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Abstract

The maintenance of large information systems involves continuous design modifications to
designs in response to evolving business conditions or changing user requirements. Because of
the complexity barrier associated with engineering such systems, changes can be ad hoc and
prone to errors. Based on our observations of such a process in the oil industry, we believe
that the systems maintenance activity would benefit greatly if the process knowledge
reflecting the teleology of a design could be captured and used in order to reason about
changing requirements. and to design parts of systems that might be "similar” to existing
ones. In this paper, we describe a partially implemented formalism called REMAP
(REpresentation and MAintenance of Process knowledge) that accumulates design process
knowledge to manage systems evolution. To accomplish this, REMAP acquires and maintains
dependencies among the design decisions made during a prototyping process as well as the
general domain-specific design rules on which such dependencies are based. This knowledge
can then be applied to prototype refinement, systems maintenance, and the re-use of existing

designs to construct ”similar” design fragments.
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1. INTRODUCTION

Research in systems analysis and design has resulted in several useful methods for the
development of information systems. While these methods are effective in developing initial
designs, they neither support the correction of design errors nor changes in previous design
choices. As a result, changes in system design tend to be unprincipled, ad hoc, and error
prone, failing to take cognizance of the rationales for previous design decisions. In this
paper, we examine some of these shortcomings and present a knowledge based system
architecture called REMAP that alleviates these problems. This architecture supports iterative
design and maintenance process by preserving the knowledge involved in the initial and

evolving design, and making use of this knowledge in analogous design =zituations.

The REMAP architecture has resulted from our observations of a complex system design
effort in a large oil company. This study has revealed several types of process knowledge
that are instrumental in developing and maintaining such systems. First, the design process
consists of a sequence of interdependent design decisions: The dependencies among decisions
are typically based on general application-specific rules; however, these rules are seldom
articulated explicitly by users or analysts. Second, when systems are developed in a
piecemeal fashion following the prototyping idea (Jenkins, 1983), analysts apply analogies to

transfer experience gained from one subsystem to ”similar components” of another.

It seems clear that the development and maintenance process would benefit if this
knowledge about dependencies and the general bases for them could be accumulated in an
appropriate form and used to reason about subsequent design changes. Specifically, we argue
that a knowledge based support tool for this must have the following architectural

components:

1. a classification of application specific "concepts” into a taxonomy of design

objects, and mechanisms for elaborating this structure as more knowledge is
acquired by the system.

2. a representation for design dependencies and mechanisms for tracing repercussions
of changes in design;

Center lor Digntal Ecor
Stem School of Business

ing Paper 1S-83-66



3. a learning mechanism for extracting general bases for dependencies among design
decisions made by the analyst.

4. an analogy based mechanism for detecting similarities among parts of similar

subsystems. This mechanism should make wuse of the classifications in the
generalization hierarchy to draw analogies between systems parts,

In this paper we describe each of these components in terms of the specific feature of
process knowledge that they deal with and how this knowledge is represented. In order to
establish a sufficient rich context for discussion, we use parts of the design that were

actually developed in the system design in the oil company.

The remainder of this paper is organized as follows. Section 2 begins with detailed real-
world examples that are used to show the need to maintain process knowledge and to
identify different kinds of such knowledge. A formal model of our approach is presented in
section 3, along with an overview of a partial implementation of the REMAP architecture.
Section 4 provides a discussion relating the model to previous work in systems analysis and
artificial intelligence. We conclude with a summary of possible applications which may

benefit from the REMAP approach.

2. A CLASSIFICATION OF PROCESS KNOWLEDGE

In this section, examples from a case study in the oil industry are used to illustrate
different forms of process knowledge. Four classes are identified: specific knowledge about
design dependencies (at the level of instances), general knowledge about design rules,
knowledge about the essentiality of conditions for certain design decisions, and knowledge

about analogical properties between design situations.

2.1. A Case Study

The problem studied in the oil company involves the design and subsequent maintenance of
a series of sales accounting systems for different products of the company, here referred to as
OC. OC sells oil and natural gas-based products with different characteristics to its

subsidiaries and to outside customers in different parts of the world. Sales Accounting at




OC’s Corporate Headquarters requires generating varions integrated reports for purposes of
audit and control. Input to Sales Accounting is based on invoices generated from transactions

in a number of offices in the US and abroad.

For the sake of readability, the system representation is restricted to the Structured
Analysis level (DeMarco, 1978; Gane and Sarson, 1979). Note, however, that the problems
described here, and our approach to solve them, are not restricted to this level but appear

in any systems maintenance situation.

Systems designs are described in terms of data flow diagrams at various levels of
abstraction. A data flow diagram is a network where the nodes represent processes, external
entities, or data stores (files), and directed arcs represent the data flows from one node to
another. Process nodes are frequently called "bubbles”; each bubble can be decomposed into
a lower-level data flow diagram. Bubbles at the bottom level have associated mini-specs on
which the program designs are based. Data flow and data store information is managed in

data dictionaries. Figure 1 shows the notational conventions used in this paper.

Part of the structured top-down design of OC’s Sales subsystem is illustrated in figures 2
through 5. Figure 2 shows level 0 of the system. In this example, since Sales comprizes
the entire system, this can also be used as the context diagram which depicts the
relationship of the system to external entities. Figures 3, 4, and 5 are data flow diagrams
for levels 1 and 2 of the sales system. Level 2 (figures 4 and 5) are the bottom level
decompositions of the bubbles I and 3. Each of the bubbles at this level have an associated

mini-spec (not discussed here).

We now illustrate the problem of design adaptation using three scenarios Each requires a
different extent of modification to the original design, and illustrates the need for a different
aspect of process knowledge. All of the examples involve external requirements changes but

similar problems also occur during the refinement cycle.
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2.2. The Role of General and Specific Knowledge

"London Sends Formated Invoices™. In the original design, the difference between the
New York and London invoices was that the former were accessable formated whereas the
latter were received un formated, on magnetic tape. Hence, a minor "convert” operation was
required to bring the inputs into a format required by the 7wverify and correct on line”

operation (bubble 1.1).

As a simple change, suppose that the London office begins to send correctly formated
invoices on magnetic tape to central headquarters. What kinds of design modifications are

required?

It is clear that the change is not at a high enough level to affect the more abstract parts
of the design in figure 3. However, at the next lower level (figure 4), the "convert” bubble

is not required anymore since the London invoices should now proceed directly for

verification.

In order to be able to assimilate this minor change, the system must know that in the
existing design, the convert bubble is dependent on the existence of the dataflows
representing London invoices. On recognizing that London invoices are now mnot unformated,
it should be able to detect the fact that conversion is unnecessary. Further, it show also
know that in general, formated invoices proceed directly for on-line verification. Based on

this, it should direct London invoices to the "verify and correct on line” operation.

In summary, we have used two types of knowledge in understanding the existing design
and the effects of changes to it: general knowledge about domain-specific constraints (i.e.,
unformated invoices require conversion), and spec: fic knowledge about the purpose of existing
design objects in the form of rationales for existing design choices (i.e., the existence of the

convert bubble in figure 4 depends on the existence of unformated invoices).
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6

2.3. The Role of Essentiality

"London and Tokyo Will Not Sell Fuels Anymore”. This represents a more radical
type of change than the first. Intuitively, it seems clear that design changes as well as
major related modifications are needed in several sections of the code. In this case, lack of
invoices from Tokyo obviates the need for a manual add and edit operation at level 1 (a
manual input operation was required because these were paper invoices). However, the auto

load and edit is still required because New York invoices must still be processed.

This example illustrates the idea of essentiulety in design; the Tokyo invoices dataflow was
an essential input for manual add and edit. In a more general sense, the purpose of a
manual add and edit operation was to process paper invoices. The other inputs to it (the
discount payable slips, codes and expenses) were auziltary, and in fact dependent on Tokyo
invoices. | [n effect, bubble 1 stays (although some of its lower level components

corresponding to London operations are removed), while bubble 3 must be deleted. The

revised level 1 dataflow design is shown in figure 6.

It should also be noted that although the manual add and edit operation is no longer
necessary, some of the lower level operations associated with it are still required in order to
process New York invoices. At the programming level, this means that the code
corresponding to those operations is not deleted since it is shared with the auto load and

edit process.

IThis illustrates the “non-uniform” nature of dataflow diagram entities, that is,
relationships among "unconnected” entities, and the design consequences that can emerge due
to changes in them.
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2.4. The Role of Analogy

"The Venezuela Office Will Sell Fuels®”. This corresponds to a high level change that
is likely to induce widespread changes into the existing design. First, some additions must
be made at level 1. The types of changes, however. depend on the nature of the sales
invoices from Venezuela. If the invoices are computerized, an input into bubble 1 is required
whereas paper invoices would call for introducing a manual add and edit operation.
Similarly, at the next lower level, the operations required would depend on other, more

detailed features of the invoices (i.e. are they formated, unformated, etc.).

This example illustrates the use of analogy in reasoning about a new situation. Design
additions at the various levels depend on how 7"similar” the Venezuela invoices are to
existing ones, and the design ramifications of these similarities and differences. This type of
reasoning requires a system to carry out an elaborate match between design parts the system
currently knows about, and a new design in order to draw out their analogous features.
Specifically, it requires some notion of what are the important dimensions in the analogy
being sought. In this example, relevant attributes in drawing the analogy are the medium of
the invoices, that is, whether they are computerized or manual, and whether they are

formated. Once the important features are realized, the design ramifications become clear.

2.5. Summary: The Need for Teleological Knowledge

In walking through the examples, we have attached fairly rich interpretations to the
various design components that are implicit in the design. These interpretations derive from
the purpose of the application which cannot be determined from looking at the resulting
design alone. Since the design is an artifact (Simon, 1981), its teleological structure is
imposed by the designer’s conception of the problem. This conception may change repeatedly
during the evolutionary design process. In other words, there is no a priort "theory” relating
problems to designs; rather, the rationale for a particular design follows from a subjective

world-view of the designer.
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If a program is to be able to reason about about the types of changes illustrated in the
examples, it must have a formal representation for the knowledge that reflects the teleology
of the design. Because such highly contextual knowledge about a potential application area is
impossible to design into a system a priori, the knowledge must be acquired by the system
during system design. To do this, the program must be equipped with mechanisms that
enable it to learn about design decisions in an application area that it knows nothing about
at the start of the design. It must then apply this growing body of acquired knowledge to
reason about subsequent modifications to an existing design, or to construct new designs
based on new but :imilar requirements. In the following section, we describe an architecture
called REMAP that is geared toward the extraction and management of the process

knowledge involved in systems development and maintenance.

3. REMAP: ARCHITECTURE AND IMPLEMENTATION

REMAP (REpresentation and MAintenance of Process knowledge) is a knowledge based
system designed to address the needs identified in the previous section. It is apparent from
the examples that application-specific knowledge plays a key role in reasoning about a
design. This raises an important question, namely, how is this knowledge to be acquired by

REMAP?

In most projects involving the construction of a knowledge based system, the system
builder constructs the model of expertise by first specifying a representation. and then
accreting the knowledge base in accordance with the precepts underlying the chosen
representation.  Unfortunately, large scale application developments take place in a wide
variety of domains that may have little in common. This uniqueness of each application
situation discourages construction of a knowledge base that might be valid for a reasonable

range of applications.

If a knowledge based system is to be able to support the process of systems analysis and

design, it must have an initial representational framework, and mechanisms to augment this
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framework with domain specific knowledge that captures the purpose of design decisions and
relationships among them. As more is learned, it should be possible to nse this process
knowledge to reason about design changes, and draw analogies in extending a design to deal

with new situations.

In the following subsections, we develop a knowledge representation for this process
knowledge, and present a model of how it might be extracted and used by the REMAP
system architecture. Each of the components of this architecture illustrates the use of a
certain type of process knowledge. We conclude the section by illustrating how these
components interact through a global control structure, and describe a partial implementation

of some key features of the system.

3.1. Representing Designs Using Structured Objects
The REMAP model centers around design objects. The designer defines instances of such
objects, whereas the REMAP system maintains a generalization hierarchy of object types.

The structure of an object type definition in the hierarchy is as follows:

OBJECT TYPE

type_name : <string>
child _of : <set of object types>
parent of : <set of object types>

components: <set of slots>
operators : <set of procedures/methods>

The "child-of” and ”parent-of” components position an object type in the generalization
hierarchy. ”"Components” slots describe typical aspects of an object instance of the given

type. As an example, consider the initial top-level definition of a generic object type:




10

OBJECT TYPE

type name : generic_object

child_of ()

parent of : unknown

components: (identifier : <string>
type : <string>
because_of : <set of objects>)

operators : (define, remove)

This means that any object will have an identifier, a type, and a ”because-of” slot. The
generic object type has no parent since it is at the top of the hierarchy, and its children are
yet to be specified. The ”because-of” slot defines the razson d’etre of an object instance and

will be further discussed in the next subsection.

i

A 7generic” object provides very little structural information about its semantics. It 1
therefore useful to specify subtypes for which additional slots are defined in order to capture
the meaning of object instances of such a subtype. This can be represented using a
generalization hierarchy of object types as shown in figure 7. Some instances of dataflows

and transforms used in the three scenarios of section 2 are shown in figure 8.

In principle, the system could begin with the generic object type and then learn all
subtypes from scratch. Since such a procedure would be rather cumbersome for the designer,
the system should be provided with a small initial knowledge base. In the Structured
Analysis example used throughout this paper, this consists of the definition of object types
corresponding to data flow diagram conventions. The five major components are defined

below (cf. figure 7):
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OBJECT TYPE
type_name
child_of
parent_of
components:

operators

OBJECT TYPE
type_name
child _of :
parent _of :
components:
operators :

OBJECT TYPE
type_name
child of
parent_of :
components
operators

OBJECT TYPE
type_name
child of
parent_of :
components:
operators :

OBJECT TYPE
type_name :
child of
parent_of :
components:
operators :
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dataflow

generic_object

unknown

(part of : dataflow;
medium <string>;
from, to process)
(redirect, nostart, noend)

transform

generic object
(process, external,
(inputs, outputs

()

datastore)
<set of dataflows>)

process
transform
unknown
(part_of
(expand,

process)
noinput, nooutput)

datastore

transform

unknown

(data_structure : <set of data elements>)
(define structure, noinput, nooutput)

external entity
transform
unknown

()
()

External entities could be further broken down into data source, data sink, and interactor.

The slot value "unknown” refers to the fact that the slot values should be, but have not yet

been, defined.
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As an example of instance definitions, consider the following description of the ”London”

external entity and one of the sales invoice dataflows generated by it (cf. figure 8).

{identifier : London

type : external entity

because of : ()

inputs : ()

outputs : (London-direct-sales-invoices,

London-assigned-sales-invoices,
London-statistical-sales~invoices)

{identifier : London-direct-sales-invoices
type : dataflow

because of : (London)

part_of : ()

medium : magnetic tape
from : London
to : auto-load-and-edit}

Similarly, instances corresponding to other object types can be defined. Note, that the
instance definitions have all the slots defined in their immediate type, as well as inheriting

those of their supertypes.

This representation allows us to define data flow diagrams completely. [t is also possible
to perform ”syntactic” consistency checks using information in the hierarchy. As a simple
example, if a bubble has no inputs, it must be removed or new inputs must be defined.
However, application-specific information is not maintained in this representation. For
instance, if London invoices become "formated”, ramifications of this change cannot be
assessed using the knowledge in the hierarchy alone (i.e., without using the ”because-of”
slot). To reason about such situations, additional knowledge structures are required, which

we describe below.
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3.2. Representing Rationales as Dependencies

Design decisions at the Structured Analysis level define bubble and dataflow objects. The
rationale or justification of a decision consists, in turn, of other decisions. To illustrate,
consider figure 9 which shows a network of dependencies among a few of the dataflows and
bubbles considered so far. Specifically, the auto-load-and-edit is justified by the existence of
New York and London invoices, which form its "set of support® (Doyle, 1978) or the
cumulative reason for its existence. The convert operation is justified because London sales

invoices are not formated correctly. Similar dependencies can be identified for other

decisions.

The complete dependency network corresponding to a design may be viewed as
incorporating the overall purpose of a set of design decisions. The general form of a
dependency is:

(<decision> <justification>)
where <decision> and <justification> are both object instances. In REMAP. each design
object maintains a cumulative set of justifications in its because-of slot that constitutes its

set of support.

In order to demonstrate the usefulness of this dependency network, let us reconsider the
first scenario where the London invoices become formated. In this case, the convert
operation is no longer required since its essential support elements have been eliminated.
Similarly, in the second scenario where the London office does not sell fuels anymore, no
more invoices are generated from London. Again, no conversion operation is required.
However, the auto load and edit operation is still required because New York invoices are

still to be processed.

[n general, an existing dependency network such as the one on figure 9 can be used to
assess certain ramifications of a change, a process commonly referred to as belef

maintenance (Doyle, 1978). In the above example, conversion is not required for London
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invoices. However, the dependency network does not indicate how these invoices should be
treated because this knowledge is not expressed in the network. In order to assess the
complete repercussions of the change, additional knowledge of a more general nature is
required. For example, to realize that formated London invoices should be treated like New
York invoices (and should proceed directly for verification), it is necessary to know that in
general formated invoices are verified directly. This knowledge can then be used to reason

about all object instances corresponding to formated invoices.

3.3. Learning as Rule Formation

Dependency information as indicated in figure 9 is represented in terms of object instances.
For example. the auto-load-and-edit (bubble 1) is justified by the two kinds of dataflow
objects originating from London. An object type corresponding to this invoice dataflow
might have slots such as data, amount, or office originating the invoice. However. not all
slots are relevant to the justification. For example, the auto-load-and-edit is performed
because the invoices are computerized, regardless of their other features. [f the system is to
be able to learn anything from existing designs, it must also have access to the general
rules on which the dependencies have been based because the rules differentiate the
important features of the relationship from the incidental. [t must generalize the

dependencies, which can be thought of as examples, into rules,

There are two approaches to example based generalization described in the literature. The
controlling factors that dictate which of the two approaches to adopt are the number of
ezamples that are available, and the extent of an underlying theory in the domain under

consideration.

For domains with little or no theory, it is desirable to have a very large number of
examples from which to generalize. In such situations, generalization involves detecting
patterns in the data, which is essentially a process of theory formation. Examples of this

approach can be found in Michalski (1983), Langely et. al (1983), and Smith (1980). Borgida
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and Williamson (1985) apply the same idea to the reorganization of database schemas based

on the analysis of exceptions in a current schema.

In contrast, for generalization based on few or single examples, it is best if there exists a
strong theory of the domain. The example can then be verified for correctness using the
theory, and then generalized into a wuseful form (i.e. a rule) for subsequent use by
maintaining only the essential features of the example -- where these features are derived as
a side effect of applying the theory. Mitchell et.al (1985) and Mahadevan (1985) describe

this approach in the context of digital circuit theory.

Unfortunately, neither of these approaches appears feasible for our problem since application
areas are too diverse and idiosyncratic to provide a theory, and examples are few. This
forces us to make a somewhat strong assumption about the system design process, namely,
that when the designer specifies the purpose of a design fragment as part of an initial
system design, the rationale is a reasonably accurate one. While the validity of this
assumption is debatable in principle, it appears to be a reasonable one in practice (Yourdon,
1976) since the analysis and design process involves extensive exchange between users and
analysts -- by the time design specifications are actually articulated in terms of a structured
methodology (like SADT, or DFDs), there are well defined rationales for them. In light of
this, REMAP requires the designer or user to generalize specific dependencies to design rules
during the process of system analysis and design. This requires articulation of the
justifications for choices, as well as of the general basis for the justifications. In effect, the

"explanation” for the dependency forms the basis for constructing the rule.

A more crucial issue however, is what form these rules might take. On the one hand, the
rule can be expressed in terms of objects and their slot values, for example:

{dataflow
medium: computerized} ==> verify on line

{dataflow
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medium: paper} ==> perform conversion
If the medium slot has not been defined before, the type definition of dataflow can first be
extended to include it. Nevertheless, there iz a major problem with this scheme. Recall that
so far, the generalization hierarchy for dataflows iz extremely shallow including only one
type, namely the dataflow (cf. figure 8). Adding additional slots for each rule will soon
yield very complex object types. In looking at the different invoices -- which are instances of
type dataflow -- it is apparent that different attributes are relevant in describing the
various instances. For example, paper invoices might be distinguished by their color, an

attribute that is irrelevant for describing computerized invoices. Thus, most slots in the

extended dataflow type definition would remain unfilled for many objects.

This situation can be expected to occur in the early stages of the system analysis process,
when the system is still unfamiliar with the application area. New design decisions could be
added and instantiated as instances of an existing type although they differ qualitatively
from other instances, and might therefore be better off described in terms of a different

bundle of attributes.

When instances vary sufficiently, this indicates that the generalization hierarchy must be
extended to include more specific subtypes. For example, extending the generalization
hierarchy in figure 8 would involve creating two new types, namely paper-invoices and
computerized-invoices and re-classifying the existing instances in light of this new
classification. Further, computerized-invoices can then be broken down into magnetic-tape-
invoices and on-line-invoices if a.ppmpriate.2 The reconfigured generalization hierarchy would

then appear as in figure 10, and in contrast to the rule representation above, the rule could

2This raises the following question: how might the program differentiate among situations
where the generalization hierarchy should be extended versus those where little is to gained
by extension? Although we have yet to address this question adequately, it appears that a
reasonable heuristic for deciding when to extend the generalization might be based on the
need for additional slots to differentiate newly cefined object instances.
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then be stated in terms of the newly defined object types.

To illustrate, such rules might appear as:

{computerized-invoices} ==> perform auto-load-and-edit

{paper-invoices} ==> perform manual-add-and-edit

It should be possible to use these rule structures in two ways. First, if an operation such as
auto-load-and-edit is part of a design and has one or more computerized inputs coming into
it, these should be added automatically to the operation’s set of support. Second, if no such
inputs are in the design, the rule can be used to compare “expected” reasons for the
operation to the justifications provided by the user, or to suggest changes in designs that

appear "inconsistent® with the knowledge in the rules.?

3.4. Analogical Reasoning Using Object Classification and Rules

In section 2, we introduced a scenario where a new operation was added, namely, sales of
fuels from Venezuela. In order to assimilate such a cila.nge into an existing design, a
program must be able to utilize its knowledge concerning the purpose of "similar” design
fragments. Specifically, it must determine what features of the new situation are the same as
objects it already knows about, and then attempt to learn about the unique features of the

new situation, represented in terms of one or several design objects.

As we have pointed out, knowledge about the various design objects is organized in the
form of a generalization hierarchy, with rules referencing nodes in this hierarchy. In order to
categorize a new object, it is necessary to first determine, if possible, the most specific level
of abstraction in the generalization hierarchy that is applicable to it. For example, if

REMAP’s current knowledge about dataflows is that shown in figure 11, and computerized

3This assumes that the rule is "correct”. An existing rule that turns out to be
inaccurate, leads to a "contradiction” in which case the rule can be discarded by the belief

maintenance machinery, or refined interactively.
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but unformated invoices come in on magnetic tape from Venezuela, they would be classified
as a ”"Magnetic-tape-invoices” dataflow. Once the most specific level is found, rules
referencing objects at that level can be applied. For example, if Venezuela invoices had been
formated, a rule calling for a “verify and correct on line” operation would be applied.
Similarly, if a match on other attributes is found, more specific rules can be applied. In
general, it is likely that rules applicable to some of the attributes of a new object will be
found, while the system will not have rules dealing with others. For these, new rules must

be extracted from the user.

If no rules are applicable to the newly defined object at the most specific level, the system
can look for more general rules that might be applicable. Specifically, this involves moving
up the generalization hierarchy until a rule is found that is applicable at a higher level of
generality. In the example considered above, this wounld involve gathering rules applicable to
magnetic-tape invoices, then computerized invoices, and finally dataflows in general. For
Venezuela invoices, we can see that one of the rules mentioned in the previous section will
apply at the level of computerized invoices, suggesting that an auto-load-and-edit operation

be performed on them.

It should be noted that even though there may not be an object in the design that is
similar to the new one, existing rules might still apply. For example, London invoices were
previously unformated; this had required a convert operation which was subsequently
eliminated when the form of these invoices was changed. However, the more general piece of
knowledge that should have been extracted at that time in the form of a rule, now becomes

applicable to Venezuela invoices.

Finally, we should distinguish between the analogical reasoning procedure described above,
and the learning by analogy procedures of Winston (1979) and others. In analogical learning,
there is typically a domain where a known theory already exists in the form of rules or

some other convenient representation; examples from this domain are then matched with
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examples from a domain in which the learning is to occur. Drawing analogies between the
examples leads to rule formation in the target domain. [n contrast, analogical reasoning, as
we have described it, involves determining what applir: to a new situation given what is
already known in the same domain. This requires breaking down the new situation into
parts that the system already knows how to deal with. In our representation, this requires
matching the new situation successively against more general knowledge about the application
by moving up the generalization hierarchy. The procedure is described more formally in the

following subsection.

3.5. REMAP Control Structure

In order to incorporate new knowledge and to reason about user critiques, the model
requires an overall control structure that enables it to switch among design support and
knowledge acquisition modes. Figure 11 provides a high-level transition network

representation of the main modes.

The add mode is the usual starting point for a new system. The designer can add a set
of proposed new design objects and their associated dependencies. The system can invoke the
analogical reasoning mode to assist in this task to whatever extent possible. The belief
matntenance mode is responsible for checking the consistency of proposed changes with
respect to existing object types and rules. The learning mode interacts with the user in
order to establish a generalization of dependencies that are not derivable from existing rules,
possibly adding new rules and specifying new object types. The system then moves into the
belief maintenance mode in order to check the compatibility and consequences of the newly

acquired knowledge.

If there is an existing design to be improved, or reused for another system, the system will
start in the critiqgue mode. Here, the designer may want to change or add to certain parts
of the design. Again, feasibility and possible learning opportunities induced by the change

can be studied in the belief maintenance (for a formal description of belief maintenance
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algorithms, see Doyle (1979) and McAllester (1980)) and learning modes. The interaction of
these components of the REMAP architecture is described below in ”Structured English.”

Add-mode:
1. DOWHILE user is entering object instances.
2. Accept object instances.
3. Invoke Analogical-Reasoning-mode
4. IF enabling conditions of a rule are
satisfied by instances
THEN 4a. Create dependencies generated by rule.
4b. Invoke belief maintenance.
ELSE 4c. Accept dependency.
4d. Invoke Learn-mode

Learn-mode:
1. Extract essential features (slot values) of objects.
2. IF slot value is an object instance

THEN 2a. Note its type

ELSE 2b. IF needed slot does not exist

THEN Create-new-type-mode.
3. Propose generalization (rule) in terms of the identified
or defined types.

Create-new-type-mode:

1. Record context (slot values) of object instance.

2. Define new data type corresponding to relevant slot of
this instance. Establish an IS-A link to
parent-of of the object instance.

3. Create a new instance of the new data type.

4, Assign slot values to the new instance
corresponding to the old instance.

5. Destroy the old object instance.

Critique-mode:
1. Accept user critique in the form of negation to existing
decision, or addition to design.
2. IF negation
THEN invoke belief maintenance
ELSE invoke Add-mode.




Analogical-Reasoning-mode

1. Identify lowest level in generalization hierarchy into
which the newly defined object can be categorized.
Call this the focus.
2. While focus is not the root of the generalization
hierarchy:
2a. Find and instantiate rule applicable at focus.
2b. IF applicable rule does not include all
attributes of newly defined object
THEN Invoke Learn-Mode.

3.6. Implementation Status

Some key aspects of the REMAP architecture have been incorporated in a small system
intended to test their feasibility. The system contains an implementation of the object type
hierarchy and an initial knowledge base about data flow diagrams. Knowledge is represented
using FLAVORS (Moon and Weinreb, 1981), a LISP-based utility that supports object-
oriented programming. An annotated example interaction is displayed in Exhibit 1. The
example demonstrates some features of the various modes of figure 11, namely the "add”
and ”learn” modes in addition to setting up the dependencies. The user begins by informing
the system about a new design fragment, namely, London invoices. Specifying the type of
object being defined causes the system to query the user about the relevant attributes. The
generalization hierarchy is then augmented with the new objects, and justifications including
their general bases (the rules) are extracted. In summary, the implementation so far has the
capability to accept data flow diagram object instances, to generalize dependencies to rules,

and to expand the generalization hierarchy.

A feature currently being added is a connection between FLAVORS and McAllester’s
(1982) belief maintenance system, RUP, so we may utilize its belief maintenance machinery.
In addition, a more habitable user interface is under development. In matching "similar”
situations to ones known to REMAP (i.e. the analogical reasoning mode), we intend to use

methods similar to Winston’s analogical reasoning (Winston, 1979). Specifically, in
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To begin with, the nser may wish to enter a description of a fragment of the data flow diagram. In this example, we defing
the fragment in level | corresponding to the auto-load-and-edit. The "*7 sign represents the system top level prompt. ['ser
input is underlined. Annotations to the Jdialogue are provided in parentheses,

* add
type: external.entity
name: London
output: London-direct-sales invoices
London-assigned-sales-invoices
London-statistical-sales-invoices

type: dataflow

name: London-direct-sales-invoices
from: London

to: auto-load-and-edit

medium: magtape

o
o]

(Similarly, other dataflows are entered.)

type: process
name: auto-load-and-edit

inputs: London-direct-sales invoices ...

outputs: Sales-invoices Error-report Exception-report

because-of: London-direct-sales-invoices
London-assigned-sales-invoices
London-statistical-sales-invoices
NY-direct-sales-invoices

NY-assigned-sales-invoices

(The "because-of” slot simply records the justifications for performing an auto-load-and-edit operation. At this point, 8 the
basis of the information supplied by the user, the system augments the generalization hierarchies as indicated in figure 9. Now
having noted the justiﬁcati&ns. the system proceeds with attempting to construct rules based on generalizations of these
dependencies.)

Identify the essential features of the object required for the dependency:

(dataflow name: London-direct-sales-invoices
medium: magtape
from: London
to: autoload-and-edit)

==> (auto-load-and-edit)

: magtape London

(The user states that the fact that the input is on magnetic tape justifies the auto-load-and-edit operation {a more general
reasou, not expressable here, is that the input is computerized as opposed to manual). Also, the user states that the operation
is required because there’s an input from London. The system attempts to "generalize” this by considering whetlier this is true
for inputs from external entities in general, as we see below.)

London is an instance of an external.entity.
Is the following rule true:
((magtape) (external.entity)) ==> auto-load-and-edit

: yes i
Having establizhed this rule, the system will go through a similar process for other inputs that are not similar to the one just

considered since the dependencies established by them are explainable by the rule just established, [In this example. it would
skip the remaining Londou inveices and proceed to establish thejrelationship between auto-load-and-edit and New York invoices.)

Exhibit 1




determining similarities, it will be necessary to determine the important aspects of a
situation, and use them together with classification based knowledge in order to assess the

correspondence of situations.

Although we believe that the current system demonstrates the feasibility of some important
features of our model, substantial additional research will be required prior to a full-zcale
implementation. Leaving aside interface issues such as graphics input and output, there is a

need to extend two aspects of the model itself.

On the one hand, the type hierarchy may grow very quickly; methodologies will be needed
to keep it at a manageable size, and to help the user locate the correct type for a new
instance. One way to reduce the number of types would be to allow multiple typing of
instances and/or multiple inheritance in the type hierarchy. However, multiple inheritance

introduces its own set of problems, such as inconsistency and search complexity.

On the other hand, the present model only handles justifications for existing design
decisions. A more prescriptive approach could associate feasibility bounds for subsequent
design decisions with an object. For example, it should be possible to state that the choice
of paper invoices erclude the use of the auto-load-and-edit process, even if the alternative,
manual-add-and-edit, has not yet been defined elsewhere. A further step is the automatic
choice between several feasible alternatives (Dhar and Quayle, 1985), accomplished by the
incorporation of a new object type goal into the model. A design object might be declared
dependent on a goal object if it is the optimal solution with respect to that goal. As

requirements change, design choices may have to be revised due to different trade-offs.

4. DISCUSSION
The REMAP concept can be viewed as a knowledge-based tool for the representation and
maintenance of design process knowledge, to be employed as part of an integrated software

development and maintenance environment. Other important features of such an environment
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such as langnage interfaces, editors, version controllers etc. (Konsynski, 1984) have yet to be

interfaced to our system but are not currently the focus of this research.

The importance of REMAP’s objectives iz confirmed by two recent requirements studies on
specification-based computing environments (Balzer, et.al, 1982) and on Artificial I[ntelligence
tools for design support in general (as contrasted to information systems design) (Mostow,
1985). Balzer et.al. emphasize the need for supporting systems evolution at the design level
as well as at the software level. In particular, they suggest that design tools should be
changeable, and that inter-user interaction should be supported. We believe that REMAP
contributes to the first goal by maintaining an evolving object type hierarchy (which for
instance, would allow the definition of a new design language other than data flow
diagrams), whereas the second is achieved by making each designer’s justifications for design
fragments explicit. Mostow (1985) also stresses the need for making design goals, design

decisions and their rationales explicit.

In contrast to these recognized demands, existing databases or knowledge bases for software
development tend to focus on the management of design objects rather than on the process
knowledge captured by REMAP. Design databases evolved from the data dictionary concept
which provides system-wide management of data structures as an aid in keeping notation in
the systems designs and programs "consistent”. [t was soon realized that the data dictionary
idea also applied to the management of process/module libraries (Narayanaswamy, et.al.
1985), and to other design objects at higher levels of abstraction. Integrated environments
such as TRW’s Software Productivity System (Boehm et.al, 1982) or TEDIUM (Blum, 1983)
also allow the designer to relate design objects, programs, and test cases handicapped by the
lack of a precise requirements specification language (Borgida et.al. 1984), and because the
relationship between requirements and designs is not explained in terms of design decisions

and their rationales.

Proponents of prototyping (Naumann and Jenkins, 1982) claim that systems changeability




is automatically achieved or substantially supported through the prototyping process and cite
case studies in support of this claim (Appleton, 1973). However, others have recognized that
in complex systems, the prototyping idea must be applied at multiple levels of abstraction
(Groner et. al, 1979). This in turn, requires substantial control of the process, taking into
account the design rationales and rules learned from errors in previous prototypes (Dhar and
Jarke, 1985). While some researchers claim that such control can be provided by domain or
other technigue specific standards, policies and constraints to be enforced in the developnient
and maintenance environment (Jarke and Shalev, 1984; Minsky and Borgida., 1934;
Morgenstern, 1983), this approach assumes that such constraints can be enumerated a priori
A more ambitious approach, embodied in the PLEXSYS project (Konsynski et.al, 1934)
integrates constraint management into a full design support environment. PLEXSYS’ dynamic
metasystems (Kotteman and Konsynski, 1984) have represent application-specific knowledge in
terms of an "axiomatic” model that can propagate certain types of changes to the object
level where design decisions are represented. This approach is similar in spirit to Davis’
(1979) idea of using "meta models” to maintain and reason about object level knowledge
contained in the MYCIN system (Shortliffe, 1976). Several other knowledge base

management components of Al systems have been structured along similar lines.

While this approach has proven successful in situations where the scope of applications
known to the meta-model can be defined in advance, it has fundamental limitations if the
application domain is not known a priori. Under such circumstances, the high level model,
even if definable, may become general to the point of missing the subtleties involved in an
application area. What is needed instead, is a mechanism by which the high level model
itself can be synthesized on the basis of experience in the application area. Consequently,
REMAP follows an “open systems” approach (Hewitt, 1985) that begins by representing
knowledge about relationships among instances in a domain in terms of dependencies, and
generalizes some of these into a growing corpus of rules. In this way, the process knowledge

involved in building an application can be used for incremental modification of designs, and
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where possible, to acquire knowledge in terms of application specific rules.

Methodologically, our approach has much in common with the Programmer’s Apprentice
(PA) project (Shrobe, 1979; Waters, 1932; Rich, 1984). The PA is an intelligent system that
is designed to assist expert programmers with the maintenance of large programs. Like
REMAP, the PA uses a dependency network of choices in order to represent and reason
about evolving programs. However, there are two important differences. Our focus is on the
more abstract parts of the design as opposed to the level of coding. More importantly,
because of the diversity of applications, we are unable to assume a fixed library of "cliches”
or programming constructs, but must build up this knowledge on the basis of application-
specific designs. However, once our system has constructed and organized a library of cliches,

they could be used to reason about ”analogous” situations in a similar manner as the PA.

5. CONCLUSIONS

The approach proposed in this paper suggests a novel way of thinking about systems
evolution which emphasizes the designer’s assumptions and justifications, rather than
generally valid "meta-theories” of design. This reorientation is of particular importance in the
presence of multiple designers since many apparent "logical contradictions” may arise asz a

result of different perspectives, each based on a different set of assumptions.

From a practical viewpoint, the emphasis on design changes is of particular importance
since it is estimated that at least 50% and probably as much as 70% of software costs go
into maintenance. Yet, problems of design evolution have not been adequately addressed by
previous methodologies, whereas they constitute the focus of our approach. The work
reported here is considered a first step towards a process-oriented design environment which

is expected to have important applications in at least three areas.

First, the prototyping method of systems development is enhanced by a learning component

that prevents the repetition of design errors and supports a better formal understanding of
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the system’s domain. Second. the undesirable practice of just updating program
documentation in the maintenance phaze of the software life cycle is replaced by a
methodology for maintaining consistent designs; furthermore, the method also provides

guidance in the propagation of proposed changes.

Finally, the analogy-based reasoning component of the method supports the reuse of code
and designs in systems that are similar to existing ones. It also provides the designer of
such systems with access to the rationales for the original design, thus permitting the
encapsulation of required design differences and the identification of suitable alternatives.
This controlled "cloning™ capability is particularly valuable in organizations that have to
construct a large number of functionally similar systems for different divisions. [f process
knowledge is not maintained automatically, such organizations have to rely on the experience

and loyalty of a few key individuals.
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