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ON THE RATIONAL SCOPE OF PROBABILISTIC 
RULEBASED INFERENCE SYSTEMS 

Information Systems Area 
Graduate School of Business Administration 
New York University 

Belief updating schemes in artificial intelligence may be viewed as three 
dimensional languages, consisting of a syntax (e.g. probabilities or certainty 
factors), a calculus (e.g. Bayesian or CF combination rules), and a semantics 
(i.e. cognitive interpretations of competing formalisms). This paper studies 
the rational scope of those languages on the syntax and calculus grounds. In 
particular, the paper presents an endomorphism theorem which highlights 
the limitations imposed by the conditional independence assumptions 
implicit in the CF calculus. Implications of the theorem to the relationship 
between the CF and the Bayesian languages and the Dempster-Shafer theory 
of evidence are presented. The paper concludes with a discussion of some 
implications on rule-based knowledge engineering in uncertain domains. 

1. INTRODUCTION 

In order for a computer program to be a plausible model of a (more or less) rational 
process of human expertise, the program should be capable of representing beliefs in a 
language that is (more or less) calibrated with a well-specified normative criterion, e.g. 
the axioms of subjective probability [I], the theory of confirmation [Z], formal logic, etc. 
According to  Shafer and Tversky, the building blocks of a probabilistic language are 
syntax, calculus, and semantics [3]. The syntax is a set of numbers, commonly referred 
to as degrees of belief (e.g. standard probabilities or certainty factors), used to  
parameterize uncertain facts, inexact rules, and competing hypotheses. Typically, a set 
of atomic degrees of belief is elicited directly from a human expert, while compound 
degrees of belief are computed through a set of operators collectively known as a belief 
calculus. The semantics of the language can be viewed as a mapping from a real-life 
domain of expertise onto the belief language. This mapping provides a cognitive 
interpretation as well as descriptive face-validity to  both the syntax and the calculus 
dimensions of the language. 

Given the critical role that a belief language plays in determining both the low-level 
mechanics and the high-level ordinal ranking of the recommendations generated by an 
expert system, it is clear that the implicit rationality of the language is directly related 
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to both the internal and external validities of computer-based expertise. By 'rationality7 
I refer here to the normative criteria of consistency and completeness [I] as well as to 
the psychometric criteria of reliability and validitgl [4]. I t  is argued that the 
performance of any expert, whether a human being or a computer program, should be 
evaluated and rated along those lines. 

The two mainstream belief languages in rule-based inference systems are the normative 
Bayes ian  and the descriptive certainty factors (CF) languages, the latter being 
representative of a wide variety of ad-hoc calculi of uncertainty. It seems that the CF 
method is currently the most widely used belief language in applied expert systems, 
primarily due to the popularity of such CF-based shells as EMYCIN [5], M.l 161, and 
Texas Instrument's Personal Consultant [?I. Bayesian inference has been traditionally 
much less popular, with the exception of some notable examples, e.g. PROSPECTOR 
181, which uses a Bayesian syntax and an ad-hoc version of a Bayesian calculus. 
Recently, new techniques designed to cope with the computational complexity of a 
complete Bayesian design are emerging, giving rise to  the concept of a Bayesian 
inference net  [Pearl,9]. 

Notwithstanding the critical importance of exploring the practical scope of non- 
categorical rule-based inference systems, few studies have compared belief languages on 
rational as well as cognitive grounds. Furthermore, practitioners are often oblivious to  
the theoretical limitations inherent in the representation and synthesis of degrees of 
belief. This has led to a number of commonly held misconceptions regarding some 
properties of the CF and the Bayesian languages, such as the following two conjectures: 

C1: Classical Bayesian methods are either too simplistic or too complex: in order for a 
Bayesian updating procedure to  be computationally feasible, strict statistical 
independence must prevail. This requirement is rarely met in practice, where 
interaction effects among clues and hypotheses make the Bayesian solution 
unmanageable on combinatorial grounds. The CF calculus, on the other hand, does not 
make explicit assumptions of statistical independence; therefore, it can be used to model 
realistically complicated problems that defy a normative Bayesian interpretation. 

C2: Both the Bayesian and the CF calculi are special cases of the general Dempster- 
Shafer theory of evidence [lo]. Hence, they may be construed as two alternative and 
competing belief languages, each specialized to  deal with a particular class of problems 
and probabilistic designs. 

Toward the end of the paper a rather different interpretation of both C1 and C2 will be 
presented. The organization of the paper is as follows: Section 2 presents some 
necessary background and terminology. Section 3 provides a brief review of the C F  
language and its rational (Bayesian) interpretation. Section 4 presents three lemmas 
that are further integrated into an endomorphism theorem. This theorem shows that 
the CF language is a speciaI case of the Bayesian language. Similar results have been 
proven in the past by Adams (1 11, Heckerman [12], and Grosof [13]. Section 5 presents 
some preliminary thoughts about the computational complexity of wholistic (not 
conditionally independent) inference problems. The paper concludes with some 
implications on knowledge engineering and future research directiom 
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2. BACKGROUND AND NOMENCLATURE 

Consider an n-dimensional propositional space S defined over a certain domain of 
expertise, e.g. medical diagnosis. Each dimension of S is interpreted as an attribute of 
the domain, e.g. chest pain, headache, allergy, etc. An inference problem in S is a tuple 
< h,el, ..., em>, 0 5 m 5 n, where the attribute h is interpreted as a prospective 
hypothesis and the attributes el, ..., em are interpreted as pieces of evidence relevant to h. 
Let F:S -, [0,1] be a (possibly transcendental) joint distribution function defined over S. 
Although we don't have direct access to F, we assume that there exists a domain expert 
who is capable of making judgments that can be further interpreted as a subjective 
function BEL which approximates F. In particular, given an inference problem 
<h,el, ..., em>, the posterior belief BEL(hlel, ..., em) reflects the expert's belief that h 
is true in light of the evidence el, ..., em. 

In order to avoid the apologetic debate of whether or not the function F exists, we note 
that F is presented here primarily for the sake of clear exposition. In fact, the 
relationship between BEL and F is a t  the center of an intensified philosophical debate 
that has been going strong for more than 300 years. In short, under a Bayesian 
interpretation (e.g. Ramsey), BEL = P = F, where P is the standard Savage/de Finetti 
subjective probability function. Objectivists (like Popper) argue that F stands aloof 
from P (or, for that matter, from any personal BEL), and, hence, in general, P # F. 
Proponents of the logical school of probability model BEL through Carnap's 
uconfirmationu function C(.) [Z]. A similar approach is taken by the certainty factors 
formalism, which sets BEL = CF. 

Finally, pragmatic Bayesians (like myself) feel that BEL = P is our best shot at  F, a 
shot whose accuracy is directly related to the operational characteristics of the 
elicitation procedure designed to construct P. Since P is subject to an internal 
axiomatic system, I term IBEL-PI an 'internal bias' and IBEL-Fl an 'external bias.' 
Attempts to reduce those biases are termed 'debiasing' or 'corrective procedures' in the 
cognitive psychology literature [e.g. 141. 

Let V be the subset of all "interestingm (i.e, non-arbitrary) inference problems 
<h,el, ..., em> defined over S. The following set of definitions partitions V into three 
classes of problems that vary in terms of their computational (and cognitive) 
complexity. This partitioning is a reflection of the fact that some problems that require 
expertise may be simple 'open and shut' cases, while other problems may be 
complicated and vague. In what follows, I wish to  provide a more precise definition of 
this taxonomy of problems, based on the underlying complexity of their diagnostic 
structures. 

Diagnostic Structure: the diagnostic structure of a problem q = <h,el, ..., em> is the 
conditional distribution F(el, ..., emlh). 
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Weakly Decomposable Problems: the set of weakly decomposable problems WD is 
defined as follows: 

WD = {q J q =.{h,el ,..., em) E V and F(el ,..., emlh) = F(elC)* ...- F(emlh)) 

Decomposable Problems: the set of decomposable problems D is defined as follows: 

D = {q I q = {h,el, ..., em) is weakly decomposable and F(el, ..., em) = F(el)* ...* F(em)) 

Wholistic Problems: a problem q is wholistic if q E V - WD 

Corollary: D C WD C V C S 

Note that ndecomposability" is a weaker notion of statistical independence. The latter 
requires that events be independent in all subsets, e.g. P(abc) = P(a)P(b)P(c), 
P(ab) = P(a)P(b), P(ac) = P(a)P(c), and P(bc) = P(b)P(c). Decomposability requires 
only the first constraint, i.e. P(abc) = P(a)P(b)P(c). 

3. THE CF LANGUAGE AND ITS RATIONAL 
INTERPRETATION 

This section provides a brief account of the definition and interpretation of the 
certainty factors language, as stated by Shortliffe and Buchanan in [lo]. Given a 
problem q =  <h,el, ..., em> E V, the CF syntax approximates the posterior belief 
associated with q through the difference between a measure of increased belief (MB) and 
a measure of increased disbelief (MD) in the hypothesis h in light of the clues 
<el, ..., em> : 

The CF calculus is a set of operators designed to combine atomic CF's into compound 
CF's (e.g. compute BEL(hla,b) from BEL(h1a) and BEL(h1b)). This paper focuses only 
on a subset of this calculus, denoted hereafter (Ml-M2): 

0 if MD(hla,b) = 1 

MB(h1a) + MB(hlb) 41 - MB(hla) ) otherwise 
(M1 

0 if MB (hla,b) = 1 

MD(hja) + MD(h1b) *(1 - MD(hla) ) otherwise 
(M2) 

Note that (MI-M2) appears to convey a certain descriptive appeal: if you open the 
parentheses of (Ml) for example, you obtain the sum of MB(h1a) and MEl(h1b) minus 
their multiplicative interaction effect. The resulting combination rule is both 
commutative and associative, as one would expect. 
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Shortliffe and Buchanan have also suggested a syntactical mapping from Bayesian 
probabilities to certainty factors, defined as follows: 

I term the (Rl-R2) mapping a rational interpretation for three reasons. First, the 
mapping is intended to convey a certain degree of descriptive face-validity to the CF 
syntax. For example, (Rl) represents the measure of increased belief in h in light of the 
piece of evidence a as a normalized difference between the posterior P(hla) and the prior 
P(h). Second, the mapping relates CF's to  a subset of the real interval [0,1] which is 
consistent with the seven rational postulates of Savage and de Finetti (i.e. the axioms of 
subjective probability). Third, my notion of a rational interpretation is consistent with 
Shortliffe and Buchanan who suggest: "Behavior i s  irrational i f  actions taken or 
decisions made contradict the result that would be obtained under a probabilistic 
analysis of the behavior" [lo, p. 2511. 

Note in passing that (MI-M2) is very different from (Rl-R2). The former pair of 
combination rules is the nucleus of the CF calculus, designed to compute the compound 
strength of belief of two parallel pieces of evidence. The latter pair of definitions is a 
suggested ex-post Bayesian interpretation of certainty factors which is not necessarily 
unique. 

4. THE CF LANGUAGE AS A SPECIAL CASE OF THE 
BAYESIAN LANGUAGE 

Lemma 1 If the MB combination rule (MI) is used to approximate the posterior belief 
associated with a problem <h,el, ..., em>, then (Ml) is mutually consistent with the 
rational MB interpretation (Rl) if and only if <-h,el, ..., em> is decomposable. 

Lemma 2 If the MI) combination rule (M2) is used to approximate the posterior belief 
associated with a problem <h,el, ..., em>, then (M2) is mutually consistent with the 
rational MD interpretation (R2) if and only if <h,el, ..., em> is decomposable. 

Lemma 3 If the CF calculus (Ml-M2) is used to  approximate the posterior belief 
associated with a problem <h,el, ..., em>, and if (MI-M2) is mutually and jointly 
consistent with the rational interpretation (Rl-R2), then both <h,el, ..., em> and 
<lh,el ,..., em> are weakly decomposable. 
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The Endomorphism Theorem Let CF be the set of all problems that have an 
approximate posterior solution derived by the CF calculus (MI-M2). Let V be the set of 
all problems that  have an approximate posterior solution derived by a Bayesian 
calculus. Let T be the rational interpretation (Rl-R2). Under these conditions, T is an 
endomorphic transformation T:CF --+ WD C V, where WD is the subset of weakly 
decomposable problems in V. 

L e m m a  1 L e m m a  3 

L e m m a  2 

Figure 1 

5. DISCUSSION 

The endomorphism theorem says that the CF calculus (Rl-R2) has a rational 
interpretation if and only if it is restricted to weakly decomposable problems. Under 
these conditions, the CF belief synthesis rule is equivalent to the likelihood ratio version 
of the Bayesian belief updating rule. As was mentioned at the beginning of the paper, 
the fact that the CF calculus makes implicit assumptions of conditional independence 
was proved elsewhere, e.g. by Adams [ll], Heckerman [12], and Grosof [13]. The 
present theorem is useful in that it highlights the important implications of the 
CFlBayesian relationship on the rational scope of CF-based inference systems. 

In the pictorial illustration of the theorem, q is a wholistic problem that  is outside the 
rational scope of the CF language (e.g. q =  <h,a,b> has a "synergisticw diagnostic 
structure, i.e. F(a,blh)>F(alh)-F(b1h)). At the same time, however, q does have a 
(complicated) Bayesian posterior belief, by virtue of its membership in V. This 
dichotomy means that one cannot trade rationality for efficiency, as is sometimes being 
done in AI. Furthermore, the likelihood that real-life problems exist in WD is very 
small, due to the underlying complexity of inference problems that require expertise 

I151 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-87-59 



The preceding paragraph implies that most CF-based expert systems (and, hence, most 
applied expert systems) are inconsistent with their rational interpretation (Rl-R2). This 
finding is disturbing in view of the impressive decision-making performance of some CF- 
based systems (81. There may be (at least) two potential explanations for the disparity 
between the narrow normative foundation and the de-facto face-validity of the CF 
language. 

First, I argue that  experienced knowledge engineers intuitively know that the 
endomorphism theorem is true, and, in fact, take advantage of it. In particular, 
designers of complicated expert systems often feel that the more granular the 
knowledge-base, the higher is the validity of the system [16]. This heuristic amounts to  
augmenting an evidence/hypotheses inference net with a multitude of sub hypotheses 
and intermediate states, designed to partition the knowledge-base and achieve a higher 
degree of granularity. This judicious decomposition is done in an attempt to  explicitly 
account for interaction effects, and, thereby, induce more conditional independence on 
the evidence/hypotheses space, as was proposed by Charniak [IS] and by Winter and 
Girse [17]. 

In the context of the present paper, we can describe this practice as follows: when a CF 
knowledge engineer faces a wholistic problem q which is outside the scope of a rational 
interpretation, he or she'first modifies the diagnostic structure of the original problem, 
thus creating a transformation from q to q' f WD, which is a rational CF territory. If 
there exists a problem q' whose diagnostic structure is indeed a plausible (weak) 
decomposition of q, a CF-based system applied to  q' is likely to  provide a (close) 
rational belief representation to  q as well. 

The second explanation of the CF descriptive/normative contrast may be that the 
original rational interpretation of certainty factors (Rl-R2) is subject to doubt. In other 
words, it seems that the CF language is indeed a novel formalism that deserves a serious 
look, especially on practical and descriptive grounds. Indeed, the fact that the CF 
language has been going strong for more than a decade in spite of its unrealistically 
narrow rational interpretation suggests that the model is basically powerful although its 
normative foundation is weak. Hence, future research is needed to explore new 
interpretations to  the CF language that will be more plausible on rational, cognitive, 
and philosophical grounds. An Example of such an undertaking may be found in 
Heckerman's work [12] on alternative probabilistic interpretations of certainty factors. 

6.1. Conjecture C1 Revisited 

We now turn to the casual conjecture C1, which attributes the impracticality of the 
Bayesian language vis a vis the CF language to  the fact that real life domains of 
expertise are not statistically independent. The reader has perhaps realized by now that 
this statement is based on a semantic rather than a substantive argument. In 
particular, note that the phenomenon of statistical independence is not directly 
expressible in the CF formalism. This is consistent with Shafer and Tversky, who 
observe that some mathematical properties are not translatable from one belief language 
to another [3]. However, the fact that a particuIar characteristic of the world cannot be 
described in a certain language does not necessarily imply that this characteristic in 
nonexistent. 



The statistical independence phenomenon is an attribute of nature which stands aloof 
from the CFlBayesian debate. To clarify this distinction, we may use an analogy from 
physics. The presence or absence of statistical independence is a unique property of a 
domain of expertise just as the mass is a unique physical property of a brick. 
Notwithstanding the mass uniqueness, the weight of the brick varies with different 
scales (or on different planets). Thus an absolute unique property of nature may be 
mapped onto different manifestations under different circumstances. Similarly, the 
manifestation of the independence property may be explicit in some belief languages 
and vague or even null in others. The crispness of this expression should be construed 
as a property of the language, not a property of nature. 

6.2. Conjecture C2 Revisited 

The C2 conjecture suggests that both the CF and the Bayesian languages are special 
cases of the Dempster-Shafer theory of evidence. Although this premise is indeed 
correct, this truth is quite different from its popular interpretation. That the Bayesian 
design is a special case of the Dempster-Shafer model is a trivial corollary that can be 
found in [IS]. Similarly, Gordon and Shortliffe gave a Shaferian belief interpretation to  
the CF calculus. They then proceeded to conclude that "The Dempster-Shajer 
combination rule includes the Bayesian and the CF functions as special cases " 
[19, p.2731. 

In my view, the popular interpretation of this correct argument is depicted in Figure 2a: 

CF Bayes C F Bayes 

Figure 2a Figure 2b 

However, in light of the endomorphism theorem, a more accurate description of the 
CF/Bayesian/Shafer relationships is as depicted in Figure 2b. The relationships 
depicted in the latter figure are consistent with Grosof's analyses of the 
CF/Bayesian/Shafer interplay [13]. Grosof has also provided the explicit 
transformations under which the CF and the Bayesian languages are special cases of the 
Dempster-Shafer language. 
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1. Apply a rule-based algorithm as though the problem in not wholistic: 

2. Devise a new rule-based algorithm to wholistic problems: 

Figure 3b 

3. Transform the wholistic problem q into a more complicated problem q' that 
nonetheless is (roughly) weakly decomposable. Then apply a rule-based algorithm to  q': 

Figure 3c 

Option 1, which basically amounts to fudging, is, in my opinion, the leading practice 
among practitioners who use rule-based expert system shells (this impression is not 
supported by any firm empirical evidence). Moreover, the endomorphism theorem 
shows that it doesn't really matter if you use a decomposable Bayesian or a CF 
approach; both fail to handle wholistic diagnostic structures, although the latter appears 
to be oblivious of this limitation. 

Option 2 presents a very tough challenge. Basically, it requires the development of an 



In short, the present discussion indicates that within the subset of weakly decomposable 
problems (WD), CF's are remarkably Bayesian after all. Outside the subset WD, the 
CF language may have a variety of free-form and appealing descriptive interpretations. 
A t  the same time, those ad-hoc interpretations will not be accountable or testable on 
rational (Bayesian) grounds. Of course, this restriction may be lifted if either (Rl-R2) 
or (Ml-M2) are modified or extended in order to cover a larger superset of WD. 

6. IMPLICATIONS O N  KNOWLEDGE ENGINEERING AND 
FUTURE RESEARCH 

Several authors have stressed the fact that most real-life domains of expertise include 
problems that are dependant, adjacent, or wholitltic. Clearly, all those definitions 
basically imply that the diagnostic structure of realistically complex problems is not 
weakly decomposable. This observation has far-reaching computational implications 
which may be summarized in the following proposition, which has not yet been proven: 

Proposition: If a problem < h,el, ..., em> is wholistic, then the rule-based computation 
of the posterior belief BEL(hlel, ..., em) is NP-complete. 

Heuristic argument: This proposition is based on the intuition that an m-cities 
Travelling Salesman Problem (TSP) is reducible to the integer programming (IP) 
formulation of the rule-based comutation of BEL(hlel, ..., em), provided that such 
plausible formulation exists. The objective function of the IP model might be based on 
a logarithmic transformation of BEL(hlel, ..., em) which amounts to  a linear combination 
of all the possible interaction effects within subsets of the {h,el, ..., em} space. Each 
individual interaction effect might be multiplied by an integer 0 - 1 variable that 
determines whether or not the interaction obtains. Furthermore, it is felt that the 
typical TSP constraint designed to avoid a sub-tour among k < m cities can be mapped 
onto the constraint that given that the underlying inference problem is wholistic, the 
computation of BEL cannot afford to disregard a dependency of degree k within the 
{h,el, ..., ek} space. The objective here is to  design these 2m logical constraints in a way 
that will force the appropriate 0 - 1 variables to be set to  0 or 1, thus determining 
whether or not the respective interaction effect should enter the computation of 
BEL(hlel, ..., em) in the objective function. 

We now turn to the implications of the endomorphism theorem on knowledge 
engineering in light of the proposition just presented. In particular, we wish to focus on 
the key question that ought to be addressed, namely: how can a rule-based expert 
system compute the posterior belief associated with a wholistic problem. Basically, 
there seem to be three alternative options: 
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optimal belief updating solution to  wholistic problems which is also rule-based, or 
polynomial in the size of the problem, in some sense. In light of the proposition 
regarding the computational complexity of wholistic problems, such algorithm will 
imply that P= NP, amounting to  the most staggering finding in complexity theory, 
and a very unlikely one. This leaves us with more realistic lines of attack which are 
suboptimal, but, nonetheless, feasible. Examples of such efforts are Lemmer's work on 
incompletely specified distributions [20] and Cheeseman's maximum entropy algorithm 
[211- 

It seems that proponents of the classical rule-based approach to  inference are left with 
the pragmatic option 3, which, in my view, has not received a sufficient amount of 
research. If we manage to  construct a plausible decomposition q' of q, then we can 
safely apply a rule-based algorithm to q'. Moreover, the goodness of this solution will 
be a function of the structural proximity of q' to q, which might be estimated by the 
knowledge engineer. Decomposition might be carried out syntactically, as in Pearl's 
technique of structuring causal trees 191, or semantically, as in Charniak's notion of 
'intermediate states' 1151. 

If we view the optimal solution of q as a complete combinatorial Bayesian design, and 
the rule-based solution of q' as a heuristic solution of q, we may bring upon some very 
strong findings from the probabilistic analysis of the TSP. For example, there is a 
greedy algorithm that solves the TSP in polynomial time, giving a solution that may 
not be optimum but is guaranteed to be no worse than twice the optimum path. 
Furthermore, if some very plausible assumptions are made regarding the layout of the 
cities (viz, the topology of the diagnostic structure of the problem), this error can 
become as small as 5% 1221. 

7. CONCLUSION 

The approach taken in this paper was to explicitly define the class of inference problem 
that are solvable in the CF language in a way which is consistent with the theory of 
probability. The resulting endomorphism theorem is yet another way to show that the 
CF language makes strong independence assumptions. In the final analyses, it is 
obvious that conditional dependencies is a phenomenon that we cannot afford to  ignore, 
regardless of the belief language that we choose to adopt. Moreover, it seems that the 
conditional independence assumption is structurally inherent in any rule-based 
algorithm, when applied to probabilistic domains. This is unfortunate, since the rule- 
based architecture is a well established inference technique with some very appealing 
characteristics. With that in mind, it is argued that future research should concentrate 
on manipulating the problem space, rather than the algorithm, in order to make it more 
amenable to a rule-based solution which will also be valid on probabilistic grounds. 

8. Appendix: Proofs 

For the sake of brevity, the following proofs are limited to  inference problems with two 
pieces of evidence. Due to the commutative and associative nature of both Bayes rule 
and (Ml-M2), these results can be easily extended to any finite number of pieces of 
evidence. 



8.1. Proof of Lemma 2 

Applying (M2)  to an inference problem q={h,a,b) amounts to 

It is easy to show (from the (R2) interpretation of MD) that 

(if P(h),P(e) > 0) 

Applying this to  the r.h.s. of (M2) gives: 

Hence, (M2) is equivalent to 

Alternatively, the rational interpretation (R2) of MD(hla,b) gives: 

To prove the IF direction, we begin with a decomposable {h,a,b): 

Now, plugging (1) and (2) in the r.h.s. of (M2') and using Bayes Rule yields: 

which is identical to (R2'). Alternatively, we could have applied Bayes rule to (RZ'), 
plug (I)-(2) in the result, yielding an expression which is identical to (M2'). Since (M2') 
and (R2') are consistent with (M2) and (R2), respectively, we have proven that (M2) 
and (R2) are mutually consistent. 

To prove the ONLY IF direction, we assume that (M2') and (R2') are mutually 
consistent, and equate them: 
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Which, after some algebraic manipulations, gives 

Now, if {h,a,b) is subject to probabilistic interpretation, then Bayes rule dictates that: 

Equating (3) and (4) recovers the implicit assumptions: 

which imply that {h,a,b) is a decomposable problem. 

8.2. Proof of Lemma 1 

We begin by applying the fact MB(h1a) = MD(1hla) to  (Rl), obtaining: 

Applying Lemma 2 to  this completes the proof. 

8.3. Proof of Lemma 3 

The proof follows from lemmas 1 and 2: The former says that (MI) is equivalent to  the 
Bayesian computation of P(-hla,b) under the assumption that {-.h,a,b) is 
decomposable. The latter says that (M2) is equivalent to the Bayesian computation of 
P(hla,b) under the assumption that {h,a,b) is decomposable. Taken together, these two 
belief updating operations are equivalent to  the odds-ratio form of Bayes rule: 

Which is based on the assumption that {h,a,b) and {-. h,a,b) are weakly decomposable. 

8.4. Proof of the Endomorphism Theorem: 

Let the rational interpretation (Rl-R2) be a transformation T, T:CF -+ V. Let W D C V  
be the subset of weakly decomposable problems in V. Since there exist many wholistic 
problems in V which are not weakly decomposable, we get WDCV. Let q be such a 
wholistic problem with q E V and q 4 WD. According to Lemma 3, T(CF) = WD. 
Hence, we have found a problem q E V which is outside the range of T. This implies 
that T:CF -4 V is an endomorphism. 
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