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Abstract 
The  maintenance of large information systems involves continuous 

modifications in response to evolving business conditions or  changing user 
requirements. Based on evidence from a case study, we show that  the 
systems maintenance activity would benefit greatly if the process 
knowledge reflecting the teleology of a design could be captured and used 
in order t o  reason about the consequences of changing conditions or  
requirements. We describe a formalism called REMAP (REpresentation 
and MAintenance of Process knowledge) that  accumulates design process 
knowledge t o  manage systems evolution. T o  accomplish this, REMAP 
acquires and maintains dependencies among the design decisions made 
during a prototyping process, and is able t o  learn general domain-specific 
design rules on which such dependencies are based. This knowledge can 
not only be applied t o  prototype refinement and systems maintenance, 
but can also support the re-use of existing design or software fragments t o  
construct similar ones using analogical reasoning techniques. 
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1. Introduction 

Methods for the analysis and design of information systems are often effective in 

developing initial designs but rarely support the correction of design errors or 

changes in previous design choices due t o  changing requirements. As a result, 

changes in system design tend t o  be unprincipled, ad hoc, and error prone, failing t o  

take cognizance of the justifications for previous design decisions. In this paper, we 

examine some of these shortcomings and present a knowledge based system 

architecture called REMAP that  strives t o  alleviate these problems. R E h W  

supports an  iterative design and maintenance process by preserving the knowledge 

involved in the initial and evolving design, and making use of this knowledge in 

analogous design situations. 

The research that led to  the R E W  architecture was stimulated by our study of 

a complex system development effort (several related systems with hundred- 

thousands of lines-of-code each). This study revealed several types of process 

knowledge that  are instrumental in developing and maintaining such systems. First, 

the design process consists of a sequence of interdependent design decisions. The 

dependencies among decisions are typically based on application-specific 

justifications. In the case study, such justifications were frequently laid down on 

paper in design documents. While general domain-dependent rules typically underly 

these justifications, these rules are seldom articulated explicitly by users or analysts. 

Second, when systems are developed in a piecemeal fashion following the 

prototyping idea, analysts apply analogies t o  transfer experience gained from one 

subsystem t o  "similar components" of another. 

I t  is the purpose of this paper t o  demonstrate -- by analyzing the  evidence from 

our case study, by developing the REMAP architecture and by presenting the most 

crucial parts of its implementation -- tha t  the development and maintenance process 

would benefit if this knowledge about dependencies and the general bases for them 

could be accumulated in an appropriate form, and used t o  reason about subsequent 

design changes. Specifically, this paper argues that  a knowledge based support tool 

for this must have the following architectural components: 
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1. a classification of application specific wconceptsw into a taxonomy of 
design objects, and mechanisms for elaborating this structure as more 
knowledge is acquired by the system. 

2. a representation for design dependencies and mechanisms for tracing 
repercussions of changes in design; 

3. a learning mechanism for extracting general rules from dependencies, 
associated with a mechanism to  check new design objects or 
dependencies for consistency with the rules; 

4. a n  analogy based mechanism for detecting similarities among parts of 
similar subsystems. This mechanism should make use of the 
classifications in the generalization hierarchy t o  draw analogies between 
systems parts. 

We describe each of these components in terms of the specific feature of process 

knowledge that  they deal with and how this knowledge is represented. In order t o  

establish a sufficiently rich context for discussion, the examples are parts of the 

design that  were actually developed in an oil company. For  readability, these 

examples are only represented graphically as data flow diagrams at a high level of 

abstraction. However, as described in section 3 of the paper, the internal knowledge 

representation of REMAP is object-oriented and can accommodate a wide range of 

practically useful languages for requirements analysis, system design, and 

programming. 

The remainder of this paper is organized as follows. Section 2 begins with detailed 

real-world examples that  are used t o  show the need t o  maintain process knowledge 

and t o  identify different kinds of such knowledge. The REMAP architecture is 

presented in section 3. Section 4 describes in detail the learning component as a 

central part of the architecture. Section 5 provides a discussion relating the model 

t o  previous work in systems analysis and artificial intelligence. We conclude with a 

summary of possible applications which may benefit from the REMAP approach. 
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2. Classification of Design Process Knowledge 

In this section, examples from a case study in the oil industry are used to  

illustrate different forms of process knowledge. Four classes are identified: specific 

knowledge about design dependencies (at the level of instances), general knowledge 

about design rules, knowledge about the essentiality of conditions for certain design 

decisions, and knowledge about analogical properties between design situations. 

2.1. The Case Study 

The problem studied in the oil company involves the design and subsequent 

maintenance of a series of sales accounting systems for different products of the 

company, here referred to as OC. OC sells oil and natural gas-based products with 

different characteristics to its subsidiaries and to outside customers in different 

parts of the world. Sales Accounting at OC's Corporate Headquarters requires 

generating various integrated reports for purposes of audit and control. Input to  

Sales Accounting is based on invoices generated from transactions in a number of 

offices in the US and abroad. 

For the sake of readability, we describe systems using the Structured Analysis 

representation [Q], [14]. However, that the problems described in this section and 

our approach toward solving them are not confined to  this representation. 

In Structured Analysis, systems designs are described in terms of data flow 

diagrams at  various levels of abstraction. A data flow diagram is a network where 

the nodes represent processes, external entities, or data stores (files), and directed 

arcs represent the data flows from one node to  another. Process nodes are 

frequently called "bubbles"; each bubble can be decomposed into a lower-level data 

flow diagram. Bubbles at the bottom level have associated mini-specs on which the 

program designs are based. Data flow and data store information is managed in 

data dictionaries. Figure 1 shows the notational conventions used in this paper. 

Part of the structured top-down design of OC's Sales subsystem is illustrated in 
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figures 2 through 5. Figure 2 shows a context diagram which depicts the 

relationship of the system to external entities. Figures 3, 4, and 5 are data flow 

diagrams for levels 1 and 2 of the sales system. Further decomposition and 

implementation, possibly using different languages, would finally lead to  a working 

system; however, the level of detail given in figures 2 to  5 is sufficient t o  describe 

the problems of systems maintenance and our solution to  them. 

We now illustrate the problem of design adaptation using three scenarios Each 

requires a different extent of modification to  the original design, and illustrates the 

need for a different aspect of process knowledge. All of the examples involve 

external requirements changes but similar problems also occur during the 

refinement cycle. 

2.2. The Role of General and Specific Knowledge 

"London Sends Formated Invoicesw. In the original design, the difference 

between the New York and London invoices was that the former were accessable 

formated whereas the latter were received unforrnated, on magnetic tape. Hence, a 

minor "converttt operation was required to  bring the inputs into a format required 

by the "verify and correct on line" operation (bubble 1.1). 

As a simple change, suppose that the London office begins t o  send correctly 

formated invoices on magnetic tape to  central headquarters. What kinds of design 

modifications are required? 

It is clear that  the change is not a t  a high enough level to  affect the more abstract 

parts of the design in figure 3. However, a t  the next lower level (figure 4), the 

"convert" bubble is not required anymore since the London invoices should now 

proceed directly for verification, 

In order to  be able to  assimilate this minor change, the system must know that in 

the existing design, the convert bubble is dependent on the nature (i.e. unformated) 
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of the dataflows representing London invoices. On recognizing that London invoices 

are no longer unforrnated, it should be able to detect the fact that conversion is 

unnecessary. Further, it should also know that in general, formated invoices 

proceed directly for on-line verification. Based on this, it should direct London 

invoices to  the "verify and correct on line1@ operation. 

In summary, we have used two types of knowledge in understanding the existing 

design and the effects of changes to it: general knowledge about domain-specific 

constraints (i.e., unforrnated invoices require conversion), and specif ic knowledge 

about the purpose of existing design objects in the form of justifications for existing 

design choices (i.e., the existence of the convert bubble in figure 4 depends on the 

existence of unforrnated invoices). 

2.3. T h e  Role of Essentiality 

ltLondon a n d  Tokyo  Will N o t  Sell Fuels  Anymore1'. This represents a 

more radical type of change than the first. Intuitively, it seems clear that major 

design modifications are needed at  several levels of analysis, design, and 

implementation. For example, lack of invoices from Tokyo obviates the need for a 

manual add and edit operation at  level 1 (a m a n u a l  input operation was required 

because these were paper invoices). However, the auto  load and edit is still required 

because New York invoices must still be processed. 

This example illustrates the idea of essent ial i ty  in design; the Tokyo invoices 

dataflow was an essential input for manual add and edit. In a more general sense, 

the purpose of a manual add and edit operation was to  process paper invoices. The 

other inputs to it (the discount payable slips, codes and expenses) were auxi l iary ,  

and in fact dependent on Tokyo invoices.' In effect, bubble 1 stays (although some 

of its lower level components corresponding to  London operations are removed), 

while bubble 3 must be deleted. The revised level 1 dataflow design is shown in 

figure 6. 

 his illustrates the "non-uniformm nature of dataflow diagram entities, that is, relationships 
among "unconnected" entities, and the design consequences that can emerge due to changes in them. 
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I t  should also be noted that  although the manual add and edit operation is no 

longer necessary, some of the lower level operations associated with i t  are still 

required in order t o  process New York invoices. At  the programming level, this 

means t ha t  the code corresponding t o  those operations is not deleted since i t  is 

shared with the auto load and edit process. 

2.4. The Role of Analogy 

"The Venezuela Office Will Sell Fuels*'. This corresponds t o  a high level 

change tha t  is likely t o  induce widespread changes into the existing design. First, 

some additions must be made at level 1. The types of changes, however, depend on 

the nature of the sales invoices from Venezuela. If the invoices are computerized, an 

input into bubble 1 is required whereas paper invoices would call for introducing a 

manual add and edit operation. Similarly, a t  the next lower level, the operations 

required would depend on other, more detailed features of the invoices (i.e. are they 

formated, unformated, etc.). 

This example illustrates the use of analogy in reasoning about a new situation. 

Design additions at the various levels depend on how "similarw the Venezuela 

invoices are t o  existing ones, and the design ramifications of these similarities and 

differences. This type of reasoning requires a system t o  carry ou t  an elaborate 

match between design parts the system currently knows about, and a new design in 

order t o  draw out their analogous features. Specifically, i t  requires some notion of 

what are the impor tant  dimensions in the analogy being sought. In this example, 

relevant attributes in drawing the analogy are the m e d i u m  of the invoices, that  is, 

whether they are computerized or manual, and whether they are formated. Once 

the important features are realized, the design ramifications become clear. 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-87-20 



2.5. Summary: The Need for Teleological Knowledge 

In walking through the examples, we have attached fairly rich interpretations t o  

the various design components that are impl ic i t  in the design, i.e., not necessarily 

represented o r  even representable in structures such as data flow diagrams or any 

other purely outcome-oriented knowledge representation. These interpretations 

derive from the purpose of the application which cannot be determined from 

looking at the resulting design alone. Since the design is an artifact [35], its 

teleological structure is imposed by the designer's conception of the problem. This 

conception may change repeatedly during the evolutionary design process. In other 

words, there is no a priori "theory" relating problems t o  designs; rather, the 

justification for a particular design follows from a subjective world-view of the 

designer. 

If a support system is t o  be able t o  reason about about the types of changes 

illustrated in the examples, i t  must have a formal representation for the knowledge 

that  reflects the teleology of the design. Because such highly contextual knowledge 

about a potential application area is impossible t o  design into a system a priori, the 

knowledge must be acquired by the supporting system dum'ng system design. T o  do 

this, the program must be equipped with mechanisms that  enable i t  t o  learn about 

design decisions in an application area that  i t  knows nothing about at the start  of 

the design. It must then apply this growing body of acquired knowledge t o  reason 

about subsequent modifications t o  an existing design, or  t o  construct new designs 

based on new but similar requirements. In the following section, we describe an  

architecture called REMAP that  is geared toward the extraction and management 

of the process knowledge involved in systems development and maintenance. 

3. The Remap Architecture 

It is apparent from the examples that  application-specific knowledge and 

experience plays a key role in reasoning about a design. This raises an important 

question, namely, how can a s y s t e m  acquire such knowledge? 
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In most projects involving the construction of a knowledge based system, the 

system builder constructs the model of expertise by first specifying a representation, 

and then accreting the knowledge base in accordance with the precepts underlying 

the chosen representation. Unfortunately, large scale application developments take 

place in a wide variety of domains that  may have little in common. This 

uniqueness of each application situation discourages construction of a knowledge 

base that  might be valid for a reasonable range of applications. 

If a knowledge based system is to  be able t o  support the process of systems 

analysis and design, i t  must have an initial representational framework, and 

mechanisms t o  augment this framework with domain specific knowledge that  

captures the purpose of design decisions and relationships among them. As more is 

learned, i t  should be possible t o  use this process knowledge t o  reason about design 

changes, and draw analogies in extending a design t o  deal with new situations. 

In the following subsections, we develop a knowledge representation for this 

process knowledge, and present a model of how i t  is used by the REMAP system 

architecture. Each of the components of this architecture illustrates the use of a 

certain type of process knowledge. We conclude the section by illustrating how these 

components interact through a global control structure. A detailed example of the 

most important subsystem within the architecture -- the learning component - is 

presented in section 4. 

3.1. Representing Design Outcomes Using Structured Objects 

The REMAP model centers around design objects. The designer defines i n s tances  

of such objects, and the FU3MAP system maintains a generalization hierarchy of 

object types. The structure of an  object type definition in the hierarchy is as 

follows: 
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OBJECT TYPE 
type-name : <string> 
child - of : <set of object types> 
~ a r e n t  -of : <set of object types> 
components: <set of slots> 
operators : <set of procedures/methods> 

The "child-of" and "parent-ofH components position an object type in the 

generalization hierarchy. "Componentsw slots describe typical aspects of an object 

instance of the given type. As an example, consider the initial top-level definition 

of a generic object type: 

OBJECT TYPE 
type-name : generic - object 
child-of : () 
parent - of : unknown 
components: (identifier : <string> 

type : <string> 
because-of : <set of objects>) 

operators : (define, remove) 

This means that any object will have an identifier, a type, and a "because-ofw 

slot. The generic object type has no parent, and its children are yet t o  be specified. 

The "because-of" slot defines the r a i s o n  d'etre of an object instance and will be 

further discussed in the next subsection. 

A "generic" object provides very little structural information about its semantics. 

I t  is therefore useful to  s p e c i f y  subtypes  for which additional slots are defined in 

order t o  capture the meaning of object instances of such a subtype. This can be 

represented using a generalization hierarchy of object types as shown in figure 7. 

Some instances of dataflows and transforms used in the three scenarios of section 2 

are shown in figure 8. 

In principle, the system could begin with the generic object type and then learn 

all subtypes from scratch. Since such a procedure would be rather cumbersome for 
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the designer, the system should be provided with an initial set of object types useful 

for a broad range of domains, for instance, those associated with the analysis, 

design, and implementation languages in use. For example, if the designer were t o  

work with data  flow diagrams, the initial knowledge base of object types might 

contain the following definitions (cf. figure 7): 

OBJECT TYPE 
type name : dataflow 
c h i l d  - of : generic - object 
parent -of : unknown 
components: (part - of : dataflow; 

medium : <string>; 
from, t o  : process) 

operators : (redirect, nostart, noend) 

OBJECT TYPE 
type name : transform 
c h i l d  - of : generic object 
parent - of : (process, external, datastore) 
components: (inputs, outputs : <set of dataflows>) 
operators : () 

OBJECT TYPE 
type name : process 
c h i l d  - of : transform 
parent - of : unknown 
components: (part -of : process) 
operators : (expand, noinput, nooutput) 

OBJECT TYPE 
type name : datastore 
c h i l d  - of : transform 
parent - of : unknown 
components: (data - structure : <set of data elements>) 
operators : (define - structure, noinput, nooutput) 

OBJECT TYPE 
type - name : external - entity 
child - of : transform 
parent - of : unknown 
components: () 
operators : () 
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External entities could be further refined to  data source, data sink, and interactor. 

The slot value nunknownn refers to  the fact that the slot values should be, but 

have not yet been, defined, 

As an example of instance definitions, consider the following description of the 

"London" external entity and one of the sales invoice dataflows generated by i t  (cf. 

figure 8). 

{identifier : London 
type : external - entity 
because-of : () 
inputs : () 
outputs : (London-directsales-invoices, 

London-assigned-sales-invoices, 
London-statistical-sales-invoices) 

{identifier : London-direct-sales-invoices 
type : dataflow 
because of : (London) 
part - o f  : () 
medium : magnetic tape 
from : London 
to  : auto-load-and-edit) 

Similarly, instances corresponding to  other object types can be defined. Note, 

that the instance definitions have all the slots defined in their immediate type, as 

well as inheriting those of their supertypes. 

Besides the definition of design objects, it is also possible to  perform "syntactic" 

consistency checks using information in the hierarchy. As a simple example, if a 

bubble has no inputs, it must be removed or new inputs must be defined. However, 

certain types of application-specific information are not maintained in this 

representation. For instance, if London invoices become "formated", ramifications 

of this change cannot be assessed using the knowledge in the hierarchy alone. To  

reason about such situations, additional data structures are required, which we 

describe in the following subsections. 
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3.2. Representing Design Processes Using Dependencies 

REMAP views a design process as a set of interrelated design decisions. Design 

decisions are represented in terms of jus t i f i ed  actions. An action consists of 

adding, deleting or changing a design object; its justification consists of previous 

actions. A design decision is represented in REMAP as a two-part data structure 

called dependency: 

(<justification> ==> <action>) 

where <justification> and <action> are references to object instances. 

To illustrate, consider figure 9 which shows a network of dependencies among a 

few of the dataflows and bubbles considered so far. Specifically, the auto-load-and- 

edit object is justified by the existence of New York and London invoices (both 

objects), which form its "set of support" 1121. 

In order t o  demonstrate the usefulness of this dependency network, reconsider the 

first scenario where the London invoices become formated. In this case, the convert 

operation is no longer required since its essential  support elements have been 

eliminated. Similarly, in the second scenario where the London office does not sell 

fuels anymore, no more invoices are generated from London. Again, no conversion 

operation is required. However, the auto load and edit operation is still required 

because New York invoices are still t o  be processed. 

In general, a dependency network can be used to  assess certain ramifications of a 

deletion or change in previous design decisions. Such processes are commonly 

referred to  as belief main tenance  [12]. In the above example, conversion is n o t  

required for London invoices. However, the dependency network does not indicate 

how these invoices should be treated because this knowledge is not expressed in the 

network. In order t o  assess the'complete repercussions of the change, more general 

(object type level) knowledge is required. For example, to  realize that  formated 

London invoices should be treated like New York invoices (and should proceed 

directly for verification), it is necessary to  know that in general formated invoices 
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are verified directly. This knowledge can then be used to  reason about all object 

instances corresponding t o  formated invoices. 

3.3. Learning as Rule Formation 

Dependency information as indicated in figure 9 is represented in terms of object 

ins tances .  For  example, the auto-load-and-edit object (bubble 1) is justified by the 

two kinds of dataflow objects originating from London. An object type 

corresponding t o  this invoice dataflow might have slots such as data, amount, 

frequency and source. However, not all slots are relevant to  the justification. For 

example, the auto-load-and-edit is performed because the invoices are computerized, 

regardless of their other features. A general rule that subsumes this dependency 

would therefore state that  computerized invoices require auto-load-and-edit. I t  is the 

purpose of REMAP'S learning component t o  acquire such rules. 

In forming a rule, however, the system must first learn the relevant category of 

object types (i.e. computerized invoices) that  will constitute the left hand side of the 

rule. If we consider "dataflow" as being a generic object with the structure 

described earlier, what the system must do is t o  form a specialization of it, where 

the specialization involves restricting the value of one or more slots of the generic 

object. For  example, a computerized invoice can be considered a specialization of 

the dataflow object with the medium slot being restricted to  values that  belong t o  

the set "computerized entitiesw like disk or magnetic tape. 

Basically, the learning procedure views each dependency (stated in terms of object 

instances) as a t raining ins tance  consisting of a situation object and an  action 

object. Each training instance has an  associated hypothesis  space which consists of 

possible generalizations of the situation object. A training instance is termed 

positive with respect t o  its action object, and negative with respect t o  all others. 

As more and more examples (i.e., dependencies) are provided in the course of a 

systems development process, irrelevant elements of the various hypothesis spaces 

are eliminated and the system converges on  generalizations (i.e., type definitions 
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and rules) that  are consistent with the examples. If a hypothesis space shrinks to 

the point where no generalizations can be found, this indicates inconsistencies in the 

design or in the design rule base and must be corrected by the user. In order t o  

accelerate convergence of the hypothesis space, REMAP can provide system- 

generated examples for categorization as positive or negative training instances by 

the user. The learning procedure is described in detail in section 4. 

To  summarize, the learning objective is twofold: to form appropriate 

specializations of the predefined object types relevant to  the application domain, 

and to establish relationships in the form of rules between these specialized object 

types. This results in a growing generalization hierarchy such as that of figure 10, 

and in rules that are applicable a t  various levels of abstraction. 

3.4. Analogical Reasoning Using Objec t  Classification a n d  Rules  

The effort of learning a flexible object type hierarchy and general design rules 

associated with it pays off in two ways. First, types and rules can be used to  check 

the correctness of new design object instances added to a design. The second 

advantage is less obvious but potentially more important. When requirements 

changes demand the construction of new design objects in addition t o  the removal 

of existing ones, analogical reasoning methods can be employed to  explore the 

possibility of re-using fragments of existing designs, based on the general knowledge 

acquired by REMAP'S learning component. 

For example, section 2.4 introduced a scenario where a new operation was added, 

namely, sales of fuels from Venezuela. In order to  assimilate such a change into an 

existing design, a system must be able to  utilize its knowledge concerning the 

purpose of "similar" design fragments. Specifically, it must determine what 

attributes of the new situation are the same as objects it already knows about, and 

then treat the new object accordingly. 

In order to categorize a new object, it  is necessary to  first determine, if possible, 
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the most specific level of abstraction in the generalization hierarchy that  is 

applicable t o  it. For example, if I?EMAP's current knowledge about dataflows is 

that  shown in figure 10, and computerized but unformated invoices come in on 

magnetic tape from Venezuela, they are classified as an instance of the Magnetic- 

tape-invoices type. Rules referencing this type can be applied t o  i t  in order t o  

create new object instances automatically. 

If no rules are applicable t o  the newly defined object at the most specific level, 

more general rules might be applicable. This involves moving up the generalization 

hierarchy as long as applicable rules are found. In the example, this involves 

gathering rules applicable t o  magnetic-tape invoices, then computerized invoices, 

and finally dataflows in general. For  Venezuela invoices, we can see that  one of the 

rules mentioned in the previous section will apply a t  the level of computerized 

invoices, suggesting that  the existing auto-load-and-edit operation (or a new 

instance of it) be performed on them. 

I t  should be noted that  even though there may not be an object in the current 

design that  is similar t o  the new one, existing rules learned during previous design 

processes might still apply. For  example, London invoices had been originally 

unformated; this had required a convert operation which was subsequently 

eliminated when the form of these invoices was changed. However, since a rule on 

formated vs. unformated invoices was retained which now becomes applicable t o  

Venezuela invoices, the old convert operation could be reinstalled, or  a similar one 

implemented if the formating differs a t  a lower level of abstraction than shown in 

our examples. 

3.5. REMAP Control Structure 

In order to incorporate new. knowledge and t o  reason about user critiques, 

REMAP requires an overall control structure that  enables i t  t o  switch among design 

support and knowledge acquisition modes. Figure 11 provides an  architectural 

summary of the system. The architecture consists of five modes of operation and 
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two knowledge bases. One knowledge base describes the design objects and 

dependencies at the instance level, whereas the other one is a meta-knowledge base 

which contains the object type hierarchy and the general design rules. We shall 

first describe the functionality of the architecture for two typical scenarios and then 

present a semi-formal summary of the interaction of the modes in a Structured- 

English notation. 

Consider first a scenario where the user wants t o  add a new design object. The 

add mode accepts a design object and its associated justification (i.e., a dependency 

plus possibly a detailed description of the design object). The analogical reasoning 

mode assists first in identifying the type of objects. I t  then tries t o  apply design 

rules to  generate additional objects dependent on the one entered by the user. If the 

system has accumulated knowledge about the application domain, rule application 

might continue down to  the implementation level. For  each action, the belief 

maintenance mode is responsible for entering objects and dependencies t o  the 

instance-level knowledge base. If existing rules are not applicable t o  the new objects, 

the learning mode assumes control and attempts t o  form a generalization (rule) 

from the dependency (this is described in detail in section 4). The learning model 

also comes into play if a contradiction is encountered, in which case i t  initiates 

interaction with the user in order t o  correct the object instances, o r  t o  establish new 

rules and, if necessary, specify new object types. The system then returns t o  the 

belief maintenance mode in order to  do the required changes at the instance level 

and t o  trace the consequences of the newly acquired knowledge, returning control t o  

the Analogical-construction-mode. 

If parts of an existing design are t o  be removed, the system will s tart  in the 

cm'tique mode. In this case, the belief maintenance mode is responsible for tracing 

which dependent objects can also be removed from the design, by following the 

chains of dependencies in the instance-level knowledge base. Updates t o  a given 

design object can be considered as deletions followed by additions of the new 

version. 
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We now give a high-level summary of the algorithms underlying each mode. We 

should point out, however, that the learning mode description will be more 

understandable after reading section 4, which is a walk-through of the algorithm 

using a detailed example. 

Add-mode: 
1. Accept object instance i and its justification object j. 
2. Call Analogical-construction-mode (i, j). 

Analogical-construction-mode (inst, just): 
1. Position inst and just in type hierarchies, finding types t i  and tj. 
2. Call Belie f-maintenance-mode ("add ", inst, just, t i ,  tj). 
3, FOR each rule r of form "ti => x'' or "tp => xn 

where t i  is a subtype of tp DO 
IF an object instance corresponding to x does not exist 

THEN create object x. 
Call Analogical-construction-mode (x, inst). 

Delet e/critique-mode: 
1. Accept object o to  be removed. 
2. Call Belie f-maintenance-mode (ndel 7 o, nil, nil, nil). 

Belie f-maintenance-mode (op, inst, just, t i ,  tj): 
1. IF op= "del " 

THEN IF just={) 
THEN Remove inst from each set of support. 

\* Note that the description of inst is not removed *\ 
FOR EACH object obj with empty set of support DO 
Call Belie j-maintenance-mode ("del", obj, nil, nil, nil). 

ELSE \* op = "add "\ 
Add just => inst to the dependency base. 
Add the description of inst t o  the design object base. 
Call Learn-mode (just, inst, t i ,  tj). 
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Figure 11. Summary of FUCvfM Architecture. 
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Learn-mode (i, j, ti, tj): 
1. FOR EACH rule tj => x where x incompatible with i: 

Request correction by user.. 
2. IF there exists a dependency k ==> i \* positive training instance *\ 

THEN IF new slots 
THEN Establish new terminology with user. 

FOR EACH x ==> y 
IF ti = type of x \* negative training instance *\ 

and i incompatible with y 
T m N  Reduce hypothesis spaces for i and y. 

3. Provide system-generated examples for further type refinement. 

4. Synthesizing The Generalization Hierarchy 

Infering plausible object types and rules from design decisions (dependencies) can 

be considered a learning task? I t  involves generalizing situations (the left hand side 

of the instance level dependency) into subtypes on which design decisions (the right 

hand side) might be based. For example, if sales invoices coming from London are 

computerized (a situation) and are processed directly by computer (a decision), a 

plausible generalization is that  computerized invoices in general can be processed by 

computer. I t  therefore makes sense t o  create a category called "computerized 

invoices" and a general rule stating that  computerized invoices are t o  processed 

directly. These two types of knowledge can then be used t o  recognize new instances 

of such invoices, and how they are t o  be processed. The problem of course, is t o  

distinguish among the important and the incidental attributes of the situation. 

Our approach t o  forming general descriptions is based on the construction of a 

structured hypothesis space (a lattice data  structure) for each decision. This space 

2~ design object is called incompatible with another one if both constitute alternative actions for 
the same situation. Without loss of generality, actions that are not equal can always be considered 
incompatible if the right level of abstraction is chosen. 

3 ~ e  would like to acknowledge the significant input of Padmanbhan Ranganathan in developing 
the Learning strategies presented in this section. These strategies are described in more detail in 

[Ill- 
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contains possible generalizations of situations for each decision. These 

generalizations are gradually eliminated or refined with successive examples. For a 

design expressing many situation-action pairs, the ultimate goal is to synthesize a 

taxonomy of appropriate situation descriptions, each corresponding to  a decision 

expressed in the design. Specifically, the aim is to  synthesize a generalization 

hierarchy of concepts relevant to the application domain that contains general 

situation descriptions on which the design decisions are based. 

Formally, a situation is characterized in terms of an instance di of one of the 

object types in the existing hierarchy described as in section 3.1. This object type, 

hence called D, has slots sl, s2, ss ,..., s An instance di consists of the set of pairs 
P' 

of properties { s j  :YJj) where Y j  is the value of the jth slot. An operator that is 

applicable to this situation is represented as tk. In the application domain, di 

==> tk represents a design decision to  perform tk in the situations described as 

di. If this first example is followed by the example "d, ==> tke, this example 

represents a positive training instance for tk whereas the example d. == 
1 > 

represents a negative training instance for tk. The learning goal is to  converge on 

those properties of examples that are, by themselves or in combination, relevant to 

the design decisions, and to acquire the necessary terminology interactively. 

4.1. Designer Generated Examples 

To introduce the learning model, consider some design decisions made by a 

systems designer/analyst from the sales accounting system. To keep the example 

clear, we restrict the description of object type D (a special kind of data flow) to  

four of the slots, namely, "from", "medium", npriority" and "frequency". The 

first example, designated El, corresponding to a small design fragment from figure 

3, is: 

El = 

{dl 
from: London 
medium: magtape == > Auto-load-and-edit 
priority: high 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-87-20 



frequency: daily) 

where Auhload-and-edit is an action performed on a dataflow characterized by the 

left hand side. The set {from:London, medium:magtape, priority:high, 

frequency:daily) represents the situation dl. The operator t l  that is applicable to dl 

is Auteload-and-edit. Based on this example alone, the following possibilities arise: 

1. All pairs of dl are relevant in deciding on tl. 

2. Only some combination of the pairs are relevant to tl. 

3. All pairs of dl are merely incidental, that is, tl is performed on all 

instances of D regardless of their properties4 . 

A representation of the possibilities, the hypothesis space of all possible rules 

based on the first example, is shown in Figure 12. A question mark indicates that 

there is no restriction on the slot value. The figure represents a hypothesis space 

for tl, extending from the most specific hypothesis, a t  level 0, down to the most 

general one a t  level 4. 

It is worth contrasting such a hypothesis space with those that  are constructed 

using an a priori taxonomy of object types such as is done in the learning system, 

LEX (241 where nodes represent situations characterized in terms of the types in the 

existing taxonomy. We interpret our hypothesis space in the same way, a s  

consisting of object types. The difference is that these types are implicit in our 

hypothesis space and need to  be characterized explicitly. Specifically, the nodes 

contain specializations of D, that is, subtypes with restrictions on values of certain 

slots. In our example, nodes a t  level 1 are those where values of any three slots have 

restricted values and the fourth slot can take any value. Similarly, level 4 consists of 

the most general object type, where values of all 4 slots are unrestricted. In effect, 

each of the nodes in the hypothesis space is a specialization of D, corresponding to  a 

particular object type. ~ h d  generalization hierarchy corresponding to  this 

4 ~ n  this section, we ignore the case that a new slot might be necessary to distinguish object 
subtypes. This case would simply be handled by user intervention. 
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1 from : London I 
medium : magtape 
priority : high 
freq : daily 

I 

from: ? from: London from: London from: London 
medium : magtape medium : ? medium: magtape medium: magtape 
prlorlty : high prlorlty : high prlorlty: ? prlorlty: high 
freq: dally frrq: dally freq: dally Ireq: 7 

from: ? from: London from: 7 from: ? from: London from: London 
mrdium: ? medium: ? medium: magtape medlum: magtape medium: ? medium: magtapr 
priority: high priority: 7 priority: ? priority: high prlorlty: high prlorlty: ? 
$Iraq : daily freq: daily frrq: daily frrq: ? frrq: ? freq: ? 

from: ? from: 7 from: ? from: London 
medium: ? medium: ? medium: magtape medium: ? 
priority: ? priority: high priority: ? priority: ? 
freq: &ally freq: ? frrq: ? frrq: ? 

from: ? 
medium: ? 
priority: ? 
frrq: ? 

- 
Figure 12. Hypothesis space for Auto-load-and-Edit (tl) after El. 

level 1 

level 3 
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hypothesis space is shown in Figure 13. In summary, an initial hypothesis space 

generates a crude object taxonomy. As the space is refined, so is the taxonomy. 

Now another example, again representing a design decision, is presented. 

E2 = 

{ d2 
from: London 
medium: disk == > Auto-load-and-edit 
priority: high freq: daily } 

Comparison with El shows that only the value of the 'medium" slot is different. 

The second example calls for the same right hand side and is therefore a positive 

training instance with respect t o  El. The fact that  both left hand sides, which 

represent slightly different situations, have the same right hand side leads t o  the 

following possibilities: 

1. The values of the "medium" slot are irrelevant in determining which 
operator is t o  be applied, since changing them made no difference t o  the 
action t o  be performed. 

2. Alternatively, the values may in fact be essential, if they belong t o  some 
generic category which requires performing tl. For  example, "magtape" 
and N d i ~ k t '  could could both belong t o  a Msuperclassn called 
wcomputerizedf~ which could be what requires tl. This situation requires 
creating a new term, in this case computem'zed, that  will characterize the 
new superclass. However since the system has no domain knowledge for 
generating this type of vocabulary, the system must query the user. If 
the user responds with "computerizedw, the system asks the user t o  
enumerate or  characterize other members belonging t o  this class. This 
information can be used t o  recognize other instances of the new class. 

Both these possibilities are represented in the hypothesis space. In the second case, 

certain nodes in the hypothesis space are generated t o  accomodate the information 

in the positive training instance. This is the well known disjunctive problem which 

occurs in generalization from examples. 

The hypothesis space for tl, shown in figure 12, is now refined to reflect these 

modifications. We have replaced magtape *' by *'computerized" in the relevant 
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from: London from: London from: London 

from: London 
medium: magtapr 
priority: high 

FigureW. Generalization Hierarchy after El. Nodes in the hierarchy are specializations of 

D where slot and value pairs on the right of the vertical bar indicate restrictions on an 

object type. The lines joining the nodes are ISA Links. 
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