
Iris Vessey

December 1984

Center for Research on Information Systems
Computer Applications and Information Systems Area

Graduate School of Business Administration
New York University

Working Paper Series

CRIS 1/88

GBA 1/85-12

*Acknowledgments: The author is indebted to Gordon Davis, Vasant Dhar,
Ron Weber, and participants in workshops at the University of Minnesota
and New York University for comments on earlier versions of this paper.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 2

ABSTRACT

This paper reports the results of an exploratory study that

investigated expert and novice debugging processes with the aim of

contributing to a general theory of programming expertise. The method

used was verbal protocol analysis. Data was collected from sixteen

programmers employed by the same organization. First, an

expert-novice classification of subjects was derived from information

based on subjectsi problem solving processes; the criterion of

expertise was the subjects' ability to effectively chunk the program

they were required to debug. Then, significant differences in

subjectsi approaches to debugging were used to characterize

programmers' debugging strategies. Comparisons of these strategies

with the expert-novice classification showed programmer expertise

based on chunking ability to be strongly related to debugging

strategy. The following strategic propositions were identified for

further testing:

1. (a) Experts use breadth-first apprsaches to debugging and, at the
same time, adopt a system view of the problem area.

(b) Experts are proficient at chunking programs and hence display
smooth-flowing approaches t o debugging.

2. (a) Novices use breadth-first approaches to debugging but are
deficient in their ability to think in system terms.

(b) Novices use depth-first approaches to debugging.

(c) Novices are less proficient at chunking programs and hence
display erratic approaches to debugging.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85- 12

1. I n t r o d u c t i o n

The s p a t e o f r e c e n t l i t e r a t u r e on t h e c o g n i t i v e psychology o f

programming a t t e s t s t o t h e growing i n t e r e s t i n de te rmin ing t h e

c o g n i t i v e p r i n c i p l e s under ly ing computer programming (s e e , f o r

example, rev iews by Shneiderman, 1980; Smith and Green, 1980; S h e i l ,

1981; Pennington , 1982). The s t u d y o f programming p roces se s is

impor tan t f o r two reasons . F i r s t , r e s e a r c h e r s must c o n t r o l f o r t h e

knowledge s t r u c t u r e s t h a t programmers pos se s s i f they wish t o measure

t h e e f f e c t s o f f a c t o r s t h a t i n f l u e n c e programmer performance, namely,

f a c t o r s such a s language des ign , program l a y o u t , programming mode, and

programming suppor t faci l i t ies . Second, unde r s t and ing t h e knowledge

s t r u c t u r e s t h a t e x p e r t and novice programmers p o s s e s s is impor tan t per

s e : - r e s e a r c h a t t h i s l e v e l w i l l c o n t r i b u t e t o a g e n e r a l theory of

e x p e r t i s e i n programming. I t w i l l t h e r e f o r e a i d i n such t a s k s a s t h e

des ign o f programming languages , programming a i d s , programmer r a t i n g

i n s t rumen t s , and programmer r e c r u i t m e n t and t r a i n i n g procedures .

T h i s s t u d y i n v e s t i g a t e d debugging p roces se s wi th t h e aim of

1 c o n t r i b u t i n g t o a g e n e r a l theory o f programmer e x p e r t i s e .

S p e c i f i c a l l y , i t sought t o de te rmine d i f f e r e n c e s i n t h e debugging

p roces se s o f e x p e r t and novice programmers from t h e community of

programming p r o f e s s i o n a l s . S i n c e i t was e s s e n t i a l t o c a p t u r e what

occur red du r ing problem s o l v i n g r a t h e r than merely t h e outcome of

problem s o l v i n g , t h e process t r a c i n g technique o f r e c o r d i n g v e r b a l

p r o t o c o l was used as t h e method o f d a t a c o l l e c t i o n . S i x t e e n s u b j e c t s ,

e i g h t o f whom were c l a s s e d as e x p e r t s and e i g h t as nov ices , debugged a

COBOL program, speaking a loud as they d i d s o . T h i s t r a c e o f t h e i r

problem s o l v i n g was tape-recorded, t r a n s c r i b e d , and then ana lyzed .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 4

The paper proceeds as fo l lows . The fo l l owing s e c t i o n p r e s e n t s

t h e b a s i c philosophy unde r ly ing t h i s i n v e s t i g a t i o n o f debugging

p r o c e s s e s . Sec t ion 3 d e s c r i b e s t h e r e s e a r c h approach used i n t h e

s t u d y . I t i n t roduces t h e t a s k materials, p r e s e n t s t h r e e t o o l s f o r

d e s c r i b i n g problem s o l v i n g p r o c e s s e s , and d e s c r i b e s t h e programmer

c l a s s i f i c a t i o n methods t e s t e d i n t h i s r e sea rch . The f o u r t h s e c t i o n

assesses t h e c l a s s i f i c a t i o n methods and s e l e c t s one f o r f u r t h e r

a n a l y s i s . I t then p r e s e n t s t h e r e s u l t s of a n a l y z i n g s u b j e c t s '

debugging processes . The f i f t h s e c t i o n d i s c u s s e s t h e i m p l i c a t i o n s o f

t h e r e s u l t s f o r debugging p roces se s and f o r t h e concept o f programmer

e x p e r t i s e , whi le the s i x t h s e c t i o n d i s c u s s e s t h e l i m i t a t i o n s o f t h e

r e s e a r c h . The paper concludes wi th t h e c o n t r i b u t i o n s t h e s t u d y makes

t o a theo ry o f programming e x p e r t i s e and hence provides d i r e c t i o n s f o r

f u t u r e r e s e a r c h i n the a r e a .

2 . Conceptual Approach - t o S tudying E x p e r t i s e

H i s t o r i c a l l y , i n t e r e s t i n t h e f i e l d o f computer programming

focussed f i r s t on t h e development o f programmer r a t i n g i n s t rumen t s ,

and then on f a c t o r s t h a t i n f l u e n c e t h e programming p roces s . The major

outcome o f t h e r e sea rch i n t o programmer assessment was t h e r e c o g n i t i o n

t h a t i n s t rumen t s f r equen t ly cap tu red those v a r i a b l e s t h a t r e l a t e d t o

s u c c e s s i n t r a i n i n g cou r se s bu t n o t t hose t h a t r e l a t e d t o performance

on t h e job (Mayer and S t a l n a k e r , 1968). Desp i t e t h i s ev idence o f t h e

complex n a t u r e of e x p e r t programming s k i l l , r e s e a r c h e r s i n computer

s c i e n c e embarked on numerous s t u d i e s t h a t a t tempted t o measure t h e

effects o f va r ious programming f a c t o r s on t h e ease o f programming.

Not s u r p r i s i n g l y , t h e r e s u l t s o f t h o s e s t u d i e s were mixed (S h e i l , 1981;

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 5

Pennington, 1982). F requen t ly , t h e v a r i a b i l i t y among programmers was

g r e a t e r t han between t h e l e v e l s o f t h e expe r imen ta l v a r i a b l e s ,

s u g g e s t i n g y e t a g a i n t h e need t o c o n t r o l f o r some element o f

programmer s k i l l .

Many r e s e a r c h e r s now b e l i e v e t h a t t h e uncon t ro l l ed v a r i a b l e is

t h e p r o c e s s o r knowledge s t r u c t u r e s programmers employ d u r i n g problem

s o l v i n g (Brooks, 1980; S h e i l , 1981; Vessey and Weber, 1984).

Knowledge s t r u c t u r e s a r e c o g n i t i v e u n i t s t h a t accumulate i n long-term

memory as a r e s u l t of expe r i ence (Newell and Simon, 1972). As

programmers are exposed t o a g r e a t e r v a r i e t y o f programming

s i t u a t i o n s , both t h e number and complexi ty o f knowledge s t r u c t u r e s i n

long-term memory inc rease . Brooks (1977) s u g g e s t s t h a t a t y p i c a l

programmer's knowledge base may c o n s i s t o f 50,000 chunks. Hence, t h e

r e s o u r c e s p o t e n t i a l l y a v a i l a b l e t o a programmer i n s o l v i n g a problem

are many and va r i ed . They may well a f f e c t a p a r t i c u l a r programming

t a s k t o a g r e a t e r e x t e n t t h a n , s a y , i n d e n t a t i o n o r t h e u se o f

f l o w c h a r t s , and thus l ead t o t h e mixed r e s u l t s o f programming

p r a c t i c e s r e sea rch . In t h e same way, t h e c u r r e n t i n v e s t i g a t i o n o f

e x p e r t and novice debugging p roces se s could a l s o s u f f e r from a c l e a r

d e f i n i t i o n of e x p e r t and novice programmers, r e s u l t i n g i n y e t a n o t h e r

s tudy producing inconc lus ive r e s u l t s .

To a d d r e s s t h e problem o f t h e v a r i a b i l i t y i n programmers'

debugging p roces se s , t h i s s t u d y used two methods o f c l a s s i f y i n g

s u b j e c t s . The f i r s t was t h e t r a d i t i o n a l ex a n t e method o f manager - -

assessment . The second was an - ex post proces s approach based on

c e r t a i n d i f f e r e n c e s i n s u b j e c t s ' problem s o l v i n g p roces se s . The two

methods were then compared t o de te rmine t h e e f f ec t i vn - - - - -" eL-
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 6

process approach in reducing the variability in progrmer

performance.

2.1 Controlling for Debugging Processes

The method used to control for differences in problem solving

processes was based on the efficiency of debugging processes. The

criterion used was the subjects' ability to chunk programs; the more

expert the programmers, the greater will be their chunking ability.

The chunking ability of programmers was measured relative to a model

of debugging functions (Figure 1) . Debugging functions are grxs

states of behavior that programmers exhibit in debugging computer

programs. The model shows those behaviors and the interrelationships

be tween them. 2 (See F i g u r e 1)

Experts will demonstrate chunking ability by displaying a smooth

approach to problem solving. There will be little need to return to

previous debugging functions or to parts of the program they have

already seen. Novices, on the other hand, are expected to exhibit

much more erratic behavior by rechecking clues and by returning to

parts of the program they have already inspected. The ability to

chunk during debugging can be characterized by three debugging

efficiency criteria:

1. the adoption of different debugging functions;

2. reversion to the top or controlling Debug Program function to
check again on the problem;

3. change of location within the program.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

The program's DATA DIVISION, modules of the PROCEDURE DIVISION, and

the input and output listings are regarded as "program location^^^ for

the purposes of this research. Compared to experts, therefore, it is

expected that novice programmers will exhibit more changes in problem

solving function, more reversals to the Debug Program function, and

more changes of location in the material supplied.

2.2 Assessing - the Effectiveness of -- the Resulting

Programmer Classification

Since this method of programmer classification was derived

directly from the research data, it was essential to have a means of

assessing its effectiveness in distinguishing programmer skills. This

was achieved in this study by comparing the effects of the manager and

the ex - post classifications on two objective performance criteria.

The debugging effectiveness criteria chosen were:

1. debug time;

2 . the number of errors subjects made.

If this method of classification were to succeed in reducing the

variability in these objective performance factors. relative to the

manager classification, it would demonstrate the importance of

controlling for problem solving processes in programming research.

Further, it would lead to better groupings of expert and novice

programmers in this study and would therefore increase the possibility

of deriving meaningful results from the other analyses performed.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 8

3 . Research Method

The u s e o f a p roces s t r a c i n g technique is c e n t r a l t o t h e

i n v e s t i g a t i o n o f problem s o l v i n g p roces se s , i .e . , a t echn ique t h a t

c a p t u r e s what happens du r ing problem s o l v i n g r a t h e r than merely t h e

outcome o f problem s o l v i n g . Process t r a c i n g methods i n c l u d e r e c o r d i n g

v e r b a l p r o t o c o l , monitor ing information a c q u i s i t i o n , and moni tor ing

eye movements (Payne et g . , 1978). The f i r s t o f t h e s e , r eco rd ing

v e r b a l p r o t o c o l , was chosen f o r use i n t h i s s t u d y s i n c e i t r e s u l t s i n

much more d a t a than t h e o t h e r two approaches; a l s o t h e l a t t e r two

methods demons t ra te t h a t problem s o l v e r s r e f e r e n c e d a t a bu t n o t t h a t

they n e c e s s a r i l y use i t i n problem s o l v i n g . That v e r b a l p r o t o c o l

r e c o r d i n g is t h e p r e f e r r e d method f o r examining problem s o l v i n g

p roces se s c u r r e n t l y a v a i l a b l e , is demonstrated by t h e number o f

s t u d i e s t h a t have used i t . Following t h e p i o n e e r i n g work o f Newel1

and Simon (1972) i n c r y p t a r i t h m e t i c , i t h a s been used i n a v a r i e t y o f

domains: phys i c s (Simon and Simon, 1978; La rk in et &, 1980;

La rk in , 1981; Chi - e t a1 A Y 7980), mathematics (Anderson g &, 1981;

Lewis -- e t a l . 1981) , f i n a n c i a l a n a l y s i s (Bouwman, 1978, 1983; Biggs,

1978 (a) and (b)) , so f tware des ign (Malhotra e t a 1 1980; J e f f r i e s - 2,

e t - &, 1980) , and systems a n a l y s i s (Vitalari, 1981; V i t a l a r i and

Dickson, 1983).

3.1 Task

The program used was a s t r a i g h t f o r w a r d COBOL sales r e p o r t i n g

program with c o n t r o l b r eaks on branch number, s a l e s p e r s o n number, and

customer number. A s imp le a p p l i c a t i o n domain was used s o t h a t

d i f f e r e n c e s i n a p p l i c a t i o n domain knowledge would n o t be a v a r i a b l e i n

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 9

the study. This permitted the investigation of debugging expertise

alone. The program was fully structured. Figure 2 shows the first

four modules of the program source code, while Figure 3 (a) shows the

correct program output. (See F i g u r e 2)

The error introduced was a logic error, a type commonly found in

practice (Youngs, 1974; Gould and Drongowski, 1974; Gould, 1975;

Sheppard et al., - 1979). No syntactic errors were present. As a basis

for determining whether the task was sufficiently difficult to

differentiate between experts and novices, the "same" bug was

introduced at different locations in the program. Atwood and Ramsey

(1978) report that an error both lower in the propositional hierarchy

and lower in the program structure is more difficult to detect and

correct than a similar error higher in the program ~tructure.~ TWO

versions of the program were produced with one error in each version.

The module changed in the study is B000-PROCESS-DETAIL-RECORDS (see

Figure 2). The correct program logic is as follows:

IF BRANCH-CHANGE EQUALS 'YES'
MOVE BRANCH NO-INPUT TO BRANCH-NO-REPORT
MOVE SALESMAN-NO-INPUT TO SALESMAN-NO-REPORT
MOVE CUSTOMER-NO-INPUT TO CUSTOMER-NO-REPORT
MOVE 'NO' TO BRANCH-CHANCE

ELSE
IF SALESMAN-CHANGE EQUALS 'YES'

MOVE SALESMAN-NO-INPUT TO SALESMAN-NO-REPORT
MOVE CUSTOMER-NO-INPUT TO CUSTOMER-NO-REPORT
MOVE 'NO' TO SALESMAN-CHANCE

ELSE
IF CUSTOMER-CHANGE EQUALS 'YES'

MOVE CUSTOMER-NO-INPUT TO CUSTOMER-NO-REPORT
MOVE 'NO' TO CUSTOMER-CHANGE.

The high-level bug was introduced into the program by removing line

299, which resets the branch-change flag, and the low-level bug by

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 10

removing l i n e 308, which resets t h e customer-change f l a g , and p l a c i n g

t h e p e r i o d a t t h e end of l i n e 307. F i g u r e s 3 (b) and (c) p r e s e n t the

o u t p u t s from t h e program wi th t h e h igh bug and t h e low bug,

r e s p e c t i v e l y . Eight programmers (f o u r c l a s s i f i e d as e x p e r t s and f o u r

a s n o v i c e s) debugged each program ve r s ion . They were g iven t h e

program l i s t i n g , a copy of some i n p u t d a t a , and t h e a s s o c i a t e d o u t p u t ,

both c o r r e c t and i n c o r r e c t . (See F i g u r e s 3a, b and c)

3.2 Procedure

S u b j e c t s undertook program debugging, speaking a loud as they d i d

s o . The i r v e r b a l i z a t i o n s were tape-recorded. S u b j e c t s f i rs t debugged

a p r a c t i c e program s o they would be familiar both wi th t h e procedure

and wi th v e r b a l i z i n g wh i l e debugging. The p r o t o c o l d a t a was

t r a n s c r i b e d by a s e c r e t a r y from t a p e t o paper i n t h e form o f a series

of s h o r t , numbered phrases . According t o Newel1 and Simon (7972, p.

166), each phrase should correspond t o a n a i v e assessment o f what

c o n s t i t u t e s a s i n g l e t a s k a s s e r t i o n o r r e f e r e n c e by t h e s u b j e c t .

Breaking p r o t o c o l s i n t o small ph ra se s a l l ows a series o f r e l a t i v e l y

unambiguous "measurements" o f what in format ion t h e s u b j e c t had a t a

p a r t i c u l a r time.

3.3 Verbal P ro toco l Encoding

The b a s i s f o r examining problem s o l v i n g p r o c e s s e s is t h e ep i sode :

a group o f t a s k a s s e r t i o n s r e l a t e d t o t h e same g o a l o r o b j e c t i v e

(Newell and Simon, 1972, p .84) . A s u b j e c t ' s p r o t o c o l c o n s i s t s o f a

sequence o f such ep i sodes , each a s s o c i a t e d w i th t h e f u l f i l l m e n t o f a

s p e c i f i c goa l . Hence, t h e r e p r e s e n t a t i o n of a s u b j e c t ' s p r o t o c o l i n

Center for Digital Economy Research
Stem School of Business
Working Paper IS-85-12

Page 11

ep i sode form c a p t u r e s t h e goa l -o r i en t ed behaviour o f t h e s u b j e c t and

t h e sequence i n which i t occu r s . I t can be used, t h e r e f o r e , as t h e

backbone f o r t h e r e p r e s e n t a t i o n o f t h e problem s o l v i n g p roces s . The

ep i sode o u t l i n e is t h e t echn ique used t o d e f i n e t h e e p i s o d e sequence

o f a p r o t o c o l . From t h e e p i s o d e o u t l i n e a s t r a t e g y diagram can be

der ived . T h i s is a h ighe r l e v e l a b s t r a c t i o n and c o n c e p t u a l i z a t i o n

designed t o r e f l e c t t h e s t r a t e g i e s t h a t programmers use i n debugging.

The s t r a t e g y diagram is a g a i n a b s t r a c t e d t o fo rmula t e a debupqing

p roces s model. These t h r e e t echn iques a r e used h e r e t o r e p r e s e n t t h e

debugging process . The r e c o r d i n g of t h e debugging p r o c e s s e s o f

s u b j e c t NH1 is used f o r i l l u s t r a t i o n purposes i n t h i s paper . Th i s

s u b j e c t debugged t h e program wi th t h e h igh - l eve l bug. The complete

set o f s u b j e c t p rocess d e s c r i p t i o n s , i n c l u d i n g t h e t h r e e f i g u r e s and a

v e r b a l d e s c r i p t i o n f o r each s u b j e c t , appea r s i n Vessey (1984, Chapter

7 and Appendix E) .

3.3.1 Episode Ou t l i ne

F i g u r e 3 p r e s e n t s s u b j e c t NHl's ep i sode o u t l i n e . Episodes a r e

determined by t h e r e l evance of a g iven t a s k a s s e r t i o n t o t h e g o a l i n

ques t i on . N e w ep i sodes are i d e n t i f i e d , t h e r e f o r e , by e x p l i c i t

s t a t emen t o f a g o a l , i m p l i c i t l y by a s t a t e d desire t o f i n d o r t o g e t a

c e r t a i n item o r p i e c e of i n fo rma t ion , o r by a s u b j e c t focus ing

a t t e n t i o n on another p a r t o f t h e program (s e e , f o r example, Newel1 and

Simon, 1972, pp. 283-2871. There a r e two t y p e s o f r e l a t i o n s h i p s

between ep isodes . Dependency-directed r e l a t i o n s h i p s , where t h e second

ep i sode occu r s as a d i r e c t r e s u l t o f t h e f irst , are shown

d iagrammat ica l ly v i a h o r i z o n t a l connec t ions between e p i s o d e s . For

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 12

example, t h e r e is a dependency-directed a s s o c i a t i o n between e p i s o d e s 4

and 5, and ep i sodes 5 and 6 i n F i g u r e 3 (Shrobe, 1979). Chrono log ica l

r e l a t i o n s h i p s are denoted by v e r t i c a l connec t ions . T h i s i n d i c a t e s

t h a t one ep i sode fo l lows t h e o t h e r i n time, but d o e s n o t occu r as a

d i r e c t r e s u l t o f t h e first ep isode . Dependency o f t e n can be

i d e n t i f i e d when t h e s u b j e c t refers t o t h e same d a t a item o r f e a t u r e o f

t h e procedure d i v i s i o n i n consecu t ive ep i sodes . (See Figure 4)

Most ep i sodes fol low each o t h e r i n time wi thout be ing o t h e r w i s e

r e l a t e d . Dependency r e l a t i o n s h i p s u s u a l l y occur when t h e s u b j e c t

checks on a d a t a item i n t h e WORKING-STORAGE SECTION t h a t h a s a roused

c u r i o s i t y whi le examining t h e PROCEDURE DIVISION. Of t en t h e sequence

o f e v e n t s preceding f i n d i n g , c o r r e c t i n g , and conf i rming t h e e r r o r is

a l s o dependent i n n a t u r e (see ep i sodes 13-16 and 20-24 i n F i g u r e 3) .

Dependency a l s o a r i s e s when t h e s u b j e c t ' s e v a l u a t i o n o f t h e s i t u a t i o n

r e s u l t s i n t h e s t a t emen t o f a n hypothes i s . The h y p o t h e s i s u s u a l l y

does n o t d i r e c t f u r t h e r i n v e s t i g a t i o n nor does i t appea r t o be used i n

t h e fo l lowing episode. Th i s s i t u a t i o n is denoted by a v e r t i c a l

connec t ion from the ep isode p r i o r t o t h e e v a l u a t i o n . Episodes 7 , 8 ,

and 9 i n F igu re 3 i l l u s t r a t e t h i s s i t u a t i o n . Breaks i n s u b j e c t s i

ep isode o u t l i n e s , r ep re sen t ed by s h o r t h o r i z o n t a l l i n e s , i n d i c a t e

s u b j e c t s made i n c o r r e c t r e p a i r s t h a t they p re sen t ed t o t h e r e s e a r c h e r

a s t h e s o l u t i o n t o t he problem. Sub jec t NHI presen ted a n i n c o r r e c t

r e p a i r fo l l owing ep isode 17.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 13

3.3.2 S t r a t e g y Diagram

Figure 5 shows s u b j e c t NHl's s t r a t e g y diagram. I t shows 5 major

problem so lv ing phases. I t is derived from t h e episode o u t l i n e by

i d e n t i f y i n g groups of consecutive episodes having a similar o v e r a l l o r

s t r a t e g i c goal . For example, a number of ep i sodes may be concerned

with examining t h e func t ions of a number of modules; t h e a s soc ia ted

s t r a t e g i c goal may be t o determine the func t ion o r t h e s t r u c t u r e of

the program. The s t r a t e g y diagram, then, i l l u s t r a t e s s u b j e c t s f

problem so lv ing approaches i n terms of the sequence of s t r a t e g i c goals

they s e t themselves. (See F i g u r e 5)

The s t r a t e g y diagram a l s o de f ines the h ie ra rchy o f sub-goals

i m p l i c i t i n the f u l f i l l m e n t of each s t r a t e g i c goa l . S t r a t e g i c goals

a r e opera t iona l i zed by means of t a c t i c a l g o a l s t h a t s p e c i f y how a

s t r a t e g i c goal is t o be f u l f i l l e d . A t t he lowest level o f d e t a i l ,

t a c t i c a l goa l s t r a n s l a t e i n t o opera t iona l g o a l s , which are those

i d e n t i f i e d i n episodes. Table 1 shows the types o f g o a l s programmers

s e t themselves i n debugging. There a r e four major o r s t r a t e g i c goals:

(1) t o determine the problem with the program; (2) t o gain

f a m i l i a r i t y with the func t ion and s t r u c t u r e of t h e program; (3) t o

explore program execution and/or program c o n t r o l ; and (4) t o r e p a i r

(and confirm) the e r r o r . S t r a t e g i c goals 1 and 4 appear i n a l l

s u b j e c t s t p ro toco l s . Goals 2 and 3 both occur f r e q u e n t l y i n the

protocols , al though some p ro toco l s are bes t c h a r a c t e r i z e d by e i t h e r

gaining f a m i l i a r i t y with t h e program o r exp lo r ing the program alone.

The sequence i n which s u b j e c t s set goal 1 and e i t h e r 2 o r 3 d i f f e r .

Except when s u b j e c t s make e r r o r s , goal 4 is, o f n e c e s s i t y , t h e last i n

the problem so lv ing sequence. Sub jec t s i n t h i s s tudy used similar

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 14

tactical and o p e r a t i o n a l g o a l s when pu r su ing a g iven s t r a t e g y , t h e

on ly d i f f e r e n c e being one of d e g r e e when s u b j e c t s fol lowed a more o r a

less a c t i v e approach t o g a i n i n g f a m i l i a r i t y b i t h t h e Frogram and

4 e x p l o r i n g t h e program. (See Table 1)

3.3.3 Debugging Process Model

F i g u r e 6 p r e s e n t s NHl's debugging p r o c e s s model. I t is a s t i l l

more g e n e r a l i z e d r e p r e s e n t a t i o n o f a s u b j e c t ' s approach t o problem

s o l v i n g . Unlike t h e ep isode o u t l i n e , i t is no longe r s t r i c t l y

s e q u e n t i a l . I n s t ead , i t shows t h e flow o f problem s o l v i n g a t a h ighe r

l e v e l . I t employs t h e same f o u r major e l emen t s , phases , o r b u i l d i n g

b locks used i n t h e s t r a t e g y diagram, t o g e t h e r wi th a f i f t h , e v a l u a t e

problem. The e v a l u a t e problem phase is used t o s i g n a l t h e s t a t e m e n t

o f a n hypo thes i s about t h e e r r o r . S u b j e c t s sometimes engage i n

e v a l u a t i o n which does n o t , however, l e a d t o t h e s t a t e m e n t o f a n

hypo thes i s . This s i t u a t i o n u s u a l l y arises a s a r e s u l t o f a n

e x p l o r a t i o n phase and is, t h e r e f o r e , d i f f i c u l t t o d i s t i n g u i s h from i t ;

it arises less f r equen t ly from g a i n i n g f a m i l i a r i t y wi th t h e program.

Hence e x p l o r a t i o n , h e r e , a l s o i n c l u d e s e v a l u a t i o n n o t l e a d i n g t o t h e

e x p l i c i t s t a t emen t o f an hypo thes i s . I t is appa ren t t h a t , a l t h o u g h

e v a l u a t i o n phases are added e x p l i c i t l y t o t h e model, the model is a

f u r t h e r g e n e r a l i z a t i o n from t h e s t r a t e g y diagram o f t h e s u b j e c t ' s

approach t o problem so lv ing . I t is a p i c t o r i a l r e p r e s e n t a t i o n showing

a t a g l ance s i m i l a r i t i e s and d i f f e r e n c e s i n t h e methods used.
(See Figure 6)

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 15

3.4 S u b j e c t s

The s u b j e c t s who p a r t i c i p a t e d i n t h i s r e s e a r c h were p r a c t i s i n g

programmers from t h e S t a t e Government Computer C e n t r e , B r i sbane ,

Queensland. The r e s e a r c h e r c o n t a c t e d one o f t h e managers a t t h e

C e n t r e , and h e agreed t o provide a l l t h e t h e s u b j e c t s r e q u i r e d f o r t h e

s t u d y . With one excep t ion a l l t h e programmers had s p e n t t h e i r e n t i r e

programming careers a t t h e S t a t e Government Computer Cent re . One

person s p e n t two yea r s a t ano the r government i n s t i t u t i o n and , a t t h e

time o f t h e s t u d y , had been employed by t h e Cen t r e f o r f i f t e e n months.

Thus t h e s u b j e c t s had homogeneous backgrounds.

3.5 Assessing Debugging E x p e r t i s e

Th i s s t u d y used two methods t o assess programmer e x p e r t i s e : a n

ex - ante method and an e x p l o r a t o r y - ex post method. T h i s approach

pe rmi t t ed comparison o f t he e f f e c t i v e n e s s o f t h e two methods i n

d i s t i n g u i s h i n g t h e more from t h e less s k i l l e d programmers.

3.5.1 --- An ex a n t e Programmer C l a s s i f i c a t i o n

Manager assessment was t h e i n i t i a l (o r -- ex a n t e) method used t o

o b t a i n a set o f e i g h t e x p e r t s and e i g h t nov ices f o r t h e s t u d y (R e i l l y

e t - g. , 1975). Thi s method was chosen p r i m a r i l y on t h e b a s i s o f face

v a l i d i t y and convenience. Managers a t t h e S t a t e Government Computer

Cen t r e (t h e person f irst con tac t ed and subsequen t ly o t h e r s a t s l i g h t l y

lower managerial l e v e l s) a s s e s s e d programmers who ag reed t o be

s u b j e c t s . After a n i n i t i a l d i s c u s s i o n o f what c o n s t i t u t e d e x p e r t i s e ,

i t became appa ren t t h a t t h e managersf main c r i t e r i o n was the l e n g t h o f

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 16

time t h e person had he ld a programming p o s i t i o n ; t h a t is, expe r i ence

r a t h e r t hen a b i l i t y .

3.5.2 3 post Programmer C l a s s i f i c a t i o n

The ex - post c l a s s i f i c a t i o n method used i n t h i s s tudy was de r ived

from t h e debugging e f f i c i e n c y c r i t e r i a presented i n s e c t i o n 2.1.

E igh t programmers were ca t egor i zed a s e x p e r t s and e i g h t as

novices accord ing t o t h e s e c r i t e r i a , based on a ranking procedure.

S ince t h e l e v e l of t h e program bug inf luenced t h e number of program

p o s i t i o n changes programmers e x h i b i t e d , four programmers who debugged

the program with the h igh bug and f o u r who debugged t h e program wi th

the low bug were c l a s s i f i e d a s e x p e r t s i n t h i s s tudy ; t h e o t h e r s were

c l a s s i f i e d as novices .

Table 2 p r e s e n t s t h e s u b j e c t c l a s s i f i c a t i o n s based on t h e s e t h r e e

v a r i a b l e s a s well as t h e r e s u l t a n t o v e r a l l d e s i g n a t i o n of t h e

programmer as e i t h e r an e x p e r t o r a novice. The f i n a l c l a s s i f i c a t i o n

was de r ived by a s s i g n i n g s u b j e c t s t o t he most f r equen t c l a s s . The

t h r e e v a r i a b l e s c l a s s i f i e d s u b j e c t s as e x p e r t s and novices remarkably

c o n s i s t e n t l y . In 1 1 o f t h e 16 c a s e s a l l t h r e e v a r i a b l e s produced t h e
7

same c l a s s i f i c a t i o n , whi le t h r e e s u b j e c t s were r a t e d as e i t h e r e x p e r t

o r novice on a 2:1 b a s i s . O f t h e two s u b j e c t s whose problem s o l v i n g

demonstrated a n equa l number o f func t ion changes a c r o s s t h e

expert-novice boundary, one was r a t e d twice as a novice on t h e o t h e r

v a r i a b l e s and s o was des igna ted a novice . T,he o t h e r s u b j e c t , E L 2 ,

p resented a problem i n c l a s s i f i c a t i o n . S ince a ranking procedure was

used throughout and EL2 was b o r d e r l i n e , he was c l a s s i f i e d as a n e x p e r t

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 17

to maintain the balance of eight subjects classed as experts and eight

as novices. (This classification also maintained equal numbers on bug

type. (See Table 2)

4. Data Analysis -

Table 3 shows basic subject and task information: the length of

work experience, the expert-novice classifications and the level of

the bug the subject was required to detect and correct, the time

taken, the number of words uttered during the experiment, and the

verbalization rate in words per second. Note that the subject who

accomplished the task in the shortest time and spoke at the fastest

rate had only two weeks' experience as a practising programmer.
(See Table 3)

Three types of analyses were carried out using the verbal data.

First, the two programmer classifications were analyzed according to

the debugging effectiveness criteria to determine which method should

be used for further investigation of degugging processes. Second,

using this classification, subjects' debugging processes were examined

to determine the effects of programmer skill and level of the program

bug. Third, independent of the expert-novice classification, a macro

analysis was performed that identified strategic decisions the

programmers faced in debugging. Programmers were then characterized

according to the strategic decisions they made. The expert and novice

programmers determined by the first analysis were then compared with

the groups of programmers following certain strategic paths derived

from the third analysis. This comparison permitted identification of

the debugging strategies used by those programmers classified as

experts and those classified as novices in this study.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 18

All quantitative data was analyzed using ANOVA and ANCOVA

procedures (Nie et al., 1975). In all cases there were two factors:

the programmer classification and the level of the program bug. The

ANCOVA procedure was used when the dependent variable was time. Here,

verbalization rate was predicted to have an effect on the outcome;

hence it was used as the covariate in the analyses.

4.1 Identifying Experts and - Novices

Table 3 shows that the two programmer classifications assessed in

this study classified only 10 of the 16 subjects in the same way. The

performance of the two methods was assessed using the debugging

effectiveness criteria (debug time and the number of errors subjects

made) presented in section 2.2.

The ex post programmer classification, which controlled for the

chunking ability of programmers, accounted for 73.7 percent of the

variation in debug time compared with 36.1 percent for the manager

classification. The mean debug times according to the ex PO& -

classification were 15 minutes 40 seconds for experts compared with 28

minutes 3 seconds for novices, while the corresponding times for the

manager classification were 20 minutes 24 seconds for experts and 23

minutes 19 seconds for novices. Further, the ex post classification -

classified all (five) programmers who made incorrect changes to the

program as novices, while the managers classified four of the five

programmers as novices. Hence, the - ex post classification, based on

information derived from the verbal prctocols, proved to be a better

measure of programmer skill for this task than manager assessment.

Center for Digital Economy Research
Stem School of Business
IAIorking Paper IS-85-12

Page 19

These r e s u l t s s u p p o r t t h e c o n c e p t on which t h e - ex p o s t programmer

c l a s s i f i c a t i o n is b a s e d , v i z . , t h a t s u b j e c t s ' problem s o l v i n g

p r o c e s s e s r e s u l t i n s i g n i f i c a n t v a r i a b i l i t y i n performance t h a t is

d i f f i c u l t t o c a p t u r e e x c e p t by e x p l i c i t r e c o g n i t i o n o f t h o s e

p r o c e s s e s , F u r t h e r , t h i s r e s u l t shows t h a t one of t h e f a c t o r s t h a t

c o n t r i b u t e s t o t h e v a r i a b i l i t y i n s u b j e c t s ' problem s o l v i n g p r o c e s s e s

is t h e chunking a b i l i t y o f programmers. The - ex post progranmer

c l a s s i f i c a t i o n , t h e n , was t h e method used f o r t h e s u c c e e d i n g a n a l y s i s .

4.2 A n a l y s i s - o f Exper t and - Novice Debugging P r o c e s s e s

The d a t a a n a l y s i s is p r e s e n t e d i n terms o f v a r i a b l e s r e l a t i n g t o

t h e outcome o r e f f i c i e n c y o f debugging , t h e methods programmers u s e d ,

and t h e i r t a s k - o r i e n t e d o r s o l u t i o n b e h a v i o r . The a n a l y s i s is b o t h

q u a n t i t a t i v e and q u a l i t a t i v e i n n a t u r e .

4.2.2 Outcome V a r i a b l e s

T a b l e 4 shows s e v e r a l v a r i a b l e s r e l a t e d t o t h e outcome o r o v e r a l l

conduct of t h e problem s o l v i n g p r o c e s s . T a b l e 5 p r e s e n t s t h e r e s u l t s

o f t h e s t a t i s t i c a l a n a l y s i s (ANOVA o r ANCOVA) on t h o s e v a r i a b l e s t h a t

are q u a n t i f i a b l e .

(See Tables 4 and 5)

T o t a l Debug Time -

T o t a l debug time r e f e r s t o t h e time t a k e n b o t h t o d i s c o v e r t h e

e r r o r and s u b s e q u e n t l y t o c o n f i r m i t . Both t h e s k i l l l e v e l and t h e

bug l e v e l s i g n i f i c a n t l y a f f e c t e d debug time (I?'= .737). Novices took

l o n g e r t o debug programs i n g e n e r a l t h a n e x p e r t s (p < .001) and

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 20

programmers took longer t o c o r r e c t programs wi th low bugs than wi th

h igh bugs (p = .801). I n a d d i t i o n , there were two i n t e r a c t i o n

effects. As expected, novices took longer t o debug t h e program wi th

t h e low bug than the high bug and novices took longer than e x p e r t s f o r

t h e low bug. This r e s u l t sugges t s t h a t the programmer c l a s s i f i c a t i o n

method based on s u b j e c t s ' chunking a b i l i t y , together with bug l e v e l ,

is e f f e c t i v e i n d i s t ingu i sh ing t h e more a b l e from the l e s s a b l e

programmers.

Time t o Discover the Error -- --

This v a r i a b l e r e f e r s t o the l eng th o f time s u b j e c t s took t o

a r t i c u l a t e the e r r o r , but does not inc lude the time t o confirm t h e

e r r o r . The va r i ab le was s i g n i f i c a n t only fo r t h e expert-novice
6

c l a s s i f i c a t i o n (p = .005, R = -572). Novices t ake longer both t o

d iscover t h e e r r o r and t o d iscover and confirm t h e e r r o r . Th i s

r e s u l t sugges t s the re may be l i t t l e d i f f e r e n c e between programmers i n

t h e time t o confirm e r r o r s .

However, t h e r e s u l t f o r bug l e v e l is d i f f e r e n t from t h a t f o r

t o t a l debug time; i .e . , time t o d iscover the e r r o r is not

s i g n i f i c a n t l y higher f o r t h e low-level bug, as would be expected. The

s i g n i f i c a n t r e s u l t f o r t o t a l debug time probably a r i s e s because of t h e

time s u b j e c t NLI (with t h e low bug) r equ i red t o confirm t h e e r r o r . H e

found t h e e r r o r i n 13 minutes 32 seconds but then took almost twice

t h a t period t o r eassure himself t h a t he was c o r r e c t (25 minutes 12

seconds) . This r e s u l t i n d i c a t e s t h a t s u b j e c t NL1 had no t c rea ted an

adequate model o f the program's func t ion and s t r u c t u r e p r i o r t o

i n d i c a t i n g the e r r o r ; he simply d i d no t know how t h e program worked

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 21

and could n o t confirm t h e e r r o r a t that time i n terms of h i s i n t e r n a l

model o f t h e program. (This a s p e c t is considered f u r t h e r under

Outcome Variables: System Thinking.)

Number of Major Phases -

The number of major problem s o l v i n g phases, obtained from t h e

s u b j e c t ' s s t r a t e g y diagrams, va r i ed with both the - ex p o s t s k i l l
&

c l a s s i f i c a t i o n and the bug l e v e l (R = .712), Novices engaged i n more

major phases i n debugging than e x p e r t s (p = .001), and s u b j e c t s a s a

whole engaged i n more major phases f o r low than f o r high bugs

(p=.006). This r e s u l t is c o n s i s t e n t with t h e number o f e r r o r s t h a t

s u b j e c t s made i n debugging the programs. When making a c o r r e c t i o n ,

they entered a r e p a i r phase and when t o l d they were not c o r r e c t , they

again resumed t h e i r a n a l y s i s of program s t r u c t u r e . In t h i s way, they

entered i n t o a t least one and probably two more major problem so lv ing

phases. Since t h e ex - post c l a s s i f i c a t i o n c l a s s i f i e d a l l programmers

who made e r r o r s as novices, i t fo l lows t h a t novices engage i n more

g ross phases than exper t s dur ing debugging.

Number - of Episodes

Novices requi red more episodes than exper t s t o s o l v e t h e problem
i

(p = .003, R = .570). However, t h e l e v e l of t h e program bug had no

e f f e c t on the number of episodes. The r e s u l t f o r t h e s k i l l

c l a s s i f i c a t i o n relates both t o t o t a l debug time and t o t h e average

episode time. Since novices, i n g e n e r a l , took longer t o debug than

e x p e r t s and s i n c e t h e average episode length d i d not vary (see next

subheading), i t fol lows t h a t novices engaged i n more problem so lv ing

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 22

ep i sodes than exper ts .

Average Time per Episode -

Nei ther the programmer c l a s s i f i c a t i o n nor the bug l e v e l

s i g n i f i c a n t l y a f f e c t e d the average time expended per episode. Experts

and novices spent s i m i l a r amounts of time i n examining i n d i v i d u a l

a s p e c t s o f the problem, and programmers i n genera l engaged i n problem

so lv ing episodes of s i m i l a r l e n g t h , i r r e s p e c t i v e of whether they were

debugging programs with high o r low bugs.

4.2.3 Method Variables

Table 6 shows va r i ab les r e l a t i n g t o the method o r process

s u b j e c t s used i n debugging. Table 7 presen t s t h e r e s u l t s of t h e

s t a t i s t i c a l a n a l y s i s performed on q u a n t i t a t i v e v a r i a b l e s . One o f t h e

most s i g n i f i c a n t outcomes of t h e process a n a l y s i s is t h e r e a l i z a t i o n

t h a t a l l s u b j e c t s ' debugging processes can be descr ibed i n terms of

f i v e major problem solving phases: problem determinat ion , ga in ing

f a m i l i a r i t y with t h e program, exp lo ra t ion of p a r t i c u l a r a s p e c t s ,

eva lua t ion leading t o t he s ta tement of an hypothes is and, f i n a l l y ,

e r r o r r e p a i r . The debugging process model, the t h i r d technique f o r

recording processes, r e f l e c t s t h e type and sequence o f phases i n which

ind iv idua l s u b j e c t s engaged. Every protocol does not n e c e s s a r i l y

d i s p l a y a l l phases, and c e r t a i n phases may occur s e v e r a l times during

problem solving. A l l p ro toco l s , however, i ~ c l u d e both problem

determination and e r r o r repair phases.

(See Tables 5 and 6)

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 23

Module Examination Procedure

Subjects approached the essential task of ascertaining the

program structure principally in one of two ways. In the first

approach they read through at least the first three modules,

A000-CREATE-SALES-REPORT, A001-PROCESS-AND-READ, and

B000-PROCESS-DETAIL-RECORDS, in sequence as they appeared in the

listing (7 subjects). The second approach was to examine the modules

in execution sequence, i.e., A000-CREATE-SALES-REPORT, followed by

A001-PROCESS-AND-READ, and then by BO10-PROCESS-CUSTOMER-CHANGE (6

subjects), Two subjects, EH4 and NH3, engaged in the most active

search process and started their investigation of the program

structure by looking for the module where they believed the error to

be: B000-PROCESS-DETAIL-RECORDS. From then on, however, their

approaches differed. Subject EH4 found the error by reference to

module B000-PROCESS-DETAIL-RECORDS alone; he then worked backwards

through the program listing, referencing first module

A001-PROCESS-AND-READ and then A000-CREATE-SALES-REPORT, in order to

confirm it. NH3, on the other hand, first followed an execution

sequence by glancing briefly at module C000-PRINT-HEADINGS; the third

module he referenced was A000-CREATE-SALES-REPORT. The remaining

subject, NH4, did not follow a pattern for module examination. He

looked first at A000-CREATE-SALES-REPORT, reading out the PERFORM

statements for modules A001-PROCESS-AND-READ,

BO10-PROCESS-CUSTOMER-CHANGE, B020-PROCESS-SALESMAN-CHANCE, and

B030-PROCESS-BRANCH-CHANCE (activated when the main body of processing

has concluded), interspersed with two references to the

WORKING-STORAGE SECTION. Next he examined

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 24

Since the module examination procedure investigates only the

sequence in which subjects approach the early stages of the task, few

differences would be expected for bug level. There are differences,

however, in the methods used by experts vis-a-vis novices. Table 8

summarizes the results. Experts, in general, are more relaxed about

debugging (situation-dependent problem solving). They are content to

read through the program as it unfolds. Again, this is an

illustration of the high-level problem solving that so often appears

to characterize the behavior of experts. Novices, on the other hand,

prefer to assess how the program executes sooner than experts.

(See Table 8)

Familiarity before Problem Determination

Three subjects (ELI, EL2, and EL3), all classed as experts in

this study, gained some familiarity with the program before comparing

the correct and incorrect outputs to discover the problem with the

program. Subject EL3 read the introductory comments only (1 episode,

9.80 percent of total phrases). Subject EL1 read the initial

comments, reviewed the FILE and WORKING-STORAGE SECTIONS of the DATA

DIVISION, and then read the comments relating to the first two modules

(A000-CREATE-SALES-REPORT and A001-PROCESS-AND-READ). This initial

familiarization involved four episodes and amounted to 15.56 percent

of the total phrases uttered. Subject EL2 engaged in an extended

initial familiarization phase that consumed 14 episodes representing

32.93 percent of the complete problem solving effort. He looked first

at the DATA DIVISION, then at modules A000-CREATE-SALES-REPORT,

A001-PROCESS-AND-READ, and 0000-PROCESS-DETAIL-RECORDS. While

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 25

perusing the PROCEDURE DIVISION, he frequently referred to items in

the WORKING-STORAGE SECTION.

Familiarity and - Exploration before Error

Most subjects (with the exception of those discussed in the

previous section) first assessed the problem with the program by

examining the correct and incorrect outputs, generally on a

line-by-line basis. This was usually followed by a familiarization

phase where subjects read through parts of the program to discover

what it was doing. If subjects did not detect the error by simply

reading through the program, they usually engaged in active

exploration of the program in the form of mental execution.

Exploration reveals information on the execution sequence and on the

values of data and control variables.

The protocols of NH3 and EH4 contain no familiarization phase,

while that of EHI was very short and is classed as exploration only.

Certain subjects found the error without engaging in exploration,

i.e., active searching for certain structures in accordance with an

hypothesis, implicit or explicit, or mentally executing the program to

determine how it was functioning. These include (in the sequence in

which they appear in Table 6) EH2, EH3, NH1, NH4, EL3, NL3, and NL4.

Of these, subjects NHI, NL3, and NL4 had considerable difficulty in

finding the error. The remaining subjects, those who did not find the

errcr after reading through the relevant modules once or twice, turned

to exploration, most frequently in the form of mental execution of the

program (NH2, EL4, ELI, EL2, NLI, and NL2). They generally

concentrated on control aspects such as resetting the previous numbers

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 26

and t h e va lues o f the change f l a g s .

Table 9 summarizes t h e use o f f a m i l i a r i t y and exp lo ra t ion phases

be fo re bug d e t e c t i o n f o r both t h e s k i l l c l a s s i f i c a t i o n and bug l e v e l .

No c o n s i s t e n t p a t t e r n s of d i f f e r e n c e s between groups can be

i d e n t i f i e d . (See Table 9)

Number - of Dif ferent Modules Examined

One o f t h e c r i t e r i a f o r d e r i v a t i o n of t h e - ex post programmer

c l a s s i f i c a t i o n used i n t h i s s tudy was t h a t novices could no t chunk

programs as e f f i c i e n t l y a s exper t s . They would, the re fo re , engage i n

more e r r a t i c problem solving behavior than e x p e r t s , i l l u s t r a t e d by t h e

frequency of t h e i r changes of r e fe rence p o s i t i o n s i n t h e program.

Since low bugs incurred more p o s i t i o n changes than h igh bugs,

confirming t h e g r e a t e r d i f f i c u l t y o f l o c a t i n g and c o r r e c t i n g t h e

program with the low bug, bug l e v e l was con t ro l l ed i n d e r i v i n g t h e

c l a s s i f i c a t i o n . Inherent i n t h i s c l a s s i f i c a t i o n , t h e r e f o r e , is t h e

f a c t t h a t novices make more f r equen t changes than e x p e r t s i n t h e

ma te r i a l they reference .

In t h e process a n a l y s i s , the v a r i a b l e inves t iga ted is t h e number

of d i f f e r e n t modules t h a t programmers r e fe rence i n debugging. Only a

few modules are re levan t t o understanding the program s t r u c t u r e .

Modules A001-PROCESS-AND-READ and B000-PROCESS-DETAIL-RECORDS are

those i n which t h e f l a g s are set and unse t ; i n subordinate modules

BOZO-PROCESS-CUSTOMER-CHANGE, B020-PROCESS-SALESMAN-CHANGE, and

W30-PROCESS-BRANCH-CHANGE, t h e tfprevioust t numbers are reset f o r

matching purposes. These t h r e e sets o f modules perform a l l c o n t r o l

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 27

func t ions i n t h e program. A s long as t h e problem is c h a r a c t e r i z e d as

a c o n t r o l problem, t h e s e are t h e modules where the e r r o r (s) niight be

expected t o occur. The only o t h e r p o s s i b i l i t y is t h a t DETAIL-LINE is

not c l ea red before p r in t ing . A s noted previously, however, c l o s e r

examination would show t h a t t h e problem is not uniform, i.e., i t does

not occur a l l the time, and s o cannot be one of c l e a r i n g DETAIL-LINE.

Also, one would l o g i c a l l y expect t h a t c l e a r i n g DETAIL-LINE would be

accomplished wi th in module B000, which c a r r i e s t h e t i t l e

B000-PROCESS-DETAIL-RECORDS. Hence, i t is not e s s e n t i a l t o r e fe rence

modules o t h e r than the c o n t r o l l i n g module A000-CREATE-SALES-REPORT,

AOO1-PROCESS-AND-READ, 8000-PROCESS-DETAIL-RECORDS, and t h e th ree

"change" modules. The number o f d i f f e r e n t modules t h a t programmers

reference can t h e r e f o r e be regarded as a measure of t h e confidence

t h a t programmers have i n looking a t what they consider t o be t h e

r e l evan t modules. Hence, i t is expected t h a t the less conf iden t

programmers (novices) w i l l r e fe rence more modules than t h e more

confident programmers (e x p e r t s) . This reasoning is supported by the

r e s u l t : novices examine more modules than e x p e r t s (p = .045, R
t

z.299). Bug l e v e l has no e f f e c t on the number of modules t h a t

programmers reference .

Mumber of Times BOO0 was Examined -----

The module i n e r r o r is B000-PROCESS-DETAIL-RECORDS. Novices

reference module B000-PROCESS-DETAIL-RECORDS s i g n i f i c a n t l y more o f t e n

than exper t s (p = .007) and programmers r e f e r e n c e

~000-PROCESS-DETAIL-RECORDS more o f t e n f o r low-level bugs than f o r
2
L-

high-level bugs (p = .023, R = .578). These r e s u l t s a r e similar t o

Center for Digital Economy Research
Stem School of Business
Working Paper IS-85-12

Page 28

those f o r t h e number of d i f f e r e n t modules t h a t p r o g r a m e r s examine.

They demonstrate lesser a b i l i t y t o grasp t h e c o n t r o l r e l a t i o n s h i p s

e s t a b l i s h e d i n t h e program and t h e i n t e r r e l a t i o n s h i p s between modules.

Number o f -- Data Division Items Examined

Again, because they are less conf ident than exper t s , i t might be

expected t h a t novices would refer t o i tems i n the DATA DIVISION more

f requen t ly . However, no such d i f f e r e n c e s were observed. S imi la r ly
e.

bug l e v e l was no t s i g n i f i c a n t (R = .104).

4 . 2 4 Solut ion Var iables

Table 10 shows v a r i a b l e s d i r e c t l y r e l a t e d t o t h e s o l u t i o n

process, Table 11 p resen t s the r e s u l t s of t h e s t a t i s t i c a l a n a l y s i s on

r e a d i l y q u a n t i f i a b l e va r i ab les . (See Tables 10 and 11)

Number - of Hypotheses

Nine s u b j e c t s s t a t e d hypotheses ranging from one t o th ree i n
L

number. Novices s t a t e d more hypotheses than exper t s (p = -045; R =

.230). Perhaps e x p e r t s have automated t h e i r problem so lv ing processes

t o a g r e a t e r e x t e n t than novices and hence do not state hypotheses as

f requen t ly dur ing debugging. Al te rna t ive ly , s i n c e novices make more

e r r o r s (see l a t e r) , they w i l l consider more poss ib le causes of the

problem.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 29

Types - of Hypotheses

Table 10 presen t s the hypotheses t h a t programmers a r t i c u l a t e d .

They range from t h e genera l "contro l break problem" t o r e s e t t i n g the

previous number(s), moving SPACES t o DETAIL-LINE, and not s e t t i n g o r

r e s e t t i n g a c o n t r o l f l a g (see Appendix A). O f a t o t a l of 19

hypotheses, 3 r e l a t e d t o con t ro l break, 5 t o r e s e t t i n g the previous

number(s), 9 t o c l e a r i n g DETAIL-LINE, and 2 t o r e s e t t i n g t h e change

f l a g . A c t i v i t y t h a t r e su l t ed from understanding t h e program s t r u c t u r e

and l ed d i r e c t l y t o e r r o r co r rec t ion was considered t o be e v a l u a t i v e

i n na tu re r a t h e r than hypothesis a c t i v i t y . Only one person

hypothesized (twice) t h a t t h e change f l a g was t h e problem (s u b j e c t

EH3) . I t is apparent , t he re fo re , t h a t i n debugging s t a t i n g the

c o r r e c t hypothes is is not a p r e r e q u i s i t e t o f i n d i n g the bug. Sub jec t s

may have made i m p l i c i t assumptions about the p o s s i b l e cause o f e r r o r

t h a t may o r may not have been c o r r e c t . Only one s u b j e c t , however,

made the c o r r e c t e x p l i c i t assumption. This s u b j e c t was c lassed as an

exper t . Other s t u d i e s suggest t h a t e x p e r t s make good first guesses

about the s o l u t i o n t o a problem. This r e sea rch found t h a t e x p e r t s did

not make b e t t e r f i r s t guesses, nor d id they make more guesses. The

c r u c i a l f a c t o r i n debugging performance is t h a t e x p e r t s were not a s

committed t o t h e i r hypotheses a s novices. Therefore , they were not

b l ind t o new information.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 30

Problem Solving Cons t ra in t s

S e v e r a l s u b j e c t s s t a t e d a n hypothes is but d i d not a c t i v e l y

e v a l u a t e it, pre fe r r ing t o l e t t h e problem unfold as they became more

familiar with the program. These s u b j e c t s are designated i n Table 10

as unconstrained. They inc lude EH1, EH3, NH2, and NH4. Others ,

however, s t a t e d an hypothesis e a r l y i n t a s k execution and were s o

determined they were c o r r e c t t h a t they f a i l e d e i t h e r t o understand t h e

program s t r u c t u r e o r t o eva lua te t h e i r proposed change. These inc lude

NH1, NL2, NL3, and NL4. They a r e designated i n Table 10 a s

5
const ra ined. In c e r t a i n cases they d id not recognize s i g n a l s t h a t

t h e i r hypotheses may have been i n c o r r e c t , showing i n f l e x i b i l i t y i n

adopt ing and d i sca rd ing hypotheses (NH1, NL2, and NL4). Two s u b j e c t s ,

NL2 and NL3, used a ltshotguntl approach t o e r r o r de tec t ion t h a t was no t

r e l a t e d t o hypothes is genera t ing a c t i v i t y a lone . They made con t inua l

changes t o t h e program i n the hope of even tua l ly producing the c o r r e c t

one; i .e., they considered t h e onus o f dec i s ion was on the r e sea rcher

t o accep t o r reject the changes r a t h e r than on themselves t o j u s t i f y

t h e i r c o r r e c t i o n s . These s u b j e c t s were a l l c l a s s i f i e d a s novices.

System Thinking

Exper ts , whether they s t a t e d hypotheses o r no t , gradual ly c rea ted

an i m p l i c i t model of program s t r u c t u r e and funct ion , which permit ted

them t o p lace t h e e r r o r i n context . Those s u b j e c t s who found t h e

e r r o r without c r e a t i n g the model o f program s t r u c t u r e and func t ion

(f o r example, s u b j e c t s NLI, EL3, and EH4) found i t e s s e n t i a l t o c r e a t e

t h e model before being s a t i s f i e d they had found the e r r o r . This is an

example of what Johnson et - al . - (1982, p. 226) call "system

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 31

Those s u b j e c t s who are n o t regarded as pe rce iv ing t h e problem

from a sys tem viewpoint are NL1, NH3, and NH4. Although s u b j e c t M.1

e v e n t u a l l y c o n s t r u c t e d such a model, h e took twice as l o n g to

c o n s t r u c t t h e model as h e d i d t o i n d i c a t e t he e r r o r and is t h e r e f o r e

cons idered t o be d e f i c i e n t i n h i s a b i l i t y t o th ink i n system terms.

Program S t r u c t u r e s Considered

S u b j e c t s e x p l i c i t l y examined a number o f program s t r u c t u r e s i n

t h e i r s e a r c h f o r t h e e r r o r . To some e x t e n t t h e s e s t r u c t u r e s are

r e f l e c t e d i n t h e hypotheses t h a t s u b j e c t s a r t i c u l a t e d , but t hey d i d

n o t always s ta te s p e c i f i c a l l y t h e i r pe rcep t ions o f t h e cause o f t h e

e r r o r . Two cases i n p o i n t are s u b j e c t s NH3 and E L I . They made s i n g l e

t a s k a s s e r t i o n s , such as " t h e r e f o r e t h a t cannot be t h e problem", when

they found a s t r u c t u r e they obv ious ly had thought might have been

miss ing from t h e program. Such e n t r i e s are made i n b r a c k e t s .

Inc luding t h e s e s t r u c t u r e s , 6 s u b j e c t s e x p l i c i t l y cons idered p r e v i o u s

numbers and 12 s u b j e c t s cons ide red s p a c e s and change f l a g s . Note t h e

b i a s i n t h e number o f s u b j e c t s who cons ide red f l a g s s i n c e t h i s was t h e

e r r o r ; hence, everyone e v e n t u a l l y r e f e r r e d t o f l a g s as be ing t h e

sou rce o f e r r o r . Only two s u b j e c t s , EH3 and EL4, cons idered change

f l a g s a l o n e , whi le two more, EH2 and EL2, appeared t o d e t e c t t h e bug

wi th no e x p l i c i t c o n s i d e r a t i o n of s t r u c t u r e s o f any k ind . Two

s u b j e c t s , who had p rev ious ly cons ide red o the r s t r u c t u r e s , d i d n o t

f i n i s h wi th a n e x p l i c i t c o n s i d e r a t i o n o f change f l a g s : NL3 and NL4,

Sub jec t NL3 sugges ted t h e c o r r e c t amendment, t o g e t h e r w i t h o t h e r

changes he had n o t d e l e t e d , as y e t a n o t h e r amendment t h a t could have

made t h e program work. NL4 appeared j u s t t o state t h e c o r r e c t

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 32

s o l u t i o n ; he had a l ready committed an e r r o r a t that point .

Number - of Mistakes

Programmers c l a s sed as novices made s i g n i f i c a n t l y more e r r o r s
f r

than those c lassed a s exper t s (p = ,005, R = .500). Bug l e v e l had no

e f f e c t al though s i x o f the e i g h t mistakes were committed f o r the

low-level bug.

Types of Mistakes -

Subjec t s made l imi ted s o r t s of mis takesfas repor ted i n Appendix

A . O f e i g h t mistakes, four involved moving SPACES t o DETAIL-LINE (o r

t o some p a r t of DETAIL-LINE), and t h e o ther four involved branch,

sa le spe r son , o r customer numbers. Three of these l a t t e r mistakes

involved r e s e t t i n g the previous numbers, while the f o u r t h introduced

an unnecessary t e s t t o determine whether a number had changed p r i o r t o

p r i n t i n g t h a t p a r t of t h e DETAIL-LINE repeatedly w r i t t e n i n e r r o r .

Analysis subject^ ' Debugging S t r a t e g i e s

Figure 7 presen t s a p i c t o r i a l r ep resen ta t ion of t h e s t r a t e g y

pa ths the programmers followed. The represen ta t ion of s t r a t e g y paths

d i f f e r s from the ind iv idua l s u b j e c t s ' s t r a t e g y diagrams i n t h a t i t

desc r ibes a t a macro l e v e l the s t r a t e g i e s of a l l s u b j e c t s . The

s t r a t e g y paths a r e cha rac te r i zed by four binary f a c t o r s l ead ing t o a

p o s s i b l e 16 paths. These four va r i ab les r ep resen t s i g n i f i c a n t

elements i n the s u b j e c t s ' debugging processes. They d e r i v e from t h e

previous ana lys i s . The binary va r i ab les , i n the sequence i n which

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

s u b j e c t s cons idered them (e x p l i c i t l y o r i m p l i c i t l y) , are:

1. Whether s u b j e c t s e x a i n e d t h e program o r t h e o u t p u t f irst (Table
6 : F a m i l i a r i t y be fo re Problem Determinat ion) .

2. Whether s u b j e c t s engaged i n a c t i v e o r p a s s i v e examinat ion o f t h e
problem (Table 6: Module Examination Procedure) .

3. Whether s u b j e c t s were cons t r a ined by the hypotheses t hey stated
(Table 10: Problem Solv ing C o n s t r a i n t s) .

4. Whether s u b j e c t s developed a model o f t h e program s t r u c t u r e and
deduced a c a u s a l model o f t h e e r r o r (Table 10: System Thinking) ,

(See Figu re 7)

The s t r a t e g i e s a r e r ep re sen ted i n t h e form o f a d e c i s i o n tree

(DeMarco, 1979; Gane and Sarson , 1979), wi th t h e i n t e n t i o n o f

r e p r e s e n t i n g temporal ly t h e s t r a t e g i c d e c i s i o n s made by s u b j e c t s . The

numbers o f s u b j e c t s choosing each pa th is rep resen ted on t h e diagram.

S u b j e c t s fol lowed 6 of t h e 16 paths.6

Examination o f t h e s u b j e c t s fo l lowing each s t r a t e g y shows t h a t

s t r a t e g i e s 1, 3, and 5 a r e followed p r i n c i p a l l y by s u b j e c t s c l a s s i f i e d

as nov ices accord ing t o t h e exper t -novice programmer c l a s s i f i c a t i o n ,

whi le s t r a t e g i e s 2 , 4 , and 6 are followed p r i n c i p a l l y by those

c l a s s i f i e d a s e x p e r t s . Reformulation o f t h e d e c i s i o n tree presented

i n F i g u r e 7 produces t h e complete and c o n s i s t e n t d e c i s i o n t a b l e o f

Table 12 (G i lde r s l eeve , 1970). I t shows t h a t two f a c t o r s de te rmine

e x p e r t behavior i n t h i s d i a g n o s t i c t a sk : t h e a b i l i t y t o pursue a

b r e a d t h - f i r s t s e a r c h f o r t h e e r r o r 7 and the a b i l i t y t o t h i n k i n

systems terms. Programmers who are cons t r a ined by t h e hypotheses t hey

gene ra t e are novices . F u r t h e r , programmers who engage i n

b r e a d t h - f i r s t s e a r c h f o r t h e e r r o r bu t who do n o t fo rmula t e a model o f

t h e program s t r u c t u r e and conce ive o f t h e e r r o r w i t h i n t h a t c o n t e x t

w i l l be l i k e l y t o make mis takes and w i l l t h e r e f o r e be regarded as

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 34

novices. Whether subjects initially examine the output of the program

has no effect on problem solving. Neither does reading modules versus

mentally executing modules. (See Table 12)

The decision table, based on only two binary conditions,

classifies 15 of the 16 programmer subjects in the same manner as the

skill classification, which is based on the chunking ability of the

subjects. The sixteenth subject is NH2. Perusal of NH2's process

description (Vessey, 1984, Appendix E.2) shows that there is little in

his protocol to suggest that he is a novice according to the criteria

presented in this section. He does not, however, exhibit a very

refined chunking ability (see Table 2). He is ranked tenth in a 3-way

tie on function changes, ninth in a ?,-way tie on Program Debug

reversals, and eleventh in a 2-way tie on position changes.

5. Implications of -- the Results

The objective of this research was to determine those

characteristics of programmerst debugging processes that lead to

debugging expertise.

5.1 Implications - for Debugging Processes

Tables 13 and 14 present summaries of the differences in

debugging processes assessed quantitatively for level of program bug

and the exploratory ex post programmer classification, respectively.

Differences in debugging processes were observed between bug levels

when subjects made mistakes. Mistakes led to increases in the number

of phases in which programmers engaged. Mistakes were generally

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 35

associated with the more deeply entrenched low-level bug. Programers

did not otherwise appear to modify their problem solving methods for

the low bug. There were, again, differences in the effectiveness of

the application of those methods as a result of the differing bug

complexity. This is evidenced particularly in the time required to

debug the two programs. See Tables 13 and 1 4)

All programmers engaged in similar types of activity during

debugging; i.e., all programmers' debugging processes could be

described with five basic building blocks. There are certain

differences in the way the activities are sequenced and whether or not

a subject employs a given activity. The overriding consistent

difference in expert-novice processes that emerges from this study is

the preference of expert programmers to work at a high level without

apparent concern for solving the problem. Novices are anxious about

their ability to solve the problem. They tend to focus directly on

getting a solution rather than understanding the program and how it

functions. They are inflexible in their approach to the problem and

their (proposed) solution to it. From the subjects' strategy

diagrams, it appears that novices have the same basic methods

available to them but that there are differences in the effectiveness

of the application of these methods.

5.2 Implications - - for a Concept of - Programming Expertise

The ex post programmer classification, based on subjects' ability
to chunk programs, together with bug level, explained 73.7 percent of

the the variation in debug time and classified all programmers who

made mistakes as novices,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Fur the r suppor t f o r the use of chunking a b i l i t y as a measure of

debugging e x p e r t i s e was provided by t h e a n a l y s i s o f s u b j e c t s ' s t r a t e g y

paths . Except f o r s u b j e c t NH2, c l a s s i f i c a t i o n o f s u b j e c t s according

t o t h e i r h igh- level problem so lv ing c a p a b i l i t i e s and t h e i r approach t o

modelling the system resu l t ed i n the same programmer c l a s s i f i c a t i o n a s

t h a t based on chunking a b i l i t y . Hence, a micro a n a l y s i s o f debugging

a c t i v i t i e s and a macro ana lys i s of debugging s t r a t e g i e s e s s e n t i a l l y

produced s i m i l a r r e s u l t s . Two d i v e r s e methods r e s u l t i n g i n convergent

programmer c l a s s i f i c a t i o n s lend support t o the no t ions t h a t under l i e

those methods and hence provide i n s i g h t i n t o the na ture of debugging

e x p e r t i s e .

Expert debuggers a r e those who can more e f f e c t i v e l y chunk

programs. They the re fo re e x h i b i t d i s c i p l i n e d approaches t o problem

s o l v i n g , pursuing s i m i l a r types of behavior r a t h e r than f requen t ly

changing mode of behavior, checking on t h e c l u e s t o the problem, and

changing re fe rence p o i n t s within t h e program. Furthermore, exper t

debuggers are those who approach t h e problem i n a re laxed manner.

They do not permit t h e formulation of hypotheses t o lead them t o a

d e p t h - f i r s t search f o r the e r r o r . Ins tead , they al low the s t r u c t u r e

of the program t o unfold, place t h e c l u e s i n the context o f t h a t

s t r u c t u r e , and conceptual ize the e r r o r i n terms of t h e program

s t r u c t u r e * Directed search f o r the s o l u t i o n t o the problem i n terms

of i n i t i a l examination of the output f o r c l u e s t o the problem and/or

t h e module i n e r r o r is not a determinant o f debugging e x p e r t i s e .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

The type of problem s o l v i n g ou t l ined above -- i.e.,

b r e a d t h - f i r s t , keeping c o n s t r a i n t s open -- is behavior conunonly found

t o c h a r a c t e r i z e the problem s o l v i n g o f exper ts . In a d d i t i o n , it is

behavior t h a t Dreyfus (1982) refers t o as s i tua t ion-dependent

behavior. Problem s o l v e r s who are const ra ined by t h e i r i n i t i a l

hypotheses do not always r e a c t t o the program content but perce ive

what they expect t o perce ive . They a r e , t h e r e f o r e ,

s i tua t ion- independent . So too are those programmers who do no t

develop a causal model of the program s t r u c t u r e and t h e e r r o r i n i t ,

i .e. , those who do not e x h i b i t itsystem thinking". This s t u d y provides

no suppor t , however, f o r the not ion of a formal symptom-pattern

recogni t ion f e a t u r e such as t h a t found i n medical d iagnos i s (see, f o r

example, Bouwman, 1978).

6 . Limita t ions -- of t h e Research

The major l i m i t a t i o n o f the s tudy is t h a t t h e r e l i a b i l i t y o f t h e

method used t o c l a s s i f y programmers has not been t e s t e d independent o f

the cu r ren t da ta . The s tudy shows t h a t , i n a g iven set o f

circumstances, one o f t h e primary f a c t o r s a s soc ia ted wi th v a r i a b l e

programming performance is the chunking a b i l i t y o f programmers. The

ex - p o s t c l a s s i f i c a t i o n method should now be t e s t e d t o e s t a b l i s h

whether i t c l a s s i f i e s s u b j e c t s c o n s i s t e n t l y i n t h e same manner, That

is, a t e s t / r e t e s t examination o f t h e method is required t o assess t h e

r e l i a b i l i t y .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 38

Conclusions

Th i s r e sea rch provides i n s i g h t s i n t o t h e n a t u r e of debugging

e x p e r t i s e and hence c o n t r i b u t e s t o a genera l theory o f programming

e x p e r t i s e . General empir ica l p ropos i t ions about the e x p e r t i s e

requi red t o r e p a i r programs should be formulated from the theory and

t h e s t r a t e g i c p ropos i t ions t e s t e d 8 This research sugges t s t h a t some

of the s t r a t e g i c p ropos i t ions t o be t e s t e d i n t h e i n v e s t i g a t i o n of

debugging e x p e r t i s e a r e :

1. (a) Experts use b r e a d t h - f i r s t approaches t o problem
so lv ing and, a t t h e same time, adopt a system view of
t h e problem a r e a .

(b) Experts a r e p r o f i c i e n t a t chunking programs and hence
d i s p l a y smooth-flowing approaches t o problem solving.

2. (a) Novices use b r e a d t h - f i r s t approaches t o problem
so lv ing but are d e f i c i e n t i n t h e i r a b i l i t y t o
th ink i n system/terms.

(b) Novices use d e p t h - f i r s t approaches t o problem so lv ing .

(c) Novices are less p r o f i c i e n t a t chunking programs and hence
d i s p l a y e r r a t i c approaches t o problem so lv ing .

Fur the r i n v e s t i g a t i o n w i l l s e rve t o extend and r e f i n e the theory
and a l s o t o set boundaries on the a p p l i c a b i l i t y o f the s t r a t e g i c
proposi t ions .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 39

FOOTNOTES

1. Debugging is the process o f l o c a t i n g and c o r r e c t i n g t h e e r r o r
wi th in t h e program. I t d i f f e r s from t h e r e l a t e d a c t i v i t y o f t e s t i n g
i n t h a t t e s t i n g revea l s t h e presence o f e r r o r s ; hence, debugging
fo l lows t e s t i n g (Myers, 1978, p.761).

2. Vessey (1984, Table 3.1) shows the l i t e r a t u r e suppor t ing inc lus ion
of each func t ion represented i n Figure 1.

3 . The term "proposi t ional hierarchyt9 refers t o t h e embedding o r
n e s t i n g o f c l auses i n a sentence s t r u c t u r e (Kintsch and van Di jk ,
1978).

4. A s tudy by Could (19751, however, sugges t s t h a t t h i s may n o t
always b e the case. Gould r e p o r t s t h a t h i s s u b j e c t s used one of two
t a c t i c s t o determine the problem with the program: (1) they examined
the output f o r c lues t o the problem (t h e t a c t i c used by a l l s u b j e c t s
i n t h e c u r r e n t s t u d y) ; (2) they examined the source l i s t i n g d i r e c t l y .

5. This type of approach t o problem so lv ing is termed "dep th - f i r s t f1
by Nilsson (1980) and "ext rac t ion" by Fe l tov ich (1981). I t is
charac te r i zed by r e j e c t i o n of the suspected problem only when
necessary. The a l t e r n a t i v e problem so lv ing approach is
"bread th - f i r s t " o r "precautionary" (Ni lsson and Fe l tov ich ,
r e s p e c t i v e l y) .

6. The s t r a t e g i e s a r e numbered t o the r i g h t o f Figure 7.

7. For f u r t h e r d iscuss ion of the s i g n i f i c a n c e of b r e a d t h - f i r s t versus
d e p t h - f i r s t approaches t o both d i a g n o s t i c and des ign problems, see
Fel tovich (1981), J e f f r i e s e t -- a l . (1980), Johnson - e t a l . - (1981),
Malhotra -- e t a l . (1980), and Nilsson (1980).

8. According t o Dubin (1978, p. 168): " S t r a t e g i c p ropos i t ions are
those t h a t s t a t e c r i t i c a l o r l i m i t i n g values f o r one o f the u n i t s
involved", and f u r t h e r (p . 210): " I f s t r a t e g i c p ropos i t ions (do) not
produce p o s i t i v e r e s u l t s , then t h e r e (i s) no po in t i n worrying about
the o the r t e s t a b l e proposi t ions." (The verbs i n b racke t s have been
changed from p a s t t o p resen t tense.)

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 40

REFERENCES

Anderson, J.R., Creeno, J.C., Kline, P.J., and Neves, D.M.
(1981). Acquisition of problem-solvin~ skill. In J.R.
Anderson (ed.) , cognitive skills and Their Acquisition. --
Hillsdale, New Jersey: Lawrence Erlbaun Associates.

Atwood, M.E. and Ramsey, H.R. (1978). Cognitive structures in
the comprehension and memory of computer programs: An - -
investigation of computer program debugging. NTIS

-9

AD-A060 522/0.

Siggs, S.F. (1978(a)). An investigation of the decision
processes underlying the assessment of corporate earning power.
Unpublished Doctoral Dissertation, University of Minnesota.

Biggs, S.F. (1978(b). An empirical investigation of the
information processes underlying four models of choice
behavior. In T.J. Burns (ed.), Behavioral Experiments in
accounting. - 11. College of Administrative Science, heO Ohio
State University.

Bouman, M.J. (1978). Financial diagnosis: A cognitive model of
the processes involved. Unpublished Doctoral Dissertation,
Carnegie-Mellon University.

Bouwman, M.J. (1983). Human diagnostic reasoning by computer:
An illustration from financial analysis. Management Science,
29, 653-672. -

Brooks, R. E. (1977). Towards a theory of the cognitive processes
in computer programming. International Journal of -
Man-Machine Studies, 9, 737-751.

Brooks, R. E. (1980). Studying programmer behavior experimentally:
The problems of proper methodology. ~ommunications of -
the ACM 23, 207-213. -d-

Chi, M.T.H., Feltovich, P.J., and Glaser, R. (1981).
Categorization and representation of physics problems by
experts and novices. Cognitive Science, 2, 121-152.

DeMarco, T. (1979). Structured Analysis and System
Specification. Englewood Cliffs, New Jersey: Prentice-Hall .

Dreyfus, S.E. (1982). Formal models vs. human situational
understanding: Inherent limitations on the modeling of
business expertise. Office: Technology and People, 1, -
133-165.

Dubin, R. (1978). Theory Building. Revised ed. New York: The
Free Press.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 41

Feltovich, P.J. (1981). Knowledge based components of expertise
in medical diagnosis. Unpublished Doctoral Dissertation,
University of Minnesota.

Gane, C. and Sarson, T. (1979). Structured Systems Analysis.
Englewood Cliffs, New Jersey: Prentice-Hall.

Gildersleeve, T.R. (1970). Decision Tables and -- Their Practical
Application -- in Data Processing. Englewood Cliffs, New Jersey:
Prentice-Hall.

Gould, J.D. (1975). Some psychological evidence on how people - -
debug computer programs. - ~nternational Journal -- of Man-
Machine Studies, Z, 157- 182.

Gould, J.D. and Drongowski, P. (1974). An exploratory study of
computer program debugging. Human Factors, 16, 258-277.

Jeffries, R., Turner, A.A., and Polson, P.G. (1980). The
processes involved in designing software. In J.R. Anderson
(ed.), Cognitive Skills and -- Their Acquisition.
Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Johnson, P., Duran, A,, Hassebrock, F., Moller, J., Prietula,
M., Feltovich, P., and Swanson, D. (1981). Expertise
and error in diagnostic reasoning. Cognitive science,

235-283.

Johnson, I ? . , Hassebrock, F. , Duran, A . , and Moller, J. (1982).
Multimethod study of clinical judgment. Organizational
Behavior and -- Human Performance, 30, 201-230.

Kintsch, W. and van Dijk, T.A. (1978). Toward a model of
text comprehension and production. Psychological Review,
85, 363-3949 -

Larkin, J.H. (1981). Enriching formal knowledge: A model for
learning to solve textbook physics problems. In J.R. Anderson
(ed.), Cognitive Skills and -- Their Acquisition. Hillsdale,
New Jersey: Lawrence Erlbaum Associates.

Larkin, J.H., McDermott, D., Simon, D.P., acd Simon, H.A.
(7980). Expert and novice performance in solving physics
problems. Science, 208, 1335-1342.

Lewis, C.H. (1981). Skill in algebra. In J.R. Anderson (ed.),
Cognitive Skills -- and Their Acquisition. Hillsdale, New
Jersey: Lawrence Erlbaum Associates.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 42

Malhotra, A , , Thomas, J.C., Carroll, J.M., and Miller, L.A.
(1980). Cognitive processes in design. International
Journal of Man-Machine Studies, 12, 119-140.

Mayer, D.B. and Stalnaker, A.W. (1968). Selection and evaluation
of computer personnel -- The research history of SIG/CPR.
Proceedings -- of The 23rd - ACM National Conference, 657-670.

Myers, C.J. (1978). A controlled experiment in program testing
and code walkthroughs/inspections. Communications - of
the ACM 21 60-768. - L A 7

Newell, A. and Simon, H.A. (1972). Human Problem Solving.
New York: Prentice-Hall.

Nie, N.H., Hull, C.H., Jenkins, J.G., Steinbrenner, K., and
Bent, D.H. (1975). Statistical Package for the Social --
Sciences. 2nd ed. New York: McGraw Hill.

Nilsson, N.J. (1980). Principles of - Artificial Intelligence.
Palo Alto, California: Tioga.

Payne, J.W., Braunstein, M.L., and Carroll, J.S. (1978).
Exploring predecisional behavior: An alternative approach
to decision research. Organizational Behavior and -
Human Performance. 22. 17-44.

Pennington, N. (1982). Cognitive components of expertise in
computer programming: A review of the literature. Technical
Report No. 46, University of Michigan.

Reilly, R. et g . , (1975). In The --- Use of Expert Judgment
in the ~zessment of Experiential Learning. GAEL Working -- -
Paper No. 10.

Sheil, B.A. (1981). The psychological study of programming.
Computing Surveys, 13, 101-120.

Sheppard, S.B., Curtis, B., Milliman, P., and Love, T. (1979).
Modern coding practices and programmer performance.
Computer, - 12, 41-49.

Shrobe, H.E. (1979). Dependency directed reasoning for complex
program understanding. Unpublished Doctoral Dissertation,
Massachusetts Institute of Technology.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 43

Shneiderman, B. (1980). Software Psychology: - Human Factors
in Computer Information Systems. Cambridge, Massachusetts: -
Winthrop.

Smith, H.T. and Green, T.R.G. (eds.). (1980). Human Interaction
With - . Computers. Landon: Academic Press.

Simon, D.P. and Simon, H.A. (1978). Individual differences in
solving physics problems. In R.S. Siegler (ed.), Children's
Thinking: Develops? Hillsdale, New Jersey: Lawrence
Erlbaum Associates, 325-348.

Vessey, I. (1984). The psychological processes underlying the
debugging of computer programs. Unpublished Doctoral
Dissertation, University of Queensland.

Vessey, I. and Weber, R. (1984). Research on structured .
programming: An empiricist's evaluation.
IEEE Transactions on Software Engineering, SE-10(4), 397-407.

Vitalari, N.P. (1981). An investigation of the problem solving
behavior of systems analysts. Unpublished Doctoral
Dissertation, University of Minnesota.

Vitalari, N.P. and Dickson, G.W. (1983). Problem solving for
effective systems analysis: An experimental exploration.
Communications of the ACM, 26, 948-956.

Youngs, E.A. (1974). Human errors in programming. International
Journal of Man-Machine Studies, - 6, 361-376.

Center for Digital Economy Research
Stem School of Business
\Vorking Paper IS-85-12

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 44

APPENDIX - A

Discussion of the Problem Solut ion --
When a program is i n e r r o r , t h e e r r o r is o f t e n manifested i n

ou tpu t t h a t d i f f e r s from the expected. Reference t o t h e c o r r e c t and
i n c o r r e c t ou tpu t s produced i n t h i s s tudy (F igures 2 (b) and (c))
r e v e a l s t h e problem t o be one of c o n t r o l over p r i n t i n g c e r t a i n r e p o r t
f i e l d s . In t h e vers ion with the h igh- level bug, the branch number,
sa l e spe r son number, and customer number a r e repeated fol lowing t h e
f i r s t change i n branch number. In t h e version with t h e low-level bug,
the customer number is repeated fo l lowing the f i r s t change i n customer
number. S ince the program with t h e high-level bug produces a g r e a t e r
number o f erroneous output f i e l d s , t h a t problem may appear more
d i f f i c u l t a t first. However, a s a l r eady indica ted the e r r o r is
equivalent i n both program vers ions , the d i f f e r e n c e i n ou tpu t being
due t o the h i e r a r c h i c a l na tu re of t h e COBOL code.

Contro l over changes i n each of the t h r e e r epor t f i e l d s is
exerc ised i n two ways: f i r s t , by e s t a b l i s h i n g "previous" numbers t o
t e s t whether a change has taken p lace; second, by means o f a change
f l a g t h a t permits p r i n t i n g of the c o r r e c t f i e l d s . Figure 1 shows t h e
program modules p r i n c i p a l l y r e spons ib le f o r t h e c o n t r o l funct ions .
(The modules t h a t handle a sa lespe r son change and a branch change a r e
e s s e n t i a l l y s i m i l a r t o the module BO10-PROCESS-CUSTOMER-CHANGE.)
"Previous" numbers a r e i n i t i a l i z e d with the va lues i n the f i r s t inpu t
record by the module A000-CREATE-SALES-REPORT on t h e f i rs t execut ion
pass. In module A001-PROCESS-AND-READ, t e s t s a r e made t o determine
whether t h e r e has been a change i n any of the r epor t f i e l d s (l i n e s
255, 261, AND 266). I f a change has occurred, subordinate modules
5010-PROCESS-CUSTOMER-CHANGE, B020-PROCESS-SALESMAN-CHANGE, and
B030-PROCESS-BRANCH-CHANGE a r e c a l l e d a s requi red t o execute t h e
necessary processing. These modules reset the "previousw numbers with
c u r r e n t va lues t o prepare t o test the next input record (see, f o r
example, l i n e 344 i n BOIO-PROCESS-CUSTOMER-CHANGE). On r e t u r n t o
AOO1-PROCESS-AND-READ, the appropr ia t e change f l a g is set t o 'YES'
(l i n e s 259, 264, and 268). In module 8000-PROCESS-DETAIL-RECORDS, t h e
p r i n t module, tests a r e made on the change f l a g s (l i n e s 295, 301, and
306). I f a change has occurred, t h e r e l evan t input da ta items are
moved t o t h e corresponding r e p o r t f i e l d s , the r e l e v a n t change f l a g is
reset t o 'NO' (l i n e s 299, 304, and 308), DETAIL-LINE is w r i t t e n (l i n e s
315, 316), and f i n a l l y SPACE a r e moved t o DETAIL-LINE (l i n e 319). A
p o s s i b l e s o l u t i o n follows.

1 , Ascer ta in t h e problem. Note t h a t processing proceeds normally
u n t i l t h e r e is e i t h e r a branch change (h igh bug) o r a customer
change (low bug).

2. Examine the output f i l e i n t h e f i l e s e c t i o n o f the d a t a d i v i s i o n
(l i n e 55) . Note t h a t t h e output record is defined simply as PIC
X(132).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 45

3. Search f o r a DETAIL-LINE i n t h e WORXING-STORAGE SECTION. Note t h e
f i e l d s i n e r r o r : BRANCH-NO-REPORT, SALESMAN-NO-REPORT, and
CUSTOMER-NO-REPORT, o r CUSTOMER-NO-REPORT a lone .

4. Find where t h e DETAIL-LINE is p r i n t e d : module
B000-PROCES-DETAIL-RECORDS. Check backwards t o a s c e r t a i n where
i npu t v a l u e s are moved t o o u t p u t f i e l d s . Check c o n d i t i o n s f o r
moving va lues i n t o t h e ou tpu t f i e l d s . Note t h a t t h i s o c c u r s when
a p a r t i c u l a r change f l a g e q u a l s 'YESt.

5. Hypothesize t h a t t h e change f l a g a lways e q u a l s 'YES' after t h e
first change is processed because 'NO' is n o t be ing moved back t o
t h e f l a g fo l lowing p roces s ing o f t h e change.

6 Asce r t a in where ' N O ' should be moved t o t h e change f l a g . Note,
t h e r e is a d e f i n i t e p a t t e r n o f movements o f 'YES'S' and 'NO 'S ' t o
t h e change f l a g s i n modules AOOl-PROCESS-AND-READ and
B000-PROCESS-DETAIL-RECORDS r e s p e c t i v e l y .

Th i s is a parsimonious approach t o debugging t h e program: i t
formula tes an hypo thes i s about t h e p o s s i b l e cause of e r r o r i n a
l o g i c a l manner - without making gues se s abou t program s t r u c t u r e . The
r e s u l t s show i t is h i g h l y u n l i k e l y t h a t debugging w i l l be ach ieved i n
t h i s f a sh ion as t h e programmer w i l l g e n e r a l l y need t o know more abou t
t h e program s t r u c t u r e b e f o r e f i n a l l y dec id ing on t h e e r r o r .

S u b j e c t s f r e q u e n t l y proposed two competing hypotheses . The f i r s t
is t h a t "previous" numbers are n o t be ing reset fo l lowing a change
(i - e . s u b j e c t s have n o t examined modules
B010-PROCESS-CUSTOMER-CHANGE, BO20-PROCESS-SALESMAN-CHANCE, and
8030-PROCESS-BRANCH-CHANCE s u f f i c i e n t l y c l o s e l y) . I f t h i s were s o , i n
module A001-PROCESS-AND-READ on eve ry occas ion excep t t h e f i r s t , t h e
" input" number would n o t be equa l t o t h e "previous" number and changes
would be processed producing c o n t i n u a l t o t a l l i n e s . T h i s is - n o t t h e
s i t u a t i o n presen ted . The second hypo thes i s relates t o c l e a r i n g t h e
DETAIL-LINE (o r some p a r t o f i t) b e f o r e p roces s ing t h e nex t r eco rd
(s u b j e c t s have n o t examined module B000-PROCESS-DETAIL-RECORDS
s u f f i c i e n t l y c l o s e l y) . I f SPACE were n o t be ing moved t o DETAIL-LINE,
t h e first p a r t of t h e r e p o r t (up t o t h e f i r s t change) would n o t have
been p r i n t e d c o r r e c t l y . In propos ing e i t h e r o f t h e s e changes,
s u b j e c t s have f a i l e d t o c h a r a c t e r i z e t h e problem f u l l y . They
g e n e r a l l y s e a r c h f o r t h e s t a t e m e n t s they b e l i e v e t o be a b s e n t r a t h e r
than reasoning about what t h e s i t u a t i o n would be i f t h a t were, i n
fact , t h e case.

Some i n e f f i c i e n c y i n debugging COBOL programs o c c u r s because
unnecessary r e f e r e n c e s are made t o t h e DATA DIVISION; i n p a r t i c u l a r ,
i n t h i s case, t o t h e WORKING-STORAGE SECTIQN. One item commonly
checked is t h e i n i t i a l i z a t i o n o f t h e change f l a g s . S i n c e t h e first
p a r t o f t h e r e p o r t is c o r r e c t (i . e . , as far as t h e f irst customer
change o r t h e first branch change) , t h e r e is no need f o r programmers
t o know what va lues they c o n t a i n i n i t i a l l y .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 46

S t r a t e g i c Goal T a c t i c a l Goal O p e r a t i o n a l Coal

Determine problem Compare c o r r e c t and Get next item from
i n c o r r e c t o u t p u t s i n c o r r e c t o u t p u t

Compare w i th
cor responding item
from c o r r e c t o u t p u t

L i s t d i f f e r e n c e s

Gain f a m i l i a r i t y Examine program Examine i n i t i a l com-
l i s t i n g men ts

Examine program c o n t r o l Examine next program
s e c t i o n (module)

Examine s p e c i f i c
program s e c t i o n
(module)

Eva lua t e problem

Explore program Explore procedure Explore s p e c i f i c
s t r u c t u r e and d i v i s i o n p roces s ing module
f u n c t i o n (program Explore s p e c i f i c
c o n t r o l) working-storage

i tem

Mentally p roces s d a t a Explore c o n t r o l
through program s t r u c t u r e

P roces s nex t module
i n execu t ion
sequence

Eva lua t e problem

Repair e r r o r Locate e r r o r Loca te code i n e r r o r

Repair e r r o r Amend code i n e r r o r

Confirm e r r o r

Table 1: Hierarchy of S u b j e c t Goals

Center for Digital Economy Research
Stem School of Business
Working Paper IS-85-12

Page 47
...
S u b j e c t Funct ion Program P o s i t i o n C l a s s i f i c a t i o n

Changes Debug Changes
Reversa l s

Exper t
Ex p e r t
Expert
Ex p e r t
Novice
Novice
Novice
Novice
Expert

(E x p e r t)
Exper t
Ex p e r t
Novice
Novice
Novice
Novice

Table 2: Sub jec t C l a s s i f i c a t i o n s on Three Debugging
Performance Var iab les and O v e r a l l Des igna t ion

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 48

...
Experience Ex ante Ex p o s t Bug Time Rate

Sub jec t1 Months Classi- Classi- Level Mins:Secs Words Words/Sec
f i c a t i o n f i c a t i o n

Expert
Novice
Ex p e r t
Novice
Novice
Expert
Expert
Novice
Ex p e r t
Expert
Novice
Expert
Expert
Novice
Novice
Novice

Ex p e r t
Expert
Expert
Ex p e r t
Novice
Novice
Novice
Novice
Ex p e r t
Expert
Expert
Ex p e r t
Novice
Novice
Novice
Novice

High
High
High
High
High
High
High
High
Low
Low
Low
Low
Low
Low
Low
Low

Table 3: Basic Sub jec t Informat ion

1Subjec ts a r e hencefor th i d e n t i f i e d by codes. The f i r s t c h a r a c t e r

i d e n t i f i e s t h e s u b j e c t a s e i t h e r a n e x p e r t o r a novice a c c o r d i n g t o
t h e ex post c l a s s i f i c a t i o n . The second c h a r a c t e r i d e n t i f i e s t h e
program bug a s e i t h e r a high-level o r a low-level bug. S u b j e c t s are
f u r t h e r i d e n t i f i e d , wi th in these c l a s s e s , wi th a numeric c h a r a c t e r .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 49

...
T o t a l Time t o Number o f Number o f Average Time

S u b j e c t s ~ime' ~ r r o & Major Episodes Per
Phases Episodes

Exper t s
High EH1 11:OO 9:32 3 t 8 0:40
Bug EH2 17:47 15:15 3 15 7-11

EH3 14:43 10:30 4 20 0:44
EH4 15:40 10: 1 1 3 12 1:18

Novices
NH1 20:50 19:18 5 2 4 0:52
NH2 19:33 17:39 4 2 1 0 : 55
NH3 21:40 20:25 5 2 7 0:48
NH4 17:20 16:19 7 2 2 0:47

Expe r t s
Low EL 1 19:23 18:49 5 20 0 : 58
Bug EL2 25:29 16:04 5 30 0:51

E L 3 8:40 6:53 4 17 0: 30
EL4 12:40 12:19 4 9 7:24

Novices
NL1 38:44 13:32 6 3 3 1:10
NL2 31:38 30:23 8 2 6 1:13
NL3 36:46 35:Ol 10 3 1 1:11
NL4 37:54 37:49 7 3 1 1:13

Table 4: Debugging P roces ses - Outcome V a r i a b l e s

1Al l time measures a r e presented as minutes and seconds.

2The "time t o e r r o r " was measured by t h e formula:

number o f ph rases t o e r r o r x t o t a l time -----
t o t a l number of ph rases

Center for Digital Economy Research
Stem School of Business
Working Paper IS-85-12

Page 50

Dependent EN Bug I n t e r a c t i o n
Var iab le E f f e c t s E f f e c t s E f f e c t s R~

T o t a l
Time

Time
to error

N u m b e r
of Major
Phases

Number o f
episodes

Average
t i m e p e r
episode

.ooo .001 ,009
N > E L > H N > E f o r L

L > H f o r N

Table 5: Statistical Results Derived £ r a n Selected
Out Variables

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 51

...
Module Familiarity Familiarity Number of Number Number
Examination before and Explor- Different of Times of DATA

Subject ~rocedure' Problem ation before Modules BOO0 DIVISION
Determination Error Examined Examined Items

Examined

Experts
High EH1 2
Bug EH2 1

EH3 1
EH4 3

Novices
NH1 2
NH2 1
m3 3
NH4 4

F 4 4 3
F and E 6 7 1
E 7 5 4
F 6 4 3

Experts
Low EL1 1 15.56 F and E 5 5 2
Bug EL2 1 32-93 F and E 4 6 4

EL3 1 9.80 F and E 4 4 1
EL4 2 F and E 4 2 1

Novices
NL 1 1 F and E 7 10 3
NL2 2 F and E 6 8 1
a3 2 F 5 8 5
NL'4 2 F 5 5 3 ..

Table 6: Debugging Processes - Method Variables

%ub jects approached the debugging task essentially in four ways,
determined principally from the first three modules they examined:

1 = lexical sequence; A000-CREATE-SALES-REPORT, A001-PWCESS-AND-READ,
B000-PROCESS-DETAIL-RECORDS

2 = execution sequence; A000-CREATE-SALES-REPORT,
A001-PROCESS-AND-READ,
BO10-PROCESS-CUSTOMER-CHANGE

3 = task solution, first module = B000-PROCESS-DETAIL-RECORDS
4 = indeterminate sequence; A000-CREATE-SALES-REPORT,

BO10-PROCESS-CUSTOMER-CHANGE,
B000-PROCESS-DETAIL-RECORDS

'~ntries are percentages of the total number of statements before the
subjects began to identify the problem.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-85-12

Page 5 2

Dependent EN Bug
Variable Effects Effects R~

Number of
different .045
modules N > E
examined

Number of
tines BOO0 .007
examined N > E

Number of
DD items
examined

Table 7: Statistical
Me

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 5 3

Procedure Experts Novices

Lexical 5 2

Execution 2 4

Solution 1 1

Indeterminate 1

Table 8:

acanimticm

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 54

Phases Experts Novices

High Familiarity 2 2
Rug

Exploration 2 1

Familiarity
and

Exploration

Low Familiarity 1 2
Bug

Exploration 0 0

Familiarity
and

Exploration

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 55

..
Number o f Types o f , Problem System Program Number Types

S u b j e c t s Hypotheses Hypotheses S o l v i n g Thinking S t r u c t u r e s of of
Cons t ra in t s" Considered E r r o r s E r ro r ..

E x p e r t s
High EH1 3 CB,SPN,S 0
Bug EH2 -

EH3 3 CB,F,F 0
EH4 2 S , S

Novices
NH1 2 S , S C
NH2 3 CB,SPN,S 0
NH3 -
NH4 1 SPN 0

Expe r t s
Low EL1 -
Bug EL2 -

E L 3 -
EL4 -

Novices
NL1
NL2
NL 3
NL4

.--------

SPN, S , SPN

S , F 1 S
PN,S,F
PN, (S) F 1 SPN
PN,F

(S) ? (PN) ,F
-

PN, F
F

No PN,S,F
PN, F 2 SFN,SPN
S,PN 2 TPN,S
S 2 3,s

I---------------------------------

Table 10: Debugging P roces se s - S o l u t i o n V a r i a b l e s

l ~ h e e r r o r s made, types of program s t r u c t u r e s and hypotheses cons ide red ,
t a k e t h e fo l lowing forms:

CB = c o n t r o l break
F = f l a g

PN = previous number
SPN = set prev ious number
TPN = test prev ious number

S = spaces

E n t r i e s i n b racke t s f o r t h e "program s t r u c t u r e s considered" column i n d i c a t e
a one l i n e r e f e r e n c e t o a s t r u c t u r e such as "move spaces ; s o t hey must be
g e t t i n g moved back i n n .

2 ~ h i s f i e l d r e f e r s t o t h e degree t o which s u b j e c t s were committed t o t h e i r
hypotheses .

0 = unconstrained
C = cons t r a ined
S = shotgun

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 56

Dependent EN
Variable Effects R*

Number of -045 ,230
hypotheses N > E

Number of .005 .500
mistakes N > E

1 1 1 Statistical ts Derived
£run Selected Solution Variables

There were no bug effects for the solution
variables .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 57

Rules
1 2 3

1. Breadth-first
search for error Y Y N

Conditions

2. System
Thinking

A. Designate
Expert X

Act ions

B. Designate
Nov i ce

Table 12: Decisisn Table for Wte~ninrq
and NOlir iee Subjects ing to the ex past

Pxqramer Classification

This table approaches the designation of experts and
novices from the viewpoint of experts as opposed to Figure 7,
which approached it fran the viewpoint of novices. Figure 7
derived frm the analysis in this chapter which identified
constrained problem solving as a charateristic of novices, while a
more positive approach identifies the charateristics of experts.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 58

Dependent
V a r i a b l e D i r e c t i o n

Debug Time L > H
L > H f o r N

Pcbsi t i o n Changes L > H

Major Phases L > H

BOO0 Examinat ions L > H

Table 13: Effects of
Wrg Variables

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 59

Dependent
Variable Direct ion

Debug Time N > E
N > E for L

Time to Error N > E

Major Phases N > E

Episodes N > E

High-level Module
Examination E > N

Familiarity before
Problem Determination E > N

Modules Examined N > E

BOO0 Examinations N > E

Mistakes N > E

of the Effects of Skill
Variables

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 60

r-------- --a;---- "1
1 Represent I

I
I
I
I
I
I
I
i
1
I
I

Figure 1 .: Model of Debugging Functions

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 61

PROCEDURE DIVISION.

..

* *
* THIS MODULE IN IT IAL IZES M E F ILES AN0 THEN DETERMINES WEN *
* CONTROL BREAKS RAVE OCCURRED AND CAUSES M E APPROPRIATE i

* PROCESSING TO OCCUR. I T ALSO CAUSES THE DETAIL L INES TO *
* BE PRINTED. I T I S ENTERED FROM M E OPERATING SYSTEM AND
* EXITS TO THE OPERATING SYSTEM It

..

OPEN INPUT SALES-INPUT-FILE
OUTPUT SALES-REPORT-FILE.

READ SALES-INPUT-FILE
AT EN0

MOVE 'NO ' TO MORE-RECORDS.
I F FIDRE-RECORDS EQUALS ' YES '

MOVE CUSTWER-NO-INPUT TO PREVIOUS-CUSTWER-MMBER
MOVE SAlESMAN-NO- INPUT TO PREV IOUS-SALESMAN-NUMBER
! W E SRANCH-HO-INPUT TO PREVIOUS-BRANCH-NUMBER
PERFORM A001-PROCESS-AND-READ

UNTIL MJRE-RECORDS EQUALS 'NO'
PERFORM 0010-PROCESS-CUSTWER-CHANGE
PERFORM 8020-PROCESS-%LESWAN-CHANGE
PERFORM B030-PROCESS-BRANCH-CHANGE
PERFORM B040-PRINT-FIWAL-iOTAL .

CLOSE SALES-INPUT-FILE
SALES-REPORT-FILE.

STOP RUN.

I F BRANCH-NO- I N W T NOT a PREV IOUS-BRANCH-MlMBER
PERFORM MIO-PROCESS-CUSTWER-CHAffiE
PERFORU BOZO-PROCESS-WESMW-CHANGE
PERFORM B030-PRXESS-BRANCH-CHANGE

ELSE
I F SALESMN-NO-INPUT NOT PREVIOUS-WESMAN-NUMBER

PERFORM B010-PROCESS-CUSTWER-CHAEE
PERFORM B020-PROCESS- WUESPWN-CHAffiE
MJVE ' YES ' TO SALESMN-CHASE

ELSE
I F CUSTWER-NO-INPUT NOT PREVIOUS-CUSTWER-WMBER

PERFORM 5010-PROCESS-CUSTWER-CME
MIVE 'YES' TO CUSTWER-CHANGE.

PERFORU B000-PROCESS-DETAIL-RECORDS .
READ SALES- INPUT-FILE

AT END
IC)VE 'NO' TO WRE-RECORDS.

Figure 2: P r i n c i p a l Modules of the Task Program

Center for Digital Economy Research
Stem School of Business
Working Paper IS-85-12

Page 62

...

* THIS MODULE I S ENTERED TO PRINT THE DETAIL CINE FOR THE *
* REPORT. I F NECESSARY. I T CAUSES THE HEADINGS TO BE PRINTED
* AND B E N FORMATS AN0 PRINTS M E DETAIL LINE. TOTALS ARE ALSO
* ACCUMULATED. THIS MODULE I S ENTERED FROM THE
* ACK11-P80CESS-AND-READ MODULE AND EXITS BACK TO I T . * *

I F LINES-PRINTED I S EQUAL TO PAGE-SIZE OR
I S GREATER M A N PAGE-SIZE OR . . -

0 2 9 0 FIRST-PAGE
0 2 9 1 PERFORM CW0-PRINT-HEADINGS

MOVE PREVIOUS-BRANCH-WUMBER TO BRANCH-NO-REPORT
MOVE PREVIOUS-VILESMN-NUMBER TO SALESMAN-XO-REPORT
MOVE PREVIOUS-CUSTOMER-NUXBER TO CUSTOXER-NO-REPORT.

I F &ARCH-WANGE EQUALS 'YES'
MOVE BRANCH-NO-INWT TO BRANCH-NO-REPORT
MOVE SALESMAN-NO-INPUT TO SALESMAN-NO-REPORT
MOVE CUSTOMER-NO-INPUT TO CUSTOMER-HO-REPORT
MOVE 'NO' TO BRANCH-CHANGE

ELSE
I F SALESMAN-CHANGE EQUALS 'YES'

MOVE BLESMAN-NO-INPUT TO SALESMAN-NO-REPORT
MOVE CUSTWER-NO-INPUT TO CUSTOMER-NO-REPORT
MOVE 'No' TO S4tESWN-CHANGE

ELSE
I F CUSTOMER-CWGE EQUALS 'YES'

HOVE CUSTOWER-XO-INPUT TO CUSTWER-NO-REPORT
1(3VE 'NO' TO CUSTOMER-CHANGE.

W E DESCRIPTION-INPUT TO WSCRIPTION-REPORT.
EaVE SALES-INPUT TO WES-REPORT.
ADD SALES-INPUT TO alSTOnER-TOTAL-ACCUM

SMESW-TOTAL-ACCUM
BRANCH-TOTAL-ACCUM
F I N - m T & - A C C U H .

WRITE SALES-REPORT-LINE FROM DETAIL-LINE
AFTER PROPER-SPACING.

ADD PROPER-SPACII TO LINES-PRINTED.
MOVE 1 TO PROPER-SPACING.
HOVE SPACES TO DETAIL-LINE.

..................................

*
* THIS MOOULE I S ENTERED TO PROCESS A CHANGE I N CUSTOMER *
* CWPARE AREA AN0 COUNTER. I T I S ENTERED FROM THE *
* AWI-PROCESS-AND-READ MODULE AND ON COMPLETION FROM ME

A000-CREATE-SALES-REPORT MOOULE. *
* *
tt.~+**+t+t***tt******t**tt*t**t*****tt*t****t***t*t*********n*

MOVE CUSTOMER-TOTAL-KCUH TU CUSTOMER-TOTAL-CUSTOT.
PERFORM BO11-PROCESS-CUSTOMER-DISCOUNT.
MOVE CUSTOMER-DISC-ACCUM TO CUSTOMER-TOTAL-DISTOT.
WRITE SALES-REPORT-LINE FROM CUSTOMER-TOTAL-LINE

AFTER ADVANCING 2 LINES.
K)VE ZEROS TO CUSTWER-TOTAL-ACCUM.
AW) CUSTOMER-DISC-ACCUH TO SALESMN-DISC-ACCUM.
RIVE ZEROS TO CUSTOMER-DISC-ACCUM.
EaVE CUSTWER-NO-INPUT TO PREVIOUS-CUSTOMER-NUMBER.
ADD 2 TO LINES-PRINTED.
HOVE 2 TO PROPER-SPACING.

Figure 2 (con t ' d) : Principal Modules of the Task Program

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85- 12

Page 6 3

BRANCH SALESMAN CUSTORER
NO No NO

SALES REPORT

PRODUCT
DESCRIPTION

SAC E S
AMOUNT

AUDIO INTERFACE 500.00
KEYBOARD 100.00
POWER SUPPLY 50.00

CRT INTERFACE 75.00
FLOPPY CONTROLLER 125.00
POKER TRANSFORMER 50.00

TOTAL SALESMAN NO 1225 900.00-

4199 24151 4K RAM
RON MEMORY

3 6 0 . W

TOTAL SALESMANNO4199 360.00**

TOTAL BRANCH NO 100 1,260.00"f

200 1321 10954 PRIHTER XECHANISM 220.00
THERMAL PRINTER 80.00
DIGITAL CLOCK 625.00
C W T E R GENERATOR 550.00

TOTAL SALESWN NO 1321 1,475.00"

9832 18349 DISPLAY LED5
VIDEO BOARD

350.00s

TOTAL SALESWN NO 9832 350.00"

TOTAL BRANCH NO 200 1,825 .W*

FINAL TOTAL $3,085 .W**

Figure 3 (a) : Correct Program Output

PAGE I

Dl SCOUNTED
MOUNT

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85- 12

Page 64

15/10/81 SALES REPORT

BRANCH SALESMAN CUSTOMER PROMICT
NO .NO NO DESCRIPTION

100 1225 32911 AUDIO INTERFACE
KEYBOARD
POWER SUPPLY

40015 CRT INTERFACE
FLOPPY CONTROLLER
POWER TRANSFORMER

SALES
AXOUNT

TOTAL SALESMAN NO 1225 900.0@*

4199 24151 4K RAM 330.00
ROM MEMORY 30.00

360.0011

TOTAL SALESWAN NO 4199 360.00"

TOTAL BRANCH NO 100 1,260.Wf

200 1321 10954 PRINTER MECHANISM 220.00
200 1321 10954 THEWL PRINTER 80.00
200 1321 10954 DIGITAL CLOCK 625.00
200 1321 10954 CHARACTER GENERATOR 550.00

TOTAL SALESWN NO 1321 1,475.0W

200 9832 18349 DISPLAY LEDS 155.00
200 9832 18349 Y IDEO BOARD 195.00

350 .W

TOTAL SALESWAN NO 9832 350.00"

TOTAL BRANCH NO 200 1,825.00nf

FINAL TOTAL U,085.00"*Ct

F igure 3 (b) : Program Output w i t h High-Level Bug

PAGE 1

DISCOUNTED
AHOUNT

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 65

SALES REPORT PAGE 1

BRANCH SALESMAN CUSTOMER
NO m, NO

PROWCT
DESCRIPTION

SALES
AMOUNT

OISCOUNTED
W U N T

AUDIO INTERFACE
KEYBOARD
POWER SUPPLY

CRT INTERFACE 75.00
FLOPPY CONTROLLER 125.00
POWER TRANSFORMER 50.00

250.001

TOTAL SALESMAN NO 1225 900.00*

4K R9n 330.00
ROPI EMORY 30.00

360. OO*

TOTAL SALESMAN NO 4199 3 6 0 . W

TOTAL BRANCH NO 100 1 , 2 6 0 . W f

PRINTER MECHANISM 220.00
THERMAL PRINTER 80.00
DIGITAL CLOCK 625.00
CHARACTER GENERATOR 550.00

TOTAL SALESMAN NO 1321 1 , 4 7 5 . W

DISPLAY LEDS 155.00
VIDEO BOARD 195.00

350. OO*

TOTAL SALESMAN NO 9832 350.-

TOTAL BRANCH NO 200 1,825. Wf

FINAL TOTAL f 3 , 5 8 5 , W *

Figure 3 (- c) ; Program Output w i th Low-Level Bug

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 66

(1 1 compare outputs

4

(2) evaluate data
division

4

(3) examine A000

4

14) examine A001 + f5) examine 5010 + (6) explore customer-

4
total-line

(7) examine BOOO + (8) evaluate problem

4
(+ hypothesis)

b

(9) explore BOOO
(-+ hypothesis)

4

(1 0) explore branch-
number-input/
detail-line

(1 1) evaluate + (12) explore branch-
probIemlBOO0 number-report
(4 hypothesis)

(1 3) examine BOO0 -+ (1 4) locate error + (15) repair error-

(16) confirm error

4

(17) examine 5010

(18) examine A001 -+ (19) examine BOlO

(20) evaluate -+ (21) examine A001/ -+ (22) locate error
problem/output BOO0 1

L 1231 repair error -. (24) confirm error

Q

Figure 4: Episode Ou t l i ne of S u b j e c t NH1

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 67

A. Determine problem

+ compare correct and incorrect outputs
repeated applications of:

'get next item from incorrect output'
'compare with corresponding item from correct output'

e if not the same, then
'list differences'

B. Gain familiarity with program

-+ scan program listing
a repeated applications of:

'examine next program section (module)'
'examine specific module'
'explore specific W-S item'
'evaluate problem (+ hypothesis)'

C. Repair error

Locate error
Repair error
Confirm error
Examine specific module

D. Gain familiarity with program

+ scan procedure division
e repeated applications of:

'examine specific module'
'evaluate the problem'

E. Repair error

Locate error
Repair error
Confirm error

Figure 5: S t r a t e g y Diagram of Sub jec t N H I

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 68

I GAIN FAMILIARITY REPAIR

with orograrn
and confirm

error

with A001/8000

Figure 6: Mode1 of Subject NHl's Debugging Process

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

Page 6 9

Active
module

Active
module
examination?

Depth-first
search fpr
error?

System
thinking?

\
Depth-first
search for
error?

System
thinking?

depth-fint
search for
error?

System
thinking?

Figure 7 Stnnegy Paths followed by Pmgranming Subjeca

The numbers in brackets on the branches represent the number of subjects following
that strategy.

The alternative to searching f i r s for clues to the problem is to examine the proqam
structure and function and then to search for clues.

Active module examination includes module examinarion procedures 2 and 3 (Table
.-6.), while the alternative is a passive or undirected examination of the program. Module
examination procedurw 1 and 4 are regarded as passive procedures.

All subjects who were not recorded as being constrained by their hypotheses were
regarded as engaging in breadth-firs: search for the error.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-12

