
AN APPROACH TO DEPENDENCY DIRECTED BACKTRACKING

USING DOMAIN SPECIYIC KNOWLEDGE

Vasant Dhar
Graduate School of Business Administration

New York University

Casey Quayle
Bolt, Beranek and Newman
Boston, Massachussetts

April 1985

Center for Research on Information Systems
Computer Applications and Information Systems Area

Graduate School of Business Administration
New York University

Working Paper Series

CRIS #89

GBA #85-21 (CR)

A shorter version of this paper appears in the Proceedings of the Ninth
International Joint Conference on Artificial Intelligence (IJCAI), 1985.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-2 1

The idea of dependency directed backtracking proposed by Stallman and Sussman (1977)
offers significant advantages over heuristic starch schemes with chronological
backtracking which waste much effort by discarding many "good" choices when
backtrecking situations arise. However, we have found that existing non-chronological
backtracking machinery is not suitable for certain types of problems, namely, those
where choices do not follow logically from previous choices, but are based on a heuristic
evaluation of a constrained set of alternatives. This is because a choice is not justified by
a *'set of support** (of previous choices), but because i ts advantages outweigh its
drawbacks in comparison to its competitors. What is needed for these types of problerns
is a scheme where the advantages and disadvantages of choices are explicitly recorded
during problem solving. Then, if an unacceptable situation arises, information about the
nature of the unecceptability and the tradeoffs can be used to determine the most
appropriate backtracking point. Further, this requirts the problem solver to use its
hindsight to preserve those "good" intervening choias that were made chronologically
after the "bad" choice, and to resume its subsquent reasoning in fight of the modified
set of constraints. In this paper, we describe a problem solver for non-chronological
backtracking in situations involving tradeoffs. By endowing the backtr&er with acctss
to domain-specific knowledge, a highly contextual approach to reasoning in dependency
directed backtracking situations can be achieved.

Key Words: Dependency Directed Backtracking; Hindsight; Reasonin8
under Uncertainty; Context-based reasoning; Expert Systems;
Domain Specific Reasoning

Center for Digital Economy Research
Stem School of Business
\Vorking Paper IS-85-2 1

An area of investigation now commonly referred to as "Dependtncy

Directed Reasoning," which has resulted from the work of Stallman and

Sussman (1977) and others, has had a major impact on AI rescarch in the

last decade. The basic ideas proposed by Stallman and Sussman have been

extended by Doyle (1978, 1980) and others (de Klecr ct, al, 1977;

McDermott and Doyle, 1980; McAllester, 1982) leading to systems like

the "Truth Maintenance System" (TMS) (Doyle, 1978) and RUP

(McAllester, 1982) which can be used to build models of common sense

reasoning and plausible inference. An integrating theme running through

this research is one of "self aware" or "introspective" problem solvers

that are able to account for their actions by maintaining records of reasons

for choices. This "dependency information" can be used by a program

introspectively, to examine and revise its set of beliefs whenever

necessary, and to provide a user with explanations or rationales for its

existing set of beliefs.

In this paper we describe some dependency directed reasoning

features of a problem solver called PLANET (Dhar, 1984) It has been

designed to help planning managers in a large computer manufacturing

company (referred to here as "CMC") with the formulation and

investigation of models for allocation of resources such as manpower,

Center for Digital Economy Research
Stem School of Business
\&lorking Paper IS-85-21

space, and capital. Since tbe process of resource planning1 involves

making assumptions that are continually subject to revision, dependency

information plays a crucial role in the maintenance and incremental change

of planning models. What is of particular interest in this paper is a

heuristic procedure for dependency directed backtracking that addresses

one drawback of existing dependency frameworks -- determining wbat

belief (set of assumptions) in an existing model to change whenever an

undesirable state arises.

2. PLANET Archttecture -- An Overvkrr

It takes many years from the time tbe introduction of a new machine

is planned, to tbe time tbat a stable production process is realized.

Planning for manufacturing complex computer systems constantly involves

making assumptions which are continually refined as the scenario firms

up. These projections pertain to various types of decisions such as makc

versus buy, where the various components will be produced or purchased,

decisions about assembly, storage, testing, etc. -- tasks to be acoornplisbed

within limited resources. However, given the interrelationships among

assumptions and the frequency with which they change, even the most

carefully crafted model can become unreliable. Yet, if the organization is

lUnless otherwise stated, the term "plan" is used to mean business (manufacturing
or resource) plan, and not a plan as normally understood in A,. To avdd possible
confusion over tbese terms, we use the generic term "model" instead of plan wherever
eppropriatc.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-85-21

to maintain an accurate picture of its resource rquirernents, it must make

mnstant adjustments to the manufacturing model2 in the face of changing

reality. The design of PLANET has been motivated by tbcse

considerations. Specifically , the program preserves the various

alternatives that were contributed by the participants involved in the

model formulation process, and tben uses this and other domain-specific

knowledge in order to reason about changing assumptions.

The alternatives maintained by the program are represented at several

levels of abstraction. For example, "module-check", a complex

manufacturing operation, involves several diagnostic activities, each of

which could be carried out using different diagnostic equipment, which in

turn might be used in various ways. Specifically, the program knows

about areas of the manufacturing process (such as module-check, kernel-

integration, peripberals-integration etc.), activities involved in these areas,

methods (for testing, assembly, etc.), and m a s qf use (of the various

methods). The complete set of alternatives that are considered in the

course of formulating the manufacturing model can be visualized as a

hierarchy of ~hoices .~ ~ i g u r e 1 shows a part of the hierarchy used by

-

'he manufacturing model uniquely determines the resource plan.
Each of these alternatives is represented as a structured object in HOUSE Quayle

(1982), an object oriented programming system similar in spirit to the FLAVORS
package. For example, "ME-Test" (which stands for "manufacturing faults induced
test") is an instance of an object of the "activity type." Similarly, "L-20" and "1-24" are
instances of the "method type."

Center for Digital Economy Research
Stem School of Business
IVorking Paper 19-85-2 1

PLANET. This includes chosen assumptions, as well as those previously

passed over. Entities at tbe bottom end of tbe lines (except for lines

enclosed within dashes) represent alternate ways of accomplishing the

entity at the top end of the Line. Tbe dashed lines include the set of

activities that must be performed in an area.

2.1. The Proaer of Mod4 Formulmtlon

The problem of formulating a resource planning model has two

important features. First, as a planning model is formulated, tbat is, as

assumptions about various parts of the task environment are made,

choices in other parts of the environment are constrained: a process

commonly referred to as "constraint propagation." In this way, the

appropriate relationships among different parts of the model are realized.

Secondly, there are usually resource requirement tradeoffs among the

alternatives that can be made. For example, table 1 shows various

resource requirements for the "S-test" activity depending on what

methods (here testing devices) are used. In making choices among such

alternatives, the program uses an evaluation function to choose tbe most

"balanced" alternative in light of the organization's resource availability

picture at the time. Because these cboices are made successively using

limited look-abeab' it leaves open the possibility tbat some resource

' It docs not know how many choices stiU need to be made, i.e. how much of the
model still needs to be crafted, and what the tradeoffs involved will be.

Center for Digital Economy Research
Stem School of Business
\Vorking Paper IS-85-2 1

constraint will be violated, tbereby forcing the problem solver to undo

one or more of its previous choices.

Table 1
These tables indicate resource-requirementsltradeoffs for four decisions. The selected
alternative in the first three is in bold type. The units of Labor are workers working,
Capital is in millions of dollars, and Space is in thousands of square feet for floor space.

Table la.
Module-check: h4F-Test

Rtswrce
Labor Capital Space

ShorUopem-tabr 1 3 2
DL 3 0.5 3

Table Ib.
Module-&& STtst

Rwourct:
Labor Capital Space

QV 1 2 4
L-24 2 6 2
FC33 1 3 3

b d

Table lc.
Kernel-integration: Insertion

Resource
Labor Capital Space

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-2 1

As an example, consider the situation in Figure 2a showing four

decisions involving tradeoffs (reflected in tables la, lb, lc and Id) tbat

bave been considered during the model formulation process. The choices

shown in the tables were made when "saving space" was considered more

important than saving capital. That is, when faced witb a tradeoff

between space and capital, space was favored over capital. With tbis

"money is no object" attitude the program is now in trouble. It cannot

cbose either the SIM-tester or the FA-tester, as either choice would more

than consume available capital. Clearly some previous selection must be

undone to alleviate the problem and several maneuvers art available.

Under such circumstances, the problem solver must be capable of

reasoning about the most rational course of action rather tban simply

making a blind selection. In the following paragraphs, we present a

formal treatment of PLANET'S choice process, a discussion of some of

the problems we bave encountered in using existing utility packages to

model this process, and our approach toward resolving these problems in

situations where involving tradcoff s.

3.1. Backgmmd

The problem solving approacb of PLANET is similar to MOLGEN's

(Stefik, 1980) "constraint posting" where processing continues with

Center for Digital Economy Research
Stem School of Business
IVorking Paper 19-85-21

existing constraints until a quiescent state is reached. When the program

quiesces, but has not completely solved the problem, it creates a new

constraint by "guessing" and restarts processing. Tbe guess is based on a

heuristic evaluation function that compares alternative choices. The cycle

of compute-quiesce-guess continues until the problem is solved.

Since the evaluation of alternatives when quiescent is heuristic,

inappropriate guesses can lead to an over-constraineds state. When

over-constrained, the program must find and retract an existing choice

that contributed to the unacceptable state of affairs. An alternative choice

is then made as a replacement, and processing continues. Stefik called this

the UNDO operation; we refer to it as Second Guessing.

PLANET differs from MOLGEN in tbe way guessing and second

guessing are done. PLANET employs a dependency directed mechanism

in the spirit described by Stallman and Susman (1977) The result is an

improvement in the quality of tbe second guessing.

Whenever the program is quiescent and must resort to guessing we

say that it is making a "Forced Choice" about some part of the

manufacturing process. In such situations, several alternatives typically

- -

% t e term "over-constrained" can be interpreted in different ways. In the TMS
framework, it is a b'qical contradiction, i.e. a situation where a statement and its negation
are both believed. In resource planning, an over-constrained situation is one where some
resourdthroughput constraint is violated. See Simon (1979) for examples of problem
solving with resource constraints.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-2 1

exist as illustrated in Figure 1. We call each forced choice a decision level

item, wbere the program can no longer wait for more information about

other parts of the manufacturing process - it must decide. Each of the

alternatives available in the context of a decision level item is called a

selection level item. Note that for any given decision level item there

exists a set of at least two selection level items.

For the purpose of exposition we will denote particular decision level

items with a subscripted D and denote particular selection level items with

a subscripted 8. Sets of either will be denoted in italics, i.e. D, and S.

When the program is processing a decision level item it is guessing.

The guess is to pick some element from a set of selection level items.

When the guess is made, only heuristic estimates of resource tradeoffs

are available to evaluate the merits of particular alternatives.

By the time the program finds itself in an over-constrained state

considerable computation has been done in developing a more accurate

assessment of resource consumption and establishing other constraints.

This information is not available to PLANET when guessing but is

available when second guessing. The key point here is that the evaluation

function used by the second guesser is more powerful than tbe evaluation

function used by the guesser, allowing the program to continue problem

solving with the benefit of its new hindsight. We will now describe bow

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-2 1

PLANET employs this 20/20 hindsight.

When the program becomes over-constrained it has processed several

decision level items. We call the set of these items b. For each Dpb there

is a set, st of alternative selection level items (choice) that could have been

guessed. We call the distinguished guess in S, as qt. Thus, the set of all

selection level cboice (guesses) that have been made is then 3= S, , for all I }

A subset, S, of 3 contains all S guesses that have contributed to the

over-constrained state. S can be computed by chasing current dependency

information. The subset, D, of b - the set of decision level choice points

that need to be reconsidered - is derivable from S.

Given D, the second guesser can reason, in a "given what I know

now" manner, about two related issues:

i3etermtnc which element of D to reconsider.

RcconsMtr, find a different selection for the chosen decision item.

To elaborate, suppose the program has suddenly realized tbat it has

over allocated floor space by 20,000 sq. ft. The set S turns out to be

. &-I. The set D is then bi 4). Examination of D reveals

that 4 is the best decision level item to reconsider for several reasons: S,

has many elements tbat are more prudent in economizing space, and D, is

Center for Digital Economy Research
Stem School of Business
Working Paper IS-85-21

specific (as in the abstraction hierarchy shown in figure 1). S3 could then

be scrutinized using the added information that an acceptable choicc

would have to consume at least 20,000 sq. ft. less than S,. Note tbat in

second guessing here PLANET has access to information that was not

available when it first attempted to process the decision level item 4.

Quite literally, it is using hindsight.

The set of choices in S are indeed responsible for the over constrained

state; however, we claim tbat the identification of a scapegoat in S and its

replacement is made more rational by examining each selection level

candidate in the context of its decision level choice point. Furthermore,

each of the decision level elements should be compared and contrasted.

Tbis distinction is important -- the selection level items are the retractable

"assumptions", but second guessing should pivot around the decision level

items. We will now review why we have found it elusive to make this

distinction explicit in two of the better known data dependency utilities.

3.2. A Critique

The Truth Maintenance system6 of Doyle (1978, 1980) bas the

capability to deny some non-monotonic belief that entails a contradictim.

The result is to make the contradiction go away. The selection of the

Doyle has noted that this name is not redly right end has opted the we of Belief
Maintcnanct or Reason Maintenance, but tbe term Truth Maintenam? has ceught on in
the community so we hereby acknowledge the misnomer and continue to use it.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-2 1

culprit and the construction of its denial is arbitrary; or as ootcd in Doyle

(1980) the backtracker is engaging in a blind search while trying to resolve

the contradiction. There do exist clever methods for imposing some

structure on the order in which alternatives are examined (set saction 8 of

Doyle, 1978). To make those methods apply in our context, the decision

level items must be treated as non-monotonic beliefs, that is, assumptions

in the TMS sense -- otherwise they would not be considered as choice

points. However, as we have pointed out, the decision items are not

really assumptions that the problems solver bas made, but are forced

choices that the problem solver cannot retract. Rather, it is the selection

level items that are subject to retraction. As we will see, it is not

sufficient to simply give the selection level items non-monotonic support.

Now if we give the decision level items monotonic support and only

the selection level items non-monotonic support, the information about

tradeoffs that is contained at the decision level is lost. This problem

would be partially resolved if a user-supplied procedure could be called to

select the culprit. We explored this possibility only briefly when

designing PLANET because it leads to another set of problems -- tbe

backtracker is called during tbe midst of the Truth Maintenance

procedure; thus, the user supplied code would be executed when the belief

set is in a . unstable state.

Center for Digital Economy Research
Stem School of Business
IVorking Paper 19-85-2 1

The Reason Utility Package, RUP (McAllester, 1982), notes

contradictions wbenever it is no longer possible to satisfy some logical

relationship. RUP does not support nonmonotonic reasoning, rather it

allows for the retraction of some premise where a premise is an asserted,

as opposed to a derived, proposition7. By default RUP will choose the

premise to retract by querying the user, bowever tbe rigbt kind of hooks

do exist to allow an application specific procedure to make tbe decision.

We were initially attracted to tbe possibility of designating a domain

specific procedure for deciding how to handle an over constrained

resource plan. It soon became apparent that what we really wanted to do

was still elusive. To be able to make the selection level cboices retractable

they needed to be asserted in RUP as premises. Unless we created

explicit attachments8 for dependency information between decision and

selection items, we cannot retain (in terms of dependency) the context

imposed on a constellation of selection items by tbeir corresponding

decision choice pointg. Maintaining such attachments would mean

duplicating the truth maintenance rnecbanisms already in tbe system.

Even if the inelegance of this approach were tolerated, the interface

machinery required to keep the two dependency systems in sync would be

' RUP itself is a constraint propagation systtm. Given a logical relationship, a
known truth value of some term will constrain the truth value of other related terms.
When a relationship a e s over consaaiatd, a contradiction is signaled.

RUP does provide for user-defined attachments to individual terms.

Center for Digital Economy Research
Stem School of Business
IAIorking Paper IS-85-2 1

expensive in time and space.9

To summarize, our objective is to represent the dependency of a

selection level choice in the context provided by the decision level

problem. When a resource plan becomes over constrained, we want to

view selection level maneuvers within their decision level context, as well

as other decision level choices that influence the over constrained state. In

trying to achieve this using available systems, we found an asymmetry of

problems. In Doyle's TMS, we found considerable flexibility in building

justification structures to build dependencies but the backtracking

p r d u r e was weak. In McAllester's RUP, we found considerable

flexibility in the backtracking procedure but the methods for representing

the dependencies were cumbersome.

4. Toward Rtmoned AautrtJon and Retraction of hmiptiop(1

As the preceding discussion suggests, the problem solver needs

structures that will explicitly maintain enough context about choice points

-- specifically, information about tradeoffs among alternatives -- whenever

forced choices are made. Then, if unacceptable situations arise, the

program can use this plus information on the type of constraint violation

to determine which assumptions to retract to best alleviate the problem.

i.e. for each dependency in the system a few bookkeeping "nodes" would be
created for each relation, and demons to comunicate a stete change in one syrtem to dre
other would be d c d .

Center for Digital Economy Research
Stem School of Business
Working Paper IS-85-21

Each of tbe choices shown in Figure 2 is represented as a structured

object (enclosed within braces):

a&-id : I stordl
decision : D,
selection : S,

alternatives :

disadvantages : ((S,(X~X~..X~))(S,(XU~Z . . Xn)))
advantages : ((S,(X~X~. .x~))(s,(xIX~ . . . Xn)))

0
0

)lo
The "advantages" and "disadvantages" slots are both lists of dotted pairs;

the first element in a pair is a selection item (an alternative to the choice),

and the second is a list of resource categories for which the alternative is

advantageous (or disadvantageous) .

Whenever an unacceptable allocation of resource, X, arises, the

program invokes a two step procedure to determine its revised sct of

choices. First, all decision level items disregarding X as a disadvantage

are recorded. Tben, the combined pool of selection level items arc

compared to determine tbe selection best alleviating the underlying

problem . I

Recall the example given earlier and shown in Table 1. In this

lo 'I'bere are also "slots" containing data dependency information not shown here.
l1 In situations where dependencies exist, resource impacts of undoing the dependent

choices are also taken into consideration when evaluating the various maneuvers.

Center for Digital Economy Research
Stem School of Business
IAIorking Paper IS-85-2 1

situation the program has configured the model with the prerogative of

preferring spacc savings over the otbers. It tben discovers that all capital

resources have been exhausted. There are tbree decision items that bave

contributed to the over-constraint (table 1-a through 1-c).

By looking at these tables we can sec tbat S-Test (Table 1-b) is the

best apparent candidate to reconsider bccause the biggest potential savings

can be realized by reconsidering a new choice in S-Test. Tbat is, we can

save at least $3 million by considering S-Test as opposed to saving at least

$2.5 million by considering MIF-test or at least $2 million by considering

Insertions.

PLANET will identify these decision choices as the ones to consider and

will pick S-Test as the particular decision to reconsider.

The structured object representation of the S-Test decision (with the

internal identifier as state-15) would be:

{
node-id : state-15
decision : (modules: S-Test)
selection : Lo20
alternatives : (QV FC-33)
disadvantages : ((QV labor capital)(FC-33 labor capital))
advantages : ((QV spacc)(FC-33 space))
0
0

1
The germane portion of PLANET'S "state space" when tbe over

constrained situation is noted is shown in figure 2a. Via detailed

Center for Digital Economy Research
Stem School of Business
Working Paper IS-85-21

examination of dependency information, PLANET correctly identified

these three decision points as having disregarded capital. The important

aspect of this examination is that it had a specific goal: Identify the

decision points that entail the over constrained situation that also

disregard the down side on capital. In effect, the procedure focuses on a

problem specific set of contributing factors instead of merely finding some

basic set of entailment.

Given tbe three possible decision points to consider, PLANET then

examines the available set of selection cboices to determine which one to

reconsider. To do this the program applies hindsight using tbe current

state of the model and domain specific knowledge of resources and

resource tradeoffs. It is effectively doing a "given what I know now"

analysis of the alternatives in each decision objectI2 and picking an item to

reconsider.

The structure of the "state space" after picking S-Test as the decision

item to reconsider and retracting the S-Test selection appears in figure 2b.

In effect, the choice revision process involves establishing a "macro

move" (Figure 2b) that bridges tbe state on the left of the retracted choice

to the set of good choices generated chronologically after it. Having

alleviated tbc problem, choices following the set of good choices are made

- - - -

* Scnding them messages to find out about their current estimates of consumption.

Center for Digital Economy Research
Stem School of Business
Worlcing Paper IS-85-21

in light of the updated resource situation.

PLANET routinely makes these kinds of revision. Wben faced with

the task of reevaluating previous choicts, it applies both problem specific

and domain specific knowledge to identify the choice. In doing so, it uses

hindsight - the current problem state - to identify its backtracking point.

Like other dependency directed backtrackers (Stallman and Sussman,

1977; Doyle, 1980; McAllester, 1982) only those inferences dependent on

the choice arc retracted.

PLANET is also capable of using other kinds of knowledge than we

have demonstrated here. For example, if several equally good decision

level items are identified it will examine them in light of otber resources

tbat are nearing exhaustion. Thus, it is capable of recognizing and

avoiding other potential problems while it is second guessing.

5. Mmtt.tk,na .ad Concludlag Remarks

In the example considered above, a detailed comparison of the

resource implications of alternative selections was possible.

Unfortunately, this is not always the case. If the set of potential

backtracking points identified by the program after its first step in the

procedure include choices a b u t tbe more abstract parts of a model where

detailed resource requirements have not yet been assessed, a quantitative

comparison is not possible. Projecting the ansequences of tbe various

Center for Digital Economy Research
Stem School of Business
IAIorking Paper IS-85-21

maneuvers is then difficult. Further, if long chains of dependencies exist,

the program might pick as its best move one that involves undoing large

parts of the partial model since this would free up tbe maximum amount

of tbe scarce resource.

Deciding how much of the model to undo is complicated when a good

action will alleviate the problem marginally, allowing it to recur a few

steps later.

Finally, a limitation of the existing backtracking scheme is that the

program is unable to recognize situations wbere it might be better off

retracting a combination of choices as opposed to a single decision.

We are currently working on ways by whicb domain specific

knowledge pertaining to these criteria may be represented in terms of

dependency information and made accessible to the backtracker.

In conclusion, the issues raised here have been driven by a complex,

real-world problem where existing formalisms proved to be useful but

inadequate in modeling the essential nature of the problem. We have

developed a scheme whereby a backtracker might assess more rationally

the reasons for an untenable situation, and modify its existing set of

choices in light of tbe evolving scenario of constraints. While the methods

outlined above are preliminary, they represent a step toward a more

general method for reasoned introduction and retraction of assumptions

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-21

for decision situations wbcre tradeoffs arc invohed.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-2 1

de Klecr, J., Doyle, J., Steele, G. and Sussman, G., AMORD :
Explicit Control of Reasoning, Proceedings of the Symposium on
Artificial Intelligence and Programming Languages, 1977.

Dhar, Vasant., PLANET: An Intelligent Ikcision Support System for
the Formulation and Investigation of Formal Planning Models,
Ph.D. Tbesis, University of Pittsburgh, 1984.

Doyle, Jon., Truth Maintenance Systems for Problem Solving, TR-
419, Massachusettes lnstitiute of Technology, Artificial Intelligence
Laboratory, 1978.

Doyle, Jon., A Truth Mzintenmce System, Artificial fntelligence, June,
1979.

Doyle, Jon., A Model For Deliberation, Action, and Introspection,
MIT-A1 TR-581, May 1980,

McAllester, D., Reasoning Utility Package, A1 Laboratory Memo 667,
April 1982.

McDermott, Drew. and Doyle, Jon., Non-Monotonic Logic I, Art@cial
Intelligence Nos 1 and 2, April 1980 (special issue).

Quayle, Casey . , Object Oriented Programming in Franz Lisp,
Working Document, Decision Systems Laboratory, University of
Pittsburgh.

Simon, Herbert., On Reasoning About Actions, Artificial fntelligence,
June, 1979.

Stallman, Richard. and Sussman, Gerald., Forward Reasoning and
Dependency-Directed Backtracking in a System for Computer-
Aided Circuit Analysis, Artiflciui Intelligence, volume 9 , No.2,
October 1977, pp 135-196.

Stefik, Mark., Planning with Constraints, Stanford University,
Computer Science Department, STAN-CS-80-784, 1980

Center for Digital Economy Research
Stem School of Business
Working Paper IS-85-21

AREAS :

ACTIVITIES:

MODES OF
USE : / t

micro-diagnostics macro-diagnostics

Figure 1

A schematic of the hierarchy of choices in some areas of the CMC computer
manufacturing process. For readability, we have not shown all choices
involved in the various areas, activities, methods, etc.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-2 1

kernel-integration:
conponent-insertion:

shorts/o~ens-tester

nodule-check:

speed-test: component-insertion:
WIF-tes t :
DL- tes ter

Figure 2a

The dark line indicates those nodes that have been expanded in the state-
space using a heuristic evaluation function. Regular lines connect states
that have not been explored further,

*.I.--- 0 - - - - - - - - 4

* % '
8 kernel-integration: ,

I

component-insertion: *
t

f 8
I 1 speed-test:
I

!; I rncjile-check: kernel-integration:
===+ i MIF-test:

: shor ts/opens- tester 1-24
t
t

1
% I

%
t
\ - \
\,,---------------- - M e

Figure 2b

The dashed ellipse encompasses those choices (made chronologically after
the "badt' choice) that will not be retracted. The " z = = > ~ is a wmacro-linkw
that c~nnects the state on the left of the bad choice to set of "good"
choices generated after it which are preserved. The state-space search
contic~es to the right of the ellipse -- in this case, the program must make
a chol :e from its reduced set of alternatives for mod~le-check:swed-test.

Center for Digital Economy Research
Stem School of Business * IVorking Paper IS-85-2 1

