
COGNITIVE MODELS OF SYSTEM DESIGN

Jon A. Turner

May 1986

Center for Research on Information Systems
Information Systems Area

Graduate School of Business Administration
New York University

Working Paper Series

CKIS f130

GBA %86-80

To appear in Critical Issues in Information Systems
Research, R. Boland and R. Hirschheim, eds., John
Wiley, New York.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-80

Introduction

Quite simply, the fact is that we do not understand very

much about designing complex, computer based information systems.

I mean that we don't know what system design consists of, we

don't know how it is done, and we don't know how to teach it.

Furthermore, our lack of knowledge about the process of system

design is the greatest single barrier to improving our ability to

apply Information Technology (IT) and to increasing system

development productivity, a major goal of most information system

departments, executive management, and the industry as a whole,

This is not to imply we can't design information systems,

for that is obviously not the situation. There are many examples

of successful systems. But we do not understand well the process

of design. And without that understanding we can never

systematically apply it, or improve it.

This is not a problem unique to information systems. There

there is little agreement or understanding as to what the process

of design involves in other fields, for example, architecture or

engineering [Alexander 641. The situation is just more

pronounced in information systems. Engineering and architecture

are fields that consistently produce objects through a process of

design. And the computer itself is one of the best examples of

an artifact that was the result of conscious conceptual and

practical design activity.

But information systems are different than most other

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-80

artifacts in three ways. First, they are abstract and not

materialized in a form that is easy for people to comprehend as a

whole, After a building is constructed it is quite straight

forward to understand it and to respond. It is not easy to

visualize an information system. Relatively few people have the

skill, or prospective needed to comprehend it, even after it is

constructed. People come in contact with only a portion of the

system forming, at best, a partial view.

Second, an information system needs to correspond to a

complex, non-specific set of human behaviors as well as a set of

explicit data transformations. It must reflect accurately the

tasks that people perform and the interactions among them.

Rather than being an arbitrary form, such as a building, an

information system has a structure that is dictated by a group of

poorly understood, inconsistent human activities. Third, because

an information system is eventually represented by a computer

program, it's correctness is subject to verification. A

building, by comparison, can not be judged correct, only

appropriate.

These distinctions in the form of the artifact suggest

differences in the process of design. Design of an information

system must not only accommodate the normal design activities

involved in engineering and architecture, it must provide means

for comprehending human behaviors and representing them in a

consistent fashion. It must reconcile the imprecision of human

activity with that of precisely specified operations required by

a computer. These transformations must be explicitly stated

rather than left to accepted convention. Consequently, the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-80

design of an information system is more demanding and more

mysterious than that of many other artifacts.

There are two basic strategies used for the design of

information systems: the life cycle approach; and evolutionary

design, best typified by prototyping. The life cycle approach

consists of three overlapped and interlocking activities:

analysis, design, and implementation. While these activities are

all highly related and frequently inseparable, it is usual

practice for a description of the system to be produced in each

phase as a means of conveying the information gained and

decisions made to following stages. This is particularly true

when more than one person is working on a project and they must

communicate. Thus, the analysis phase produces a requirements

statement or needs analysis, while the design stage produces

program specifications or data flow diagrams (with a data

dictionary, pseudo-code, and structure diagrams). The

implementation stage, of course, produces running code. These

stages could also be considered different levels of abstraction,

or detail of the system. Most of the methodology that comprises

software engineering applies to the implementation stage, or the

later portion of the design stage that concerns program design;

or are conventions for describing a system at one phase or

1 another .

'while these conventions are important for the purpose of
consistency and in communicating detail design they do not
directly contribute to an understanding of requirements. The
detailed design is seen to follow from a statement of
requirements. Some authors contend that this documentation is
never read and is impossible to keep consistent [Mecracken 811.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-80

In contrast, prototyping combines all of these activities in

one step. A preliminary understanding of the requirements are

gained and a working system is built immediately. Adjustments

are accomplished by feedback obtained from actual use by the

client- Complexity is introduced through refinement over time.

In a prototype, the requirements statement, or data flow

description may never exist separate from the materialization of

the system.

In both of these approaches the quality of the resulting

system is determined largely by the degree to which the designer

understands the requirements, or needs of a system, Both

approaches suggest that requirements analysis is performed top

down, from general to detail. Requirements analysis tends to be

accomplished as part of a closely spaced sequence of activities

at the beginning of a project in the life cycle approach. In

prototyping, requirements analysis is performed continuously over

the duration of the project. Both rely on a dialogue between

designer and users to elicit an expression of needs2.

In both approaches, there is relatively little methodology

to guide the designer, or the user for that matter, in obtaining

an expression of needs. The presumption is made that 1) users

know what information they need, and 2) they will freely disclose

it if asked. As Ackoff [Ackoff 671 points out, this is unlikely

2 ~ t is symptomatic of our lack of understanding of the process
of design that the most useful skill in accomplishing this
activity, interviewing, is not included in most courses or
textbooks.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-80

to be the case since most users do not know what information they

need (and, incidentally, wouldn't know what to do with it if they

received what they requested). As Davis notes, "simply asking

prospective users of the information systems to specify the

requirements will not suffice in a large percentage of

cases" [Davis 821, due to constraints on individuals as

information processors, the variety and complexity of the

information requirements, and the patterns of interaction among

users and designers in defining requirements. If this were not

enough, free disclosure assumes an absence of organizational

politics, which in most settings is unrealistic [Keen 811.

If simply asking users to state these requirements won't

suffice, then different and expanded approaches are needed. Yet,

the prescriptive literature is silent on what these approaches

3 might be, or how the process really works . If a true

understanding of this process is to emerge, it must be based on

the cognitive activities individuals invoke when designing.

In this chapter I will review research findings on the

cognitive process of design, describe how design is characterized

in engineering and architecture, propose a way to conceptualize

design that is useful for IT, and suggest further avenues of

research. My goal is to draw together what is known about

3~avis does identify the broad strategies for determining
information requirements as: asking; deriving from an existing
system; synthesis from characteristics of the current system
being used; and, discovering from experimentation with an
evolving system. The difficulty is that, in practice, all of
these strategies are used.

Center for Digital Economy Research
Stem School of Business
IVorking Paper 19-86-80

information system design so the process may be better

understood.

Research

One way to characterize design problems is that they consist

of a set of initial conditions and a goal but no immediate

procedure that will guarantee attainment of the goal. Beginning

at the initial state, operators or transformations are used to

move from one state to another until a final state is attained

(hopefully the goal). In real world design problems, however:

... the goals are typically fuzzy and poorly
articulated and cannot be mapped directly into properties
of the design. Thus, the exact configuration of the
final state is not prescribed, A part of the design
process consists of formalizing and refining design goals
into functional requirements that can be matched by
properties of the design. Even so, it is usually
difficult to tell how well a design meets a particular
functional requirement. In addition, the functional
requirements often cover different dimensions and the
trade-offs between them are rarely well
specified [Malhotra 80, p.1201.

This characterization of real world design problems

contrasts sharply with the idealized formulation presented above.

It suggests that the goal is evolved along with adjustments in

initial conditions rather being known a prior. It focuses on

properties of the design solution and how well they match the

functional requirements derived from the design goal. Properties

of a design solution arise from a combination of design elements,

indivisible units with certain characteristics, and the design

organization, the way the design elements interact and fit

Center for Digital Economy Research
Stem School of Business
IVorking Paper 19-86-80

together4. More importantly, it shows the central role of

dialogue in clarifying some of the ambiguities. In practice,

however, only some of them will be resolved and the issue becomes

identifying what guides the discrimination between significant

and insignificant.

Malhotra [Malhotra 801 in studying dialogue between people

attempting to solve real world problems found that it consisted

of the translation of design goals into functional requirements

that candidate designs must meet and the generation of designs to

meet the requirements. He concluded that the dialogues were more

complex, in reality, often involving implied requirements,

examination of partially proposed designs to test violation of

some unstated goal, substitution of a design solution with a

better one, and the combination of design components into a

4 ~ o r example, part of the solution for an interactive system
may be a set of data elements arranged in screen formats which
are then invoked in different sequences under particular
conditions.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-80

solution. Much of this process was implicit and unstated5.

From this study it appears that generation of solutions

seems to consist of attempting to find design elements that meet

functional requirements of the problem and then tying them

together into a coherent design. This corresponds roughly to

bottom-up design. Although this was not the only design strategy

exhibited in Malhotra's study of dialogues, it was the

predominant one and it seemed to be encouraged by the fragmentary

presentation and elaboration of requirements,

The results of this study suggest that problem definition

and solution generation are not independent activities; they are

inter-related. Consideration of potential solutions raises

questions about potential requirements which then give rise to

new requirements. This is sort of a hole finding-hole filling

activity. Requirements and solutions migrate together toward

convergence. The fragmentary nature of the dialogues suggest

that they play an important role in stimulating cognitive

'~alhotra noted that the dialogues were composed of cycles,
each one broken into a number of mutually exclusive states he
defined as 1) goal statement, 2) goal elaboration, 3) solution
outline, 4) solution elaboration, 5) solution explication, and 6)
agreement on solution, A diversity of content underlay this
apparent regularity of structure. For example, although
discussions and solution suggestions always follow discussion of
requirements, the solution that is outlined need not apply to the
requirements that precede it. New requirements are often
uncovered in the process of examining solutions and these may
start their own design cycles. This behavior suggests that
design involves a strong associative component and that deeper
structure, to the extent one exists, has yet to be revealed.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-86-80

processes, rather than solely conveying predetermined

information.

The prototype development strategy seems to match this

problem definition/solution generation process more naturally

than does the sequential and compartmentalized life cycle

approach, which may partially account for the popularity and

success of prototyping and evolutionary design as implementation

strategies in end-user computing (EUC). This is not an either/or

situation; but rather an observation that in the Life cycle

approach it may be unrealistic to expect that requirements will

ever be completely articulated at the beginning of the project,

and unless provisions are made to capture design solutions that

are generated as part of the requirements definition activity,

important information may be lost.

A related question is whether, for any design situation

there exists a solution that is clearly superior. If no superior

solution exists, and there are many acceptable ones with little

to choose among them, then the solution generation and evaluation

problem is quite different. Instead of searching for the correct

solution, an acceptable solution only need be recognized.

One way to investigate this issue is to see whether people

working separately on the same problem arrive at similar

solutions. Turner [Turner 851 studied the similarities and

differences in solutions provided by experienced students who

Center for Digital Economy Research
Stem School of Business
Working Paper IS-86-80

were all given the same design problem6. The analysis reveled

many more differences than similarities. There was wide variance

in what was included in solutions; arcs, names and contents of

data flows were different, as were processes. Subjects made a

number of different assumptions, many in direct conflict with the

written description of the problem.

Further analysis showed that there appeared to be four

different strategies used by subjects to decompose the problem.

The first and most common was a functional decomposition

strategy, the grouping of activities around major business

functions being performed, There was, however, considerable

variation in the functions selected as the basis of decomposition

and the ways they were interconnected. The second strategy

followed was process orientated. Subjects recognized certain

common information processing functions, such as updating a file,

and grouped these together. The third strategy, similar to the

first, was functional decomposition with the function selected

because they occurred at the same time. The fourth was a

combination of the first three.

When questioned, students could explain the logic of their

approach to decomposition quite clearly, but they were unable to

convince their colleagues (the other subjects) of the superiority

of their approach. It was hard to escape the conclusion that how

6~ata flow diagrams, used to represent solutions, were compared
on the basis of 1) boundaries; 2) data flows, including arcs,
names, and element contents; and 3) process functions as
represented by lower level diagrams.

Center for Digital Economy Research
Stem School of Business
IAIorking Paper IS-86-80

subjects thought about the problem influenced their decomposition

strategy, and how they thought about a problem was largely a

function of their background and experience.

One possibility is that these results are due largely to the

use of students as subjects rather than experienced professional

information system designers. Malhotra [Malhotra 801 in another

study asked experienced subjects to design a query system. An

analysis of the resulting designs showed wide variation in

approaches taken and in solutions. The researchers concluded

that the sub-goals and solution strategies generated from higher

level goals seemed to vary widely and there did not seem to be an

orderly procedure for generating sub-goals. The selection of

sub-goals appeared idiosyncratic and to depend strongly on past

experience. In a follow-up study, where subjects were to design

the query system in more detail, Malhotra found the solutions

were all different - in module content, data structures, and
algorithms. In addition, the solutions contained errors,

inconsistencies, and unwarranted assumptions. He concluded that

unlike engineering, it was difficult to tell whether information

system design was complete, consistent, or even met functional

requirements.

In summary, the commonly held notion about the design of

information systems is that it is an ordered process, performed

at the beginning of a project (in the life cycle strategy), a

methodology which when applied will produce the same result; that

it is top-down, moving from general to specific; and that

definition of requirements proceeds design solution. Research

findings suggests the opposite. Design is ad hoc and

Center for Digital Economy Research
Stem School of Business
Working Paper IS-86-80

associative, the process is individual and experientially based,

the products produced (by different designers) are usually

different, much of design proceeds bottom-up, and solution and

problem definition are intertwined.

Furthermore, there does not seem to be a common procedure

for producing a design solution; different methods of problem

decomposition are used, there seems to be no common mechanism for

producing sub-goals, different operators are invoked, unwarranted

assumptions are made, solutions are rife with errors, and there

are no ways short of actually building a system to uncover errors

and inconsistencies. In short, there does not appear to be

convergence on one solution for any particular situation, nor

does there seem to be strong problem solving models that underlay

design in information systems.

Design as Portrayed in Engineering and Architecture

The art of industrial design has been defined as "selecting

the right material and shaping it to meet the needs of function

and aesthetics. " [Archer 64 I 7. These two factors, functions and

aesthetics, fundamentally different in nature and likely to be in

conflict, must be reconciled by the designer, and this, then, is

 unction is the purpose or function the finished product is to
perform and this must be understood by the designer and
represented in the product. Aesthetics are subjective
considerations based on judgments that are shaped by values of
the designer. it falls into two broad categories: descriptive
aesthetics, which deals with empirical facts about perceivable
qualities of an object and the statistics of preference; and
ethical aesthetics, which is concerned with good or bad taste, or
appropriateness.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-86-80

the design problem.

Design is considered an art because the rules for moving

from one configuration, or state, to another, the operators as

they would be called in computer science, in either of the two

domains (functions or aesthetics) are not well defined. Neither

are the states.

Functions spring from a fundamental understanding of the

purpose of an object, or the activity being performed. While it

is quite possible to work out (by scientific methods) who likes

what, in what circumstances, there are no immutable truths in

aesthetics. Its essence is choice with the aim of

appropriateness, and the criteria are the center of gravity of

all prior choices. A special problem is that the designer must

not only be aware of his own standards and values, but he must

understand those of others, and foresee their probable future

choices. In a majority of cases, aesthetics is handled more

quickly and appropriately by intuition, provided there is an

adequate body of prior experience to base it upon than a formal

method. What tends to be missing in descriptions of information

systems design is acknowledgement of the role of aesthetics, or

any activities based on intuition.

Arriving at a solution by strict calculation is not regarded

as designing because the solution is seen as arising

automatically and inevitably from the interaction of the method

of solution and the data. In this regard the process of

calculating is considered to be non-creative. The selection of a

solution method, or the representation of a problem in a form

Center for Digital Economy Research
Stem School of Business
Working Paper IS-86-80

that permits it to be solved by calculation may be considered

design if this does not follow directly from a statement of the

problem. It is characteristic of creative solutions that they

are seen to be apt after the fact and not before. Consequently

design may be said to involve creativity and originality.

Design suggests purposeful seeking after solutions rather

than idle exploration. It also implies that certain limitations

exist, often in the form of obstacles or gaps, which constrain

acceptable solutions. In information systems design,

understanding the problem involves not only understanding needs,

but also these constraints, and in may cases, these constraints

are unstated, or implied. Thus, the need for a fundamental

understanding of the object being designed (or the design

situation).

The art of design is that of reconciliation. In general,

design of industrial objects involve three categories of factors:

human factors (motivation, ergonomics, and aesthetics); technical

factors (function, mechanism, and structure); and business

factors (production, economics, presentation, and support). Some

of these factors, such as economics, relate to matters of fact

that are susceptible to measurement and optimization. Others,

such as aesthetics, relate to matters of value which can only be

assessed subjectively. This variation in the quality of factors

is characteristic of design problems.

It is the nature of design problems that they often begin

with an analytical phase involving objective observation and

inductive reasoning. In contrast, the creative phase at the

Center for Digital Economy Research
Stem School of Business
\Vorking Paper IS-86-80

heart of the process requires subjective judgment and deductive

reasoning. Once these crucial decisions have been made, the

process proceeds with detailing of the design, for example,

producing working drawings in architecture, or a working

prototype in information systems8. The design process is, thus,

a creative sandwich. The bread of objective analysis may be

thick or thin, but the creative act is always in the middle.

There still remains the crux of the design problem, the

creative leap from specifying the problem to finding a solution.

Industrial designers appear to establish a first approximation

based on prior experience [Archer 641 . This means finding

connections between the goals, in terms of the attributes of a

good solution and the facts of the situation as mediated by the

designers knowledge and experience. Constraints serve to bound

the problem, rule out certain solutions and provide useful clues

to hidden needs or where possible solutions may be found.

Designers appear to search their minds for solutions by

examining all kinds of analogies [Archer 641. They look at other

people's design solutions to determine whether something along

those lines would answer their problem. They look at phenomena

and artifacts in the most unlikely fields. If this process still

yields no result the designer tries to reformulate the problem in

a manner that permits one of the solutions previously uncovered

8 ~ t is well known in architecture that in executing the
detailed design conflicts arise and inconsistencies are revealed
that require a rethinking of the creative phase. Often the
original creative solution is abandoned and a new one conceived
for the new situation.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-86-80

to be used. Only as a last resort does the designer attempt

deductive reasoning, proceeding from analysis of data to

necessary conclusion.

In computer science terms, the industrial designer attempts

a backwards, depth-first search from potential solutions (based

on prior experience) to parameters of the problem, with missing

data and constraints serving as cues to potential solutions,

evolving the problem9, or bounding the search. If no solution is

found the designer constructs a new network composed of solutions

to similar (and dissimilar) problems used by others1'. The

designer then attempts to reformulate the problem in a manner

that permits use of an uncovered solution. If one is still not

found, the designer attempts a forwards, breadth-first expansion

of the problem to see if it leads to a solution.

Experience acts both to define the set of initial acceptable

solutions and to influence how facts and sensory data are

interpreted. Observers contribute to their perception of the

phenomenon before them from their own experience by either

addition, or subtraction. This requires a delicate balance. One

needs a group of wide and rich range of experiences to stimulate

flexibility and fantasy in thought in order to recognize those

'~eview of Malhotrats dialogues suggests that a good portion
concerns verification; obtaining feedback from the client that
the designer has understood some specific aspect of the problem.

''1 suspect that this step has a lot to do with injecting
creativity into the solution as the process of attempting to
understand someone else's way of thinking (why the solution
works) stimulates your own thought.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-80

aspects of the design problem that are important. Yet, this must

be done without biasing what is observed. I believe experience

serves an important role in focusing the designer's attention on

key (pivotal) aspects of the problem, while permitting him to

disregard the great majority of (irrelevant) data.

One of the frequently made mistakes in information systems

is to presume that the objective portion of design involving, for

example, documenting an existing system, constitutes all of the

design activity. This view is incorrect because it does not

recognize the creative decisions involved in defining the form

the system will take and in recognizing what aspects of the

problem on which to concentrate. But how shall the form of a

system be described and what are the factors involved in

information system design? Clearly, a new vocabulary of design

is needed.

A Vocabulary for Information Systems Design

It is my belief that experienced information systems

designers consider implicitly (that is, have developed refined

procedures, or schemas, for) the following elements of design.

No time sequencing of activities is implied; the issues presented

are not necessarily resolved in the order in which they are

listed. Or, are they likely to be the way people think about

design. The cognitive processes involved in design seem to be

associative and individual, rather than sequential. The elements

presented are a checklist of issues that must be resolved when

designing an information system.

Identification of these elements is based on my experiences

Center for Digital Economy Research
Stem School of Business
Working Paper IS-86-80

as a designer of information systems, my intuition, and my

observations of industrial designers. They are presented here to

make them explicit and in hope that, as such, they will serve as

a new, somewhat more useful, vocabulary of design.

System Concept

Industrial designers make a distinction between a design

idea and any one embodiment of it. The design idea is an

invention, an abstraction, while the finished design is one of

many possible embodiments of it. For example, in a patent

application, the invention and a material embodiment of it are

described separately. The description of the invention is

interpreted literally and is deemed to cover all of the

variations that the inventor wishes. The description of the

material embodiment is interpreted freely and is regarded merely

as an exemplar.

In order to serve as a guide in making consistent decisions

and to resolve conflicts in information systems design, a system

concept is needed. The concept is the rationale, or underlying

theme of the system, for example, minimal, or simple. An

elaboration of what the system should do is not the concept. The

concept is a distillation of the system, its essence; analogous

to the design idea used by industrial designers.

In OS/360 (IBM) the design concept was complete; one common

operating system would support the company's complete line of

computers and that system would have a complete set of features.

While JCL permits almost infinite adjustment and configuration of

the operating system, it is complicated, time consuming to learn,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-80

and difficult to use. Another design concept (user friendly)

would have produced a different solution, for example, TOPS-20

(DEC) .
Boundary

The boundary defines what is inside the system, what is

external to it, and what crosses between the two. The boundary

establishes the scope of the system and, consequently, its size

and complexity. If the boundary is set too wide, the system

becomes so complex as not to be buildable; if is set too narrow,

the system is trivial. Boundary decisions are particularly

important in explaining (predicting) resistance to the

implementation of a system based on an analysis of the

redistribution of power.

Division of Labor

Decisions concerning the allocation of tasks between a

computer and the human operator are another key design issue. A

large number of combinations are possible, ranging from fully

automatic, with the operator playing a role only when a

malfunction occurs, to completely manual with the operator

performing all tasks. In most practical systems, tasks are

allocated to either computer, or human. The question then is the

basis upon which this allocation decision is made, for example,

by selecting the processor that is best suited to perform the

task, or the one that is least loaded at the timex1.

l1 [Turner 841 provides a more complete discussion of this
topic.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-80

Too often the operator's job follows implicitly from the

design of the computer (applications) portion of the system. It

becomes the result of prior design decisions, rather than the

impetus for them. Consequently, it is important to identify the

tasks an operator will perform and insure that they make sense

from the stand point of what is known about worker behavior,

performance, and working life quality.

Most of the effort expended in design is directed at

identifying the functions an application system is to perform.

The trade-off is usually between functionally and complexity

(cost). I maintain that these functions follow largely from

prior decisions (such as system concept and boundaries) and the

activities being performed12. This makes it all the more

important that these design decisions be explicit.

System Structure

The structure of a system consists of two parts: the

processing organization, representing the work organization, or

flow of the system; and, the data structure, the way data

elements are related. If the system is considered as

transforming inputs to outputs, work organization refers to the

manner in which these transformations take place. At one

extreme, a unit of input can be completely transformed into

output, invoking, in sequence, all of the necessary steps. Such

an approach is responsive, because it permits predicting when the

output will occur, but it incurs a high overhead and presents

I20r, as Davis observes, deriving the functions from an
existing information system

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-80

difficulties in control. At the other extreme, the input can be

held until all of the input of a particular category is

assembled. This method is efficient (in terms of resources), but

it is difficult to predict when output will arrive. Efficiency

and functionality of actual programs depend on data structures

actually selected.

Decomposition

In order to deal with the complexity of most application

systems some method of decomposition (or, expansion) is needed.

The approach most frequently followed in design methodologies is

top-down, breadth-first expansion. Note, however, that this is

just the opposite of the way industrial designers approach their

problems. I suspect that information system development

methodologies that support bottom-up, depth-first expansion and

permit associative (ad hoc) thinking will be more successful than

methodologies currently used.

Two basic strategies are followed in decomposition:

functional, where the system is successively divided into parts

on the basis of the business activity taking place; and data

processing, based on the generic processing activity involved.

The method of decomposition is highly leveraged because it

influences how designers perceive the problem (its

representation), what aspects of the problem receive attention

(solutions and their parameters), allowable operators, and the

value of the design produced.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-80

Operating Sequence

Identification of the set of time ordered actions that must

be performed in order to accomplish the purpose of the system.

~t is a useful check to insure that all needed functions have

been defined and that those that have are used.

Performance Measures

Every system requires a control structure to monitor proper

operation. Sometimes, as in file maintenance, this becomes a

major portion of the system. Identifying performance measures

that will be used to monitor performance is a cue in designing

the control structure.

Extent of Change

Most systems represent an incremental change from some prior

condition. Recognizing the extent of change imbedded in a system

is another aspect of identifying the amount of resistance a

system is likely to produce, and consequently, the risk involved

in implementation,

Summary

These eight elements are dimensions within which an

information system exists. Design is a search for conflicts

among objectives and the means of resolving them, and constraints

that bound the problem. These dimensions become the space in

which design is played out.

The system concept is necessary to maintain consistency

among design decisions, Boundaries establish the complexity of

Center for Digital Economy Research
Stem School of Business
\&lorking Paper IS-86-80

the system13. Division of labor and system structure are basic

design dimensions that establish the configuration of the

application. Decomposition influences the way the designer and

others perceive the system. Operating sequence, performance

measures, and extent of change are cues to prompt for often

overlooked factors.

Design at this top-level should not be confused with

detailed design at the system or program level. Detailed design

is concerned with expanding the design in a particular instance.

Although execution of detailed design may influence top-level

design, it addresses different issues and is much more

constrained and directed.

There are two categories of design factors: subjective and

objective ones. Subjective decisions concern the items discussed

above. Objective decisions follow from them. The difficulty has

been that we have not acknowledged, explicitly, the presence of

subjective factors, with the result, that, in many cases,

objective decisions appear to be arbitrary.

Implications for Research

The discussion above has been based on experience and

conjecture. One obvious starting point is to search,

13~rooks [Brooks 75 I has observed that management ' s usual
response when a system has slipped schedule and over run cost is
to add more manpower, which will only make the system later and
cost more. The proper reaction is to trim the size of the
project, which in our terms would be to make the boundary smaller
and to reduce the number of functions.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-80

empirically, for evidence supporting the presence and importance

(or absence) of these notions. For example, good and poor

information systems designs (bases on some objective criteria)

could be compared in an attempt to establish the role a strong

systems concept played (embodied in the good systems, while

lacking in the poor ones). The good systems could be analyzed to

see if they had selected operating points on the above dimensions

that are consistent, while the poor systems may not have resolved

these issues explicitly. Expert designers could be interviewed

(observed) to determine the extent they consider these issues,

and this could be compared with the behavior of poor (novice)

designers. Although this research line is difficult from a

methodological standpoint and subjective, I believe we need more

detailed studies of the process of design to reveal what really

goes on and to generate new conjectures for investigation.

A second line of research would investigate the design

process, in more detail, at the cognitive level. While there

have been no studies of information systems designers to

determine the way that problems are represented and operated on,

work has been done in understanding how people represent problems

in other domains. Chi [Chi 811, in studying the representation14

of physics problems in relation to the organization of knowledge

in experts and novices, has shown that the quality of problem

representation influences the ease with which a problem can be

solved and the quality of the resulting solution. Her results

show that the categories into which experts and novices sort

l 4 ~ n internal cognitive structure constructed by a person to
stand for, or model a problem.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-80

problems are different, although both are able to construct an

enriched internal representation of it. Experts appear to

categorize problems by underlying physics principles, a kind of

deep structure, while novices categorize problems by their

surface structure. With learning, advanced novices began to

categorize problems by principles with gradual release from

dependence on the physical characteristics of problems.

Chi's notion is that a problem can be at least tentatively

categorized after some gross preliminary analysis of its

features. After a potential category is activated, the remainder

of the representation is constructed with the aid of knowledge

associated with the category as an internal schema15. For

experts, the schema includes potential solution methods. She

concluded that experts perceive more in a problem statement than

do novices. They have a great deal of tacit knowledge that can

be used to make inferences and deviations from the surface

features of the problem. Their selection of an approach

(principle) to apply to solving a problem appears to be guided by

this derived knowledge. The actual cues used by experts are not

the labels themselves but what they signify.

The findings of Chi's study are consistent with the notions

of the information systems design process set forth here.

schema is the category and its assaciatdd knowledge. That
is, interpretation and processing rules consisting of both
declarative and procedural knowledge, relating to the category.
In Chi's study, the category was equated to the label a person
used to access a related unit of knowledge and the knowledge was
expressed as a network and production rules.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-86-80

Problems and solution methods are bound together in a schema:

bottom-up (data-driven) recognition of problem categories

followed by top-down application of processing rules. This would

be a reasonable explanation of the patterns found in Malhotra's

dialogues. Chi's work suggests that we should be more interested

in the ways designers represent problems and the operators they

appear to apply in executing designs. Finally, to the extent the

parallel holds between solving physics problems and designing

information systems, if general principles of design exist they

have not been recognized. We must continue the search.

Conclusion

I have argued that there is not much understanding of the

process of designing information systems. Design is much more ad

hoc and intuitive than the literature would lead one to believe.

Rather than being separate, solutions and problems are

interrelated, and solutions are an integral part of problem

definition. It is incorrect to think that a problem has only one

proper solution; there are many. Consequently, notions of

closure and completeness must be re-thought. A good portion of

information systems design involves aesthetics, yet there is no

discussion of the aesthic in the field. Rather than pretending

that it does not exist, it would be far better to acknowledge the

importance of aesthetics and make it a central subject of

attention and research. Subjective does not mean arbitrary. We

should refrain from attempting to quantify subjectivity, although

we certainly must understand its components.

There needs to be more awareness of the top level factors

that drive detailed design. These design dimensions should be

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-80

made explicit and they should receive the same amount of

attention that we lavish on such detailed design issues as data

structures. In research, we need to understand how designers

represent and manipulate problems. If we focus the energy and

attention on these issues that they deserve, I'm confident that a

major contribution will be made.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-80

28

References

[Ackoff 671 R. Ackoff. Management misinformation systems,
Management Science 14(4):b-147-156, 1967.

[Alexander 641 C. Alexander. Notes on the Synthesis of Form.
Harvard University Press, Cambridge, MA, 1964.

[Archer 641 L. B. Archer. Systematic methods for designers.
Design , 1964.

[Brooks 751 F. P. Brooks. The Mythical Nan-Month. Addison-
Wesley, Reading, MA, 1975.

[Chi 811 M. T. Chi, P. 3. Feltovich and R. Glaser.
Categorization and representation of physics problems by experts
and novices. Cognitive Science 5:121-152, 1981.

[Davis 821 G. B. Davis. Strategies for information
requirements determination. IBM Systems Journal 21(1):4-30,
1982.

[Keen 811 P. G. W. Keen. Information systems and
organizational change. Comm. of the ACN 24(1):24-32, 1981.

[Malhotra 801 A. Malhotra, J. C. Thomas, J. M. Carroll and
L. Miller. Cognitive processes in design. Journal of Nan-
Nachine Studies 12:119-140, 1980.

[McCracken 811 D. D. McCracken. A maverick approach to systems
analysis and design. Systems Analysis and Design: A Foundation
for the 1980's. North Holland, New York, 1981.

[Turner 841 J. A. Turner and R. A. Karasek, Jr. Software
ergonomics: Effects of computer application design parameters on
operator task performance and health. Ergonomics 27(6):663-690,
1984.

[Turner 851 3. A. Turner. The process of system design: Some
problems, principles and perspectives. Technical Report GBA
86-101, New York University, Center for Research in Information
Systems, 1985.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-80

