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1. Introduction 

In this paper we formally define the concept of a consistent extension to the relational data model. We 

use this concept to define the properties of the relational data model that should be retained in any 

extension to that  model. 

Since its introduction the relational data model [Codd 701 has gained wide acceptance among users of 

database management systems (DBMS). In part, this acceptance is due to the simplicity of its data 

structure, the relation, and the formalism used to define this structure and the operations used to 

manipulate it, the relational algebra (or calculus). 

In spite of, or more likely, because of its acceptance certain limitations of the relational data model have 

become apparent. A database can be viewed as a model of some aspects of the world. Although adequate 

as a modelling tool, the relational data model sometimes forces an "unnatural" representation of certain 

of these real-world aspects. That is, use of the relational model does not always permit the representation 

of what in the real world is perceived as a single object (entity or relationship in the entity-relationship 

data model [Chen 761) as a single tuple in one relation. We feel that such a representation would be more 

natural in that i t  more closely coincides with our conceptual view of an object as being a single collection 

of the properties which serve to  define it, and improve the conceptual modeling capabilities of the 

relational data model. 

Various proposals have been made to extend the relational model to remedy certain of these limitations 

(for example, [CliffordCroker 871, [JaeschkeSchek 821, [Katz 861, [OsbornHeaven 861, and 

[StonebrakerRowe 861). As extensions to the relational data model each of these proposals retains some 

of the properties associated with the relational data model, while modifying and/or adding additional 

ones. Among the properties associated with the relational data model are: the structure of a relation; the 

set of (algebraic) operations (union, intersection, complementation, project, join and select); and the 

algebraic properties (commutativity, associativity, distributability, etc.) of these operations; and the class 

of (expressable and enforceable) constraints (typically Functional Dependencies (FDs) and Multi-Valued 

Dependencies (MVDs). 
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Usually proposals to extend the relational data model have required that the structure of relations be 

modified into what is generally called non-first normal form relations. When modifying the structure of a 

relation, i t  is often necessary to redefine the operations that operate on these structures. In turn, these 

new definitions can change the properties that were associated with these operations. The final result may 

be an extension that  is inconsistent and differs in unexpected ways from the relational model. 

Since much of the power of the relational model comes from its being well-defined in the mathematical 

sense, i t  is somewhat alarming to contemplate proliferating proposals to "extend" i t  that in fact are 

proposals for a different  model altogether. In the spirit of providing a "yardstick" to determine whether 

a proposed 'extension" is in fact consistent with the relational model and a true extension, we propose a 

definition of a consistent  extension to t h e  relational data model .  This concept that we define can 

be viewed as a "generaln relational data model template that can be instantiated in different ways to 

achieve relational-like data models with differing modelling capabilities. Similar in spirit t o  the 

classification of implementa t ions  of the relational model as "tabular," "minimally relational," 

"relationally complete," and "fully relational," ( [Codd 821, [Date 861) the concept of a consistent 

extension addresses itself to the model  itself, and what are its essential components. 

The paper is organized as follows. We begin in Section with a formal description of the relational model, 

and other related definitions which we will make use of in succeeding chapters. In Section we formally 

define the notion of a consistent extension to the relational data model, defining consistent extensions for 

relations, the relational algebra, and discussing the impacts on some of the constraints associated with the 

relational data model. We conclude in Section summarizing what we have done, and describing future 

directions of this research. 

In this section we specify the relational data model in terms of the data structures used for organizing 

data, relations, and the operations for manipulating these data structures. Traditionally the set of 

operations for manipulating relations has been specified using one of two equivalent formulations, the 

relational algebra or the relational calculus [Maier 831. In this paper we will focus on the relational 
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algebra. 

The Relation: 

Let the set U be a universe of attributes, where an attribute is just the name of some property of 

interest (e.g. NAME, ID#, PRICE,  etc.). 

Associated with each attribute f U is a set of atomic (non-decomposable) values Di called the 

domain of attribute $ and denoted dom(4) 

Let A = {Al, A2, ..., An) be a set of attributes and D = dom(Al) U dom(A2) U ... u dom(An) be the 

union of the corresponding domains. 

A relation r over the set of attributes A is a finite set of mappings (tuples) r(A) where 

r(A) E ( t  I (t: A->D) & (t(Ai) f dom(Ai))} 

We use the notation t ( 4 )  to denote both the value derived by applying t to A., and the function derived 

by restricting t to 4. Thus for a set of attributes X of size n, t(X) is either an n-tuple of values, or the 

function resulting from restricting t to X. 

Relations may be conveniently represented as a table. For example, a relation r on the set of attributes 

{A, B, C) can be represented as in Figure 2-1, where each row represents a tuple, and each value in the 

row results from applying the tuple to the attribute that heads the column containing that value. For 

example, if t8 is the tuple represented by the third row, then tg(A) = al, tJB) = b8, and tJC) = ce. 

Figure 2-1: Relation as Table 

A relation scheme R = <A, K> is a two-tuple where 

A = {Al, A2, ..., An} U is a set of attributes, 
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a K 2 A is the designated key of the relation scheme, and 

A relation r on relation scheme R = <A, K> is a finite set of tuples {tl, ..., tn) such that 

r is defined over the set of attributes A, and 

v ti E r ,  v t j  E r  [ti(K) # tJK)]. 

2.1. The Relational Algebra 

Relations are sets and as such they can be manipulated by the standard set operations of union, 

intersection, and complementation. However, since all of the tuples of a relation must be defined over the 

same set of attributes, the operand and result relations to set operations must all be pairwise 

union-compatible. Two relations are unionsornpatible if their tuples are defined over the same sets of 

attributes. The complement of a relation r  is defined relative to the relation containing all possible tuples 

defined over the same set of attributes as are the tuples in r .  

The remaining relational algebra operations that we will discuss are defined in terms of attribute values 

(selection and join), or can be used to construct a relation that has a set of tuples defined over a different 

set of attributes that its operands (project and join.) 

Let r be a relation over the set of attributes A = {Al, A2, ..., Am) and s be a relation over the set of 

attributes B = {B1, BZ, ..., Bn) where A n B = 4. 

Boject 

The projection of the relation r on to the set of attributes X (denoted Ilx(r)) where X E: A, is the 

relation over the set of attributes X, defined as 

flx(r) = {t(X) I t (2 4 

Select 

The selection from r of those tuples satisfying t(4) 8 a (denoted aA. a (r)) where 8 is a comparator, is 
2 

the relation over A defined as 

@ A i & a ( r ) = { t  I r ' t ( q ) 8 a )  
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The join of two relations r and 8 (denoted r 1x1 8) is the relation over the set of attributes A U B 
Ai e Bi - .  

formed by combining a tuple from r with tuple from 8 whenever the value of the tuple from r stands 

in a fl relationship with the B. value of the tuple from 8. 
J 

3. Definition of a Consistent Extension 

A data model can successfully be regarded as a three-tuple <S,O,C> consisting of its structures, its 

operations, and its allowable constraints [Codd 811. These three components of the relational model will 

be discussed in turn before we define the notion of a consistent extension to the relational data model. 

The following definition makes precise exactly what we mean by t h e  relat ional  model: 

Definition: By the relational data model or RDM is meant that structure < l N F ,  R A ,  C> 

consisting of: 

1. I N F ,  the class of first normal form relations, 

2. R A ,  the relational algebra ( U, n, -, a, l7, 1x1 ) 
3. C, the class of FDs and MVDs 

3.1. The St ruc tures :  Relat ions 

In the definition of the relational data model the domain associated with relation attributes are 

restricted to simple (atomic) values. We refer to these as base domains. That  is, for any attribute A in 

a relation scheme R ,  and t, a tuple in a relation r defined over R, t(A) is treated as a non-divisible value. 

All such relations are said to be in in first normal form ( I N F ) .  

Although this restriction, which we will call the base domain constraint, was originally intended to  ease 

the task of implementing relational database management systems [Codd 701, i t  has had the added affect 

of increasing the level of detail needed to model many of the types of objects and events commonly 

occurring in applications for which database management systems are used. For example, in a database 
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containing data on employees i t  might be necessary to maintain a list of dependents for each employee. 

Since an employee can have an arbitrary number of dependents, it is generally not feasible to represent all 

of the employee data in a single relation where there is a one-to-one correspondence between employees 

and tuples. 

Figure 3-1 shows one approach that would likely be taken to represent employee data under the base 

domain constraint. In this approach two relations schemes are used. One, scheme E M P ,  is used to group 

those attributes for which each employee is assumed to have only one (possibly null) value. The second 

scheme, EMP-DEP is used to relate an employee with each of his or her dependents. A relation defined 

over this scheme will have one tuple for each dependent of each employee. 

E M P  temp#, empname, dept#, ...) 

EMP-DEP (emp#, depname, ...) 

Figure  3-1: Example Relation Schemes 

A second example arises for those instances when i t  is desirable to maintain historical data in a 

database so that previous, as well as c u r r e n t  values of designated attributes are retrievable. For 

example, i t  might be necessary to retain data about what department an employee was in a t  some point 

in the past, or what his or her salary was at that time. 

In this situation i t  is likely that some variation of the scheme shown in Figure 3-2 would be used. With 

this approach an additional attribute, t ime,  (with an appropriate domain) is somehow added to the 

relation scheme. For each employee the relation contains one tuple for each time period in which a value 

is to be maintained. The attribute t i m e  is used to indicate the period for which the values represented by 

the tuple are relevant. 

E M P  (emp#, time, empname, dept, ...) 

Figure  3-2: Example Historical Relation Scheme 

The relation-like data models that have been proposed, have usually attempted to increase the 
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expressiveness of the relational model while retaining many of the properties of this model. As such the 

proposed data models are best viewed as extensions of the relational model. In almost all cases, the 

proposed data models differ from the relational data model in their relaxation of the restriction that 

domain values be atomic. This difference is the source of their increased expressiveness. 

By relaxing the base domain constraint i t  is possible to define a greater variety of relations than would 

otherwise be possible. Relaxing this constraint implies the introduction of some kind of structured 

domain into the model; since this can be done in different ways i t  is possible to define different extensions 

to 1NF relations. Each set of non-first normal form ( N l N F )  relations that  is defined by each of these 

extensions subsumes the set of 1 NF relations. 

In order to view the set of 1NF relations and a specific extension to them in a consistent fashion it will 

often be necessary to express the domains of 1NF relations in an "extension-dependentU way. For 

example, if a given extension defines domains as consisting of values that are sets, then the domain values 

of INF relations can be expressed as being restricted to single-valued sets as shown in Figure 3-3(a). 

Similarly for an extension that defines domains as consisting of values that  are functions from one 

underlying primitive domain to another, the domain values of 1NF relations can be expressed in terms of 

constant functions, as in Figure 3-3(b). (Function-valued domains can be used to represent the 

$-dimensional relations that have been proposed to represent historical relational data models.) 

We formalize this notion of structural extensibility in the following definition. 

Definition: Let 1NP' be the set of all 1NF reIations and let NlNF be the set of all relations 

definable under a specific relaxation of the base domain constraint. The set of relations NlNF is a 

consistent structural eztension of 1 NF if there exists a one-to-one function +s:lNF -> NlNF. (This 

relationship is shown in Figure 3-3.) 

With this definition, a consistent structural extension of 1NF has a representation capability that is at  

least as great as that of standard relations. That is, if we equate tuples to real world objects, a consistent 

extension of 1NF relations can represent all of the sets of objects (relations) representable by I N F ,  and 
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A B C  A B C  

r a1 b l  c l  -> r' {al) {bl) {cl) 

a2 b2 c2 {a21 {b2) (4 
a3 b3 c3 (4 0 4  ( ~ 3 )  

A B C  -> A B C  

r a1 b l  c l  r" fa1 f b l  fc l  

a2 b2 c2 fa2 fb2 fc2 

a3 b3 c3 fb3 '~3 

where V 4, V z [fb(z) = #] 

Figure 3-3: Two Mappings From 1NF to Set-Valued Relations 

Figure 3-4: Consistent Structural Extensions 

possibly sets of more 'complex* objects. 

3.2. The Operations: Relational Algebra 

Relations represent only one component of the relational data model. The second component of the 

model is the set of operations used to manipulate relations. If a data model is to be considered an 

extension of the relational data model, then it is reasonable to expect that it contains some counterpart to 
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each of the relational operators. Since a consistent extension to 1NF relations need not contain 1NF 

relations i t  is often necessary or desirable to extend the set of relational operators so that they are better 

matched to the extended set of relations. Extending the set of relational operators may include the 

redefining of existing operators and/or the defining of additional operators. 

For example, let FRDM be an extended relational data model in which attributes are defined over 

function-valued domains. We can redefine the selection relational operator so that i t  better accommodates 

this extended relation. One possible definition is the following: 

a ~ = a , ~  ( r )  = { t I t E r A t ( A ) ( x )  = a )  

(The resulting relation is defined over the same set of attributes as relation r.) This modified operator 

selects from an extended relation r those tuples for which the function represented by their A-attribute 

yields a value of a when applied to the value x .  

It is also possible to define operators for this model for which, seemingly, there are no standard 

relational counterparts. As an example, let r be an extended relation in FRDM defined over the set of 

attributes R, and consider the operator p: 

This operator restricts each tuple t of the operand relation r so that the function value of each attribute 

is defined over a single value x .  (The t imesl ice operator in the Historical Relational Data Model 

[CliffordCroker 871 is one expression of this operator.) 

Using the concept of a consistent structural extension of a set relations, we next define a similar concept 

for relational operators. Here our goal is to retain the basic mathematical properties of the relational data 

model while increasing the functionality of the extended model. 

A consistent extension to the set of 1NF relations may contain some relations for which there are no 

INF counterparts. However, by definition there must exist a one-to-one function qs that maps each 1NF 
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relation r into a unique relation +,.(r) in the consistent extension. We say that any two such 

corresponding relations are equivalent under +s denoted r E +s(r). @s 

If a given extension to the relational data model defines a set of relations that are a consistent structural 

extension to the set of INF relations, then it should also extend the definition of the relational operators 

in a consistent way. That is, these extended operators should behave on the extended structures 

essentially as the original operators behave in the original model. 

More formally, let $S be a relation extension operator that maps INF relations into some consistent 

extension set of relations NlNF.  Let 8 be an n-ary relational operator where 

8 :  l N F 1  x l N F 2  x . . .  x lw, --> 1NF 

(For the standard set of operators discussed in Section n is 1 or 2.) Let BE be an m-ary operator where 

m > n and 

OE: NINF1 X N l W 2  x . . .  x NlNF, x a --> N l N F  

That is, BE is a mapping from n NlNF' relations, and m - n (possible zero) other operators (indicated by 

4. 

Definition: The operator BE is a consistent extension under +s of the relational operator 0 if for each 

n-tuple <rl, r, ..., rn> of 1 NF relations, qs(O(rl, r, ..., rn)) = 8E($S(rl), GS(r2), ..., $S(rn), a). 

This is illustrated in Figure , which illustrates the homomorphism between RDM and the consistent 

structural extension under qS. We note further the isomorphism between RDM and the image of RDM 

under $s. 

Since an extended relational operator can have a greater number of arguments than its relational 

counterpart, the above definition allows a set of consistent extensions to each relational operator. 

Definition: A set of operators 8 is a consistent operator extension of the relational algebra RA if 8 

includes a consistent extension of each of the relational operators. 
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Nl NF 
RDM 

&I 
+s ........................... 

I 
I 0 I 

Figure  3-6: +S: A Homomorphism Between RDM and N1 NF 

3.3. The Constraints: F D s  and MVDs 

A database constraint c is a statement in a suitable language which restricts the allowable structures in 

a particular instance of the underlying data model. Typically in RDM we consider a class of statements 

in a first-order language, and view these statements as axioms which constrain the set of possible models 

for the system. Constraints, therefore, are meaningful only in a system wherein (a) they can be 

expressed, and (b) they can be enforced. It  is therefore often convenient to think of the constraints as 

a part of the schema itself, and consider as valid only those relations which satisfy the domain constraint, 

the key constraint, and any additional constraints specified. 

Historically RDM was defined before most of the theoretical work on relational constraints, and so 

especially with respect to the constraints i t  is never quite clear which class is being included in a 

discussion of "the relational model." Two classes of constraints have been widely studied [Nicolas 781: 

1. Functional Dependencies (FDs) such as X -> Y, which abbreviates 

v t1 v t2 It1 (XI = t, (XI - t1 (Y) = t2 (Y)l 

2. Multivalued Dependencies (MVDs) such as X - >- > Y, which abbreviates 

v t1 v 6, [tl (XI = t2 (XI - 13 t, [t3 (XI = t1 (XI A t3 (Y) = t2 (YIIII 

We have already indicated that for the purposes of this paper we are considering the constraints C of 
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RDM to consist exactly of the FDs and MVDs. 

It is convenient to think of a constraint c as a function which maps any set of n relations into {0,1) 

according to whether the relations satisfy or violate the constraint, i.e. c : lNFn -+ (0,l). We can 

extend this to a set of constraints C = { cl, c2, ..., cm ) and define C : 1NF -+ {0,1) as C = Ai = 
ton  

C.. 

Then, given a set of constraints C on the set of structures l N F ,  and a consistent structural extension 

qs, a set of constraints C' would be a consistent extension of C iff C' was true on a set of relations 

{$&rl), $S(r2)l ..., $S(rn)) in the structural extension of I N F  when and only when C was true on the set 

of relations { rl, r2, ..., rn ) from which it  was derived. We state this more precisely in the following 

definition. 

Definition: Let C = { cl, c2, ..., cm ) be a logically consistent set of constraints from the class of 

constraints C on any set of relations R = { rl, r2, ..., rn ) on schemes ( R1, R2, ..., Rn ) in RDM.  A 

class of constraints C' is a consistent constraint extension of the class of constraints C iff for every 

consistent structural extension of R D M  +S, and every logically consistent set of constraints C in C o n  R, 

there exists a logically consistent set of constraints C in C' on the image of relations R under $s such 

that q r l l  '2' . - a 1  rn) = C(+S(fl)l 9ks(r2), ..., +S(\)). 

3.3.1. Normalination 

Since the attributes in relations which are consistent extensions of RDM can be associated with 

structured domains, the standard definitions of first, second, and third normal forms are no longer 

applicable to these models. In this section we discuss a generalized notion of normalization for these 

extended relations. 

Using our definition of a consistent structural extension, the first normal form concept can be extended 

by saying that all relations that are equivalent to a first normal form relation under an extension function 

tjS are in firet normal form under $s (1NF-+,). However, there is a lack of symmetry between these 

two notions of first normal form; in R D M ,  all relations are in first normal form, whereas in an extended 
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relational data model only some of the relations may be in ~ N F - $ J ~ .  

In order to achieve a closer analog to the first normal form of RDM we take a different approach in 

defining a version of first normal form that is applicable to extended relational data models. 

Let NlNF be a consistent extension under $s of RDM defined with respect to a structured domain L). 

An extended relation r defined over the relation scheme R = {A, K) is in first normal form &th 

respect to NlNF if for each attribute A,. E A, dom(Ai) E D. 

With this definition, an 'extended" first normal form is the basis for determining the set of allowable 

relations in a given (extended) relational data model, and is dependent on the domains over which 

attributes are defined. The traditional first normal form serves the same role in RDM. 

In contrast to first normal form (extended and non-extended) which may be viewed as being structurally 

based, second normal form (2NF') and third normal form (3NF') are  semantica ally^ based. That is, these 

two more restricted forms of relations are based on FDs, which in effect are relationships perceived by 

the database designer to exist among a set of attributes. 

Since FDs are not based on the type of a domain value, and thus are not constrained by these types, 

they are applicable, and have the same meaning in any consistent extension to the relational data model. 

Since both 2NF and 3NF are defined only in terms of FDs they are also applicable t o  any consistent 

extension to the relational data model. 

3.4. Consistent Extensions 

With these preliminary definitions of the structural, operational, and constraint extensions, we can now 

state the major definition of what constitutes a consistent extension of the relational model. 

Definition: A data model <S,d,C7> is a consistent extension of the relational data model 

< lNF,RA,C> if 

1. S is a consistent structural extension of lNF 

2. 19 is a consistent operator extension of R A  
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3. C' is a consistent constraint extension of C 

The notion of a consistent extension to the relational data model, derived from a homomorphism from 

the cIass of INF reIations to some more general set of relation structures, is proposed. We examine in 

turn what is meant in this sense to *extendu each of the components of RDM its structures (relations), 

its operations (relational algebra) and a family of constraints (here FDs and MVDs). We believe that any 

proposed extension to RDM should consistently extend each of these components if it is truly to be 

considered an *extension.* As such the notion of a consistent extension provides a framework for 

defining any extended relational models. 
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