
DEPENDENCY DIRECTED REASOMNG AND LEARMNG

IN SYSTEMS MAINTENANCE SUPPORT

Vasant Dhar
New York University

and

Matthiss Jarke
University of Frankfurt

March 1987

Center for Research on Information Systems
Information Systems Area

Graduate School of Business Administration
New York University

Working Paper Series

STERN #IS-87-20

To appear in the IEEE Transactions on Software Engineering (1987 volume).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-20

Abstract
The maintenance of large information systems involves continuous

modifications in response to evolving business conditions or changing user
requirements. Based on evidence from a case study, we show that the
systems maintenance activity would benefit greatly if the process
knowledge reflecting the teleology of a design could be captured and used
in order t o reason about the consequences of changing conditions or
requirements. We describe a formalism called REMAP (REpresentation
and MAintenance of Process knowledge) that accumulates design process
knowledge t o manage systems evolution. T o accomplish this, REMAP
acquires and maintains dependencies among the design decisions made
during a prototyping process, and is able t o learn general domain-specific
design rules on which such dependencies are based. This knowledge can
not only be applied t o prototype refinement and systems maintenance,
but can also support the re-use of existing design or software fragments t o
construct similar ones using analogical reasoning techniques.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-20

1. Introduction

Methods for the analysis and design of information systems are often effective in

developing initial designs but rarely support the correction of design errors or

changes in previous design choices due t o changing requirements. As a result,

changes in system design tend t o be unprincipled, ad hoc, and error prone, failing t o

take cognizance of the justifications for previous design decisions. In this paper, we

examine some of these shortcomings and present a knowledge based system

architecture called REMAP that strives t o alleviate these problems. R E h W

supports an iterative design and maintenance process by preserving the knowledge

involved in the initial and evolving design, and making use of this knowledge in

analogous design situations.

The research that led to the R E W architecture was stimulated by our study of

a complex system development effort (several related systems with hundred-

thousands of lines-of-code each). This study revealed several types of process

knowledge that are instrumental in developing and maintaining such systems. First,

the design process consists of a sequence of interdependent design decisions. The

dependencies among decisions are typically based on application-specific

justifications. In the case study, such justifications were frequently laid down on

paper in design documents. While general domain-dependent rules typically underly

these justifications, these rules are seldom articulated explicitly by users or analysts.

Second, when systems are developed in a piecemeal fashion following the

prototyping idea, analysts apply analogies t o transfer experience gained from one

subsystem t o "similar components" of another.

I t is the purpose of this paper t o demonstrate -- by analyzing the evidence from

our case study, by developing the REMAP architecture and by presenting the most

crucial parts of its implementation -- tha t the development and maintenance process

would benefit if this knowledge about dependencies and the general bases for them

could be accumulated in an appropriate form, and used t o reason about subsequent

design changes. Specifically, this paper argues that a knowledge based support tool

for this must have the following architectural components:

Center for Digital Economy Research
Stem School of Business
Working Paper IS-87-20

1. a classification of application specific wconceptsw into a taxonomy of
design objects, and mechanisms for elaborating this structure as more
knowledge is acquired by the system.

2. a representation for design dependencies and mechanisms for tracing
repercussions of changes in design;

3. a learning mechanism for extracting general rules from dependencies,
associated with a mechanism to check new design objects or
dependencies for consistency with the rules;

4. a n analogy based mechanism for detecting similarities among parts of
similar subsystems. This mechanism should make use of the
classifications in the generalization hierarchy t o draw analogies between
systems parts.

We describe each of these components in terms of the specific feature of process

knowledge that they deal with and how this knowledge is represented. In order t o

establish a sufficiently rich context for discussion, the examples are parts of the

design that were actually developed in an oil company. For readability, these

examples are only represented graphically as data flow diagrams at a high level of

abstraction. However, as described in section 3 of the paper, the internal knowledge

representation of REMAP is object-oriented and can accommodate a wide range of

practically useful languages for requirements analysis, system design, and

programming.

The remainder of this paper is organized as follows. Section 2 begins with detailed

real-world examples that are used t o show the need t o maintain process knowledge

and t o identify different kinds of such knowledge. The REMAP architecture is

presented in section 3. Section 4 describes in detail the learning component as a

central part of the architecture. Section 5 provides a discussion relating the model

t o previous work in systems analysis and artificial intelligence. We conclude with a

summary of possible applications which may benefit from the REMAP approach.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-20

2. Classification of Design Process Knowledge

In this section, examples from a case study in the oil industry are used to

illustrate different forms of process knowledge. Four classes are identified: specific

knowledge about design dependencies (at the level of instances), general knowledge

about design rules, knowledge about the essentiality of conditions for certain design

decisions, and knowledge about analogical properties between design situations.

2.1. The Case Study

The problem studied in the oil company involves the design and subsequent

maintenance of a series of sales accounting systems for different products of the

company, here referred to as OC. OC sells oil and natural gas-based products with

different characteristics to its subsidiaries and to outside customers in different

parts of the world. Sales Accounting at OC's Corporate Headquarters requires

generating various integrated reports for purposes of audit and control. Input to

Sales Accounting is based on invoices generated from transactions in a number of

offices in the US and abroad.

For the sake of readability, we describe systems using the Structured Analysis

representation [Q], [14]. However, that the problems described in this section and

our approach toward solving them are not confined to this representation.

In Structured Analysis, systems designs are described in terms of data flow

diagrams at various levels of abstraction. A data flow diagram is a network where

the nodes represent processes, external entities, or data stores (files), and directed

arcs represent the data flows from one node to another. Process nodes are

frequently called "bubbles"; each bubble can be decomposed into a lower-level data

flow diagram. Bubbles at the bottom level have associated mini-specs on which the

program designs are based. Data flow and data store information is managed in

data dictionaries. Figure 1 shows the notational conventions used in this paper.

Part of the structured top-down design of OC's Sales subsystem is illustrated in

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-20

figures 2 through 5. Figure 2 shows a context diagram which depicts the

relationship of the system to external entities. Figures 3, 4, and 5 are data flow

diagrams for levels 1 and 2 of the sales system. Further decomposition and

implementation, possibly using different languages, would finally lead to a working

system; however, the level of detail given in figures 2 to 5 is sufficient t o describe

the problems of systems maintenance and our solution to them.

We now illustrate the problem of design adaptation using three scenarios Each

requires a different extent of modification to the original design, and illustrates the

need for a different aspect of process knowledge. All of the examples involve

external requirements changes but similar problems also occur during the

refinement cycle.

2.2. The Role of General and Specific Knowledge

"London Sends Formated Invoicesw. In the original design, the difference

between the New York and London invoices was that the former were accessable

formated whereas the latter were received unforrnated, on magnetic tape. Hence, a

minor "converttt operation was required to bring the inputs into a format required

by the "verify and correct on line" operation (bubble 1.1).

As a simple change, suppose that the London office begins t o send correctly

formated invoices on magnetic tape to central headquarters. What kinds of design

modifications are required?

It is clear that the change is not a t a high enough level to affect the more abstract

parts of the design in figure 3. However, a t the next lower level (figure 4), the

"convert" bubble is not required anymore since the London invoices should now

proceed directly for verification,

In order to be able to assimilate this minor change, the system must know that in

the existing design, the convert bubble is dependent on the nature (i.e. unformated)

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-20

SALES ACCOUNTING SYSTEMS
CONTEXT DIAGRAM

DATA FLOW DIAGRAM CO-IONS '

* . ,
!

Figure 2

FUELS SALES (INITIAL)

Figure 1

u u

Figure 3

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-20

of the dataflows representing London invoices. On recognizing that London invoices

are no longer unforrnated, it should be able to detect the fact that conversion is

unnecessary. Further, it should also know that in general, formated invoices

proceed directly for on-line verification. Based on this, it should direct London

invoices to the "verify and correct on line1@ operation.

In summary, we have used two types of knowledge in understanding the existing

design and the effects of changes to it: general knowledge about domain-specific

constraints (i.e., unforrnated invoices require conversion), and specif ic knowledge

about the purpose of existing design objects in the form of justifications for existing

design choices (i.e., the existence of the convert bubble in figure 4 depends on the

existence of unforrnated invoices).

2.3. T h e Role of Essentiality

ltLondon a n d Tokyo Will N o t Sell Fuels Anymore1'. This represents a

more radical type of change than the first. Intuitively, it seems clear that major

design modifications are needed at several levels of analysis, design, and

implementation. For example, lack of invoices from Tokyo obviates the need for a

manual add and edit operation at level 1 (a m a n u a l input operation was required

because these were paper invoices). However, the auto load and edit is still required

because New York invoices must still be processed.

This example illustrates the idea of essent ial i ty in design; the Tokyo invoices

dataflow was an essential input for manual add and edit. In a more general sense,

the purpose of a manual add and edit operation was to process paper invoices. The

other inputs to it (the discount payable slips, codes and expenses) were auxi l iary ,

and in fact dependent on Tokyo invoices.' In effect, bubble 1 stays (although some

of its lower level components corresponding to London operations are removed),

while bubble 3 must be deleted. The revised level 1 dataflow design is shown in

figure 6.

 his illustrates the "non-uniformm nature of dataflow diagram entities, that is, relationships
among "unconnected" entities, and the design consequences that can emerge due to changes in them.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-20

AUTO LOAD AND EDIT MANUAL ADD AND EDIT

Figure 5

Figure 4

FUELS SALES (MODIFIED)

YTV T O N
RAUDAXD
mmt

Figure 6

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-20

I t should also be noted that although the manual add and edit operation is no

longer necessary, some of the lower level operations associated with i t are still

required in order t o process New York invoices. At the programming level, this

means t ha t the code corresponding t o those operations is not deleted since i t is

shared with the auto load and edit process.

2.4. The Role of Analogy

"The Venezuela Office Will Sell Fuels*'. This corresponds t o a high level

change tha t is likely t o induce widespread changes into the existing design. First,

some additions must be made at level 1. The types of changes, however, depend on

the nature of the sales invoices from Venezuela. If the invoices are computerized, an

input into bubble 1 is required whereas paper invoices would call for introducing a

manual add and edit operation. Similarly, a t the next lower level, the operations

required would depend on other, more detailed features of the invoices (i.e. are they

formated, unformated, etc.).

This example illustrates the use of analogy in reasoning about a new situation.

Design additions at the various levels depend on how "similarw the Venezuela

invoices are t o existing ones, and the design ramifications of these similarities and

differences. This type of reasoning requires a system t o carry ou t an elaborate

match between design parts the system currently knows about, and a new design in

order t o draw out their analogous features. Specifically, i t requires some notion of

what are the impor tant dimensions in the analogy being sought. In this example,

relevant attributes in drawing the analogy are the m e d i u m of the invoices, that is,

whether they are computerized or manual, and whether they are formated. Once

the important features are realized, the design ramifications become clear.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-20

2.5. Summary: The Need for Teleological Knowledge

In walking through the examples, we have attached fairly rich interpretations t o

the various design components that are impl ic i t in the design, i.e., not necessarily

represented o r even representable in structures such as data flow diagrams or any

other purely outcome-oriented knowledge representation. These interpretations

derive from the purpose of the application which cannot be determined from

looking at the resulting design alone. Since the design is an artifact [35], its

teleological structure is imposed by the designer's conception of the problem. This

conception may change repeatedly during the evolutionary design process. In other

words, there is no a priori "theory" relating problems t o designs; rather, the

justification for a particular design follows from a subjective world-view of the

designer.

If a support system is t o be able t o reason about about the types of changes

illustrated in the examples, i t must have a formal representation for the knowledge

that reflects the teleology of the design. Because such highly contextual knowledge

about a potential application area is impossible t o design into a system a priori, the

knowledge must be acquired by the supporting system dum'ng system design. T o do

this, the program must be equipped with mechanisms that enable i t t o learn about

design decisions in an application area that i t knows nothing about at the start of

the design. It must then apply this growing body of acquired knowledge t o reason

about subsequent modifications t o an existing design, or t o construct new designs

based on new but similar requirements. In the following section, we describe an

architecture called REMAP that is geared toward the extraction and management

of the process knowledge involved in systems development and maintenance.

3. The Remap Architecture

It is apparent from the examples that application-specific knowledge and

experience plays a key role in reasoning about a design. This raises an important

question, namely, how can a s y s t e m acquire such knowledge?

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-20

In most projects involving the construction of a knowledge based system, the

system builder constructs the model of expertise by first specifying a representation,

and then accreting the knowledge base in accordance with the precepts underlying

the chosen representation. Unfortunately, large scale application developments take

place in a wide variety of domains that may have little in common. This

uniqueness of each application situation discourages construction of a knowledge

base that might be valid for a reasonable range of applications.

If a knowledge based system is to be able t o support the process of systems

analysis and design, i t must have an initial representational framework, and

mechanisms t o augment this framework with domain specific knowledge that

captures the purpose of design decisions and relationships among them. As more is

learned, i t should be possible t o use this process knowledge t o reason about design

changes, and draw analogies in extending a design t o deal with new situations.

In the following subsections, we develop a knowledge representation for this

process knowledge, and present a model of how i t is used by the REMAP system

architecture. Each of the components of this architecture illustrates the use of a

certain type of process knowledge. We conclude the section by illustrating how these

components interact through a global control structure. A detailed example of the

most important subsystem within the architecture -- the learning component - is

presented in section 4.

3.1. Representing Design Outcomes Using Structured Objects

The REMAP model centers around design objects. The designer defines i n s tances

of such objects, and the FU3MAP system maintains a generalization hierarchy of

object types. The structure of an object type definition in the hierarchy is as

follows:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-20

OBJECT TYPE
type-name : <string>
child - of : <set of object types>
~ a r e n t -of : <set of object types>
components: <set of slots>
operators : <set of procedures/methods>

The "child-of" and "parent-ofH components position an object type in the

generalization hierarchy. "Componentsw slots describe typical aspects of an object

instance of the given type. As an example, consider the initial top-level definition

of a generic object type:

OBJECT TYPE
type-name : generic - object
child-of : ()
parent - of : unknown
components: (identifier : <string>

type : <string>
because-of : <set of objects>)

operators : (define, remove)

This means that any object will have an identifier, a type, and a "because-ofw

slot. The generic object type has no parent, and its children are yet t o be specified.

The "because-of" slot defines the r a i s o n d'etre of an object instance and will be

further discussed in the next subsection.

A "generic" object provides very little structural information about its semantics.

I t is therefore useful to s p e c i f y subtypes for which additional slots are defined in

order t o capture the meaning of object instances of such a subtype. This can be

represented using a generalization hierarchy of object types as shown in figure 7.

Some instances of dataflows and transforms used in the three scenarios of section 2

are shown in figure 8.

In principle, the system could begin with the generic object type and then learn

all subtypes from scratch. Since such a procedure would be rather cumbersome for

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-20

INITIAL OBJECT TYPE HIERARCHIES INITIAL GPTERALfZATlON HIERARCHY

Figure 7

A DEPENDENCY N W O R K

Figure 9

Figure 8

RECONFIGURED GENERALIZATION HIERARCHY

Figure 10

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-20

the designer, the system should be provided with an initial set of object types useful

for a broad range of domains, for instance, those associated with the analysis,

design, and implementation languages in use. For example, if the designer were t o

work with data flow diagrams, the initial knowledge base of object types might

contain the following definitions (cf. figure 7):

OBJECT TYPE
type name : dataflow
c h i l d - of : generic - object
parent -of : unknown
components: (part - of : dataflow;

medium : <string>;
from, t o : process)

operators : (redirect, nostart, noend)

OBJECT TYPE
type name : transform
c h i l d - of : generic object
parent - of : (process, external, datastore)
components: (inputs, outputs : <set of dataflows>)
operators : ()

OBJECT TYPE
type name : process
c h i l d - of : transform
parent - of : unknown
components: (part -of : process)
operators : (expand, noinput, nooutput)

OBJECT TYPE
type name : datastore
c h i l d - of : transform
parent - of : unknown
components: (data - structure : <set of data elements>)
operators : (define - structure, noinput, nooutput)

OBJECT TYPE
type - name : external - entity
child - of : transform
parent - of : unknown
components: ()
operators : ()

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-20

External entities could be further refined to data source, data sink, and interactor.

The slot value nunknownn refers to the fact that the slot values should be, but

have not yet been, defined,

As an example of instance definitions, consider the following description of the

"London" external entity and one of the sales invoice dataflows generated by i t (cf.

figure 8).

{identifier : London
type : external - entity
because-of : ()
inputs : ()
outputs : (London-directsales-invoices,

London-assigned-sales-invoices,
London-statistical-sales-invoices)

{identifier : London-direct-sales-invoices
type : dataflow
because of : (London)
part - o f : ()
medium : magnetic tape
from : London
to : auto-load-and-edit)

Similarly, instances corresponding to other object types can be defined. Note,

that the instance definitions have all the slots defined in their immediate type, as

well as inheriting those of their supertypes.

Besides the definition of design objects, it is also possible to perform "syntactic"

consistency checks using information in the hierarchy. As a simple example, if a

bubble has no inputs, it must be removed or new inputs must be defined. However,

certain types of application-specific information are not maintained in this

representation. For instance, if London invoices become "formated", ramifications

of this change cannot be assessed using the knowledge in the hierarchy alone. To

reason about such situations, additional data structures are required, which we

describe in the following subsections.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-20

3.2. Representing Design Processes Using Dependencies

REMAP views a design process as a set of interrelated design decisions. Design

decisions are represented in terms of jus t i f i ed actions. An action consists of

adding, deleting or changing a design object; its justification consists of previous

actions. A design decision is represented in REMAP as a two-part data structure

called dependency:

(<justification> ==> <action>)

where <justification> and <action> are references to object instances.

To illustrate, consider figure 9 which shows a network of dependencies among a

few of the dataflows and bubbles considered so far. Specifically, the auto-load-and-

edit object is justified by the existence of New York and London invoices (both

objects), which form its "set of support" 1121.

In order t o demonstrate the usefulness of this dependency network, reconsider the

first scenario where the London invoices become formated. In this case, the convert

operation is no longer required since its essential support elements have been

eliminated. Similarly, in the second scenario where the London office does not sell

fuels anymore, no more invoices are generated from London. Again, no conversion

operation is required. However, the auto load and edit operation is still required

because New York invoices are still t o be processed.

In general, a dependency network can be used to assess certain ramifications of a

deletion or change in previous design decisions. Such processes are commonly

referred to as belief main tenance [12]. In the above example, conversion is n o t

required for London invoices. However, the dependency network does not indicate

how these invoices should be treated because this knowledge is not expressed in the

network. In order t o assess the'complete repercussions of the change, more general

(object type level) knowledge is required. For example, to realize that formated

London invoices should be treated like New York invoices (and should proceed

directly for verification), it is necessary to know that in general formated invoices

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-20

are verified directly. This knowledge can then be used to reason about all object

instances corresponding t o formated invoices.

3.3. Learning as Rule Formation

Dependency information as indicated in figure 9 is represented in terms of object

ins tances . For example, the auto-load-and-edit object (bubble 1) is justified by the

two kinds of dataflow objects originating from London. An object type

corresponding t o this invoice dataflow might have slots such as data, amount,

frequency and source. However, not all slots are relevant to the justification. For

example, the auto-load-and-edit is performed because the invoices are computerized,

regardless of their other features. A general rule that subsumes this dependency

would therefore state that computerized invoices require auto-load-and-edit. I t is the

purpose of REMAP'S learning component t o acquire such rules.

In forming a rule, however, the system must first learn the relevant category of

object types (i.e. computerized invoices) that will constitute the left hand side of the

rule. If we consider "dataflow" as being a generic object with the structure

described earlier, what the system must do is t o form a specialization of it, where

the specialization involves restricting the value of one or more slots of the generic

object. For example, a computerized invoice can be considered a specialization of

the dataflow object with the medium slot being restricted to values that belong t o

the set "computerized entitiesw like disk or magnetic tape.

Basically, the learning procedure views each dependency (stated in terms of object

instances) as a t raining ins tance consisting of a situation object and an action

object. Each training instance has an associated hypothesis space which consists of

possible generalizations of the situation object. A training instance is termed

positive with respect t o its action object, and negative with respect t o all others.

As more and more examples (i.e., dependencies) are provided in the course of a

systems development process, irrelevant elements of the various hypothesis spaces

are eliminated and the system converges on generalizations (i.e., type definitions

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-20

and rules) that are consistent with the examples. If a hypothesis space shrinks to

the point where no generalizations can be found, this indicates inconsistencies in the

design or in the design rule base and must be corrected by the user. In order t o

accelerate convergence of the hypothesis space, REMAP can provide system-

generated examples for categorization as positive or negative training instances by

the user. The learning procedure is described in detail in section 4.

To summarize, the learning objective is twofold: to form appropriate

specializations of the predefined object types relevant to the application domain,

and to establish relationships in the form of rules between these specialized object

types. This results in a growing generalization hierarchy such as that of figure 10,

and in rules that are applicable a t various levels of abstraction.

3.4. Analogical Reasoning Using Objec t Classification a n d Rules

The effort of learning a flexible object type hierarchy and general design rules

associated with it pays off in two ways. First, types and rules can be used to check

the correctness of new design object instances added to a design. The second

advantage is less obvious but potentially more important. When requirements

changes demand the construction of new design objects in addition t o the removal

of existing ones, analogical reasoning methods can be employed to explore the

possibility of re-using fragments of existing designs, based on the general knowledge

acquired by REMAP'S learning component.

For example, section 2.4 introduced a scenario where a new operation was added,

namely, sales of fuels from Venezuela. In order to assimilate such a change into an

existing design, a system must be able to utilize its knowledge concerning the

purpose of "similar" design fragments. Specifically, it must determine what

attributes of the new situation are the same as objects it already knows about, and

then treat the new object accordingly.

In order to categorize a new object, it is necessary to first determine, if possible,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-20

the most specific level of abstraction in the generalization hierarchy that is

applicable t o it. For example, if I?EMAP's current knowledge about dataflows is

that shown in figure 10, and computerized but unformated invoices come in on

magnetic tape from Venezuela, they are classified as an instance of the Magnetic-

tape-invoices type. Rules referencing this type can be applied t o i t in order t o

create new object instances automatically.

If no rules are applicable t o the newly defined object at the most specific level,

more general rules might be applicable. This involves moving up the generalization

hierarchy as long as applicable rules are found. In the example, this involves

gathering rules applicable t o magnetic-tape invoices, then computerized invoices,

and finally dataflows in general. For Venezuela invoices, we can see that one of the

rules mentioned in the previous section will apply a t the level of computerized

invoices, suggesting that the existing auto-load-and-edit operation (or a new

instance of it) be performed on them.

I t should be noted that even though there may not be an object in the current

design that is similar t o the new one, existing rules learned during previous design

processes might still apply. For example, London invoices had been originally

unformated; this had required a convert operation which was subsequently

eliminated when the form of these invoices was changed. However, since a rule on

formated vs. unformated invoices was retained which now becomes applicable t o

Venezuela invoices, the old convert operation could be reinstalled, or a similar one

implemented if the formating differs a t a lower level of abstraction than shown in

our examples.

3.5. REMAP Control Structure

In order to incorporate new. knowledge and t o reason about user critiques,

REMAP requires an overall control structure that enables i t t o switch among design

support and knowledge acquisition modes. Figure 11 provides an architectural

summary of the system. The architecture consists of five modes of operation and

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-20

two knowledge bases. One knowledge base describes the design objects and

dependencies at the instance level, whereas the other one is a meta-knowledge base

which contains the object type hierarchy and the general design rules. We shall

first describe the functionality of the architecture for two typical scenarios and then

present a semi-formal summary of the interaction of the modes in a Structured-

English notation.

Consider first a scenario where the user wants t o add a new design object. The

add mode accepts a design object and its associated justification (i.e., a dependency

plus possibly a detailed description of the design object). The analogical reasoning

mode assists first in identifying the type of objects. I t then tries t o apply design

rules to generate additional objects dependent on the one entered by the user. If the

system has accumulated knowledge about the application domain, rule application

might continue down to the implementation level. For each action, the belief

maintenance mode is responsible for entering objects and dependencies t o the

instance-level knowledge base. If existing rules are not applicable t o the new objects,

the learning mode assumes control and attempts t o form a generalization (rule)

from the dependency (this is described in detail in section 4). The learning model

also comes into play if a contradiction is encountered, in which case i t initiates

interaction with the user in order t o correct the object instances, o r t o establish new

rules and, if necessary, specify new object types. The system then returns t o the

belief maintenance mode in order to do the required changes at the instance level

and t o trace the consequences of the newly acquired knowledge, returning control t o

the Analogical-construction-mode.

If parts of an existing design are t o be removed, the system will s tart in the

cm'tique mode. In this case, the belief maintenance mode is responsible for tracing

which dependent objects can also be removed from the design, by following the

chains of dependencies in the instance-level knowledge base. Updates t o a given

design object can be considered as deletions followed by additions of the new

version.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-20

We now give a high-level summary of the algorithms underlying each mode. We

should point out, however, that the learning mode description will be more

understandable after reading section 4, which is a walk-through of the algorithm

using a detailed example.

Add-mode:
1. Accept object instance i and its justification object j.
2. Call Analogical-construction-mode (i, j).

Analogical-construction-mode (inst, just):
1. Position inst and just in type hierarchies, finding types t i and tj.
2. Call Belie f-maintenance-mode ("add ", inst, just, t i , tj).
3, FOR each rule r of form "ti => x'' or "tp => xn

where t i is a subtype of tp DO
IF an object instance corresponding to x does not exist

THEN create object x.
Call Analogical-construction-mode (x, inst).

Delet e/critique-mode:
1. Accept object o to be removed.
2. Call Belie f-maintenance-mode (ndel 7 o, nil, nil, nil).

Belie f-maintenance-mode (op, inst, just, t i , tj):
1. IF op= "del "

THEN IF just={)
THEN Remove inst from each set of support.

* Note that the description of inst is not removed *\
FOR EACH object obj with empty set of support DO
Call Belie j-maintenance-mode ("del", obj, nil, nil, nil).

ELSE * op = "add "\
Add just => inst to the dependency base.
Add the description of inst t o the design object base.
Call Learn-mode (just, inst, t i , tj).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-20

DESIGN
REVISiON .

TYPE LEVEL
KNOWLEDGE BASE ---

F---=l

. - - - . . .
(RULES I

I I 1 / / I U S
I

I , ' NEW

JUSTIFY MAINTENANCE
P.,e.rC\I-

CRITIQUE

\

OBJECTS

DENCIES

INSTANCE LEVEL
KNOW LEDGE BASE

LEGEND:

- - - - + DATA FLOW

CONTROL FLOW

Figure 11. Summary of FUCvfM Architecture.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-20

Learn-mode (i, j, ti, tj):
1. FOR EACH rule tj => x where x incompatible with i:

Request correction by user..
2. IF there exists a dependency k ==> i * positive training instance *\

THEN IF new slots
THEN Establish new terminology with user.

FOR EACH x ==> y
IF ti = type of x * negative training instance *\

and i incompatible with y
T m N Reduce hypothesis spaces for i and y.

3. Provide system-generated examples for further type refinement.

4. Synthesizing The Generalization Hierarchy

Infering plausible object types and rules from design decisions (dependencies) can

be considered a learning task? I t involves generalizing situations (the left hand side

of the instance level dependency) into subtypes on which design decisions (the right

hand side) might be based. For example, if sales invoices coming from London are

computerized (a situation) and are processed directly by computer (a decision), a

plausible generalization is that computerized invoices in general can be processed by

computer. I t therefore makes sense t o create a category called "computerized

invoices" and a general rule stating that computerized invoices are t o processed

directly. These two types of knowledge can then be used t o recognize new instances

of such invoices, and how they are t o be processed. The problem of course, is t o

distinguish among the important and the incidental attributes of the situation.

Our approach t o forming general descriptions is based on the construction of a

structured hypothesis space (a lattice data structure) for each decision. This space

2~ design object is called incompatible with another one if both constitute alternative actions for
the same situation. Without loss of generality, actions that are not equal can always be considered
incompatible if the right level of abstraction is chosen.

3 ~ e would like to acknowledge the significant input of Padmanbhan Ranganathan in developing
the Learning strategies presented in this section. These strategies are described in more detail in

[Ill-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-20

contains possible generalizations of situations for each decision. These

generalizations are gradually eliminated or refined with successive examples. For a

design expressing many situation-action pairs, the ultimate goal is to synthesize a

taxonomy of appropriate situation descriptions, each corresponding to a decision

expressed in the design. Specifically, the aim is to synthesize a generalization

hierarchy of concepts relevant to the application domain that contains general

situation descriptions on which the design decisions are based.

Formally, a situation is characterized in terms of an instance di of one of the

object types in the existing hierarchy described as in section 3.1. This object type,

hence called D, has slots sl, s2, ss ,..., s An instance di consists of the set of pairs
P'

of properties { s j :YJj) where Y j is the value of the jth slot. An operator that is

applicable to this situation is represented as tk. In the application domain, di

==> tk represents a design decision to perform tk in the situations described as

di. If this first example is followed by the example "d, ==> tke, this example

represents a positive training instance for tk whereas the example d. ==
1 >

represents a negative training instance for tk. The learning goal is to converge on

those properties of examples that are, by themselves or in combination, relevant to

the design decisions, and to acquire the necessary terminology interactively.

4.1. Designer Generated Examples

To introduce the learning model, consider some design decisions made by a

systems designer/analyst from the sales accounting system. To keep the example

clear, we restrict the description of object type D (a special kind of data flow) to

four of the slots, namely, "from", "medium", npriority" and "frequency". The

first example, designated El, corresponding to a small design fragment from figure

3, is:

El =

{dl
from: London
medium: magtape == > Auto-load-and-edit
priority: high

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-20

frequency: daily)

where Auhload-and-edit is an action performed on a dataflow characterized by the

left hand side. The set {from:London, medium:magtape, priority:high,

frequency:daily) represents the situation dl. The operator t l that is applicable to dl

is Auteload-and-edit. Based on this example alone, the following possibilities arise:

1. All pairs of dl are relevant in deciding on tl.

2. Only some combination of the pairs are relevant to tl.

3. All pairs of dl are merely incidental, that is, tl is performed on all

instances of D regardless of their properties4 .

A representation of the possibilities, the hypothesis space of all possible rules

based on the first example, is shown in Figure 12. A question mark indicates that

there is no restriction on the slot value. The figure represents a hypothesis space

for tl, extending from the most specific hypothesis, a t level 0, down to the most

general one a t level 4.

It is worth contrasting such a hypothesis space with those that are constructed

using an a priori taxonomy of object types such as is done in the learning system,

LEX (241 where nodes represent situations characterized in terms of the types in the

existing taxonomy. We interpret our hypothesis space in the same way, a s

consisting of object types. The difference is that these types are implicit in our

hypothesis space and need to be characterized explicitly. Specifically, the nodes

contain specializations of D, that is, subtypes with restrictions on values of certain

slots. In our example, nodes a t level 1 are those where values of any three slots have

restricted values and the fourth slot can take any value. Similarly, level 4 consists of

the most general object type, where values of all 4 slots are unrestricted. In effect,

each of the nodes in the hypothesis space is a specialization of D, corresponding to a

particular object type. ~ h d generalization hierarchy corresponding to this

4 ~ n this section, we ignore the case that a new slot might be necessary to distinguish object
subtypes. This case would simply be handled by user intervention.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-20

1 from : London I
medium : magtape
priority : high
freq : daily

I

from: ? from: London from: London from: London
medium : magtape medium : ? medium: magtape medium: magtape
prlorlty : high prlorlty : high prlorlty: ? prlorlty: high
freq: dally frrq: dally freq: dally Ireq: 7

from: ? from: London from: 7 from: ? from: London from: London
mrdium: ? medium: ? medium: magtape medlum: magtape medium: ? medium: magtapr
priority: high priority: 7 priority: ? priority: high prlorlty: high prlorlty: ?
$Iraq : daily freq: daily frrq: daily frrq: ? frrq: ? freq: ?

from: ? from: 7 from: ? from: London
medium: ? medium: ? medium: magtape medium: ?
priority: ? priority: high priority: ? priority: ?
freq: &ally freq: ? frrq: ? frrq: ?

from: ?
medium: ?
priority: ?
frrq: ?

-
Figure 12. Hypothesis space for Auto-load-and-Edit (tl) after El.

level 1

level 3

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-20

hypothesis space is shown in Figure 13. In summary, an initial hypothesis space

generates a crude object taxonomy. As the space is refined, so is the taxonomy.

Now another example, again representing a design decision, is presented.

E2 =

{ d2
from: London
medium: disk == > Auto-load-and-edit
priority: high freq: daily }

Comparison with El shows that only the value of the 'medium" slot is different.

The second example calls for the same right hand side and is therefore a positive

training instance with respect t o El. The fact that both left hand sides, which

represent slightly different situations, have the same right hand side leads t o the

following possibilities:

1. The values of the "medium" slot are irrelevant in determining which
operator is t o be applied, since changing them made no difference t o the
action t o be performed.

2. Alternatively, the values may in fact be essential, if they belong t o some
generic category which requires performing tl. For example, "magtape"
and N d i ~ k t ' could could both belong t o a Msuperclassn called
wcomputerizedf~ which could be what requires tl. This situation requires
creating a new term, in this case computem'zed, that will characterize the
new superclass. However since the system has no domain knowledge for
generating this type of vocabulary, the system must query the user. If
the user responds with "computerizedw, the system asks the user t o
enumerate or characterize other members belonging t o this class. This
information can be used t o recognize other instances of the new class.

Both these possibilities are represented in the hypothesis space. In the second case,

certain nodes in the hypothesis space are generated t o accomodate the information

in the positive training instance. This is the well known disjunctive problem which

occurs in generalization from examples.

The hypothesis space for tl, shown in figure 12, is now refined to reflect these

modifications. We have replaced magtape *' by *'computerized" in the relevant

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-20

from: London from: London from: London

from: London
medium: magtapr
priority: high

FigureW. Generalization Hierarchy after El. Nodes in the hierarchy are specializations of

D where slot and value pairs on the right of the vertical bar indicate restrictions on an

object type. The lines joining the nodes are ISA Links.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-20

