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Abstract 

Over the last decade-there have been several efforts a t  building knowledge based "expert 
systemsH , mostly in the scientific and medical arenas. Despite the fact that  almost all such 
systems are in their experimental stages, designers are optimistic about their e~en tua l  success. 
In the last few years, there have been many references t o  the possibility of expert systems in 
the management literature. However, what is lacking is a clear theoretical perspective on how 
various management problems differ in nature from problems in other domains, and the 
in~plications of these differences for knowledge based decision support systems for 
management. In this paper, I examine some of these differences, what they suggest in t4erms of 
the functionality that  a computer based system must have in order to  support organizational 
decision making, and the scope of such a system as a decision aid. The discussion is grounded 
in the context of a computer based system called PLANET that  exhibits some of the desired 
functionality. 
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1. Introduction 

Over the last several years, computer-based modeling systems have made it  relatively easy for end users 

to  develop powerful decision support systems in many application areas. Yet, there is a growing 

recognition tha t  unless such systems are augmented with representational frameworks and inference 

mechanisms tha t  take explicit cognizance of the intellectual component of managerial decision making, 

their utility as decision aids is limited. In parallel efforts in the field of Artificial Intelligence (AT), 

researchers have been concerned with similar issues, although in problem areas that  would probably be 

regarded as more "structuredn than those encountered in management. Some of the programs that have 

resulted from this research, commonly referred to  as "expert systems", have received considerable 

attention because of their ability to  engage in judgmental reasoning similar to  that  of domain experts, 

and exhibit comparable levels of performance. 

It seems natural to ask whether similar systems might be built to  support decision making in the 

management arena where many of the more challenging problems tend t o  be fairly open-ended, non- 

repetitive, and not amenable to  analytical solutions. Answering this question requires addressing four, 

more fundamental questions: 

1.  what is the nat,ure of expertise in domains where knowledge based support systems1 have 
heretofore been developed, 

2. what is the nature of complex managerial problems that  distinguishes them from the above 
class of problems, 

3. given these differences, what problematic aspects of management problems might. knowledge 
based systems be used to  support, 

4. what system functionality and architecture are needed in order to  alleviate such problems. 

An answer to  the first of these is based on a summary of existing literature in cognitive science and expert 

systems. In order t o  keep the discussion on the last three questions in focus, I restrict the discussion t o  

managerial problems that  require modeling problem situations for decision-making purposes. Specifically, 

I shall ground the discussion in the context of a resource planning problem for which I have attempted t o  

'1 use the term Bknowledge based system' t o  refer t o  a program where domain-specific knowledge plays a major role in inference. 
This is in contrast to  programs t h a t  use 'weak methodss (Newell and Simon, 1972), tha t  is, syntactic, domain-independent methods 
to  guide inference. 
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develop a "planner's assistantH (called PLANET) to help planning managers with the formulation and 

maintenance of planning models to  support decision making. The investigation was initiated by planning 

managers in a large computer manufacturing company ( W C )  who expressed concern over the 

inadequacies of existing computer based support tools and the need for a knowledge based tool t o  support 

the planning function. This effort has brought into focus some of the problematic aspects of managerial 

problems such as planning, sharpened the distinction between such problems and those encountered in 

other domains, and the implications of the differences for knowledge based support system architectures. 

2. The Relation Between Expertise and Problem Type 

The type of knowledge required to  solve a problem is influenced by the degree to  which the task has 

been formalized [37]. As a domain becomes better understood, formal theories or normative models are 

articulated. These provide a basis for understanding and solving problems within that domain. In the 

absence of this formalization, problem solving and understanding are more likely to  depend on informal, 

intuitive, possibly unarticulated models. 

In this section, I consider the nature of problem solving in domains that  lie a t  three different points of 

this "structurednessH spectrum: highly formalized domains where clearly identifiable bodies of knowledge 

exist, less structured domains where expertise is more implicit but nevertheless identifiable, and 

unstructured problems where the knowledge brought t o  bear in solving problems, is evolutionary and 

often "distributedH across several individuals. The last of these is characteristic of managerial planning, 

where information that  is used to  construct models for decision-making, is continually changing. 

2.1. Expertise in Structured Problem Domains 

There have been many psychological studies of human problem solving mostly in problem domains tha t  

would generally be considered "well structured". Broadly speaking, the problems studied have either 

involved "common sense" reasoning pertaining to everyday physical phenomena 116, 24, 8, 20, 1 2 1 , ~  or 

specialized knowledge from highly formalized domains such as physics or  algebra [22, 38, 30, 6, 51. 

'sometimes referred to as #naive physicsm. 
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Although humans are generally competent with naive physics problems, competence in solving real 

physics or  other scientific problems is less common. Larkin [22] explains this phenomenon as follows: 

*...the process of mentally simulating events so as to  predict their outcome, a facility 
possessed by most people for common contexts, is extended and refined in a skilled scientist to 
become a sharp and crucial intuition that  can be used in solving difficult, complex or 
extraordinary problems. Novices, lacking this extended intuition, find such problems difficult" 
(Larkin, 1983, p.75). 

Several studies of problem solving in these areas have contrasted expert and novice behavior in order to 

understand the nature of this extended intuition. A common finding has been that the quality and speed 

of solution is influenced by the nature of the representation adopted. Experts appear t o  possess the 

functional equivalent of a large set of perceptual patterns and an "indexing scheme" that  enables them to  

perceive the important features of a problem. If the problem is not exceptionally difficult, they often 

work "forward" without trial and error (i.e. without the need for backtracking) from general principles 

toward results that  "include" the solution. Chi. et.al [6] explain this in terms of the ability of the expert 

t o  rapidly categorize the problem into an appropriate "principle-oriented" schema. Once correctly 

classified, axiomatic knowledge can be used to  solve the problem in a primarily top-down manner. 

Many studies of human problem solving behavior have involved the design of simulation programs. 

Several of these programs have been used for theory development and validation in domains such as 

statics [30], dynamics [26], and electronics 141. Evidence gained from observations of human problem 

solving is typically used to judge the validity of these computational models. An understanding and 

measurement of the "quality" of expertise is facilitated considerably because of the existence of a stable, 

clearly identifiable body of knowledge in the form of theoretical principles or  normative models. Not 

surprisingly, expertise in these areas appears t o  be highly correlated with individuals' abilities t o  recognize 

and apply the appropriate physical principles involved. 

The major usefulness of computer based systems as support tools in these domains appears t o  be as 

intelligent tutoring systems that can take cognizance of students' naive concepts about scientific domains, 

and facilitate the transfer of a principled body of knowledge to novices. Several experimental systems 

along these lines have been built for symbolic integration (Kimball, 1983), electronic troubleshooting (41, 

axiomatically based mathematics [39], probability theory [I], and a consultative system for MACSYMA 
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2.2. Expertise in Expert Systems 

Expert systems research has been influenced by a growing recognition that high performance programs 

are not likely to emerge through the clever use of a few powerful domain-independent techniques, but 

through a systematic formalization and use of large amounts of domain-specific knowledge. The 

implications of this shift toward a "knowledge basedU approach are well summarized by Goldstein and 

Papert [18]: 

"The fundamental problem of understanding intelligence is not the identification of a few 
powerful techniques, but rather the question of how to represent large amounts of knowledge 
in a fashion that  permits their effective use and interaction. The current view is that  the 
problem solver (whether man or machine) must know explicitly how to  use its knowledge - 
with general techniques supplemented by domain-specific pragmatic know-how. Thus we see 
AJ as having shifted from a power based strategy for achieving intelligence t o  a knowledge 
based approach" [18]. 

Most A1 research in expert systems has involved development of large knowledge based systems in 

problem areas where consultative decision support is a practical necessity for solving difficult problems. 

Major efforts have been in medicine [31, 36, 4 1 , 1 , ~  geological exploration [15, lo,] mass spectroscopy 

interpretation [23], and computer layout 1251. In contrast to  physics-like domains, these areas are less 

well understood. Because of this, i t  is much harder to measure expertise against a formal, axiomatized 

body of knowledge. Rather, expertise tends to be implicit, manifested by consistently high performance 

with difficult problems. These problems typically involve uncertain, ambiguous, and fragmentary data. 

An expert must therefore judge the reliability of facts in order to  clarify the problem, and acquire 

additional evidence in such a way so as t o  discriminate among competing conceptualizations of a 

situation. In affect, "noisy" data  coupled with an  inherently large search space requires the use of 

intelligent heuristics, typically refined through experience, in order to  impose pragmatic constraints on 

complex, open-ended problems. 

A major reason for the impressive performance levels of expert systems has been the extensive efforts by 

3~~~~~~ 1411 specializes in glaucoma assessment and therapy, MYCIN 1361 in antimicrobial therapy, whereas CADUCEUS 1311 
deals with the whole of internal medicine. 
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system designers a t  formalizing this mostly experiential, often subjective knowledge extracted 

systematically through  expert^.^ In fact, an important benefit of this knowledge extraction exercise is the 

systematization of previously unrecorded or unexpressed knowledge. Some researchers consider the 

primary contribution of constructing expert systems in such domains as being one of theory formation, 

thereby moving such problems into the category of Ustructured" problems. 

2.3. Expertise in Managerial Problems 

In the types of problems discussed above, the expertise involved is typically individual.  For managerial 

problems however, i t  is useful to  distinguish among problems where individual expertise or normative 

models are involved, and organizational level problems involving inputs from multiple individuals. 

Many attempts a t  developing models of expertise for administrative problems have focused on the 

individual. Such models, some of which are embodied in computer based systems, have been designed in 

domains such as loan assessment and trust management 171, portfolio management 191, financial diagnosis 

[3], capital budgeting [2], and welfare eligibility [40]. 

In contrast to individual problem solving, organizational level problems introduce several types of 

complexity into the modeling process. These complexities are well chronicled in articles describing the 

early attempts a t  building large corporate simulation models. In these efforts, detailed mathematical 

models of organizations were constructed compIex problems where closed form solutions were infeasible. 

[19,29,34,35]. A major motivation for developing such systems was they made i t  possible t o  evaluate the 

impacts of alternative policies, opportunities, and external events (all operationalized as parameters of the 

simulation model) a t  the level of the firm. The major knowledge inputs into such models consisted of 

assumptions about the organization and its external conditions, obtained from multiple sources in the 

organization. These were then translated into detailed mathematical models for decision making. The 

essential features underlying this type of modeling activity are summarized as follows: 

1. Model Formulation as Assumption Synthesis: formulating models is an inherently 
underconstrained exercise involving generation of alternatives for various parts of the task 

4 ~ y  the same token, a continuing problem with such systems has been that- their  carefully crafted knowledge bases tend t o  be 
extremely fragile - system behavior often changes in unforseen and undesirable ways when knowledge is added. 
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environment and the making of choices from among them. Since these choices are often 
tentative, they can be viewed as assumptions or premises on which expectations and 
projections are  based. Any quantitative model must be understood to be conditioned on one 
such set of symbolic assumptions. Model formulation as assumption synthesis is discussed 
more formally in section 3.2. 

2. Distributed Expertise: formulating models for decision-making involves many individuals 
from different levels and functional areas of an organization. There are seldom individual 
experts for broad-based organizational modeling; instead, knowledge about the alternatives in 
various parts of the task environment is contributed by several individuals. A t  higher levels, 
policy issues shape top level decisions. These provide the context for lower level strategies and 
decisions which can be expressed in terms of an algebraic/mathematical model. The form and 
implications of distributed expertise are discussed more formally in section 3.1. 

3. The evolutionary nature of models: decisions are not "one shot" affairs. This contrasts 
with problem solving in expert systems and instructional systems in structured problem 
domains where solutions are typically " one-shot * , that  is, the decision maker obtains case 
data, engages in a consultative dialogue (with colleagues or a system), and a solution is 
obtained. Rather, in an ongoing enterprise, decisions are made in a context established by 
previous choices. New information is evaluated in light of existing assumptions and 
expectations. In some cases, the new information may be assimilated cleanly into the existing 
conceptual framework, perhaps resolving certain ambiguities or uncertainties in the prior 
assessment. In many cases, however, the new information can be accommodated only if prior 
assumptions are appropriately modified, perhaps leading t o  radical restructuring of all or part 
of the situation model. Mechanisms for managing evolutionary models are described in section 
3.3. 

I t  should be noted that  our use of the term "distributed expertise" is qualitatively different from 

expertise in other domains in that i t  is neither anchored by a stable body of knowledge as in physics, nor 

based on consistent virtuoso performance in some area such as medicine. Rather, i t  is a consequence of 

the necessary diffusion of responsibility across multiple departments or individuals in an organization. 

The discussion so far is summarized in table 1 which draws out  the essential features among the 

problem types in terms of five key features. In the following subsection, we discuss the implications of 

these differences for knowledge based decision support for management. 

2.3.1. The Role and Scope of Knowledge Based Support 

Unfortunately, a fundamental problem with large scale organizational modeling is that  the richness of 

the modeling activity - the problem solving involved in formulating the algebraic model itself -- is not 

preserved systematically. The formulation or synthesis activity is in fact the most challenging and 

creative part of modeling exercise that  shapes the structure of the mathematical model. Yet, if the 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-85-6 1 



Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-85-6 1 

$ S f  
n r r ,  z m m  
c n X E  

F 

I 

ID a 5 
X ' b  d vPrr  (Dert. 
& rt I-r. * W'b  
VI PI r 

P O  
s 

m  0 
"0 1 
m  OP 
n P, 
r- 3 
m r* 
C. N 
n ~t 

R 

g :: 

c 

G v 
r 

n r * B  0 t n  :X 
3 m n 2 1 0 m o  

r. b*Cgn: 0 m  

a 3 1  p g q  0 a a o  m  P, m  
m  m  s a - m a  
r m  P, ,re+ 

r . r -  o m  

i ~ r ~ '  0 
3 I 1 

r g  F m 

n r.a m x 
0 3 1 C  0 
3 O O m  
n ~ v r n  
m  w r C  r 
X m  m  n C C  
n n g v .  

0 0 
1 m  3 
C. 0 PI 
n r 1  

t ScC 
3 
09 

U W M  
O W X  
i5 S  z n r m  
% B e  cn 

I 
V) 

I I 

O C ( 3  n s s e  
R 0 1 1  * P , e , r . o  
2 - 0  m 3 0 0 3  
a C.K) w n  l a  
r ( a m  m m  C. 

P, a m  m n 0 n 
X V. 3 1 b  
a o m 3 m 3 o n 
1 1 r 
n v 1 '4  
m  sC 

w 
0 

b 
y 
m  

3 
n 
I.'. 
m 
Ca 
0 

cn 
n 
P, 
v 
r 
m  

3 r: Xb  
o r . r m  
CTlD P, n 
r d  m  r 
~ D R W Y  s m  r. 
a tn 

a : F. 
o n 
r * 

R 
* v, 

g 8 

a e n  x 
1 0  1 0  
0 3 0  Dp 
v m  m  R 
w l m r  
m m  1 ' 4  r: 
m r t n  
0 v n  - g 2 3 
3 0 

00 r 

U W V )  
0 W  e 
5 s z n r ' n  
2 !i! 3 

ail u 

I 

5.3 
ID m 

o 
a 1 
0 cC 
b 0 

C m  

u 
0 

3 
7 
m  

3 
n 
I-. 
m 
F a  
n 

x 
C' 
00 
3 
r 
CC 

n 
En 

P, 
v 
r 

W O  - 1 1 6  o r. r 
v m  P, 
r 3  m  
l D R m  a m  r. 
a m 

m  : C. 
n * 
R 5 g 

09 3 

a - n  
1 0 1  
0 3 0  
a m  m  
r I m  
m a  l 

0": 
m n n  
0 w n  
c1 v. 

0 ;4. s 
3 0, 

OP r 

!4 
Z 9 ." o rn 
M c r j U  u rn a 
M 

6 
xg ;  0 
g E g  
r' H s 

3 

V) 

a 2 
/ij f2 5 e 

rC 

m 
$;: m 
W  2 2 
f! 
cn 
m 

0 
Z c n W  

3c n r 
f!R!i! 
8 



relationships between a large algebraic model and the symbolic assumptions underlying i t  are not 

faithfully preserved, the interpretation of the model becomes difficult, and modification of such models in 

light of a changing reality can be time consuming, ad hoc, and error prone. 

Their pragmatic problems notwithstanding, the basic objectives of such modeling efforts were reasonable 

and are still worth pursuing. If we recognize that  i t  is actually the formulation/reformulation of the 

model based on changing assumptions that  is most problematic for a manager and his support staff, i t  is 

in this activity where knowledge based support is most  needed. Conceptually, this can be achieved by 

representing the ancillary symbolic knowledge about models, which includes knowledge about the 

assumptions underlying the various model components. With such knowledge, the system can become an 

active partner in reasoning about changes to the model instead of burdening the user with the complete 

responsibility of maintaining and exploring models. 

From a design standpoint, what is needed are structures and mechanisms for representing and 

manipulating the qualitative data that  forms the basis for the quantitative model. This emphasis on 

design of the quantitative model from fragmentary qualitative data, (as opposed to the selection from a 

predefined set of models) requires a computer-based architecture that  is capable of representing 

knowledge that  lies outside the scope of current day modeling systems. In the following section, I describe 

such an architecture that has been shaped by the concerns articulated above. I limit the discussion to 

synthesis and maintenance of quantitative models only; i t  is assumed that  if such a model is maintained, 

an algebraic model corresponding to i t  can be formulated. 

3. Knowledge Based Decision Support for Planning 

Planning is an important activity in most large organizations. Considerable time and effort of 

individuals from different parts of the organizations can go into building and maintaining models for 

planning. Several types of qualitative knowledge are involved in developing such models. However, most 

current day modeling systems do not adequately represent such knowledge, thereby placing a heavy 

burden on the decision maker t o  maintain the correspondence between the knowledge that  can be 

represented within the system and that  which cannot. In this section, I describe a system designed to 
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represent and manipulate the diversity of knowledge involved in problems such as planning. With this 

functionality, the system can play a more complete role in supporting decision makers. 

3.1. Knowledge About Alternatives/Assumptions -- Distributed Expertise 

Conceptually, an  existing model can be viewed as being the end result of a process involving 

consideration of a range of alternatives (assumptions) from various parts of the task environment. These 

alternatives may pertain to  decisions a t  various levels of abstraction. For example, in the CMC 

manufacturing environment, these assumptions pertain to  computer technology t o  be used in the product 

and the processes t o  be employed in manufacturing it. Figure 1 shows a small set of alternatives about 

technology and testing processes that might be considered in such a context. 

In P L m T ,  knowledge about these different parts of the task environment has been partitioned across 

a "society of agents* designed to represent standard areas of the planning activity or individual 

specialists in the different functional areas of the organization who have responsibility in the planning 

process. These specialists are represented as *objectsw in HOUSE [32], a Franz Lisp object oriented 

programming environment that  is similar in spirit to the FLAVORS package [27]. The objects 

correspond to  the real world entities in the domain under consideration. Referring t o  figure 1, each of the 

alternatives corresponds to an object that contains knowledge about a local part of the task environment. 

Responsibilities of an object (which corresponds to a domain specialist) include responding to decisions 

being taken in other parts of the manufacturing environment and communicating its decisions so that 

other specialists may also make appropriate adjustments t o  their parts of the task environment. These 

"adjustments" are carried using "action oriented knowledge" which we describe shortly. Other, book- 

keeping oriented responsibilities of a specialist include keeping track of its current choice (with respect to  

whatever decision(s) for which i t  is responsible), reasons for it, and possible alternatives t o  the existing 

choice. The implementation details of this are described in Dhar [13]. 
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CMC Corporate 

D iv i s ions :  

A l t e rna t i ve  
Methods : 

Po l i cy  
A l t e r n a t i v e s :  

A l t e rna t i ve  
d i agnos t i c  : 
processes  

\ 
\ : e l l l p s l s  
\ 
\ 
\ 

Figure 1 

A small set of alternatives considered in the course of formulating a plan in CMC's 
timbaktoo division. Choices a t  the lower end of a line indicate alternative ways of 
accomplishing those indicated a t  the top end of the line. 
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3.2. Assumption Synthesis as State Space Search 

There are two sources of "action orientedn knowledge tha t  are important in assumption synthesis. First, 

the problem domain itself provides constraints that  reflect certain relationships among different parts of 

the task environment that  must be realized. For  example, in the computer manufacturing environment, 

two such domain-specific constraints (which we illustrate via an example shortly) are: 

1. "A decision to employ embedded etch board technology rules out using test processes 
designed for surface etch technologyn5 

2. "Using Hitech's etch process requires using Hitech's heatsink technology tooU 

Both these constraints are indicated in the search space shown in figure 2. As long as such constraints are 

applicable, the problem solver is in a "constrained mode.n Thus, a choice on what technology t o  use 

would rule out certain testing processes. This could in turn trigger other similar rules, setting off a chain 

of choices. As long as there are such choices t o  be made -- either due to a constraint or because there is 

only a single alternative with respect to  some decision -- the program is in a "constrained mode." 

There is also a second, quite different way by which choices are made. This is when all possible 

ramifications of a choice have been propagated and the problem is not yet fully solved, leaving the 

program in a "quiescent" state. In such situations, a "forced choice" is necessary in order t o  continue 

with the formulation process. This is a characteristic of problems that  are inherently ~rnderconstrained, 

that  is, the constraint relationships alone are not sufficient t o  make choices in all the required parts of the 

task environment. This requires the program to focus on some area of the task, and evaluate the set of 

alternatives available there. PLANET assesses the desirability of available alternatives on the basis of 

how they contribute toward the goals and objectives of the organization. This is operationalized as a 

pairwise comparison of alternatives on an "objectives vector" consisting of resources such as capital, 

space, and labor.6 The choice is determined on the basis of the resources required by the alternatives in 

'~mbedded etch boards technology refers to  boards where signals travel through the body of the board as opposed t o  its surface 
only. For a computer manufacturing company, the decision t o  use such a technology is a strategic one and has important 
ramifications for decisions in related parts of the task environment. 

'~ecause  the program must also sometimes compare high level alternatives for which detailed resource tradeoffs are impossible to 
assess before the details about these alternatives have been specified, *macro level' knowledge is used in such situations. Basically, 
this heuristic knowledge consists of high-level associations about how the various alternatives typically compare across the various 
resources. 
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Motorola's 

process  

t e s t e r s  

\ 

I 
\ / 

LEGEND : 

A -*-*-> B: choice of A r u l e s  ou t  B 
A ----- > B: B is a poss ib le  cholce 
A -..+C> B: choice of A impl ies  B 

----- >I): intermediate choices 

Figure 2 
A small section of a search space indicating a sequence of choices. In this space, a terminal 

node would represent a fully formulated plan incorporating a trajectory of choices indicated by 
the nodes Cl,C2,C3 & C4. 
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light of the organization's resource availability picture. A "choice point" involving such a comparison is 

shown in figure 2. The process of successively making decisions pertaining t o  various aspects of the task 

as shown in figure 2 can be viewed as a state space search. States toward the right represent choices 

being made in increasingly complete plans. 

To  summarize, two types of "action oriented knowledge" are brought t o  bear in assumption synthesis. 

First domain-specific constraint relationships among different parts of the task environment must be 

taken into account. Once the choices resulting from these constraints have been exhausted, i t  is necessary 

t o  make forced choices. This requires the program to focus on a critical par t  of the task, and make a 

choice based on a heuristic evaluation function that compares alternatives based on their resource 

requirements and the existing availability of resources. This can in turn lead t o  further choices based on 

constraint relationships. This cycle continues until selections have been made from all parts of the task 

environment. 

3.3. Preserved Process Knowledge 

The formulation process described above can be viewed as the result of a trajectory of choices in a state 

space, with the terminal nodes, if generated, representing "complete plans" from which algebraic models 

can be derived. This includes choices made by the program in its constrained mode, and the forced 

choices where alternatives are compared across the vector of objectives. Since some of these choices may 

have the effect of influencing others, the complete plan consists of "clusters of dependencies" in the state- 

space. One such cluster is shown in figure 3. Comparing figures 2 and 3, we can see that  a choice is not 

necessarily dependent on all chronologically earlier decisions, but only on those tha t  directly or indirectly 

led to  it. 

This "dependency informationW can play an important role in the incremental modification of a large 

plan. Referring to figure 3, we can see that if the choice "3 dimensional testers" is retracted, choices 

dependent on it  and all their dependents if any, need t o  be undone. Revised choices in the affected areas 

are made from the available alternatives. In this example, retracting the embedded etch boards decision 

would also bring into contention, previously eliminated alternatives pertaining to the surface etch 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-85-6 1 



3 dimensional 
t e s t e r s  

NOT 
Motorola 's  TI'S 

s u r f a c e  e t c h  s u r f a c e  e t c h  
p rocess  p r o c e s s  

H i t e c h ' s  
embedded e t c h  ( process  ) 

H i t e c h ' s  
h e a t s i n k  

embedded e t c  technology 

LEGEND 

A+ B  choice  of B depends on choice of A 

Figure 3 
A dependency network corresponding to  the choices indicated in figure 2 
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processes. The revised choice for test processes would then be made among the previously passed over 

alternatives (indicated in figure 2), plus others that  might have become available since a choice was iast 

made in that  par t  of the plan. For plans containing thousands of choices, this process of incremental  plan 

evolution can serve an important attention focusing role by highlighting only the affected areas of a plan, 

and suggesting revised choices in these areas. 

Maintaining the state-space associated with an existing plan can also be useful for carrying out 

qualitative "what if" analyses of choices. For example, a query of the form "what if I use the surface 

etch board technology" boils down to undoing the dependencies of the existing assumption (namely, the 

embedded etch technology), making revised choices for these parts of the task environment, and 

generating the resource requirements for the hypothesized scenario. This elevates the what-if analysis 

from the level of a quantitative model t o  one allowing for perturbations of the symbolic assumptions 

underlying such a model. 

More generally, this functionality is a statement about the rote of a user in such man-machine 

interactions. Most DSS literature uses the ambiguous term "judgement" to  account for the gap between 

the symbolic reasoning process of a decision maker and the outputs from a model underlying a system. 

Unfortunately, this view of decision support does not address issues about whether i t  is reasonable to  

expect the user to make all the right "adjustments" in translating qualitative reasoning into a form 

expressable for the quantitative model. In contrast, elevating the system functionality to  a level where 

the symbolic real-world assumptions can be manipulated relieves the user from making possibly 

unrealistic transitions between the two levels. 

3.4. Summary of the Main Points 

It is worth summarizing the discussion so far in light of the four questions raised a t  the beginning of 

this paper, in particular, the iast three. 

A fundamental characteristic of much of managerial problem solving is that  the symbolic knowledge 

about a problem domain is distributed and evolutionary, and must be maintained. A major problem 

facing planning managers is one of orchestrating the synthesis of assumptions into a coherent model, and 
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because of the instability of such assumptions, one of maintaining the integrity of this model over time. 

My approach t o  decision support emphasize the design or maintenance of a qualitative model on which a 

quantitative model can be based. In contrast, most DSS approaches have viewed support via the selection 

from a predesigned set of models. Similarly, the design emphasis here also contrasts with most knowledge 

based systems to date which have been concerned mainly with classification problems that  involve 

mapping "factsu t o  "conclusionsw, given a stable model of the domain. In contrast, I have argued that  i t  

is the formulation and maintenance of the model of the domain itself that  is a particularly problematic 

reality in organizations that  knowledge based systems can support. 

From a functionality standpoint, modeling systems or  "DSS generators" form one component of such a 

support system. They are appropriate for representing algebraic models and performing parametric 

explorations within a given algebraic model structure. However, much of the problematic aspects of 

managerial decision making involve "getting the model right", an exercise tha t  must make use of 

symbolic knowledge not expressable within modeling systems. For a system to be sensitive t o  the context 

of the decision making process, i t  must be able to explicitly maintain and reason in terms of this process 

knowledge, and tie the outputs of this process with a modeling system. Basically, this requires a level of 

intelligence over and above the knowledge expressed in an algebraic modeling system. 

In order for a system to maintain the context surrounding its models, a decision support system must 

therefore maintain knowledge about alternatives, general domain-specific constraints, resource availability 

information, and dependency among prior decisions. These constitute the qualitative knowledge 

components required in order to synthesize and maintain evolving models. Equipped with this 

functionality, knowledge based systems can play an important role in facilitating a n  incremental evolution 

of models, and provide a continuity perspective that  is crucial to managerial decision making, but lacking 

in the support provided by current day systems. 
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4. Summary 

Much of the power of the PLANET architecture derives from its ability t o  collect, preserve, and 

manipulate a store of domain specific knowledge in order to  reason about a problem situation. This 

knowledge must be provided to the system by the user. 

However, an important part of a manager's job is to create the alternatives and recognize their 

interrelationship. Reitman [33] suggests that the process of generating good moves or actions, 

particularly in the game playing context, is similar in spirit to  heuristic search. While this approach may 

be reasonable for domains where the entire set of alternatives, however large, can be generated a priori 

(i.e. the search space has a definite size), i t  is of little value in a managerial planning situation where 

actions are not defined a priori, but continually generated or "recognized". In fact, an important function 

of a human support staff is one of creating a set of "good" actions t o  be examined by a decision maker 

[33]. The PLANET formalism is limited from this standpoint in that  i t  is a reactive support tool; the 

inputs that  enable i t  t o  modify a plan must always come from the user. The realization of good actions 

also must come from the user. It is probably accurate t o  say that  these creative aspects of decision 

making are likely to  remain outside the scope of computer based support in the near future. 

In conclusion, while computer based decision support systems will continue t o  have certain limitations as 

decision aids, there is nevertheless considerable support potential above and beyond what is available with 

current day systems. In this paper, I have attempted t o  address what I consider t o  be important issues 

that  must be addressed if we are t o  develop knowledge based systems that  exhibit some of the intelligence 

that  is associated with managerial decision-making. Specifically, I have argued tha t  since models used to 

support decision-making are based on evolving knowledge, such systems must be able t o  represent and 

maintain such knowledge. Although such systems are not "expert systemsD such as those in the scientific 

and medical arenas, they can nevertheless use knowledge about a problem situation in supporting a 

decision maker with the formulation and maintenance of assumption-based models relevant t o  the 

problem situation. The architecture described in this paper has been designed t o  support this activity. 
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