
THE SCIENCE AND ART OF
FORMULATING LINEAR P R O G R M S

Pai-chun Ma*
Frederic H. Murphy+

and
Edward A. Stohr*

June 1987

* Graduate School of Business Administration
New York University

90 Trinity Place
New York, N.Y. 10006

+ School of Business
Temple University
Philadelphia, PA

Center for Research on Information Systems
Information Systems Area

Graduate School of Business Administration
New York University

Working Paper Series

CRIS #I32
GBA #86-82

This paper will be published under the title "Computer-Assisted Formulation of Linear
Programs" in the IMA Journal of Mathematics in Management, September, 1987.

This work was carried out as part of a jointly-defined research study on expert systems with
the IBM Corporation.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-82

Table of Contents

I. Introduction
2. A Conceptual View of the Formulation Process
3. Using Syntax and Structure
4. Establishing Meaning in the Knowledge Base
5. Conclusion

References

Center for Digital Economy Research
Stem School of Business
Working Paper IS-86-82

List of Figures

Figure 1: Graphical Definition of a Problem
Figure 2: L P Problem Structure
Figure 3: Replication of Demand Points
Figure 4: Index Roles for Simple Transformations

Center for Digital Economy Research
Stem School of Business
\Vorking Paper IS-86-82

Abstract

This paper describes the philosophy underlying the development of an intelligent
system t o assist in the formulation of large linear programs. The LPFORM system al-
lows users t o state their problem using a graphical rather than an algebraic represen-
tation. A major objective of the system is to automate the bookkeeping involved in the
development of large systems. I t has expertise related t o the structure of many of the
common forms of linear programs (e.g. transportation, product-mix and blending
problems) and of how these prototypes may be combined into more complex systems.
Our approach involves characterizing the common forms of L P problems according to
whether they are transformations in place, time or form. We show how LPFORM uses
knowledge about the structure and meaning of linear programs t o construct a correct
tableau. Using the symbolic capabilities of artificial intelligence languages, we can
manipulate and analyze some properties of the LP prior t o actually generating a matrix.

1. Introduction

Every book on linear programming has a t least one chapter on formulating linear

programs (LPs), that illustrates various applications. Some books such as Garss, 191 or

Schrage, 1191, spend a substantial amount of time going over different formulations in

detail, Typically, a few examples are presented followed by a collection of problems

that gives the student practice on a range of formulations. Pedagogically, this is the

case study method; the rationale is that the examples will approximate the actual

problems that the student will eventually have t o formulate. The more problems a stu-

dent formulates, the more likely this will hold true. Yet, a more formal approach could

both accelerate the comprehension of different models and be translated into an intel-

ligent system to aid in the process of formulating LPs.

There are several reasons for building an intelligent system to assist in model

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-82

building. First, the practical use of LPs has been limited t o professionals who are

knowledgeable in matrix generation software. An intelligent system could make the

technique more accessible to managers and also help experts by eliminating much of the

error-prone specification and clerical work that usually plagues the construction and

maintenance of large LP models. It could also provide automated checking and model

documentation and record the impact of modeling decisions on the final result, allowing

a much more sophisticated form of sensitivity analysis. Finally, it should be possible t o

teach linear programming using models of a reasonable size without having to cover

matrix generation languages.

An early structured approach to the manual formulation of LPs is given in

Dantzig, [6]. Matrix generation systems such as OMh2 [ll] take an activity or column-

oriented view of the problem and provide data manipulation and computational aids for

generating the initial tableau input for BM's LP solver, MPSX [12]. Modeling language

systems, such as GAMS 1161 and BdL 181, take a constraint or row-oriented view ac-

cepting an algebraic specification of the LP problem as a set of linear inequalities and

translating this into the format required by the solver. Fourer, [8] compares the matrix

generator and modeling language approaches. Lucas et al, [13], have developed a sys-

tem called CAMPS, which employs a new modeling language. Creegan, 141 and [5], has

developed a system called PAM that draws on some standard structures, simplifying the

process of using Dataforrn in matrix generation. Finally, Brown and Shapiro, [2] have

developed LOGS, a system for formulating linear and integer programs. All of these

approaches are language-oriented and require some expertise both in the language sys-

tem itself and in the art of formulating LPs.

Our research is part of a project to construct a system, 'LPFORM', for formulat-

Center for Digital Economy Research
Stem School of Business
Working Paper IS-86-82

3

ing linear programs. The interface to LPFORM will employ graphic 'icons' to change

the representation of the problem to one that we feel will be more natural to non-expert

users and easier for expert users. A prototype version of LPFORM has been being

developed in the PROLOG language (Clocksin and Mellish, [3]). This translates state-

ments in a graphical specification language (Ma, et al, [15]) to an algebraic form. The

latter is passed to an LP Generator (Stohr, 1201) which, in turn, generates data for input

t o B M ' s MPSX mathematical programming system, 1121. See Murphy and Stohr,

[17] for an overview of the LPFORhf system and Ma, et al, [15] for a description of the

user interface.

In most current systems the symbolic statement, if it exists, is constructed by

hand and is usually out of date. As mentioned above, LPFORM takes miscellaneous in-

puts from the modeler and produces and maintains the algebraic statement of the LP.

In contrast, GAMS, (Meeraus, [16]) uses the algebraic statement as a starting point and

produces the input file for the LP solver. The advantages of the symbolic statement are

that it is useful in the initial conceptual phase of modeling, it is the most compact and

universally understood form of documentation and so is best for learning an existing

model, i t is independent of the data, and finally, one can do a significant portion of the

debugging and model analysis on this statement without having to wait for the tableau

to be generated. Analysis of the algebraic statement can be used in conjunction with

systems (such as Greenberg's ANALYZE, [lo]) that investigate the model structure after

the LP tableau has been formed. The disadvantage of the symbolic statement is that it

can be understood only by LP experts. In LPFORM, naive users and experts will be

able to use the graphic form of input; experts will be able t o check their models using

the generated symbolic statement.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-82

4

In this paper we show how LPFORM uses knowledge about the structure and

meaning of linear programs t o simplify the process of building a model and t o check the

correctness of the formulation. Section 3 gives our view of the formulation process and

outlines the techniques used by LPFORM to help users build models. Section 3

describes how some simple syntactic properties can be used t o perform a significant por-

tion of the model building. Section 4 shows how additional, semantic information can

be used t o augment the reasoning in Section 3 and to ensure the correctness of the for-

mulation.

2. A Conceptual View of the Formulation Process

T o build an expert system one must formalize the procedures used by experts in

the field. Although we, as operations researchers, view the process of formulating linear

programs as an art , the fact that so many models have similar characteristics provides

opportunities for making the process of model building more systematic. For a human

expert the formulation process involves problem recognition, problem classification,

symbolic definition, data collection and model statement generation according to the

rules of some matrix generator. LPFORM assists in all of these phases except for the

first.

When an expert begins t o work on a problem, various facts and requirements

come t o mind in a fairly random fashion. These might be written on a scratchpad and

reworked several times before a complete formulation is developed. LPFORM attempts

t o provide an electronic scratchpad with a graphical interface and memory aids as

described more fully in Ma et al, [15]. The most visible feature of the interface is that

i t allows users t o define networks of arcs connecting 'blocks'. Blocks contain subsets of

the activities of the problem that are separated from other activities in either space or

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-82

5

time. The networks can be decomposed in a 'top-down' fashion into successive levels of

detail with lower levels inheriting the properties of higher levels. A t the lowest level in

the hierarchy, blocks represent exogenous demands and supplies, factories, or machines

and the arcs connecting blocks represent flows of commodities or of time. Inventories,

resources and commodities are specified on the screen by placing icons on the relevant

blocks o r arcs.

Figure 1 shows the graph that would be constructed t o define a problem in which

widgets, j, are produced a t factories, j, and shipped to markets, m. The modeler places

'block icons' for the factories and markets on the computer screen, links the two blocks

t o define the transportation activity, and then places an 'activity icon' in the Factories

block. As this process takes place, LPFORhl prompts for the names of the blocks, deci-

sion variables (X and T) and the inputs and outputs of the production activity. The

icon for the latter, is based on in the activity analysis approach of Dantzig, (61, where

activities are black boxes that transform inputs into outputs.

FACTORIES MARKETS

Figure- I: Graphical Definition of a Problem

Given the problem specification shown in Figure 1, LPFORM will produce an al-

gebraic statement equivalent to:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-82

Min: C C T

jf Widgets f f Factories
wjJfJmjJflm

jf Widgets f E Factories m E Markets

st: C ait j , f j , js bi,y
jE Widgets

C T j , f J m 2 d j J m ~
j E Factories

V i f RawMats, f f Factories

V j f Widgets, j E Factories

V j f Widgets, m f Markets

The symbolic statement then goes through a data linking phase in which the eIe-

ments of the index sets as well as the numeric values of data coefficients are specified.

A second major feature has been t o automate a 'bottom-up' approach in which

models are specified in terms of previously defined sub-problems. These can be stan-

dard formulations such as the product-mix or transportation models; alternatively, users

can construct a model using the system and then store it for later use within larger

problems. Thus, the above problem could have been specified by retrieving product-

mix and transportation templates and 'mapping' them on t o the larger problem by

renaming index sets and coefficients.

From the perspective of LPFORM, formulation means using various problem-

related 'clues' given by the user to generate an aIgebraic problem statement. The clues

can take various forms, and fall into two main classes depending on whether they relate

t o the structure or t o the data of the problem.

The real world relationships, constraints and objectives that define the structure

of the LP can be specified in many different ways including:

1. Hierarchically defining- network structures in successive levels of detail then
linking the resulting 'blocks' into a larger system. This is a 'top-down'
approach.

2. Associating real world objects with the structures defined in 1. Thus com-
modities can be assigned t o arcs and resources and inventories +- '-'-A'--

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-82

3. Specifying that a portion of the representation is to be 'replicated'. e.g. a
factory submodel might be repeated for different regions.

4. Specieing that a previously defined problem (either 'standard' or user-
defined) is a sub-probfem, This is a 'bottom-up' approach.

5. Specifying a set of activities by describing their inputs and outputs (see
Figure 1). This defines a set of columns.

6, Stating a constraint set directly in algebraic form using a summation nota-
tion. This defines a set of rows.

Methods 1, 2 and 3 depend for their effectiveness on the computer graphics inter-

face. Eventually, we hope that method 6 will not be needed. I t is included to allow

users to refine the algebraic representation constructed by LPFORM.

Information relating to the data of the problem - the index sets and activity, cost

and right-hand-side coefficients - can also be specified in a number of ways:

1. Interactively input from the terminal during problem definition. This is use-
ful for very small problems. The index sets for coefficients are often im-
plicitly defined during the session in any case.

2. Specified as existing in external tables (the table names and definitions are
provided by the user or can be read in from an external file).

3. Specified as queries on database relations; the result of the query is trans-
formed into a table.

4. Defined through computation from other known values. The tables and
database relations carry information concerning the unique identifiers for
numerical values (which translates to knowledge concerning the dimen-
sionality of data coefficient indices) and, optionally, knowledge concerning
the units in which the data coefficients are expressed.

Like a human expert, LPFORh4 is able to use these different forms of input and infer

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-82

8

the algebraic structure of the resulting problem. A design objective was t o provide this

diversity while allowing the information t o be specified in any desired order. Unlike a

human expert, LPFORM is unable t o recognize what information is pertinent in the

first place. However, given a starting basis of facts, i t can recognize gaps in the user

specification and will request additional information t o complete the problem statement.

There are many different ways of arriving a t a correct statement of a given problem

and the inferences can be made starting either from data-related or structure-related

statements as defined above. For example, if we know the direction of the optimization

and have three compatible tables (with dimensions m, n and m X n respectively) that

we know contain all the data for the problem, then we can infer that we have a stan-

dard form of the L P and build the correct algebraic formuIation. Alternatively, the

same standard L P problem can be pieced together from first principles - by specifying

the decision variables, constraints and so on.

The reasoning power of the system is an amalgam of different kinds of knowledge:

1. Syntactic form of an I 2 - e.g, i t must contain both an objective function
and constraints and indices and summations have t o follow precise patterns.

2. Data-related - e.g. coefficients need t o be linked t o values, the units in which
the data is stated must be consistent and the indices of the coefficients must
correspond to those of the constraints and variables.

3. Network structures - e.g. inputs and outputs should balance; standard
problem templates can be invoked.

4. Standard constraint types - e.g. material balances, upper and lower bounds,
generalized upper bounds and blending.

5. Standard problem types - e.g. the common forms of network, product-mix
and blending

6. Economic - e.g. the distinctions between materials and capital stocks or the
treatment of different dimensions of space or time.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-82

The above types of knowledge fall into two categories: syntactic (type 1 and

semantic (types 2 through 6).

The design strategy for the current version of LPFORM was t o concentrate on the

syntactic properties of the algebraic and tableau representations of LP problems. Later

we intend t o extend the system to allow users t o add application-specific semantic infor-

mation. The advantages of the syntactic approach are that i t applies t o all LP

problems, i t is easier t o understand and t o program, it facilitates consistency checking

and finally, i t provides a good base for later insertion of semantic knowledge. On the

other hand, many ambiguities cannot be resolved without semantic knowledge. A

semantic approach is being employed in (Binbasioglu, [I]). This may lead t o 'deeper' in-

telligence but in a narrower domain of application.

Some semantic knowledge has already been included in LPFORM, but i t is general

rather than specific. The system knows the distinctions between inventories and

resources and between uses and sources of materials. On the other hand, i t does not

know that oil is a commodity and that electric lathes consume electricity. Such

knowledge either has to be implicit in the structure of the data or provided by the user.

Of course, i t is not always clear what is syntactic and what is semantic when one ex-

amines LPFORM closely. For our purpose, we define syntactic as whatever can be done

by the simple pattern-matching algorithm described in the next section. When ad-

ditional information, such as index role descriptors and constraint and activity types,

has to be built into the internal structure of the system we are employing semantic

knowledge.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-82

3. Using Syntax and Structure

Figure 2 shows the structure of an LP problem within LPFORM.

Constraint

template

J * ragmeqModel pieces

_I

Figure 2: LP Problem Structure

The arrows indicate one-to-many relationships. A model 'piece' is an algebraic

term with summation and index sets or a right-hand-side coefficient including the in-

equality relation. A constraint fragment consists of one or more model pieces. For ex-

ample, the following constraint fragment has two pieces:

There are standard templates for the product-mix and blending problems and so

on. The user can also save a problem definition as a template, thereby building a per-

sonal library.

The user interaction and resulting inference process indicate which model pieces,

constraint fragments or problem templates are t o be included in the problem. The com-

ponents are then combined as if they were pieces in a jig-saw puzzle (see Murphy et a1

Il81). The remaining sections of the paper outline the process of building the final

problem statement from the component parts shown in Figure 2.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-82

1 I

LPFORM analyses inputs from the user and selects the model pieces, constraint

fragments and model templates that will be the building blocks for the problem (see

Ma, 1141, .la et al, 1151 and Murphy, et al, [18]), for a more detailed explanation).

Sometimes the pieces are redundant; sometimes there are too few to build a complete

tableau. In the former case, LPFORM ignores the redundancies; in the latter case it in-

teracts with the user to obtain more information. This section of the paper briefly ex-

plains the 'Puzzler' mechanism that assembles the algebraic form of the LP tableau and

checks i ts consistency. There are three different but related forms of reasoning in the

Puzzler: index analysis, simple assignment and dimensional analysis. Discussion of

dimensional analysis is delayed until the next section since this employs semantic infor-

mation.

f ndex Analysis

We define an index set for a data coefficient or variable as the collection of indices

(or subscripts) that identify it in the algebraic statement. Each individual index iden-

tifies a 'dimension' of the data or variable and takes on values within some well-defined

domain. The set of indices on a coefficient or a variable can be partitioned into two

subsets: those summed within a single constraint and those that distinguish the con-

straints from each other. The indices on the right-hand-side (RHS) include the ones not

summed on the left-hand-side (LHS). Note that the indices on the variables and coef-

ficients that are not summed do not necessarily indicate all of the indices on the RHS

coefficients since, for example, the limit of a summation on the left can be an index ap-

pearing on the right. However, if all summations are over all elements in the domains

of the indices summed, the sets are equal. To illustrate these relationships, consider the

following example:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-82

For a given constraint and variable with coefficients in that constraint, let:

V = {indices on the variable) = {j,k)
C = {indices on the coefficient of the variable) = {i,j,k)
S = {indices that are summed over their whole domain) = {j)
I> = {indices that are summed over a subset of their domain) = {k)
Q = {indices of subsets over which partial sums are taken) = {t)
R = (indices that distinguish the individual constraints) = {i,t)

where the sets on the right correspond t o the example. Then in a properly

specified LP:

(V U R) ? C ? SUP), and R = ((V u C) - S - P) u & .

These relationships can be used to help infer the complete problem from its com-

ponent parts, t o automatically adjust the system when a part of the model is replicated,

and t o check the correctness of the final formulation. The examples given later in this

section illustrate the principles involved.

Simple Assignment

Each model piece is associated with row and column labels and a set of physical

units (e.g. dollars per unit of raw material). The row label for a LHS piece is the list of

names of indices in the index set for the RHS. The column label for a LHS piece is the

variable name itself concatenated with the names of all the indices associated with the

variable. If the row and coluxnn labels for a piece are known it can be assigned t o its

correct location in the tableau - solving part of the puzzle. Note that the column labels

in the tableau are unique. '?he row labels are also unique except when there are upper

and lower bounds; in this case we need semantic information t o distinguish between

them and t o allow the assignment process t o proceed correctly.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-82

13

Example 1: Building a Model from Pieces

Suppose there are activities X . that produce products p in set P using tech-
3, P

nologies j in set J. The products p are then shipped to warehouses k in set K and the

shipping is represenked by activities T For product p the amount produced is P$'

CjE JXj,pl and the amount shipped is CkE KTp,k. These two model pieces have row

label, p, and would be placed in the same material balance constraint by the reasoning

process:

The minus sign comes from semantic information on whether the variable

represents an input or output. This is stored with each piece as it is generated. The

RHS value of 0 is provided by default.

Example 2: Using Templates and Constraint Fragments

Suppose the user has defined a single block and specified that it contains a process

selection model, which is one of the predefined templates. The following template could

be recalled from the library, matched with the current data and executed:

Minimize: C C cji,kXi,k

Subject to: X . < bi, V i e 1 C C 'i,j,k 3,k -

Suppose the user now places an inventory icon in the block and in response to the

prompts indicates that final goods (rather than input materials) are the inventoried

items. LPFORM adds a time index to every existing data coefficient and variable,

selects the inventory constraint fragment template:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-82

where I and ht are dummy variables, assigns i t a row label of finished goods, and

adds it t o %he existing model using simple assignment and index analysis t o get the fol-

lowing:

Minimize: x x x 'j,k,tXj,k,t ' x x hj,t'j,t
j € Jk€ECt€T j € J ~ E T

Subject to: x x "i,j,k,t X j,k,t 5 bi,t' ' d i E I , t E T

j € J ~ E K

x Xj,k,t + Ij,t-1 - Ij,t = V j E J , t € T
k E K

The need for a holding cost term in the objective is part of the information stored

with the inventory constraint fragment but could be inferred in any case.

Example 3: Replication

LPFORM allows a large LP to be constructed by first building and testing small

models and then replicating them over sets such as place or time. This process is

automated using index analysis. Suppose the user starts building a transportation

model by specifying one supply and one demand node as shown in Figure 3(a).

This results in the following LP with one variable:

minimize: c X

subject to: < S, X > d, X > 0

Suppose the user replicates the demand node over some set, J, giving the graph in

Figure 3(b). LPFORM puts an index on d and then on X so that the single demand

constraint becomes the collection of constraints:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-82

15
(a) A Transportation Model with One Source and One Destination

(b) Transportation Model with One Source and Multiple Destinations

Figure 3: Replication of Demand Points

which satisfies the index rule. However, the supply constraint now violates the in-

dex rule so that a summation has to be inserted:

Replicating on supply and summing on demand as required by the index rule

results in the transportation model.

4. Establishing Meaning in the Knowledge Base

Many aspects of LP model formulation allow us t o add meaning t o the pattern

matching algorithm described in the last section. Examples are dimensional analysis,

network analysis, the concepts of supply and demand and of materials and resources,

the collections of template models and knowledge concerning the type of transfor-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-82

16

mation. LPFORM uses this information, along with the Puzzler, to construct large LP

models from smaller template models or constraint fragments.

Dimensional Analysis

If t he units in which the data are expressed are provided by the user, or included

in the header information of the data tables, the Puzzler will check to see that they are

compatible through the constraint sets intersected by an activity and within each con-

straint set. This requires a variant of the dimensional analysis used in physics and en-

gineering [7j, since summation over all the elements in a domain reduces the index set

(dimensionality) of a term in an LP (see the discussion in Example 1) while this does not

take place with models in conventional dimensional analysis.

Network Analysis

The first step performed by the LPFORM parser is t o analyze the layered hierar-

chy of network structures input by the user. The leaf nodes are determined and the

network structure connecting the leaf nodes is analyzed to determine if it is valid (no

isolated nodes or dangling arcs). Thus, using this approach, the network structure is

partially validated by the system at the beginning of the formulation process rather

than being discovered later as in Greenberg, [10j. If none of the blocks (nodes) have ac-

tivities, then the problem is a pure network problem. Further analysis determines

which of a number of prestored network problem templates should be invoked

(transportation, transhipment or general network). Finally, semantic information is

gathered on the roles of the leaf nodes in the hierarchy (supply, transhipment or

demand points).

Supply and Demand

In complex production systems, the demand for inputs in one production stage re-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-82

quires a supply of outputs from another. The stage that requires the inputs is limited,

in part, by the outputs of the previous stage. Noting that supply must be greater than

or equal t o demand, one can unify the different types of constraints into the following

single constraint:

where

s v = the sum of the supply variables (scaled by appropriate constants)

uv = the sum of the use variables (also scaled by the appropriate constants)

sc = the constant measuring fixed supply

uc = the constant measuring fixed demand

A resource limit constraint becomes uv < sc and the standard material balance

becomes - su + uv < 0. Note that if one assumes the coefficients in the sums are

positive, not all combinations are meaningful and feasible. For example, - s v r_< sc is

not meaningful since it will never bind and uv < - uc is never feasible with a positive

uc. This structure allows one to check partially the reasonableness of the solution and

establishes the sign conventions in linking constraint fragments.

Materials and Resources

In the theory of production, capital, labor and materials are used to produce

goods. When a time dimension is added, each of these inputs should be treated dif-

ferently: we consume materials but only use the services of capital and labor. One ac-

counts for the quantity of a material in the same constraint where it is supplied and

used. On the other hand, with capital and labor resources one accounts for the amount

of a resource separately from its uses. For example, a typical equation with inventories

takes the form: Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-82

where 4 is the inventory a t the end of period 1, Pt is the production in period t

and D, is the demand. Whereas with labor the typical constraints are:

where w, is the number of workers in period t , h, is the number hired a t the

beginning of the period, j, is the number fired, and Pt is production in period t .

LPFORM selects the appropriate constraint fragments when a material or a resource is

being incorporated in an LP.

Prestored Templates

The prestored constraint fragment and standard problem templates play an im-

portant role in LPFORM. The constraint fragments (some as small as individual pieces)

are the basic building blocks. The current inventory of constraint fragments includes

the material balance, supply, demand, inventory and resource constraints that have

been used in earlier examples. Others will be added as the need arises. However, it is

obviously impossible to anticipate all the details of every constraint that could occur in

practice. The strategy is to provide a few general constraint types. The system must

then be able to adapt these t o particular problems by adding indices (as in the replica-

tion example) or by dropping indices when the problem is less general in scope than the

prestored fragment. LPFORM currently has a limited ability both t o add and drop in-

dices. The next section outlines a more general scheme.

The inventory of prestored problem templates allows one t o very quickly build

much larger models. Problem templates are stored as collections of pieces. They are

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-82

19

self-documenting in the sense that each component has both a name and an explana-

tion. The ability t o add problem templates allows the system t o be customized t o the

needs of individual users.

Transformations

Linear programs represent physical processes that transform inputs into outputs.

There are three basic transformations: transformations in place, in time and in form.

The transportation problem is a transformation in place, the manpower planning

problem is a transformation in time and the product mix model is a transformation in

form, e.g. raw materials are physically transformed into a final product. Transfor-

mations involve the notion of a flow. There can be a flow of inputs into a product, a

flow of items from one location t o another, or a flow of inventories through time.

In production systems, an object is described by three dimensions: what it is,

where i t is and when i t exists in that place. This three dimensional state can be altered

by transformations in form, place and time. A pure transformation in form converts a

collection of 'whats' into another collection of 'whats' while leaving place and time iden-

tical. Analogous statements can be made about place and time transformations.

Figure 4, shows how transformation activities are associated with indices having

different roles.

A pure transformation in form has indices indicating, respectively, 'from what'

(inputs), 'to what' (outputs), and 'where', 'when' and 'how' the transformation is to be

performed. Transformations in place are distinguished by having indices on what, when

and how, plus from where t o where. Transformations in time have indices on what,

where and how and from when t o when. The indices need not be one dimensional in

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-82

20

t h e usual sense. For example, an item which is the ith component of the jth product

may be indicated by the pair (i,j) which becomes the index for form. Also, from-to

pairs are often collapsed into one index: arcs can be identified by a numbering scheme

rather than by from-to location pairs and product-mix activities are identified by the

output product alone. Finally, as long as the names on the index sets are carried along,

the order of the indices is unimportant.

ACTION
--I-----------I-------------- I --
PLACE FORM TIMF2

From where Where Where
To where What

From what
To what From when

What To when
When When
How How How

Figure 4: Index Roles for Simple Transformations

Compound activities such as simultaneous transformations of place and time are

possible (e.g. if it takes one period to ship the product so that what is produced at time

t is available a t time t - j l) . However, if one has pure transformations only, the double

indexing denoting the 'from-to' of what, where or when allows one t o recognize the type

of transformation associated with an activity. Conversely, if the type of an activity is

known, the above scheme can be used to help match symbolic names with data and to

generate prompts t o the user if the system can not resolve the issue by itself.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-82

21

5. Conclusion

This paper has provided some background on our approach t o building a system

to aid in the formulation of linear programs. Although many of the observations we

have made seem fairly obvious they must be stated so that more detailed, program-level

rules and procedures can be developed. We do not expect t o be able t o build a system

t o automate every aspect of every model formulation. Nor will the system ever be able

t o formulate all linear programs without the aid of an intelligent user. However, the

knowledge base can be expanded, allowing the user to add templates specific t o his or

her situation. Even with the current prototype we are able t o provide a high level of

automation for some common situations and heuristic, book-keeping forms of support in

less routine situations.

Acknowlegement

This paper has benefited greatly from the suggestions of one of the referees.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-82

References

I. Binbasioglu, M. Knowledge Based Modelling Support for Linear Programming.
Ph.D. Th., New York University, 1986.

2. Brown, R. W., W. D. Northup and J. F. Shapiro. Logs: A Modeling and Optimiza-
tion System for Business Planning. In Computer Methods to Assist Decision Making,
North Holland, New York, to appear.

3. Clocksin, W.F., and Mellish, C.S.. Programming in Prolog. Springer-Verlag, New
York, N.Y., 1981.

4. Creegan, J. B., Jr. Dataform: A Model Management System. , Ketron, Inc., Ar-
lington, Virginia, November, 1985.

5. Creegan, J. B., Jr. PAM: A Practitioner's Approach to Modeling, Volume I -
Primer. Ketron, Inc., Arlington, Virginia, 1985.

6. Dantzig, George B.. Linear Programming and Extensions. Princeton University
Press, Princeton, N.J., 1963.

7. De Jong, F. J.,and Wilhelm Quade. Dimensional Analysis for Economists.
North-Holland, Amsterdam, 1967.

8. Fourer, R. "Modeling Languages versus Matrix Generators for Linear
Programming". ACM Transactions on Mathematical Software 8, 2 (June 1983).

9. Gass, Saul I.. Linear Programming: Methods and Applications. McGraw-Hill, New
York, 1969.

10. Greenberg, Harvey J. "A Functional Description of ANALYZE: A Computer-
Assisted Analysis System for Linear Programming Models". ACM Transactions on
Mathematical Software 9, 1 (March 1983), 18-56.

11. OMNI Linear Programming System: User Manual and Operating Manual.
Haverly Systems Inc., Denville, N.J., 1977.

12. IBM Mat hematical Programming Language Ext ended/'70 (MPSX/370), Program
Reference Manual, SHl4-1095. IBM Corporation, Paris, France, 1975.

13. Lucas, C., G. Mitra and K. Darby-Dowman. Modeling of Mathematical Programs:
An Analysis of Strategy and an Outline Description of a Computer Assisted System.
TR/09/83, Brunel University, Uxbridge, England, 1983.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-82

14, Ma, P. An Intelligent Approach to firmuluting finear Programs. Ph.D. Th.,
New York University, 1986. Ph.D. Dissertation Proposal.

15. Ma, P., F. H. Murphy and E. A. Stohr. Design of a Graphics Interface for Linear
Programming. Working Paper No. 136, Center for Research in Information Systems,
Graduate School of Business Administration, New York University, New York, 1986.

16. Neeraus, A. General Algebraic Modeling System (GAMS): USer's Guide, Version
1.0. Development Research Center, World Bank, 1984.

17. Murphy, F. H. and E. A. Stohr. "An Intelligent System for Formulating Linear
Programs". Decision Support Systems 2, 1 (Jan-Feb 1986).

18. Murphy, F. H., E. A. Stohr and P. Ma. Composition Rules for Building Linear
Programming Models from Component Models. Working Paper , New York University,
New York, 1987.

19. Schrage, Linus. Linear, Integer, and Quadratic Programming with LINDO. The
Scientific Press, Palo Alto, 1984.

20. Stohr, E. A. A Mathematical Programming Generator System in APL. Working
Paper 96, New York University, New York, 1985.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-86-82

