Hierarchy 

Basically, our objective is to infer the general knowledge underlying a design where the design 

consists of a set of examples. Viewed differently, the design is an instantiation of a more abstract 

model relevant to the application domain. 

Extracting plausible generalizations from examples is basically a learning task. It involves 

 his is a convention. Other conventions for designating situations and actions (for example, see Orr (1981)) can also be 
adopted. 
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LEVEL 1 DATAFLOW DIAGRAM OF EXAMPLE 

NEW Y ORX ASSIGNED c 0 DES ZEFERENCE 
SALES INVOICES 1 FILES 

NEW Y ORX DIRECT 
SALES INVOICES 

'LONDON STATISTICAL 
SALES INVOICES 

EmOR EXCEPT1 ON 
REPORT REPORT 

, CHANGE 
NOTICE 

SALES 
OPERATIONS 

FIGURE la 
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LEVEL 2 DATAFLOU DIAGRAM OF EXAMPLE 

LONDON STATISTICAL 
SALES INVOICES 

I 

LONDON DIRECT 
SALES INVOICES 

LONDON ASSIGNED 
SALES INVOlCES 

FCRKATTED 
LONDON 
SALES 

REFERENCE 

VEXFIE D SALES 

ZEW Y OM ASSIGNED 
T Tq INVOICrC; 

I VERIFIED \ 
SALES 

AUDIT TRAIL 

1 ERROR 
REPORT I 
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generalizing situations into categories on which design decisions might be based. For example, if 

sales invoices coming from London are computerized (a  situation) and are processed directly by 

computer (a decision), a plausible generalization is that  computerized invoices in geceral can be 

processed by computer. It therefore makes sense to creaGe a category called ''computerized 

invoices" and a general rule stating that  computerized invoices are to processed directIy. These two 

types of knowledge can then be used t o  recognize new instances of such invoices, and how they are 

to  be processed. The problem of course, is to distinguish among the important and the incidental 

attributes of the situation. 

The problem of generating plausible generalizations is esentialIy a search problem. Most 

researchers in Psychology and Artificial Intelligence (AI) have in fact viewed Learning primarily as 

a heuristic search through a space of possible generalizations - also referred to as the hypothesis 

space (for example, see Simon (1977)). This approach has formed the basis for several AI systems 

such a s  those of, Waterman (1970), Sussman (1975), Lenat (1982) and Michalski (1980). 

While search is an important ingredient of any Iearning mechanism, more recent work has 

focussed on representations for imposing structure on the hypothesis space to reduce the search. 

Broadly, this includes learning by analogy (Winston 1975), by being told (Davis 1979), learning 

based on candidate eliminations in the light of successive training instances (Mitchell 1977, 1983a), 

and learning by observing experts solve specific problems (Mitchell et al. 1985). In these 

approaches, emphasis is on incremental learning based on a small number of examples. 

Our approach to forming general descriptions is based on construction of a structured hypothesis 

space (a lattice da ta  structure) for each decision. This space contains possible generalizations of 

situations for each decision. These generalizations are gradually eliminated or refined with 

successive examples. For a design expressing many situation-action pairs, the ultimate goal is to  

synthesize a taxonomy of appropriate situation descriptions, each corresponding to a decision 

expressed in the design. Specifically, the aim is to synthesize a generalization hierarchy of concepts 

relevant to the application domain that  contains general situation descriptions on which the design 

decisions are based. 

4. An Example 

We provide a formal notation for the data  structures and the learning algorithm in the next 

section: To  illustrate the example however, a brief description of these structures and the mechanics 

for operating on them is first necessary. 

A situation is characterized in terms of an instance di of a generic object D that  is used to express 
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the examples. It has slots s p  se, sg ,..., s An instance di consists of the set of pairs of properties 
P. 

{s. :V. .) where V.. is the value of the jth slot. An operator that is applicable to this situation is 
3 '23 $1 

represented as tk. In the application domain, di ==> t k  represents a design decision to perform tk 

in the situations described as di. If  his first example is followed by the example *dj == > tk*,  

this example represents a positive training instance for tk whereas :he example d. ==> tI would 
1 

represent a negative training instance for tk. The learning goal is to converge on those properties of 

examples that are by themselves or in combination, relevant to the design decisions. 

To introduce the model, let us consider some design decisions from the sales accounting system 

mentioned earlier. To keep the example clear, we restrict the generic object D to four slots, called 

from*, " mediumn, "priority * and 'frequency". These slots are relevant for defining dataflows in 

the design of a particular sales accounting system we have analyzed. The first example, designated 

El is: 

from: London 
medium: magtape - -> Auto-load-and-edit 
priority: high 
frequency: da i ly)  

where Auto-load-and-edit is an action performed on a dataflow characterized by the left hand side. 

The set {from:London, medium:magtape, priority:high, frequency:daily) represents the situation 

dl. The operator tl that is applicable to dl is Auto-load-and-edit. Based on this example alone, the 

following possibilities arise: 

I. All pairs of dl are relevant in deciding on tl. 

2. Only some combination of the pairs are relevant to tl. 

3. All pairs of dl are merely incidental, that is, tl is performed on all instances of D 
regardless of their properties. 

A representation of the possibilities, the hypothesis space of all possible rules based on the first 

example, is shown in Figure 2. A question mark indicates that there is no restriction on the slot 

value. The figure represents a hypothesis space for tl, extending from the most specific hypothesis, 

at level 0, down to the most general one a t  level 4. 

It is worth contrasting such a hypothesis space with those that are constructed using an a priori 

taxonomy of object types such as is done in LEX Ih/fitchell, 1983aI. In those spaces, nodes represent 

situations characterized in terms of the types in the existing taxonomy. We interpret our 

hypothesis space in the same way, as consisting of objects. The difference, of course, is that these 
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lrrrl 0 

from: London 
mrdium : magtape 
priority : high 

priority: 
freq: 

C 
from: ? from: London from: London from: London 
medium : magtape medium : ? medium: magtape medium: magtape 
priority : high priority : high priority: ? priority: high 
freq: daily freq: dally freq: daily freq: ? 

Figure 2. Hypothesis space for Auto-load-and-Edit (tl) after El. 

from: ? 
medium: ? 
priority: high 
freq : daily 

level 1 

lrrrl 2 

from: ? from: ? from. ? from: London 
medium : ? medium: ? medium: magtape medium: ? 
priority: ? priority: ? 

from: London 
medium: ? 
priority: ? 
freq: daily 
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from: ? 
medium: magtape 
priority: ? 
freq: dally 

from: ? 
medium: magtap* 
priority: high 
freq: ? 

from: London 
medium: ? 
priority: high 
frrq: 7 

from: London 
mrdiua: aagtapr 
priority: ? 
frrq: ? 



types are implicit in our hypothesis space and need to be characterized explicitly. Specifically, the 

nodes contain specializations of D, that is, subtypes with restrictions on values of certain slots. In 

our example, nodes at  level 1 are those where values of any three slots have restricted values and 

the fourth slot can take any value. Similarly, level 4 consists of the most general object, type, where 

values of all 4 slots are unrestricted. In effect, each of the nodes in the hypothesis space is a 

specialization of D, corresponding to a particular object type. The generalization hierarchy 

corresponding to this hypothesis space is shown in Figure 3.  In summary, an initiaI hypothesis 

space generates a crude object taxonomy. As the space is refined, so is the taxonomy. 

Let us consider what happens when another example, again representing a design decision, is 

Ez = 

( dz 
from: London 
medium: d i s k  => Auto-load-and-edit 
p r i o r i t y  : h i g h  
f r eq :  d a i l y  3 

Comparison with El shows that only the value of the "medium' slot is different. The second 

example calls for the same right hand side and is therefore a positive training instance with respect 

to El. The fact that both left hand sides, which represent slightly different situations, have the 

same right hand side leads to the following possibilities: 

1. The values of the "mediumY slot are irrelevant in determining which operator is to be 
applied, since changing them made no difference to the action to be performed. 

2. Alternatively, the values may in fact be essential, if they belong to some generic 
category which requires performing tl. For example, 'magtape' and "disk' could 

could both belong to a 'superclass* calIed 'computerized' which could be what 
requires tl. Ideally, this situation requires creating a new term, in this case 
computerized, that will characterize the new superclass. However since the system has 
no domain knowledge for generating this type of vocabulary, we designate the 
possibility of there being a superclass using a dot notation such as "magtape.diskU. This 
designates a class that subsumes "magtape' and 'disk'. The system must query the 
user as to whether a suitable superclass exists which can characterize both 'magtape' 
and 'disk". If the user responds with *computerizedm, the system asks the user to 
enumerate other members belonging to the class labelled 'computerized". This 
information can be used to recognize other instances of the new class. 

Both'these possibilities are represented in the hypothesis space. In the second case, certain nodes 

in the hypothesis space are generated to accomodate the information in the positive training 

instance. This is the well known disjunctive problem, which we return to in the next section. 

The hypothesis space for tl, shown in figure 2, is now refined to reflect these modifications. We 
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/ 

from: London 

from: London from: London from: London 

from: London 
medium: magtape 
priority: high 

Figure 3. Generalization Hierarchy after El. Nodes in the hierarchy are specializations of 

D where slot and value pairs on the right of the vertical bar indicate restrictions on an 

object type. The lines joining the nodes are IS-A Links. 
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have replaced 'magtape" by "magtape.diskY (instead of using the new label *computerizedm) in 

the relevant slots. This change reflects a modification of the object types in the hypothesis space a s  

shown in figure 4. The dotted segment will be explained shortly. The generalization hierarchy is 

reorganized accordingly to incorporate the modified object type. 

Let us now consider a third example: 

E3 

d3 
from: Tokyo 
medium: paper - -:, manual-add-and-edit 
priority: high 
f r e q :  d a i l y  > 

This instance is a negative instance with respect to El  and E,. Comparison of this new training 
" 

instance with El and E, reveals the following: 
* 

1. The values of slots "priority" and 'freq" are the same in all three instances. This 
implies that  the 'priority" and "freq" pairs do not, by themselves or in combination, 
discriminate in deciding which operator should be applied. 

2. The values of the dots  'from" and "freq* could, in conjunction with values of other 
slots, provide the rationale for Manual-add-and-edit (t,). 

In light of the evidence from the third example, i t  is apparent that object types corresponding to 

1 p r i o r l r y  : high * /  f r e q :  d a i l y  p r i o r i t y :  h igh  i f r e q :  d a i l y  

do not discriminate among the examples, and can therefore be eliminated from the two 

hypothesis spaces so far. The nodes corresponding to these types were indicated in the dotted 

section of figure 3. In the refined hypothesis spaces of Auto-load-and-edit and Manual-add-and-edit 

(figure 4) these nodes are marked as eliminated. 

The generalization hierarchy, reflecting the refined hypothesis spaces is also modified to that  

shown in Figure 6. It represents a union of the two hypothesis spaces. 

As a final example, let us consider the following: 

E4= 

C d4 
from: Tokyo 
medium: paper => Manual-add-and-edit 
p r i o r i t y :  high 
f r e q :  weekly 3 
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l e v e l  0 

f r o m :  London 
medium : ( m a g t a p e .  d i s k )  
p r i o r i t y  : h i g h  
f r e q  : d a i l y  

Figure 4. Hypothesis space for Auto-load-and-edit after E2. 

l e v e l  1 

l e v e l  2 

l e v e l  3 
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l e v e l  0 
from: Tokyo 
medium : paper 

freq : d a i l y  

from: Tokyo from: Tokyo 
medium: paper medium: paper 

p r i o r i t y  : high p r i o r i t y  : high p r i o r i t y :  ? p r i o r i t y :  high 
freq:  d a i l y  f rrq:  d a i l y  f rrq:  d a i l y  f req:  ? 

F - -  

~ f r o m :  Tokyo from: ? 

I f r s q  : d a i l y  ,Lfrsq:  d a i l y  freq:  d a i l y  

1 I medium: ? I I medium: ? I , I medium: paper 1 1 medium: ? I 

I 

I p r i o r i t y :  
I f req:  ? I 

I I 

Figure 5. Hypothesis space for Manual-add-and-edit (tz) after E3. 
Comparision of this hypothesis space with that of t l  leads to 

the removal of the dotted area from both hypothesis spaces. 

l e v e l  1 

l e v e l  2 

l e v e l  3 

l e v e l  4 
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In comparing this example with Eg we find that only the value of the "freq" slot is different. As 

in the second example, this results in the possibility that  the two values 'daily" and 'weekly" 

belong to some superclass. Accordingly, the hypothesis-space for Manual-add-and-edit is 

augmented to reflect this possibility, and the corresponding changes are induced in the 

generalization hierarchy. Finally, this is a negative instance with respect to the hypothesis space for 

tl. In this case, i t  has no effect on the hypothesis space of tl. 

To summarize, the concept formation problem described above has the following features. An 

example, reflecting a design decision, leads to the construction of a lattice structure called a 

hypothesis space which is interpreted as a partial order of plausible concepts that  account for the 

decision. Subsequent examples refine the hypothesis space. Specifically, positive instances suggest 

higher order concepts which result in an expansion of the taxonomy of objects. Negative instances 

are used to eliminate from the space, those concepts previously hypothesized to  differentiate 

between design decisions. In this way the taxonomy of objects is refined, with the expectation that 

the irrelevant concepts will be eliminated as pIausible differentiators, enabling the system to 

converge on rules a t  the appropriate level of generality. 

4.1. Sys tem-Genera ted  Example s  

Like other learning formalisms that  generalize from examples, the effectiveness of our model is 

sensitive on the nature of the examples. If provided with "good' examples, the model converges 

quickly on the right hypothesis for a decision; for our problem, the best discriminatory power 

results from examples where situations that  vary only in terms of values of a few attributes require 

different decisions (the negative instances). However, in general, the strategy above cannot 

guarantee that  the system wiII converge on the most appropriate hypothesis in each hypothesis 

space based on the examples alone. From a practical standpoint, however, if we are to use the 

results of the learning process for anaIogical reasoning, i t  is necessary to narrow down to a single 

hypothesis for each space. For this reason, i t  is necessary to have a mechanism that  overcomes 

reliance on the examples alone. One way for the system to accomplish this is to generate 

additional examples that  will help i t  discriminate among competing hypotheses in each space. 

Since the real discriminating power is provided by negative instances, i t  makes sense to try and 

generate descriptions that will prove to be negative instances in the various hypothesis spaces. To  

illustrate, consider figure 4 where there are several competing hypotheses for Auto-Load-and Edit. 
' 

Suppose the system wants to establish the node marked 'Xu as the correct hypothesis for Auto- 

Load-and-Edit (reasons for why X are explained shortly). To  generate a negative example, the 

system picks the "corresponding nodem (marked *Ym in figure 5) from another hypothesis space. 

The system thus generates the example, posed a s  a query to the user: 
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For < dataflow 
from: ? 
medium: paper 
p r l o r l t y :  ? 
f r e q :  ? 1 

W i l l  you do Auto-Load-and-Edit ? 

If the users response is negative, i t  is dear that the node marked as 'Xu represents the most 

general correct hypothesis for Auto-Load-and-Edit. In this example, i t  mean s that the value of the 

"medium" slot is the sole discriminator in deciding on Auto-Load-an-Edit instead of Manual-Add- 

and-Edit. On the other hand, if the user responds in the affirmative, further querying is needed. 

The above scenario raises two questions: (1) How does the system generate the example, and (2) 

what happens if the example turns out to be a positive training instance (i.e the user's response is 

affirmative). 

Given a hypothesis space (i.e corresponding to a design decision/action), from all the plausible 

hypotheses in that space, one of the possibilities is to begin with the most general or specific 

situation as the correct one (the one which expresses the rationale for the design decision). If we 

begin with the most general situation and the user responds negatively to the example, that node 

can be established as characterizing the most appropriate general class of situations for which the 

design decision is valid. In contrast, if one starts with a more specific hypothesis, a negative 

response would be of no value since more general situations might also be appropriate for that 

action. The system therefore begins with the most general node as the first example. 

Since we are trying to generate a negative instance, the node in the example is actually picked 

from another hypothesis space - a node that 'corresponds* to X. This corresponding node, marked 

"Y" in Figure 5, is one a t  the same level of generality in another hypothesis space; only the 

value(s) of the discriminating slot(s) are different. 

In addition to a method for choosing an initial hypothesis, the system must also have a search 

strategy for exploring the remaining nodes if its initial exampies prove to be positive training 

instances. There are several ways to organize the search, the extremes being depth-first and 

breath-first. We employ a breath-first strategy. The rationale for this is that in a design organized 

in terms of incremental transform of data, differences in one or only a small number of attribute- 

value pairs is likely to differentiate among the transformations. If the example above had proved to 

be a positive instance, the system would have generated another query using the node "X2' in 

figure 4 as the situation in the example query, before proceeding to a more specific level. 
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T o  summarize the querying mechanism, the system attempts to establish a node at  the most 

general level in one hypothesis space a s  the correct (characterization of the) situation. To 

accomplish this, the system generates an example, using a s  the situation a corresponding node in 

another hypothesis space, and attempts to establish via a query, whether the example is a positive 

or  negative training instance with respect to the decision of that space. Further examples are 

generated using a breath-first strategy. 

Figure 7 shows a generalization hierarchy where the nodes in figure 6 that are not relevant to the 

design decisions in the examples have been eliminated. For readability, we have relabeled some of 

the nodes. As we can see, the hierarchy represents the general situations that underlie that part of 

the design used in the examples. 

5.  The Model. 

We now describe the model underlying the learning process illustrated in the example. 

5.1. Notation 

Let D be the object type with slots sl, s2,.-.,s i.e., D is the p-tuple <s1, s2, ... s >. 
P' P 

Let dl, d2, -..d, be instances of D. 

Let V.. be the value of the slot s. of instance di. 
1 J  J 

Thus, di is the ordered set of pairs (s :V. . I 1 < j 5 p) 
J '>J 

Let di ==> tc indicate a decision *If di then tCY. 

Let CJk) be the set of all subsets of k pairs of di, i.e., 

VSf Ci(k), S E di and IS\=k 

Let a specialization of D, denoted Dls. : = <sl, s2, stl, V, sji1, ... s > 
J 

P 

Thus, Cdkf creates specializations of D a t  *leveln k. Specializations a t  level k represent types 

where k slots are constrained to have a fzed  value. 

Let @ be a function that maps specializations at level k into subsets of specializations a t  level 

k f l .  
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Figure 7. Final generalization hierarchy corresponding to the design examples. 

GENERIC OBJECT 

AUTO-LOAD- EANUAL-A DD- 

fd 3 ( d 4  
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INST INST 

(d 1 
from. London 
medium. magtape 
priority: tugh 
frequency daily 

from. Tokyo 
medium. paper 
priority hi@ 
frequency daily 1 

{d2  
from. London 
medium. disk 
priority hrgh 
frequency daily 1 

t 

from. Tokyo 
medium. paper 
priority high 1 frequency weekly 1 



Thus Q : Ci(k) -+ ?Ci(ktl) 5.t. S E @(t) where t E C(k), t S, and C(k+-1) = C(k) for k 2 

P- 

.4 hypothesis space, Rk, corresponding to "di ==> t k ', is the lattice : 

which represents partially ordered set of specializations of D. 

%(I) represents the set of nodes a t  level 1 of the hypothesis space Rk. 

5.2. Algorithm 

The following algorithm describes modifications to the set of hypothesis spaces (Ri, RZ, ... Rm) 

when an example in the form of ' dh  == > tc* is presented. 

Le t  1 = C t l ,  tZ. . . . tm} 

Begin 
I f  tc $E 1 
Then Begln 

I = I U Ct,} 
nc = Qj 

For K = 0 t o  p ,  DO: 
Rc = R,u Ch(k) 

End 
E l s e  
. Begin 

If tb E I s . t .  tb = tc 
and tb is genera ted  from 'dl => t b '. do 

For k from 0 t o  p ,  do: 
For j from 1 t o  p ,  do: 

If s j  :Vb, ]  # 6j:"1.1 

then Let  V = V V 
l * l  1 . j '  11.1 

For each tl E I s . t .  tl # t,, do: 
For k from 0 t o  p.  do: 

For each El E R1 (k) and f o r  each E, E R,(x) . 
I f  El = Ec, 

then  Mark El and Ec a s  e l imina ted .  

End 

End 
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6. Discussion 

In general, a system based on the learning by observation model described above is likely to be 

valuable in problem areas where experts routinely engage in design activity. As a taxonomy of 

objects in the application domain is gradually synthesized, the system can become useful for 

reasoning about analogous situations. 

Our model of learning has been motivated by Mitchell's (1983) version spaces. The structure of 

our hypothesis spaces is similar to his version spaces which contain partial orderings of situations 

(left hand sides of rules) that are hypothesized to  account for the actions (the right hand sides - 
decisions in our problem). The fundamental difference is that while MitcheII's version spaces are 

generated from a preexisting generalization hierarchy of carefully selected object types and 

relationships relevant to a domain, our objective is to synthesize such a hierarchy from the 

hypothesis spaces generated by the examples. 

A limitation of the model is that the object classifications it  forms are limited by the adequacy of 

the generic object used to describe the examples. Ideally, the generic object must be supplied with 

all the properties needed to capture the important features of the examples. W e  believe this is a 

reasonable assumption for most domains. However, we are currently working on ways to  enable a 

user to  introduce new properties dynamically a t  any level of abstraction in the generalization 

hierarchy.' 

A second limitation is because of the disjunctive problem. In programs tha t  begin with a 

generalization language, the program makes inductive leaps that  are biased by the content and 

structure of the generalization language (Mitchell, 1983b; Utgoff and Mitchell, 1982). As we 

illustrated in the example, the disjunctive problem arises in our model in another form: when faced 

with an 'A or B" situation, the program is unable to create an appropriate superclass because i t  

has no access to such a vocabulary. One way to create these is by embeding domain knowledge into 

the program - which runs counter to our goal. Alternatively, the expert could be requested to  

suggest a category - which is the method we have adopted. 

Finally, since the model does not include a scheme for backtracking, a critical assumption 

underlying it is that there are no inconsistencies in the examples. We are currently investigating 

ways of incorporating the plausible reasoning machinery of Doyle (1979), McAllester (1982) and 

others into the model in order to deal with inconsistent exampIes. 

*currently, changing a type definition requires restating all previously expressed examples in terms of the modified type 
definition. 
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7. Conclusion 

This research has been motivated by a real world problem where i t  is clear that  knowledge-based 

support will be plausible only if a system manages to first acquire sufficient knowledge about the 

domain from a designer engaged in specifying the design. This is particularly important when 

domain-knowledge is embeded in decisions. If this decision making is observable by a computer, as 

we have described, i t  is possible to extract this knowledge by endowing the computer with the 

intelligence to learn through observation. Rather than place the burden on the designer to specify 

all the data  types and operations on them, the system is able to  infer the appropriate amount of 

domain knowledge for use in maintenence. 

We have presented a model for learning through a process of observing design decisions. These 

decisions, viewed a s  examples, result in a space of partial orderings of plausible generalizations. 

This space is then refined using the constraint information in successive examples. Finally, an 

attractive feature of the model is that the results are independent of the order of the examples. 
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