
ANALOGICAL AND DEPENDENCY DIRECTED REASONING STRATEGIES

FOR LARGE SYSTEMS EVOLUTION

Vasant Dhar
and

Matthias Jarke

August 1985

Center for Research on Information Systems
Computer Applications and Information Systems Area

Graduate School of Business Administration
New York University

Working Paper Series

CRIS #I00

GBA #85-66

A shorter version of this paper appears in the Proceedings
of the Sixth International Conference on Information Systems,
1985.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

Table of Contents
1. 1NTRODI;CTION
2. A CLASSIFICATION O F PROCESS KNOWLEDGE

2.1. .4 Case Study
2 . 2 . The Role of Generczl arid Specz f zc Knowledge

2.3. The Role of E s s e n t z a l t t y
2.4. The Role of .iin.c~ll~gy
2 3 . S u r ~ l r ~ l n r ~ : T h r Need for Teleologicnl Knowledge

3. REMAP: ARCHITECTIYRE A N D IMPLEMENTATION
3.1. Represer~tiiig Desig~ta ['sing Structured Objects
: $. 2 . Represerttittq Rationales as Depe~~dericies
3.:: . Learrli~re; as Rule Forrl~atiorl

3 . 4 . .41lalogical Reasoi~ing (.'sing Object Classification and Rules
3 . 5 . REXI.4P C'o~itrol St,ructure
3.6. in~ple~iieri tat ion Status

4. DISC'I'SSIOS
5 . CONCLT.7SI03S

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

1

Abstract

The mainterlance of large infor~ilat,ion systerlls involves cor~t i~i i~or ts clesigti ruoclifications to

designs in response to evolving business corlclitio~is or cllarlging user req~~irerrler~ts. Because of

the con~plexity barrier associated with engineering suclt systems, charlges car1 be L E ~ hoc and

prone to errors. Based or1 our observations of such a process in the oil iilctustry, we believe

that the systems ~~lairl ter~atlce activity would benefit greatly if the process knowledge

reflecting the teleology of a ctesigrl could he captured a11d used in order to reasorl about

changing requirenlerits. n11d to ciesig~l parts of systenls t,hat might be nsi~rlilar" to existing

ones. In t,his paper, we ileacribe a partially inlpleiilerlted formalism called REMAP

(REpresel l ta t io~~ ancf I21Airlterl;~rlce of Process knowledge) that accuniulates design process

knowledge t,o manage systelrls evolutiorl. T o acconiplish this, REMAP acquires and mairltains

dependerlcies arrlorlg the design decisions rriade during a prototyping process as well as the

general domain-specific design rules on whicii such dependencies are based. Ttlis knowledge

can then be applied to prototype refinement, systenls maintenance, arid the re-use of existing

designs to construct "similarn design fragments.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

1. INTRODUCTION

Research in sys t e~ns analysis and design has resulted in several ~iseful ~nethocls for t,lie

development of infornlation syste~us. While these 111ethods are effect,ive it1 developing initial

designs, they neither support t,lle correction of design errors nor changes in previous design

choices. As a result, changes in systerii ciesign tend to be unprincipled, ad hoc, and error

prone, failing to take cognizar~ce of the rcztzonales for previous design decisions. 111 this

paper, we exanline some of tliese ;l~ortconlirlgs and present a knowledge based sys te~n

architecture called R E M A P that alleviates these problems. This architecture supports iterative

design and ~rlaintenance process by preserving the knowledge involved ill the initial and

evolving design, and 11lakirig rise of this kitowieitge ill analogous design situatiorls.

The REMAP architecture has resulted fro111 our observations of a conlplex system design

effort in a large oil company. This stucly has revealed several types of proces,i knowledge

that are instrumental in developing and nlaintaining such systems. First, the design process

consists of a sequence of interdependent design decisions: The dependenczes among decisions

are typically based on general application-specific ru les ; however, these rules are seldom

articulated explicitly by users or analysts. Second, when systems are developed in a

piecemeal fashion following the prototyping idea (Jenkins, 1983), analysts apply a n a l o p e s to

transfer experience gained fro111 one subsystem to "similar components" of another.

It seems clear tha t the developrllertt and maintenance process would benefit if this

knowledge about dependenczes and the general bases for then1 could be accurrlulated in an

appropriate form and used to reason about subsequent design changes. Specifically, we argue

that a knowledge based support tool for this must have the followirlg architectural

components:

1. a classification of application specific "conceptsn into a taxononly of design
objects, and mechanisnls for elaborating this structure as more knowledge is
acquired by the system.

2. a representation for design dependencies and mechanisms for tracing repercu::' -sions
of changes in design;

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

3. a learning mechanism for ext,racting general bases for clependencies arrlong design
decisions rliade by the analyst.

4. an analogy based rnechanisn~ for detecting si~riilarities artlong parts of similar
subsystems. This n~echan i s~n should make use of the classifications in the
generalization hierarchy to draw analogies between systenls parts.

In this paper we describe eacfl of these c o ~ r ~ p o ~ l e n t s in terrrls of the specific feature of

process knowledge that they deal with and how this k~iowleclge is representecl. 111 order to

establish a sufficient rich context for discussion. we use parts of the design that were

actually developed i11 the systerrl clestgtl irl the oil corrlpany.

The remainder of this paper is organized as follows. Section 2 begins with detailed real-

world examples that are used to show the need to rnairitain process knowledge and to

identify different kinds of such knowledge. A formal tnodel of our approach is presented in

section 3, along with an overview of a partial irl~pierrtentatiorl of the R E M A P architecture.

Section 4 provides a discussion relating the rtlodel to prevlous work in syste~ils analysis and

artificial intelligence. We conclude with a surnnlary of possible applications which rriay

benefit from the REMAP approach.

2. A CLASSIFICATION OF PROCESS KNOWLEDGE

In this section, examples from a case study in the oil industry are used to illustrate

different for111s of process k~towledge. Four classes are identified: specific knowledge about

design dependencies (a t the level of znstances), general knowledge about design rules,

knowledge about the esserttialit,y of conclitions for certain design decisions, and knowledge

about analogical properties between design situations.

2.1. A Case Study

The problenl studied in the oil conlparly involves t h e design and subsequent ~naintenance of

a series of sales accounting sys te~ns for different products of the cotnpany, here referred to as

OC. OC sells oil and natural gas-based proclucts with different characteristics to its

subsidiaries and to outside custon~ers in different par ts of the world. Sales Accounting a t

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

OC's Corporate Headquarters requires generntltbq varin~is integrated reports for purposes of

audit and control. Input to Sales Accounting is based on invoices generated front trallsactio~ls

in a trurnber of offices in the LiS and abroad.

For the sake of readability, the systern represeritation is restricted to the Structured

Analysis level (DeMarco, 1978; Gane and Sarson, 1979). Note, however, tttat the proble~rls

described here, and our approach to solve t1ie111, are not restricted to this level but appear

in any systenrs ~nainteriance situation.

Systenis designs are described in ternis of d a t a flow diagranis at various levels of

abstraction. A da ta flow diagrani is a network where the nodes represent processes. exterrial

entities, or da ta stores (files), and directed arcs represent the da ta flows fro111 one node to

another. Process nodes are frequently called "bubbles"; each bubble can be decorrlposed into

a lower-level da ta flow diagrani. Bubbles a t the bottom level have associated mini-specs on

which the program designs are based. Data flow and d a t a store information is managed in

d a t a dictionaries. Figure 1 shows the notational conventions used in this paper.

Part of the structured top-down design of 0 C 7 s Sales subsystem is illustrated in figures 2

through 5. Figure 2 shows level 0 of the system. In this example, since Sales corrlprises

the entire system, this can also be used as the coritext diagram which depicts the

relationship of the systenl to external entities. Figures 3, 4, and 5 are d a t a flow rl iagra~ns

for levels 1 and 2 of the sales aysteni. Level 2 (figures 4 and 5) are the bottoln level

decompositions of the bubbles 1 and 3. Each of the bubbles at this level have a n associated

mini-spec (not discussed here).

We now illustrate the problern of design adaptation using three scenarios Each requires a

different extent of modification to the original design, arid illustrates the need for a different

aspect of process knowledge. Ail of the exarriples i~ivolve external requirerrlents changes but

similar proble~ns also occur during the refinerrlerit cycle.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-85-66

DATA FLOW DIAGRAM CONVENTIONS

[(h a l t) EXTERNAL COEPLTER srsTrn

-

DATA STORE / TILE

Figure 1

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

SALES ACCOUNTING SYSTEMS
CONTEXT DIAGRAM

ACC O V W n Y ,

F i g u r e 2

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

FUELS SALES (I N I T I A L 1

msc 3-a.7.

OPERATIONS
I I

CODES

3XV Y O M ASSIGUE D

A D D AUDIT T M I L L A EDIT)-J

--

N F E R E N C E
FILES

- AUDIT T U l
C O W O M T E +
COKTROLLER

l-----l O l E M T l ONAZ
M P O R T I E l t

CHANGE
SALES Imolcts

NOf lCE CO~U~CTIOWS/CXAWGES
EXCEFT! Oh' WPCRf ACCOi?;;:k;

REPORTS

Figure 3

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

AUTO LOAD AND EDIT

LONDON DIICECT

' LOND3N ASSIGNED
SALES IWOiCTS

LONDON
SALES

COSTS

PRODUCE

Figure 4

PRODUCE

EXCEPT; OK
REF3P.T

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

MANUAL ADD AND EDIT

u INVOlCE

Azf'lREYCE
TILES

C

OK. TOXY 0 DIRECT
SALES INVOICES W T I E D SALES

PRC DUCE
EXCEPT1 ON
RIP GAT

EXCf Pi:Sh'
REF OR:

i

Figure 5

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

2.2. The Role of General and Specific Knowledge

"London Sends Formated Invoices". 111 the origir~al design, the difference between the

New York and London invoices was that the forilier were accessable formated whereas the

latter were received unformated, on magnetic tape. Hence, a, niinor "convert" operatio11 was

required to bring the inputs into a forrrlat required by the "verify and correct on linen

operation (bubble 1.1).

As a sitnple change. suppose that the London office begins to send correctly for~nated

invoices on rr~agnetic tape to central headquarters. What kinds of design nlodifications are

required?

It is clear tha t the change is not a t a high enough level to affect the rnore abstract parts

of the design in figure 3. However, a t the next lower level (figure 4) , the "convert" bubble

is not required anymore since the London invoices should now proceed directly for

verification.

In order to be able to assirliilate this nlinor change, the systern must know tha t in the

existing design, the convert bubble is dependent on the existence of the dataflows

representing London invoices. On recognizing that London invoices are now not unformated,

it should be able to detect the fact that conversion is unnecessary. Further, it show also

know that zn general, formated invoices proceed directly for on-line verification. Based on

this, it should direct London invoices to the "verify and correct on linen operation.

In summary, we have used two types of knowledge in underst,anding the existing design

and the effects of changes to it: general knowledge about donlain-specific constraints (i.e.,

unforn~ated invoices require conversion), and speci fzc knowledge about the purpose of existing

design objects in the form of rationales for existing design choices (i.e., t he existence of the

convert bubble in figure 4 depends on the existence of unformated invoices).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

2.3. The Role of Essentiality

*London and Tokyo Will Not Sell Fuels Anymore". This represertts a rnore radical

type of change than the first. Intrtitively, it seents clear that clesign changes as well as

major related nlodifications are needecl irl several sections of the code. In this case, lack of

invoices from Tokyo obviates the need for a r~tanual add and edit operation at level 1 (a

m a n u a l input operation was required because these were p u p e r invoices). However, tlle auto

load and edit is still required because New York invoices 111ust still be processed.

This exanlple illustrates the idea of e s s e n t z i ~ l ~ t y In ctesign; the Tokyo invoices dataflow was

art e s s e n t z a l i~tpil t for ~itanttal acicl allti eclit. In n rnore general sense, the p u r p o q e o f a

nlartual add ancl e d ~ t operation was to process paper invotces. The ottter tnputs to tt (the

discount payable slips, codes and expenses) were czuzalzary, and in fact d e p e n d e n t on Tokyo

i~ivoices. 111 effect, bubble 1 stays (although sorrle of its lower level components

corresponding to London operations are removed), while bubble 3 must be deleted. The

revised level 1 dataflow design is shown in figure 6.

It should also be noted that although the manual add and edit operation is no longer

necessary, some of the lower level operatio~ts associated with it are still required ~ I I order to

process New York invoices. At the programming level, this Irlesns that the code

correspondi~lg to those operations is not deleted since it is shared with the au to load and

edit process.

l ~ h i s illustrates the "non-uniform" nature of dataflow diagram entities, t ha t is,
relationships anlong "u~tconnected" entities, and the design consequences tha t can emerge due
to changes in them.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

FUELS SALES (MODIFIED)

YEW Y ORX ASSIGNED
S A L T S INVOICES /a

SALES IIWOICE DATABASE r l - -

COVTROLLER
O?EMTl. DBAZ

llEP ORTIKv

CONILCT:OM/CHAWES
ACC OL-h7:Nz
N P O R T S

- e
O I E i U T I O N S

I&Es Fr OPEJUT1 D?lS 0p2?z? 1 COhYR3LLTR LpQmTE :
Figure 6

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

2.4. The Role of Analogy

"The Venezuela Office Will Sell Fuels". This correspor~cls to a high level change that

is likely to induce widespread changes into the existing design. First, sorrle additions must

be rriade at level 1. The types of cha~tges, however, depend on the nature of the sales

invoices from Venezuela. If the invoices are conipnterized, an input into bubble 1 is required

whereas paper invoices would call for iritrocluci~~g a rriarluaI add and edit operation.

Sinlilarly, a t the next lower level, the operations required would depend on other, rllore

detailed features of the i~ivoices (i.e. are they fornlatecl. unforn~ated, etc.).

This example illustrates the use of analogy in reasoning about a new sitiiatior~. Design

additions a t the various levels depend on how "si1nilarn the Venezuela invoices are to

existing ones, and the design ramifications of these similarities and differences. This type of

reasoning requires a systern to carry out an elaborate nlatch between desig~i parts the system

currently knows about, and a new design in order to draw out their analogous features.

Specifically, it requires some notion of what are the z m p o r t a n t dimensions in the analogy

being sought. In this example, relevant attributes in drawing the analogy are the rnedzum o f

the invoices, tha t is, whether they are computerized or manual, and whether they are

formated. Once the important features are realized, the design rarrlifications become clear.

2.5. Summary: The Need for Teleological Knowledge

In walking through the examples, we have attached fairly rich iriterpretntions to the

various design components that are zmplzczt in the design. These iriterpretat~oris derive from

the purpose of the application which cannot be determined from l o o k i ~ ~ g a t the resulting

design alone. Since the design is an artifact (Simon, 1981), its teleological structure is

imposed by the deszgner's conception of the problem. This conception nlay change repeatedly

during the evolutionary design process. In other words, there is no a przorz *theoryn relatirig

problems to designs; rather, the rationale for a particular design follows from a subjective

world-view of the designer.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

If a program is to be able to reason about about the types of changes illustrated in the

exalnples, it riiust have a fornial representation for the knowledge that reflects the teleology

of the design. Because such highlv contextual kl~owledge about a potential application area is

i~iipossible to design into a systeni a priori, the knowledge iiiust be ucyuzred by the system

durzny systenr design. T o d o this, the program must be equipped with niecl~ariisn~s that

enable it to learn about design decisions in an application area tliat it knows nothing about

at the s tar t of the design. It niust then apply this growing body of acquired knowledge to

reason about subsequent niodifications to an existing design, or to construct new designs

based on new but i r r ~ i l n r rerluire~~ierits. 111 the following section, we describe an architecture

called R E M A P that is geared toward tlie extraction and nianagenient of the process

knowledge involved in syst.e~lis development slid ~ilailitenance.

3. REMAP: ARCHITECTURE AND IMPLEMENTATION

REMAP (REpresentation and MAintenance of Process knowledge) is a knowledge based

system designed to address the needs identified in the previous section. It is apparent from

the examples tha t application-specific knowledge plays a key role in reasoning about a

design. This raises a n important question, namely, how is this knowledge to be acquzred by

REMAP?

In most projects involving the construction of a knowledge based system, the systent

builder constructs the rilodel of expertise by first specifyi~ig a represel~tatiori. and t,fien

accreting the knowledge base in accordance with the precepts underlvirig tile chosen

representation. I ' n f o r t u ~ a t e l ~ , large scale application developnients t,ake place in a wide

variety of donlairis tliat nlay have little in conlnion. This u~tiqueness of each application

situation discourages cor~st ruct io l~ of a kltowledge base tha t might be valid for (I rensoriable

range of applications.

If a knowledge based systerii is to be able to support the process of systems analysis and

design, it 111ust have an iriitial representational franiework, arid ~liechaiiisrlis t o augnient this

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

franlework with domain specific knowledge that captrlrer the purpose of cleslgn clecisions and

relationships among them. As more is learried, i t should he possible to rrse this process

k~towledge to reason about design cha~lges, at~cl clrnw analogies in exte~ldilig a design to deal

with new situatiotls.

In the following subsections, we develop a knowleclge represe~ltatiori for this process

k~lowledge, aiid preaerlt a niodel of how it rltight he extracted ancl used by tlte REMAP

syste~n architecture. Each of tire conlpo~lents of this architecture illustrates the use of a

certain type of process knowledge. We conclude the section by illustrating how these

components irlteract through a global coritrol structure, arld describe a partial irrlplel~lentation

of some key features of the systern.

3.1. Representing Designs Using Structured Objects

The REMAP model centers around deszgn objects . The designer defines zn.qtcsnces of sllch

objects, whereas the REMAP system maintains a genera l z za t ion h z e r u r c h y of object t y p e s .

The structure of an object type definition in the hierarchy is as follows:

OBJECT TYPE

type name : <string>
child - of : <set of object types>
parent - of : <set of object types>
components: <set of slots>
operators : <set of procedures/methods>

The "child-OF and "parent-of" components position an object type in the generalization

hierarchy. "Conlponents" slots describe typical aspects of an object iristarice of the given

type. As an example, corlsider the initial top-level definition of a generic object type:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

OBJECT TYPE
type name : generic - object
child - of : (1
parent - of : unknown
components: (identifier : <string>

type : <string>
because - of : <set of objects>)

operators : (define, remove)

This rneans that any object will have an identifier, a type, and a "because-of' slot. The

generic object type has no parent since it is a t the top of the hierarchy, and its children are

yet to be specified. The "because-of' slot defines the razson d 'e tre of an object instance and

will be further discussed in the next subsection.

A "generic' object provides very little s t r~lc tura l information about its semantics. It is

therefore useful to speczfy subtypes for which additional slots are defined in order to capture

the meaning of object irlstarlcea of such a subtype. This can be represertted uslrtg a

generalization hierarchy of object types as show11 in figure 7 . Sotne instances of dataflows

and transforms used in the three scenarios of section 2 are shown in figure 8.

In principle, the system could begin with the generic object type and then learn all

subtypes fro111 scratch. Since such a procedure would be rather cunlbersome for the designer,

the system should be provided with a small initial knowledge base. 111 the Structured

Analysis example used throughout this paper, this corlsists of the definitiori of object types

corresponding to da ta flow diagram conventions. The five major corr~por~ents are defined

below (cf. figure 7) :

Center for Digital Economy Research
Stem School of Business
Working Paper IS-85-66

INITIAL OBJECT TYPE HIERARCHIES

DAT A 3 0 V R ' I

Figure 7

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

INITIAL GENERALIZATION HIERARCHY

---#-

LONDON D l l E C T
suss WOICLS

~-vxw_fJ C L O Y

-_I

Figure &

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

OBJECT TYPE
type name : dataflow -
child - of : generic - object
parent - of : unknown
components: (part - of : dataflow;

medium : <string>;
from, to : process)

operators : (redirect, nostart, noend)

OBJECT TYPE

type - name : transform
child - of : generic object
parent - of : (process, external, datastore)
components: (inputs, outputs : <set of dataflows>)
operators : ()

OBJECT TYPE
type - name : process
child - of : transform
parent - of : unknown
components: (part - of : process)
operators : (expand, noinput, nooutput)

OBJECT TYPE

type - name : datastore
child - of : transform
parent - of : unknown
components: (data - structure : <set of data elements>)
operators : (define - structure, noinput, nooutput)

OBJECT TYPE
type - name : external - entity
child - of : transform
parent - of : unknown
components: ()

operators : ()

External entities could be further broken down into data source, data sink, and interactor.

The slot value nunknowtl" refers to the fact that the slot values should be, but have tlot yet

been, defined.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

'4s nrl exa~rlple of instance definztzons, consider the followirlg clescription of the "Londorl"

exterr~al entity and one of the sales invoice dataflows geriernted by it (cf. figure 8)

{identifier : London
type : external - entity
because - of : ()

inputs : 0
outputs : (London-direct-sales-invoices,

London-assigned-sales-invoices,
London-statistical-sales-invoices)

{identifier : London-direct-sales-invoices

type : dataflow
because - of : (London)
part - of : 0
medium : magnetic tape
from : London
to : auto-load-and-edi t)

Similarly, instances corresporldi~~g to other object types can be defined. Note, t ha t tahe

instance definitions have all the slots defined in their inlmediate type, as well as inheriting

those of their supertypes.

This representation allows us to define d a t a flow diagrams completely. It is also possible

to perforni "syntacticn consistency checks using information in the hierarchy. As n, sirriple

example, if n bubble has rto i r~puts , it must be removed or new inputs rrlust be defined.

However, application-specific i~ l fo r~na t ion is not nlair~tained in this representation. For

instance, if London invoices beco~rle "fornlatedn, ramifications of this change c a ~ ~ n o t be

assessed using the knowledge in the hierarchy a lo~le (i.e., without using the "because-of'

slot). T o reason about such situations, additional knowledge structures are required, which

we describe below.

Center for Digital Economy Research
S t em School o f Business
Working Paper 19-85-66

3.2. Representing Rationales as Dependencies

Design decisions at tlie Structured Analysis level clefine bubble and dataflow objects. The

rationale or jus t i f i ca t ion of a decision corisist,s, in t ,ur~i , of otlier decisioris. T o illustrate,

consider figure 9 which sliows a network of dependencies aIuorig a few of the dataflows arid

bubbles consiclered so far. Specifically, t he auto-loacl-&lid-eclit is justified by the exist:.nce of

New York arid London iilvoices, which forin its "set of support" (Doyle. 1978) or tlie

curr~ulative reason for it,s existence. The convert operat,iori is justified because London sales

invoices are not fornlatecl correctly. Sinlilar cteperidericies can be identified for otlier

decisions.

The conlplete depe~idency network corresporidi~ig to a design niay be viewed as

incorporating the overall purpoJe of a set of design decisions. The general form of a

dependency is:

(<decision> <justification>)

where <decision> arid <justification> are both object instances. 111 REMAP, each design

object tnaintaiiis a cuiriulative set of justifications in its because-of slot that constitutes its

set of support.

In order to denlolistrate the usefltlriess of this dependency network, let us reconsider the

first scenario where the London invoices become formated. In this case, the convert

operation is no longer required since its essentzal support elernents have been eliminated.

Similarly, in the second scenario where the London office does not sell fuels anymore, no

Inore invoices are generated from London. Again, no conversiotl operation is required.

However, the auto load and edit operation is still required because New York invoices are

still t o be processed.

In general, an existing dependency network such as the orie on figure 9 can be used to

assess certain ranlifications of a change, a process cornnlonly referred to as helze f

muin tenance (Doyle, 1978). In the above exanlple, conversion is not required for London

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

A DEPENDENCY NETWORK

JNTOILK DIIIIm
SALES IYVOlCES A m 0 LOAD

r Y D EDIT

-NIT AND
COllRTCT ow-uL6

Figure 9

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

invoices. However, tlie dependency network does not indicate how these invoices should be

treated because this k~iowleclge is not rxpressec-l in the network. 111 order to assess the

complete repercussioris of the change. ailclitiorial knowleclge of a more general nature is

required. For example, t o realize that forrtlatecl Lo~idori iiivoices should be treated like New

York invoices (and should proceed directly for verification), it is necessary to kiiow that zn

general formated invoices are verified directly. This knowledge can then be used to reasoil

about all object instances corresporiclirig to formated invoices.

3.3. Learning as Rule Formation

Dependency inforrriation as t~iclicatect in figure 9 is represented in terrris of oh~ect znstnnces.

For exarnple. tlie auto-load-and-edit (bubble I) is justified by the two kinds of dataflow

objects originating fro111 London. A n object type corresponding to this invoice dataflow

might have slots such as data , arriount. or office originating the invoice. However, not all

slots are relevant to the justification. For example, the auto-load-and-edit is perforrried

because the invoices are computerized, regardless of their other features. If the systeni is to

be able to leurn anything from existing designs, it ~r ius t also have access to the general

rules on whzch the dependenczes have been based because the rules differentiate the

important features of the relationship froni the incidental. It must generalize the

depende~icies, which can be thought of as examples, into rules.

There are two approaches to exarriple baseci generalization described in the literature. The

controlling factors tha t dictate which of the two approaches to adopt are the number of

examples that are available, and the extent of an u n d e r l y n g theory in the donlain under

consideration.

For domains with little or no theory, i t is desirable to have a very large number of

examples from which to generalize. In such situations, gerleralizatiorl involves detecting

patterns in the data , which is essentially a process of theory formatzon. Examples of this

approach can be fourtd in hlichalski (1983), Langely et. a1 (1983), and Smith (1980). Borgida

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

and Willia~rlsorl (1985) apply the snrne idea to the reorganization of database schemas based

on the analysis of exceptions in a crtrrent schema.

In contrast, for generalization basetl on few or single exanlples, it is best if there exists n

strong theory of the donlain. The exanlple can then be verified for correctness using the

theory, and then gerleralized into a useful for111 (i.e. a rule) for subsequer~t use by

tnaintaining only the essential features of the exarrlple -- where these features are clerived as

a side effect of applying the theory. Mitchell et.al (1985) and Mahadevan (1085) describe

this approach in the context of digital circuit theory.

Unfortunately, neittler of these approactles appears feasible for our problenl since application

areas are too diverse and 1cliosy11cratic to provide a theory, and examples are few. This

forces us to 111ake a eo~newltat strong assun~ption about the systerrl clesign process, rianlely,

that when the designer specifies the purpose of a clesign fragrnent as part of an initial

system design, the rationale is a reasonably accurate one. While the validity of this

assunlptior~ is debatable in principle, it appears to be a reasonable one in practice (Yourdon,

1976) since the analysis and design process irlvolves extensive exchange between users and

analysts -- by the tirrle design specifications are actually articulated in terms of a structured

~rrethodology (like SADT, or DFDs), there are well defined rationales for them. In light of

this, REMAP requires the designer or user to generalize specific dependencies to design rules

during ttte process of systerzt analysis and design. This requires articulation of the

justifications for choices, as well as of the general basis for the justifications. In effect, the

"exp lana t io~~" for the dependency f o r ~ r ~ s the basis for constructing the rule.

A more crucial issue however, is what form these rules niight take. O n the one hand, the

rule can be expressed in terms of objects and their slot values, for example:

(dataf low
medium: computerized) ==> verify on line

{dataf low

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

medium: paper) ==> perform conversion

If tlie nlediu~il slot has not been defined before. the type clefinition of ciataflow can first be

extended to include it. Nevertheless, there is a rilajor prohlern with this schetiie. Recall t,hat,

so far, the generalization hierarchy for clatnflows is extrenlely shallow i~iclucling orily vile

type, namely the dataflow (cf. figure 8) . Adding addit,ional slots for each rille will soon

yield very coniplex object types. 111 looking at the different invoices -- which are instances of

type dataflow -- it is apparent that different attributes are relevant i11 descrihiiig the

various instances. For example, paper invoices niight he distinguished by their co lo r , an

at tr ibute that is irrelevant for describing coriiputerizecl invoices. Thus, ir~ost slots in t,he

extended dataflow type definition would remain llnfilled for many objects.

This situation can be expected to occur in the early stages of the systerrl analysis process,

when the syste~rl is still unfamiliar with the application area. New design decisions could be

added and instantiated as instances of an existing type although they differ qualitatively

from other instances, arid might therefore be better off described i ~ i ternls of a different

bundle of attributes.

When instances vary sufficiently, this indicates tha t the generalization hierarchy must be

extended to include niore specific subtypes. For exa~riple, exteriding the generalization

hierarchy in figure 8 would involve creating two new types, narrlely paper-invoices and

computerized-invoices arid re-classifying the existing instances in light of this new

classificatio11. Further, co~nputerized-invoices can then be broken down into magnetic-tape-

invoices and on-line-invoices if appropriate.2 The reconfigured generalization hierarchy would

then appear as in figure 10, and iri coritrast to the rule representatio~l above, the rule could

 his raises the following question: how rrtight the prograxrl differentiate aIrioIig situations
where the generalization hierarchy should be extended versus those where little is to gained
by extension? Although we have yet to address this question adequately, it appears tha t a
reasonable heuristic for deciding wlleri t o exterid t h e generalization might be based on tlie
need for additional ~ I o t s to differentiate newly defined object instances.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

RECONFIGURED GENERALIZATION HFIRARCHY

NEW YORK ASSIGNED '

i N S T

I

Figure 10

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

then be stated in ternts of the newly defined object t,ypes.

To illustrate, such rules might appear as:

{computerized-invoices) ==> perform auto-load-and-edit

{paper-invoices) ==> perform manual-add-and-edit

It should be possible to use these rule structures in two ways. First, if an operation ar~ch as

auto-load-and-edit is part of a design and has one or more corriputerized inputs coming into

it, these s l~ould be added atitonlatically to the operation's set of support. Second, if no such

inputs are in the design, the rule can be used to compare "expectedn reasons for the

operatio~t to the justifications provided by the user, or to suggest cltanges in designs tha t

appear "inconsistentn with the knowledge in the rules. 3

3.4. Analogical Reasoning Using Object Classification and Rules

In section 2, we introduced a scenario where a new operation was added, nantely, sales of

fuels front Venezuela. In order to assi~nilate such a change into art existing design, a

program must be able to utilize its krtowleJge concerning the purpose of "similar" design

fragments. Specifically, it must deter~nirte what features of the new situation are the same as

objects it already knows about, and then a t te~r tp t to learn about the unique features of the

new situation, represented in terms of one or several design objects.

As we have pointed out, knowledge about the various design objects is orga~lized in the

form of a generalization hierarchy, with rules referencing nodes in this hierarchy. 111 order to

categorize a new object, it is necessary to first determine, if possible, the most specific level

of abstraction in the generalization hierarchy tha t is applicable to it. For example, if

REMAP'S current knowledge about dataflows is tha t shown in figure 11, and contputerized

 his assumes that the rule is "correctn. An existing rule tha t turns out t o be
inaccurate, leads to a "contradictiorl" in which case the rule can be discarded by the belief
~ltairitertance ntachinery, or refined interactively.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

but unforn~ated invoices cotlie in or1 ruagrletic tape froni Venezuela, tlley would be classified

as a nnMagnetic-tape-invoiceJ" dataflow. Once the tiiost specific level is found, rules

referencing objects a t that level can be applied. For exaniple, if Veriezuela invoices had been

forniated, a rule callirlg for a "verify arid correct on line" operatio11 would be applied.

Similarly, if a match on other attributes is found, tilore specific rules can be applied. In

general, it is likely that rules applicable to s o ~ n e of the attributes of a new object will be

found, while the systerti will riot have rules cleali~ig with others. For these, new rules rnust

be extracted froni the user

If no rules are applicable to the newly defined object at the most specific level, the systern

can look for more general rules that might he applicable. Specifically, this involves ~ i ~ o v i n g

up the ge~ieralizatiori hierarchy until a rule is found that is applicable at a higher level of

generality. In the exatriple considered above, this would involve gathering rules applicable t o

magnetic-tape invoices. then cotiiputerized invoices, and finally dataflows iri gelieral. For

Venezuela invoices, we can see that one of the rules rrientioned in the previous section will

apply at the level of computerized invoices, suggesting tha t an auto-load-and-edit operation

be performed on them.

It should be noted that even tllougti there rrlay not be a n object in the design that is

similar to the new one, existing rules might still apply. For example, Loildon invoices were

previously unformated; this had required a convert operation which was subsequently

eli~riinated when the form of these invoices was changed. However, the niore general piece of

knowledge tha t should have bee11 extracted a t tha t time in the for111 of a rule, now beconies

applicable to Venezuela invoices.

Finally. we should distinguish between the analogical rensonzng procedure described above,

and the learnzng by analogy procedures of Winston (1979) and others. In analogical learning,

there is typically a domain where a known theory already exists in the form of rules or

some other converiierit representation; examples fro111 this do~iinin are then riiatched with

Center for Digital Economy Research
Stem School of Business
Working Paper IS-85-66

exaniples from a doninin in whicll the learning is to occur. Drawing analogies between the

exa~nples leads t o rule for~tiat ion in the target cloninin. In contrast, ar~alogical reasoning, as

we have described i t , involves deterlulrling what i ~ p p l z l i ' to a new situation gzL'en what is

already known in the same doniain. This requires breaking clown the new sitrlatior~ ~ n t o

parts that the system already knows how to deal with In our representation, this requires

~riatching the new situation successively against rtlore geileral knowledge about the application

by n~oving up the generalization hierarchy. The procedure is described niore forrrlally i ~ i the

following subsection.

3.5. REMAP Control Structure

In order to incorporate new knowledge and to reason about user critiques, the model

requires an overall control structure that enables it to switch among design support arid

knowledge acquisition modes. Figure 11 provides a high-level transition network

representation of the main ~tlodes.

The add mode is the usual starting point for a new systeni. The designer can add a set

of proposed new design objects and their associated dependencies. The system can invoke the

analogzcal reasonzng ~t lode to assist in this task to whatever extent possible. The belze f

mazntenance mode is responsible for checking the corisistency of proposed changes with

respect to existing object types and rules. The learnrng niode interacts with the user in

order to establish a generalization of dependencies tha t are [tot derivable from existing rules,

possibly adding new rules and specifying new object types. The systeni then rrioves into the

belief maintenance mode in order to check the compatibility and consequences of the newly

acquired knowledge.

If there is an existing desig~i to be iniproved, or reused for another system, the system will

s tart in the crztzque mode. Here, the designer may want t o chaiige or add to certain par ts

of the design. Again, feasibility and possible learning opportunities induced by the change

can be studied in the belief rrlai~iteriarlce (for a fornial description of belief rl~airttenance

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

STATE TRANSITION NETWORK

DESIGN .-J
REVISION

CRlTlPUE

Figure 11

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

slgoritllms, see Doyle (!979) and hlc.4llester (1980)) and learrlirig rnocles. The interaction of

these contponents of the REMAP nrcliltectllre is described below in "Structured English."

Add-mode :
1. DOWHILE user is entering object instances.
2. Accept object instances.
3. Invoke Analogical-Reasoning-mode
4. IF enabling conditions of a rule are

satisfied by instances
THEN 4a. Create dependencies generated by rule.

4b. Invoke belief maintenance.
ELSE 4c. Accept dependency.

4d. Invoke Learn-mode

Learn-mode:
1. Extract essential features (slot values) of objects.
2. IF slot value is an object instance

THEN 2a. Note its type
ELSE 2b. IF needed slot does not exist

THEN Create-new-type-mode.
3. Propose generalization (rule) in terms of the identified

or defined types.

Create-new-type-mode:
1. Record context (slot values) of object instance.
2. Define new data type corresponding to relevant slot of

this instance. Establish an IS-A link to
parent-of of the object instance.

3. Create a new instance of the new data type.
4. Assign slot values to the new instance

corresponding to the old instance.
5, Destroy the old object instance.

Critique-mode:
1. Accept user critique in the form of negation to existing

decision, or addition to design.
2. IF negation

THEN invoke belief maintenance
ELSE invoke Add-mode.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

1. Identify lowest level in generalization hierarchy into
which the newly defined object can be categorized.
Call this the focus.

2. While focus is not the root of the generalization
hierarchy:

2a. Find and instantiate rule applicable at focus.
2b. IF applicable rule does not include all

attributes of newly defined object
THEN Invoke Learn-Mode.

3.6. Implementation Status

Sonte key aspects of the REMAP architecture have been incorporatetl in a small system

intended to test their feasibility. The systern contains an imple~~tentatiori of the object type

hierarchy and an initial knowledge base about d a t a flow diagrams. Knowledge is represented

using FLAVORS (Moon and Weinreb, 1981), a LISP-based utility tha t supports object-

oriented programming. An annotated example irlteraction is displayed in Exhibit 1. The

example demonstrates eortle features of the various niodes of figure 11, rtarrlely the "add"

and "learn" ~tlodes in addition to setting u p the dependencies. The user begins by inforrrling

the systern about a new design fragnient. nar~iely, London invoices. Specifying the type of

object being defined causes the system to query the trser about the relevant attributes. The

generalization hierarchy is then ~ugrrlerited with the new objects, arid justificatior~s including

their general bases (the rules) are extracted. In sulru11ary7 the irttplertientation so far has the

capability to accept d a t a flow diagram object i~~s tnnces , t o gerierslize cleperldet~cies t o rules,

and to expand the ger~eralization hierarchy.

A feature currently being added is a conrtection between FLAVORS and McAllester's

(1982) belief mainte~lance system, RUP, so we rrlay utilize its belief niairltenance tl~achirrery.

In addition, a more habitable user interface is under development. 111 nlatchi~lg "sinlilar"

situations to ones known to R E M A P (i.e. the arlalogical reasoning mode), we intend to use

methods similar to Wir~storl's analogical reasoning (Winston, 1979). Specifically, in

Center for Digital Economy Research
Stem School of Business
Working Paper IS-85-66

r

Center for Digital Economy Research
Stem School of Business
Working Paper IS-85-66

To begin with, t l ~ r user itlay wislt to eltier a d e ~ c r i p t i o ~ ~ of a fraq~ner~t of the data flow diagr*. tn this example, we deftfie
tlrr fragtl~er~t in level 1 cnr reppo~~di~~g to the autc-load-a~~tl-edit. TItr "'" sigtt reprew11t.i the eysten~ top level prompt. l 'ze~

irtpt~t i* underlined. Ar~itotatiotrr to the rlialoaue are provitlrd ill parc~~tl~eies.

* a d
type: external-entity
name: London
output: London-direct-sales invoices

London-assianed-sales-invoices
London-statistical-sales-invoices

type: dataflow
name: London-direct-sales-invoices
from: London
to: auto-load-and-em
medium: maatape

0

0

(Similarly, other dataflows are entered.)

type: process
name: auto-load-and-edit
inputs: London-direct-sales invoices ...
outputs: Sales-invoices Error-re~ort Exce~tion-reDort
because-of: London-direct-sales-invoices

London-assianed-sales-invoices
London-statistical-sales-invoices
NY-direct-sales-invoices
NY-assianed-sales-invoices

(Tlte "because-of" slot simply records the justification3 for performing an auto-load-and-edit operation. At this point, cin h e
basis of the infor~uation supplied by the user, tlte ryster11 auqnlents the generalizatio~t hierarchies as indicated ill figure 9. Now

having noted the justifications, the systenr proceeds with attempting to construct rules based on generalizatioar of theee
dependencies.)

Identify the essential features of the object required for the depet~dency:

(dataflow name: London-direct-sales-invoices '

medium: magtape
from: London
to: autoload-and-edit)

==> (auto-load-and-edit)

: maataoe London

(The user states that the fact that the input is on magnetic tape justifies the auto-load-and-edit operation (a more general
reason, not expressable here, is that the input is cornputenzed as opposed to nlanual). A h , the user states that tlre operatioa
is required because there's an input from London. The system attenrpta to "generalize" this by considering whether this is true .
for inputs fron~ exter~tal entities in general, as we see below.)

London is an instance of an external-entity.
Is the following rule true:

((magtape)(external.entity)) ==> auto-load-and-edit
:yes

,Having eslahlisl~ed t l~is rule. the syeheni will go tltrouqlt a si111ilar process for otlter inputs that are trot similar 10 tile ogle just
cottsidered sitice tlte depctde~~ciec ritahlirlrrd by t l t rn~ are explainable hy tlrc rule just estahliel~ed. 111 tltid exsrr~plr, it wotiltl
skip the r e ~ n a i ~ ~ i n g Lor~durt illvoicer and proceed Lo establish t l ~ e ~ r e l a t i o ~ ~ s l ~ i p between auto-load-altd-edit and New York irtvoicei.)

Exhibit 1

*

determining similarities. it will be necessary to determine the zmportant aspects of a

situation, and use them together with classlficatiorl based knowledge in order to assess the

correspondence of situations.

Although we believe that the current system demonstrates the feasibility of soirie iniportn~it

features of our model, substantial additional research will be required prior to n full-scale

inipler~~entatio~i. Leaving aside itlterface issues such as grapllics input and otitpnt, there is a

need to extend two aspects of tlie ~rlodel itself.

On the one hand, the type hierarchy rilay grow very quickly; nletliodologies w ~ l l be rieecled

to keep it a t a ti~anageable size, arlcl to help tlie user locate the correct type for a new

instance. One way to reduce the number of types would be to allow multiple typing of

instances and/or multiple inheritance in the type hierarchy. However. rriultiple i~ilieritarice

introduces its own set of problems, such as it~corisistency arid search coniplexity.

On the other hand, the present model only hanclles jus t i f ica t io~~s for existing design

decisions. A Inore prescriptive approach could associate feasibility bounds for subsequent

design decisions with an object. For exatilple, it should be possible to state that the choice

of paper invoices exclude tlie use of the auto-load-and-edit process, even if the alternative,

manual-add-and-edit, has not yet been defined elsewhere. A further step is the autumuttc

chozce between several feasible alternatives (Dhar and Quayle, 1985), acconlplished by the

incorporation of a new object type goal into the model. A design object rriight he declared

dependent on a goal object if it is the optzmul solutzon with respect to that goal. As

requirements change, design clioices may have to be revised due to different trade-offs.

4. DISCUSSION

The REMAP concept can be viewed as a knowledge-based tool for tlie representation and

maintenance of design process knowledge, to be eniployed as part of an integrated software

development and nlaintenance environment. Other in ipor ta~i t features of such an e~ivirorin~ent

Center for Digital Economy Research
Stem School o f Business
Working Paper IS-85-66

such 1a11g1iage interfaces, editors, version corttrollers etc. (Korlsyiiski, 1984) have yet to be

interfaced to our syste~rt but are not currently the focus of this research.

The importance of REMAP'S objectives is cotlfirnled by two rece~lt reciuirerr~ents studies ort

specification-based computing environments (Balzer, et.al, 1982) and on Artificial Intelligence

tools for design support in general (as contrasted to infor~nation systenls design) (Mostow,

1985). Balzer et.al. entphasize the rteed for supporting syste~lts evolutiori a t the design level

as well as a t the software level, 111 particular, they suggest that desigu tools should be

changeable, and that inter-user int-eractio~r shoulcl be supported. We believe that REAMAP

corttributes to the first goal by nlaintaining an evolviilg object type hierarchy (which for

instance, would allow ttte defiriitZiorr of a new design language other ttiart da ta flow

diagrants), whereas ttte second is achieved by rnakirlg each designer's justificatio~ls for design

fragments explicit. Mostow (198.5) also st,resses the need for itlaking design goals, design

decisions and their rationales explicit.

In contrast t o these recognized demands, existing databases or kllowledge bases for software

development tend to focus on the management of design objects rather than on the process

knowledge captured by REMAP. Design databases evolved from the d a t a dictionary concept

which provides system-wide management of d a t a structures as an aid in keeping notation in

the systems designs and progra~its "consiste~lt*. It was soon realized that the d a t a clictio~lary

idea also applied to the ntarlagerl~ent of process/module libraries (Narayariaswanly, et.al.

1985), and to other design objects at higher levels of abstraction. Iittegrated ertviron~rlents

such as TRW's Software Productivity Systerrt (B o e h ~ n et.al, 1982) or TEDII iM (B l u ~ n . 1983)

also allow the designer to relate design objects, programs, and test cases hartdicapped by the

lack of a precise requirements specification language (Borgida et.al. 1984), and because the

relationship between requirements and designs is not explained iri ternts of design decisio~ls

and their rationales.

Proponents of prototyping (Nauniann and Jenkins, 1982) clai~rt t ha t syste~lls cttarlgeability

Center for Digital Economy Research
Stem School of Business
Working Paper IS-85-66

is nutonlatically achieved or substantially aupport,etl throuqh the prototyping process and cite

case studies ill support of t,his claint (- ippleton. 197:)). However, others have recog~iized tha t

in conlplex systems, the prototyping idea t~irist be apptied s t ~r l~t l t ip le levels of abstraction

(Groner et. al, 1979). Tltis in turn, requires snhstn~lt ial control of the process: taking into

account the design ratiorialeu aricl rules learned fro111 errors in previous prototypes (Dhar and

Jarke, 1985). While sorue researchers clairrl that such control can be provitleci by ilotriairi or

other technique specific stariclards. policies a~tcl coristrai~lts to be enforced in the cleveloprrielit

and maintenance euvironrllerit (Jarke and Shalev, 1984; Minsky and Borgicia. 1984:

Morgenstern, 198:3), t,tlis approach assuIrles t-hat such constraints can be erion~eratecl a priori.

A more ambitious approach, enlbodied in the PLEXSYS project (Konsy [)ski et,.al, 1984)

integrates constraint management into a full design support environment. PLEXSYS' dynamic

r~tetasystems (Kotteman and Konsy~lski, 1984) have represent application-specific knowledge in

ternis of art "axiomatic" model that can propagate certairt types of changes to the object

level where design decisions are represented. This approach is si~riilar in spirit t o Davis'

(1979) idea of using "~r t e t a ~ltodels' to maintain and reason about object level knowledge

contained in t h e MYC'IN system (Stlortliffe, 1976). Several other knowledge base

rnanagernent cotr~ponet~ts of A1 syst,enls have been structured along sinlilar lines.

While this approacf~ has proven successful in situations where the scope of applications

known to the rneta-model can be defined in advance, it has furtdatrierital l i~rutations if the

application donlain is not known a priori. Under such circunistances, the high level nod el,

even if definable, Irlay become general t o the point of missing the subtleties involved in an

application area. Wltat is needed instead, is a rtlectianisnl by which the high level model

itself can be synthesized ori the basis of experience in the applicatiolt area. Consequently,

REMAP follows an "open systenis" approach (Hewitt, 1985) tha t begins by representing

knowledge about relationships arrlong instarlces in a domai11 in terms of dependencies, and

generalizes some of these into a growing corpus of rules. In this way, the process knowledge

involved in building an application car, be used for increnlerital nlodificatiort of desigrts, artcl

Center for Digital Economy Research
Stem School of Business
Working Paper IS-85-66

where possible, t o acquire knowlecige in terrrls of applicatiorl specific rules.

Methodologically, our approacli has much i11 corrlrrion with the Progra~llnler's Apprentice

(PA) project (Shrobe, 1979; Waters, 1982; Rich, 1984). Tlie PA is an iiit,elIige~~t system that,

is designed to assist expert prograrrlnlers wit,ll tile ~rlnirlterla~lce of large programs. Like

REMAP, the P A uses a depe~lclericy network of clloices in order to represent and reason

about evolvirig progrartls. However. there are t3wo irrlport,n~it differerkces. Our focils is OIL the

more abstract parts of ttie desig~t as opposed to the level of coding. More irrlporta~ltly,

because of the diversity of applications! we are u~lable to assume a fixed library of "cliclles"

or prograr~ltr~ing construct,^, but 111ust build up t,his krkowledge or1 the basis of application-

specific designs. However, orlce our system has corlstructed and orga~lized a library of cliches,

they could be used to reason about "analogous* situations in a similar manner as t,lte PA.

5. CONCLUSIONS

The approach proposed in this paper suggests a novel way of thinking about sys t e~ns

evolution which emphasizes the designer's assunlptions and justifications, rather than

generally valid "~rleta-theories" of design. This reorientatiori is of particular ir~iportance in tile

presence of ~ r~u l t ip l e designers sirice nlaliy apparelit "logical co~itradictiotis" nlay arise as a

result of different perspectzves. each based on a different set of assunlptions.

Fro111 a practical viewpoint, tile emptlasis or1 design cha~lges is of particular i~riport ,a~lce

since it is estimated that at least 50% and probably as rrluch as 70% of software costs go

into maintenance. Yet, problems of design evolutiorl have not been adequately addressed by

previous methodologies, whereas they co~ls t i tu te the focus of our approach. The work

reported here is considered a first s tep towards a process-oriented design environment which

is expected to have in~por tan t applications in a t least three areas.

First, the prototyping method of systems development is enhanced by a learning coniponent

that prevents the repetition of design errors and supports a better fornlal understandirlg of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

the systeni's donlain. Second, the ~~rlcles~rnble prnctlre of just updating program

docunlentation in tlie nlainterlance phase of tlie software life cycle is replaced by a

r~lethodology for ~na in ta i~ l ing consiste~it designs; furtliertriore, the nietflod also prov~cles

guidance iii tlie propagatio~i of proposed chaiiges.

Finally, the ar~alogy-based reasorli~ig conlponerlt of tlie nlet l~od supports the reuse of cocle

arid desig~is it1 s y s t e ~ ~ t s that are si111ilar to existing ones. It also provicles the designer of

such syste~ns with access to the rationales for tlie original design, tlius per~li i t t , i~lg t,he

ellcapsulation of required clesign clifferences and the icleritificatio~i of suitable alternatives.

This co~ttrollecl "clonirlg" capability is particularly valuable in organizations tha t have to

construct a large n ~ t ~ t ~ b e r of fur~ctionnlly si~rlilar systenls for different ciivisions. If process

k~lowledge is [lot ~nai~l ta i i led a u t o ~ ~ ~ a t i c a l l y , such organizations have to rely or1 t,lie experience

and loyalty of a few key i~~dividuals .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

REFERENCES

Appleton, D.S., Systenl LOO0 Database Lfanagenle~it Syste~ri, GUIDE 37, Session
IS-23, Cambridge, MA, Nove~llber 197.3.

Balzer, R., Dyer, D., Fehling., and Saunders., 1982. Specificat ion-based co~rlputing
environments, Proceedings gth Very Large Data Base Conference. Mexico City, pp.
273-279.

Blum., B.I., 1983. A Workstation for Inforniation Systems Develop~rlent,
Proceedings of the 7th IEEE COMPSAC Conference.

Boehm, B.W., Elwell, J.F., Pryster, A.B., Stuckle, E.D., ancl Williarrls, R.D., 198'2.

The T R W Software Productivity System, Proceedings of the 6 t h Iiiternatiorlal
Conference on Software Engineering.

Borgida, A,, Greenspan, S., and Mylopolous, J., 1985. I.*sirig Knowledge
Representation for Requirenlerlts Modeling, IEEE Conlputer (Special Issue on
Requirements Modeling).

Borgida, A,, and Willia~rlson, K., 198 5 . Acco~riodating Exceptions in Databases and
Refining the Schema by Learning fro111 them., Proceedings of the 1 ltli VLDB
Conference, Stockholm, Sweden. August 1985.

CGI Systems Inc., 1984. Presenting PACBASE. Systems Developnlent Software
froni CGI, Pearl River, NY.

Davis, Randall., 1979. Interactive Transfer of Expertise -- Acquisition of new
inference rules, Artificial Intelligence, No.4.

De Marco, T., 1978. Structured Arlalysis a d Systeiri Specification, Yourdon Press,
New York.

Dhar, V., and Jarke, M.. 1985. Learning Fro111 Prototypes, in the Proceedings of
the Sixth International Conference on Information Systeirls, Indianapolis, Indiana.

Dhar, V., and Quayle, C., 1985. An Approach to Deperide~icy Directed
Backtracking Using Donlain Specific Knowledge, in Proceec l in~ of the ?tJ Joirlt
International Corlference Artificial Intelligence (IJCAI), Los iirtgrlee, CA.

Doyle, Jon., 1978. A Truth Maintenance System, A1 Laboratory Merrlo 521, MIT

Gane, C., arid Sarson, T., 1979. Structured Systerns .4nalysis: Tools &
Techniques, Prentice-Hall.

Greenspan, S., 1984. Requirements Modeling: A Knowledge Representation
Approach to Software Requirements Definition, Ph.D Thesis, Technical Report
CRSG-155, University of Toronto.

Groner, C., Hopwood, M.D., Palley, N.A., and Sibley, W., 1979. Requirements
Analysis in Clinical Research Information Processing -- a Case Study, IEEE
Computer 12,9.

Hewitt, Carl., 1985. The Challenge of Open Systerrls, BYTE Magazine, A n r i l

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

Jarke. hf., a n d Shalev, J., 1984. A Database Architecture for Supporting Busil~ess
Transactions, Jour~ ia l cjf Management I ~ t f o r ~ t ~ a t i o n Svstenls 1, 1, pp. '6:)-80.

Jenkins, Milton A., 1983. Prototyping: A Methodology for the Design and
Development of Application Systerils, Working Paper #227, Graduate School of
Business, Indiana University, April 1983.

Konsynski, B.R., 1984. Advances in Information Systems Design, J o u r ~ ~ a l of X S ,
1,s.

Konsynski, B., Kotteman, J . , Nunat~taker, J., a ~ l d Stot t , J., 1984. PLEXSYS-84: An
Integrated Development Environ~nertt for Inforrnatio~i Syste~rls, o u r a cLf
Management I~i forn~at ion Systetlts, volunle 1, No. 3, Winter 1984-85.

Kotteman, J.E., and Konsynski B.R., 1884., Dynamic Metasystems for Infor~nation
Systems Developrl~ent, Proceedings 4 t& I~tterrlational Conference Inforniation
Systenis, Tucsori, Az, pp. 187-204.

Mahadevan, S., 1985. Verification-based Learning: A Generalized Strategy for
Infering Problem-Reduction Methods, i11 Proceedings of the Ninth Internatiorlal Joint
Conference on Artificial Intelligence, Los Angeles, CA.

Martin, J., 1982. Application Development Without P ro~ra rnmers , Preritice-Hall.

McAllester, D., 1982. Reasoning Utility Package, A1 Laboratory Mertto (167

McCracken, D.D., 1980. A Maverick Approach to Systems Analysis and Design,
Conference Systems Analysis a n d D e s i ~ n : Foundation for the 1980s.

Michie., 1982. The State of the Art in Machine Learnirlg, Introductory Readings
in Expert Systems, D. Michie (ed, Gordon and Breach, UK. -

Minsky, N., and Borgida, A., The Darwin Software-Evolution Environment, iri
Proceedings of the SIGSOFT/SIGPLAN Software Engineering Syniposiurri on
Practical Software Development, Pittsburgh, PA, 1984.

Mitchell, T .M. , Mahadevan, S.. and Steinberg, L., 1985. LEAP: A Learning
Apprentice for VLSI Design i11 Proceedings of the Ninth International Joint
Conference on Artificial Intelligence, Los Angeles, CA.

Moon, David. and Weinreb, Daniel., 1981. Lisp Machine Manual, MIT A1 Lab.

Morgenstern, M., Active Databases as a Paradigni for Enhanced Con~putir ig
Environments, Proceedings of the 9 th VLDB Conference, Florence, Italy.

Mostow, J., 1985. Toward Better Models of the Design Process, Magazine,
Spring 1985.

Narayanaswamy, K., Scacchi., and McLeod, D., 1985. Information Management
Support for Evolving Software Systems, Coniputer Science Departtrlent, C'SC, Los
Angeles, CA.

Naumann, J.D., and Jerlki~ts, A.M., 198'2. Prototyping: the New Paradignl for
Systenls Development, MIS Quarterly, 6 , 3 .

Center for Digital Economy Research
Stem School of Business
Ix1orking Paper IS-85-66

2 9

Newell, Allen.. and Rycltener, Mike.. 1978. An lriatructible Production System, in
F.Hayes-Roth atid D. Waterrnan (eds.) , Pattern Directed Inference Systems, Acadeniic
Press.

Orr, K., 1981. Structured Requirernents Spec i f i ca td , Orr and Associates.

Protsko, L.B.. Sorenson, P.G., and Treniblay, J .P . , 1984. Automatic Generation of
Data Flow Diagrams froni a Requirements Specification Language, Proceedings 5th
International Conference hforniation Systenis, Tucson, Az, pp. 157-171.

Reiner, D., Broclie, M., Brown, G., Fridel, M., Krarnlich, D., Lelt~nan, J., and
Rosenthal, A., 1984. The Databse Design and Evaluation Workbench (DDEW)
Project a t CCA, Database Engineering, volume 7, no.4, Dece~rlber 1984.

Rich, Charles., 1984. A Formal Representation for Plans in the Progranirr~ers
Apprentice, in Brodie,M.L., Mylopolous, J., and Schmidt, J.W. (eds.). Conceptual

Modeling, Springer, pp. 239-269.

Shrobe, Howard., 1979. Dependency directed reasoning for cornpiex program
understanding, Ph.d Dissertation, MIT.

Shortliffe, E.H., 1976. Computer-Based Medical Consultations: MYCIN. New York:
American Elsevier.

Sirnon, H.A., 1981. The Sciences of the Artificial, 2nd ed., MIT Press, Cambridge,
Mass.

Smith, S. F., 1980. A Learning Systemrn Based on Genetic Adaptive Algorithms,
Ph.D Dissertation, Pniversity of Pittsburgh.

Stallman, Richard. and Sussnian, Gerald., 1977. Forward Reasoning and
Dependency-Directed Backtracking in a Systern for Co~nputer-Aided Circuit Analysis,
Artificial Intelligence, volume 9, No.2, pp 135-196.

Waters, Richard., 1982. The prograrntner's apprentice : knowledge based prograin
editing, E E Transactions on software engineering, no. 1.

Winston, P.H., 1975. Learning Structural Descriptions from Exaniples, in The
Psychology Computer Vision, Winston a. McGraw Hill, New York.

Winston, P.H., 1979. Learning and Reasoning By Analogy, CACM, vol. 23, NO.
12, pp. 689-703.

Yourdon, E., and Constantine, L.L., 1978. Structured Design, Yourdon Press, New
York.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-66

