
MISINFORMATION IN HIS RESEARCH: 

THE PROBLEW OF STATISTICAL POWER 

Jack J. Baroudi 
and 

Wanda J. Orlikowski 

June 1986 

Center for Research on Information Systems 
Information Systems Area 

Graduate School of Business Administration 
New York University 

Working Paper Series 

CRIS 2125 

GBA #86-62 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-86-062 



Table of Contents 

1. INTRODUCTION 
2. POWER DEFINED 
3. POWER ANALYSIS 
4. THE RESEAFtCH STUDY 
5. RESULTS 
6. DISCUSSION 

6.1. Research Studies 
6.2. The Problem of Significance 
6.3. The Problem of Reliability 

7. CONCLUSIONS 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-86-062 



ABSTRACT 

This study reviews 57 MIS articles employing statistical inference testing 

published in leading MIS journals over the last five years. The statistical power 

of the articles was evaluated and found on average t o  fall substantially below the 

accepted norms. The consequence of low power is that  i t  can lead t o  

misinterpretation of data and results. Collectively these misinterpretations result 

in a body of MIS research that  is built on potentially erroneous concIusions. 
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1. INTRODUCTION 

There is a danger that much of the inference testing performed by 

management information systems (MIS) researchers is seriously flawed. This is a 

direct result of the failure of researchers to attend to  the power of their statistical 

tests. The importance of power in statistical inference has been emphasized in the 

applied and social psychology literatures for many years [Cohen 1962, 1965, 1977; 

Hays 19811, but this emphasis appears to  have been ignored by the MIS 

literature. 

This paper reviews recent publications in the management information 

systems field and reveals that not only do researchers ignore the determination of 

power in their statistical testing but also, and more significantly, that they are 

unaware of the implications of low power on the findings of their tests. This 

paper attempts to  bring these issues to  the attention of MIS researchers, and also 

presents the findings of a survey conducted of recent MIS research to  assess its 

status with regards to  statistical power. 

The power of a statistical test is the probability of rejecting the null 

hypothesis [Cohen 19771. Statistical power is important in the case where the 

null hypothesis is in fact false, that is, when the phenomenon being investigated 

does exist. In these circumstances if the test reveals nonsignificant results, the 

usual response is t o  accept the null hypothesis and to  conclude that  the effect 

being examined does not exist. To conclude that  an effect "does not existt1 

unequivocally is never appropriate. Rather, the researcher should qualify his/her 

conclusions, that the effect had "not been demonstrated" by this study. However 

a graver danger occurs if in fact the phenomenon does exist, but was not 

detected due to  low statistical power. This would be incorrect, as we would be 

generating a spuriously negative result, that is, committing a Type 11 error. 
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There is a distinct asymmetry in the attention paid to the two types of 

statistical inference errors (Type I and Type 11) in the MIS literature. While the 

focus on Type I errors is clearly appropriate, we should not ignore Type I1 errors. 

Type I error (the probability of mistakenly rejecting a null hypothesis) is 

carefully guarded against by setting the a to  a prudently low level of .05 or .01. 

However the second type of error, that of mistakenly accepting a false null 

hypothesis, is often ignored. Yet, it need and indeed should not be. The 

probability of committing a Type I1 error (p) ,  can be controlled and planned for. 

In this way researchers can ensure that their statistical tests have sufficient 

power t o  detect an effect, if it exists. 

Clearly the relationship between the two risks, Type I and Type I1 error, 

needs to  be kept a t  a reasonable level. Cohen [1965, p.98] noting that the 

consequences of false positive claims are more serious than those of false negative 

claims, recommends that Type I errors be guarded against four times as 

stringently as Type I1 errors. As the convention for a is .05, this would mean 

setting /j' to .20. Accepting these conventional values for a and /j' results in the 

conventional value for power (1 - 8) to  be 30. I t  is this standard value (Cohen 

[1965, 19771, Welkowitz et al. 119821) that we employ as a benchmark against 

which to  judge the acceptability of power levels in statistical tests. 

Studies that  employ high power levels (.80 or higher) offer advantages in 

the interpretation of their results. Keppel [1973, p.5341 notes that  in such cases, 

"... we do have a relatively sensitive experiment and, consequently, we feel more 

comfortable in concluding that treatment effects are probably not present in this 

particular comparison. In short, an experiment with high power provides strong 

support for our decision not to reject the null hypothesis, while an experiment 

with low power provides little support for either the null or alternative 

hypotheses." I t  should be noted however (although we suspect that  this is not 

very frequent), that  sometimes it is not possible, given the constraints of the 

study, to obtain the desired level of power. Under these circumstances, 
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researchers need to carefully determine whether the costs involved in conducting 

the research are worth the substantial risk of not demonstrating any effect. 

Where such studies are undertaken and negative results are reported, they need 

to  be qualified by an indication of the low power of the study. 

3. POWER ANALYSIS 

Empirical researchers need to attend to  both significance testing and power 

analysis. The following briefly explains the procedures for calculating power. 

The power of any statistical test of a null hypothesis is mathematically 

defined as 1 - f l  and refers to  the probability of rejecting the null hypothesis. It 

is a function of the follouring three parameters: 

The criterion for rejection of the null hypothesis (the a level), and 
whether the test is directional (one-tailed) or non-directional (two- 
tailed). As a increases, ceteris paribus, so the power of the test 
increases, and given the same a level, ceteris paribus, power increases 
as one moves from a non-directional to  a directional test. 

The magnitude of the phenomenon in the population, that  is the size 
of the effect being investigated. This is determined from the specific 
hypothesis value posited as an alternative to  the null hypothesis (in 
the Neyman-Pearson formulation [Cohen 1965,p.96]). Such an 
alternative value can be determined by examining prior research on 
the phenomenon and estimating its size from reasonable expectations, 
or one can adopt conventional effect size values of large, medium and 
small effects [Cohen 19771. The larger the effect size posited, ceteris 
paribus, the greater the power. 

The sample size, n, such that, ceteris paribus, as n increases so does 
the power of the statistical test. 

These three parameters are related to  power in such a way, that  when they 

are all specified, the power of the test is completely determined. The power of a 

given statistical test can thus be altered by changing any of the values of the 

three parameters: a, n or effect size. 
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The effect size is typically given, corresponding to  the expected nature of 

the phenomenon of interest, and cannot be altered. The a level may be increased 

to  improve power, although there is a strong reluctance among researchers to 

deviate above the accepted norm of .05. This value would thus seem to  be non- 

negotiable in most cases. A directional rather than a non-directional formulation 

of the test might be used to  increase power, but caution is required in the 

adoption of such an approach. I t  is only valid where results in the opposite 

direction of any magnitude are not to  be distinguished from null results. Such a 

position is rare, and i t  is usually recommended not to  adopt directional tests 

except in very narrow circumstances [Cohen 1965d; Hays 19811. This leaves the 

sample size as the easiest value to manipulate. Researchers, however, are often 

constrained by pragmatics, settling for the size they can get, or what is 

traditional in a research area, with little concern for the impact of this choice on 

the power of their test. The appropriate procedure should be to  determine the 

effect size, set a and the desired power level, and only then determine what the 

sample size needs to  be. 

I t  is also possible to  perform a post hoc evaluation of the power of a given 

statistical test, once i t  is completed, based on the type of test, n, a and the 

assumed effect size. This provides an indication of how much weight t o  attach to  

negative findings. I t  is this post hoe procedure that  we employed to  evaluate the 

power of recent MIS research, which we present below. 

4. THE RESEARCH STUDY 

This study examined the issues of four major journals publishing MIS 

research over the past five years (January 1980 - July 1985). The journals 

selected were: Communications the ACM, Decision Sciences, Management 

Science and MIS Quarterly. Only empirical studies were of relevance, and in 

particular those employing inferential statistics. Sixty-three articles matched 

these criteria, and Table 1 shows their distribution. 
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--Insert Table 1 here---- 

Both parametric and non-parametric tests were included, the power of the 

latter tests being determined by using analogous parametric tests where 

appropriate [Hays 1981; Welkowitz et al. 19821. For example, the t t e s t  for means 

approximates for the Mann-Whitney U test, the parametric F test for the 

Kruskal-Wallis H test, and so on. As noted in Cohen 11962, p.1491 the effect of 

such approximations is to slightly overestimate the power of the test. Overall, 

however, the effect of this positive bias is trivial. 

Of the 63 articles selected, five included statistical tests for which 

appropriate power calculations were not available and hence these were not 

included in the sample. These studies utilized tests such as Wilk's lambda and 

ANAVA (sic) direction statistics. One other article provided insufficient 

information to conduct a power analysis and was also excluded from the study. 

The remaining 57 articles generated 149 statistical tests for which power analyses 

were conducted. 

It should be noted that while most of the articles involved a number of 

tests, not all of these tests were equally relevant t o  the key hypotheses of the 

research. Only tests of the major hypotheses were included. Table 2 presents 

the distribution of the types of tests that constituted our final sample. 

----Insert Table 2 here--- 

5. RESULTS 

For each of the statistical tests in the sample, the power of the test was 

determined by using the study's given sample size, setting the a level t o  the 

accepted standard of non-directional -05, and positing the conventions of small, 
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-able 1 : Distribution o f  MIS Studies employing 
statistical inference testing, f o r  the 
period: January 1980 - July 1985. 

JOURNAL 

MIS QUARTERLY 
. 

COMM. o f  the ACM 

MANAGEMENT SCIENCE 

DECISION SCIENCES 

TOTAL 
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NUMBER 

27 
- - - 

18 

9 

9 

63 

PERCENT 
I 

42.9% 

28.5% 

14.3% 
I 

14.3% 

100% 



Table 2: Distr ibut ion o f  Stat is t ica l  analyses 
employed i n  MIS studies. 
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L 

Sta t i s t i c  Analysis 

ANOVA 
I 

Correlat ion 

T- test  

Chi-square 

Non-parametric 

Regression 

Par t ia l  Correlat ion 
I 

Frequency 

46 

22 

2 1 

20 

18 

13 

7 

Percent  

30.9% 
I 

14.8% 

14.1% 
I 

13.4% 
I 

12.1% 

8.7% 

4.6% 
.7% 

.7 % 

100% 

Proport ion 
I 

Di f ference between 
Proportions 

TOTAL 

I 

1 

1 

149 



medium and large effect sizes. Cohen [I9771 provides values for small, medium 

and large effect sizes for a number of typical parametric tests which have become 

accepted norms. These norms vary for each statistical test, for example the small, 

medium and large effect sizes posited for a t-test of difference between means are 

.lo, .25, and .40 respectively; while the small, medium and large effect sizes 

suggested for a Chi-square test are .lo, .30 and .50 respectively [Cohen 19771. 

For each of the 149 tests culled from the articles, power values a t  three levels 

were determined by employing Cohen's [I9771 power tables. The mean power of 

the tests a t  each effect size level was determined. Table 3 shows the distribution 

of sample sizes for the MIS studies by type of statistical analysis. Caution is 

needed in interpreting this data. The high standard deviation levels in many of 

the entries reveal a large amount of variation in sample sizes. For example, 

among the non-parametric subsample the average sample size was 93, yet this is 

misleading as further investigation reveals that of the 18 non-parametric tests we 

examined, 13 had an average sample size of 14, while two had sample sizes of 

over 300. Table 4 presents the power distributions for the studies a t  small, 

medium and large effect sizes. 

---Insert Tables 3 and 4 Here----- 

The average power of the 149 statistical tests examined was 19010, 60%, and 

83% if one assumes small, medium, and large effect sizes respectively. On 

average, if one assumes that the phenomenon being investigated exhibited only 

small effects then the studies had only a one in five chance of detecting the 

phenomenon. When one assumes a medium effect size the power increases but 

still the researcher had less than a two-thirds probability of detecting the 

relationship. It is not until one assumes a large effect size that the tests have a 

good chance of discovering the relationship. Eighty percent is the recommended 

conventional level for power [Cohen 1965, 1977; Welkowitz e t  al. 19821. This 

means that if a relationship exists we should have a four in five chance of 

detecting it. From Table 4 it can be seen that 99 percent of the studies fall below 
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Table 3: Dist r ibut ion o f  Sample Sizes f o r  
52 MIS studies f o r  the per iod :  
January 1980 - Ju ly  1985. 

*Blank e n t r y  indicates those tes ts  f o r  which 
there was only one i n  the sample and hence 
no standard deviation i s  calculable. 

i 
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. 

Type o f  

S ta t is t ica l  Analysis 

ANOVA 
I 

Corre lat ion 
I 

T- test  
I 

Chi-square - 

Regression 
, 

Non-Parametric 

Par t ia l  Correlat ion 

Propor t ion 

Di f ference between 
Proport ions 

Grand Mean 

Sample Size 

Mean 
64 

132 

45 

119 

216 

93 

47 

24 

18 

84 

I 

S td .  Dev* 
79 

203 
I 

41 '. 

79 

163 

165 

14 

I 

I 



Table 4: Frequency and Cumulative Percentage Distribution 
of the Power of 52 MIS studies at Small, Medium and 
Large Population Effects under non-directional .05 
level conditions. 
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b 

POWER 

.91 - 

.8 1 - ,90 

.7 1 - .80 

.6 1 - .70 

.5 1 - .60 
.4 1 - .50 

.31 - .40 

.2 1 - .30 

.1  1 - .20 
01 -.I0 
TOTAL 

Average 
Power 

SMALL EFFECT 
I 

Frequency 
Cumul a t i ve 
Percentage 

MEDIUM EFFECT 

1 
90 100% I 

- 

LARGE EFFECT 

Frequency Frequency 
Cumulative 
Percentage 

2 
- 

2 

6 

5 

Cumulative 
Percentage 

40 
I 

100% 

100% 1 1  73% 

2 

30 

42 

60 
149 

99% 

97% 

93% 

90% 

89% 

68% 

. 40% 

8 

2 1 

20 

1 1  

2 
149 

19% 

8 1 66% 

18 I 60% 

40% 
I 

36% 

22% 

9% 

1 % 

7 
1 

2 

1 

149 

60% 

7% 
1 

3% 

2% 

1 % 

I 

1 1  

15 

83% 
L 

34% 

27% 

17% 
I 

9% 

1 1  

3 

12 48% 

6 40% 



this level when assuming small effects while 66 and 34 percent of the tests fall 

below this level if one assumes medium or even large effects respectively. 

Given that the power values vary so dramatically depending on which 

effect size one assumes, it is important to  clarify what is meant by each. With 

regard t o  differences between means, for example, a small effect is defined as a 

.20 s.d. between population means, a medium effect is a .50 s.d. and a large 

effect would be .80 s.d. between population means [Cohen 19771. From a 

psychological standpoint a medium difference should be large enough to be 

noticeable. A small effect, on the other hand, is relatively imperceptible and 

finally a large effect is so apparent as "... to render a statistical test virtually 

superfIuous" [Cohen 1965, pp. 971. If a researcher is uncertain of the effect size, 

the standard has been to assume a medium effect (i.e. s.d. of -50). 

In the case of MIS research it is only when one assumes that the effect is so 

large as to make statistical testing unnecessary, that our studies on average reach 

adequate power levels, and even then 34 percent fall below the .80 standard. 

This situation is unfortunate as the power of a study is one of the few things 

that a researcher, given a posited effect size, can control prior to  gathering any 

data. Given the expense and difficulty of actually collecting data one would want 

better than a fifty-fifty chance of finding the phenomena under investigation. 

Table 5 lists the power of the studies by type of statistical test employed. 

With the exception of regression, none of the tests reach the 80 percent power 

level when assuming a medium effect size. ANOVA tests account for almost one 

third of all MIS statistical analyses, yet their average power level (assuming 

medium effect size) is only 56 percent. 

-----Insert Table 5 Here---- 
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Table 5: Distribution of Power Values for  52 MIS studies 
assuming small, medium and large effects under 
non-directional .05 level conditions. 

*Blank entry indicates those tests for  which there was only one i n  the 
sample, and hence no standard deviation i s  calculable. 

Type of 
Statistical 
Analysis 

L 

ANOVA 

Correlation 

T-test 

Chi-square 
I 

Regression 

Non-Parametric 

Partial Correlation 

Proportion 

Difference Be- 
tween Proportions 

- 
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POWER LEVELS ASSUMING: 
I 

SMALL EFFECT 

Mean 

20 

19 

16 

16 

29 

16 

23 

10 

9 

i 

Std. Dev* 

19 

17 

10 

10 

14 

165 

9 

MEDIUM EFFECTS 

I 

LARGE EFFECTS 

Mean 

56 

68 

53 

67 

9 1 

42 

62 

36 

32 

Mean 

79 

i 

Std Dev* 

30 

28 

27 

32 

12 

28 

1.6 

Std Dev* 

26 
I 

89 I 18 I 

79 

89 

99 

69 

93 

77 

67 

22 
I 

17 

.3 

22 

8 

I 

b 



6. DISCUSSION 

The real danger of neglecting to consider the power of a study is that the 

authors may erroneously conclude that the treatment introduced or the 

phenomenon examined has no effect or makes no difference. In fact, what they 

may be finding is not no effect, but no demonstration of an effect, quite possibly 

due to  the inadequate power of their tests. The other problem is that  readers 

cannot determine if no effects were found because no relationship exists or 

because the study had poor power. The MIS research literature is rife with these 

problems. It would be too voluminous to  present an analysis of all these studies. 

For illustration, however, we present a selected sampling of some of the typical 

problems we uncovered. 

6.1. Research Studies  

Chorba and New [1980] conducted an experimental study of decision maker 

learning in a competitive environment in order to  identify which information 

system parameters facilitate learning. The authors used a strong experimental 

design and it was in general, a well planned study, with one major exception, the 

power of the study was low. For most of their statistical analyses their power was 

substantially below 50 percent (assuming a medium effect size). While they did 

uncover a number of statistically significant findings, their results are peppered 

with numerous non-significant findings such as "... no significant difference in 

the amount of data used between competitors that identified a correct strategy as 

opposed to  those who did notn [pp.609]. They then attempt t o  interpret this as 

indicating that "... experience with a given decision making situation, rather 

than quality of performance of strategy, seems to  be the operational determinant 

of the amount of data requested" [pp. 6091. While they may be correct they 

cannot claim this based on their statistics. The test they employed to examine 

this issue had a power of only 28 percent (assuming a medium effect size). Thus 

they were unlikely, from the onset of the study, to  find any relationship. What 

was otherwise a well designed and executed study ends up with inconclusive 
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findings, because the authors did not examine their power prior to  determining 

what sample size they should employ. 

Remus [I9841 examined the impact of graphical versus tabular data 

presentations on decision making. He concluded that "... in the first 12 periods 

there was no significant advantage for either type of displayu [pp. 5381. He based 

this statement on the result of a t t e s t  which examined the differences in costs 

depending on whether the decision maker used a graphic or tabular decision aid. 

His t-test was not significant and he therefore concluded that no difference was 

demonstrated. This test, however, only had a power of 43 percent (assuming a 

medium effect size). While there may be no difference, he cannot claim this 

based on his analysis; his failure to  demonstrate a difference may be a result of 

the study's low power. 

In an attempt t o  learn the effect which program indentation has on 

comprehension, Miara et al. [I9831 examined two styles of indentation: blocking 

and non-blocking. In addition they looked a t  four possible levels of indentation. 

The subjects included both novice and experienced programmers. While their 

study reported that experience level had an effect, no significant effects were 

found with non-blocked versus blocked indentation style or with the interactions. 

This finding puzzles them and they state in the discussion that  "...we are not 

sure why this result occurred because we expected a significant difference in 

comprehension with the type of blocking used for control structures. I t  may be 

possible that comprehension scores for a longer and more complex program 

would show a greater difference with the type of blocking used for the control 

structuresn [pp. 8671. A more probable explanation for their failure t o  find the 

expected result is that  they had little power, ranging from 63 percent for the 

main effect to  only 19 percent for the interactions (assuming medium effect 

sizes). 

Shneiderman [I9821 addressed the problem of what types and styles of 
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documentation aids assist programmers in comprehending, debugging and 

modifying programs. One of his experiments tested program comprehension aids 

by comparing psuedocode and flowcharts for presenting control flow information 

and text versus graphics for presenting information on data  structures. Hjs 

results found no effects for the text versus graphic hypothesis or  for the 

interactions. He concludes that  for control information "... the form of 

presentation does not mattert1 [pp.62]. This is a serious misstatement based on 

his statistical analyses. The power of his analysis was well below 30 percent 

(assuming medium effect size). Thus he only had a one in three chance of 

detecting the phenomena, assuming that they do in fact exist. Once again the 

problem of power causes the author to  erroneously claim that  nonsignificant 

findings indicate no difference, rather than the more appropriate statement that  

no significant findings were demonstrated, possibly because of inadequate power. 

Collectively these misstatements and inconclusive findings may result in 

MIS researchers prematurely abandoning what may be promising areas of 

research. By incorrectly concluding that  the phenomenon under investigation has 

no effect or makes no difference, they are discouraging researchers from pursuing 

this direction in other studies. Thus the result of inadequate power may 

erroneously close off avenues of research that  in fact may be important. 

Reflecting on these findings i t  appears that  much future research effort may be 

necessary t o  determine which of the earlier negative findings were correct in their 

conclusions of no demonstrable, consequential effects, a s  opposed t o  those that  

were not found by tests that  simply were not powerful enough t o  detect them. 

6.2. The Problem of Significance 

A related problem, but one which is different from the  above, is that  of 

interpreting significant findings when one has extraordinarily low power, for a 

posited medium effect size. On examining the studies we would occasionally find 

a test which had very low power, yet where many of the results were significant. 

From the standpoint of power, for these studies t o  have yielded strongly 
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significant results, it is highly likely that the relationships explored must have 

been enormously strong. To translate this into Cohen's words: the relationship 

must have been quite obvious without any empirical testing. 

An example of this was a paper by Hare1 and McLean [1985]. They 

compared a non-procedural language with a procedural one in terms of 

programmer productivity and program efficiency. They found strongly significant 

results which indicated that applications were written faster in the non- 

procedural language but that they were less efficient as they had a slower CPU 

execution time. Yet the power of their study was under 25 percent for these 

tests, assuming a medium effect size. While their study has many interesting 

points, the interesting findings are the relationships detected by the 

statistical analyses. We doubt that many researchers were suprised that fourth 

generation languages created applications that ran slower yet were faster t o  

write. There were many studies of this nature which asked questions t o  which 

the answers are quite obvious without any statistical testing. We believe this 

problem is directly attributable to our research tradition which demands 

statistical inference testing before a study is considered "publishablen. Little is 

learned from testing hypotheses that have obvious relations or from applying 

statistical tests t o  studies which have very small samples and hence highly 

limited opportunities to  detect any significant findings. 

6.3. The Problem of Reliability 

While the above picture may appear grim, the scenario worsens when the 

reliability of the studies is taken into account. The power figures presented in 

Table 4 assume measurement instruments which possess 100 percent reliability. 

The statistical power of a study sharply declines as the reliability of the 

instrument degrades. Schmidt, Hunter, and Urry [I9761 investigated statistical 

power in criterion-related studies and found that in validation studies, criterion 

unreliability and restriction in range dramatically increased the necessary sample 

size required to  maintain adequate levels of power. 
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Given that  only a handful of the studies even addressed the issues of 

reliability with none discussing range restriction, we can assume that  the actual 

power of the studies surveyed is substantially less than what was reported in 

Table 4. For example, Zmud's [I9821 study was one of the few which reported 

reliability coefficients. His reliabilities ran from '69 t o  .76, well below the 1.00 

levels assumed by Table 4. When researchers calculate the sample size necessary 

t o  achieve a particular statistical power level they should also consider the 

reliability of their instruments. The less certain that  researchers are of the 

cleanliness of their instruments, the greater the sample size they will need. 

7. CONCLUSIONS 

Twenty years ago Cohen [I0621 investigated the statistical power of 

abnormal-social psychology studies and found the average power of these studies 

t o  be unacceptablly low. Twenty years later we have found the average power of 

MIS studies t o  also be unacceptably low. This is an unfortunate situation, 

resulting in many MIS researchers drawing incorrect conclusions and making 

numerous misstatements. Fortunately, the problem of power is one that  can, 

with diligence, be remedied. The following are our recommendations. 

First, before any data is collected researchers must determine what sample 

size they require in order to  achieve a .80 power level. If they are uncertain as t o  

the appropriate effect size then they should employ the convention of medium 

effects. If they are unable t o  control their sample size they should still conduct a 

power analysis to  provide perspective on the meaning of their findings. 

Second, all published empirical studies should be required to report the 

power of their study under reasonable effect size assumptions. This would allow 

the reader t o  be wary of those studies with low power and would make explicit 

where i t  may be possible t o  interpret nonsignificant results as indicating little or  

no effect, distinct from inconclusive findings, possibly attributable t o  low power. 
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Finally, MIS researchers should be aware that there are other research 

methods available besides inference testing which may be more appropriate to 

exploring the phenomena of interest. There is much that can be learnt from 

employing exploratory, hypothesis-generating techniques that offer the richness of 

qualitative data analysis. Historical analyses, ethnographies, action research, 

phenomenology, ethnomethodology and critical research approaches offer much 

scope for insightful and valuable knowledge yet these are rarely employed by MIS 

researchers. 
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