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1 

Abstract 

The mainterlance of large infor~ilat,ion systerlls involves cor~t i~i i~or ts  clesigti ruoclifications to 

designs in response to evolving business corlclitio~is or cllarlging user req~~irerrler~ts.  Because of 

the con~plexity barrier associated with engineering suclt systems, charlges car1 be L E ~  hoc and 

prone to errors. Based or1 our observations of such a process in the oil iilctustry, we believe 

that  the systems ~~lairl ter~atlce activity would benefit greatly if the process knowledge 

reflecting the  teleology of a ctesigrl could he captured a11d used in order to reasorl about 

changing requirenlerits. n11d to ciesig~l parts of systenls t,hat might be nsi~rlilar" to  existing 

ones. In t,his paper, we ileacribe a partially inlpleiilerlted formalism called REMAP 

(REpresel l ta t io~~ ancf I21Airlterl;~rlce of Process knowledge) that  accuniulates design process 

knowledge t,o manage systelrls evolutiorl. T o  acconiplish this, REMAP acquires and mairltains 

dependerlcies arrlorlg the design decisions rriade during a prototyping process as well as the 

general domain-specific design rules on whicii such dependencies are based. Ttlis knowledge 

can then be applied to prototype refinement, systenls maintenance, arid the  re-use of existing 

designs to  construct "similarn design fragments. 
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1. INTRODUCTION 

Research in sys t e~ns  analysis and design has resulted in several ~iseful ~nethocls for t,lie 

development of infornlation syste~us.  While these 111ethods are effect,ive it1 developing initial 

designs, they neither support t,lle correction of design errors nor changes in previous design 

choices. As a result, changes in systerii ciesign tend to  be unprincipled, ad hoc, and error 

prone, failing to  take cognizar~ce of the rcztzonales for previous design decisions. 111 this 

paper, we exanline some of tliese ;l~ortconlirlgs and present a knowledge based sys te~n  

architecture called R E M A P  that  alleviates these problems. This architecture supports iterative 

design and ~rlaintenance process by preserving the knowledge involved ill the initial and 

evolving design, and 11lakirig rise of this kitowieitge ill analogous design situatiorls. 

The REMAP architecture has resulted fro111 our observations of a conlplex system design 

effort in a large oil company. This stucly has revealed several types of proces,i knowledge 

that  are instrumental in developing and nlaintaining such systems. First, the design process 

consists of a sequence of interdependent design decisions: The  dependenczes among decisions 

are typically based on general application-specific ru les ;  however, these rules are seldom 

articulated explicitly by users or analysts. Second, when systems are developed in a 

piecemeal fashion following the prototyping idea (Jenkins, 1983), analysts apply a n a l o p e s  to 

transfer experience gained fro111 one subsystem to  "similar components" of another. 

It seems clear tha t  the developrllertt and maintenance process would benefit if this 

knowledge about dependenczes and the general bases for then1 could be accurrlulated in an 

appropriate form and used to  reason about subsequent design changes. Specifically, we argue 

that  a knowledge based support tool for this must have the  followirlg architectural 

components: 

1. a classification of application specific "conceptsn into a taxononly of design 
objects, and mechanisnls for elaborating this structure as more knowledge is 
acquired by the  system. 

2. a representation for design dependencies and mechanisms for tracing repercu::' -sions 
of changes in design; 
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3. a learning mechanism for ext,racting general bases for clependencies arrlong design 
decisions rliade by the analyst. 

4. an analogy based rnechanisn~ for detecting si~riilarities artlong parts of similar 
subsystems. This n~echan i s~n  should make use of the classifications in the 
generalization hierarchy to draw analogies between systenls parts. 

In this paper we describe eacfl of these c o ~ r ~ p o ~ l e n t s  in terrrls of the specific feature of 

process knowledge that  they deal with and how this k~iowleclge is representecl. 111 order to 

establish a sufficient rich context for discussion. we use parts of the design that  were 

actually developed i11 the systerrl clestgtl irl the oil corrlpany. 

The remainder of this paper is organized as follows. Section 2 begins with detailed real- 

world examples that  are used to show the need to rnairitain process knowledge and to  

identify different kinds of such knowledge. A formal tnodel of our approach is presented in 

section 3, along with an  overview of a partial irl~pierrtentatiorl of the R E M A P  architecture. 

Section 4 provides a discussion relating the rtlodel to  prevlous work in syste~ils analysis and 

artificial intelligence. We conclude with a surnnlary of possible applications which rriay 

benefit from the REMAP approach. 

2. A CLASSIFICATION OF PROCESS KNOWLEDGE 

In this section, examples from a case study in the  oil industry are used to illustrate 

different for111s of process k~towledge. Four classes are identified: specific knowledge about 

design dependencies ( a t  the level of znstances),  general knowledge about design rules, 

knowledge about the esserttialit,y of conclitions for certain design decisions, and knowledge 

about analogical properties between design situations. 

2.1. A Case Study 

The problenl studied in the oil conlparly involves t h e  design and subsequent ~naintenance of 

a series of sales accounting sys te~ns  for different products of the  cotnpany, here referred to  as 

OC. OC sells oil and natural gas-based proclucts with different characteristics to its 

subsidiaries and to  outside custon~ers in different par ts  of the world. Sales Accounting a t  
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OC's Corporate Headquarters requires generntltbq varin~is integrated reports for purposes of 

audit and control. Input to Sales Accounting is based on invoices generated front trallsactio~ls 

in a trurnber of offices in the LiS and abroad. 

For the sake of readability, the systern represeritation is restricted to  the Structured 

Analysis level (DeMarco, 1978; Gane and Sarson, 1979). Note, however, tttat the proble~rls 

described here, and our approach to solve t1ie111, are not restricted to this level but appear 

in any systenrs ~nainteriance situation. 

Systenis designs are described in ternis of d a t a  flow diagranis at  various levels of 

abstraction. A da ta  flow diagrani is a network where the nodes represent processes. exterrial 

entities, or  da ta  stores (files), and directed arcs represent the da ta  flows fro111 one node to  

another. Process nodes are frequently called "bubbles"; each bubble can be decorrlposed into 

a lower-level da ta  flow diagrani. Bubbles a t  the bottom level have associated mini-specs on 

which the program designs are based. Data  flow and d a t a  store information is managed in 

d a t a  dictionaries. Figure 1 shows the notational conventions used in this paper. 

Part  of the structured top-down design of 0 C 7 s  Sales subsystem is illustrated in figures 2 

through 5. Figure 2 shows level 0 of the system. In this example, since Sales corrlprises 

the entire system, this can also be used as the coritext diagram which depicts the 

relationship of the systenl to  external entities. Figures 3, 4, and 5 are d a t a  flow rl iagra~ns 

for levels 1 and 2 of the sales aysteni. Level 2 (figures 4 and 5 )  are the  bottoln level 

decompositions of the bubbles 1 and 3.  Each of the bubbles at  this level have a n  associated 

mini-spec (not discussed here). 

We now illustrate the problern of design adaptation using three scenarios Each requires a 

different extent of modification to the original design, arid illustrates the  need for a different 

aspect of process knowledge. Ail of the exarriples i~ivolve external requirerrlents changes but  

similar proble~ns also occur during the refinerrlerit cycle. 
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2.2. The Role of General and Specific Knowledge 

"London Sends Formated Invoices". 111 the origir~al design, the difference between the 

New York and London invoices was that  the forilier were accessable formated whereas the 

latter were received unformated,  on magnetic tape. Hence, a, niinor "convert" operatio11 was 

required to  bring the inputs into a forrrlat required by the "verify and correct on linen 

operation (bubble 1.1). 

As a sitnple change. suppose that  the London office begins to send correctly for~nated 

invoices on rr~agnetic tape to central headquarters. What kinds of design nlodifications are 

required? 

It is clear tha t  the change is not a t  a high enough level to affect the rnore abstract parts 

of the design in figure 3. However, a t  the next lower level (figure 4 ) ,  the "convert" bubble 

is not required anymore since the London invoices should now proceed directly for 

verification. 

In order to  be able to assirliilate this nlinor change, the systern must know tha t  in the 

existing design, the convert bubble is dependent on the existence of the dataflows 

representing London invoices. On recognizing that  London invoices are now not unformated, 

it should be able to detect the fact that  conversion is unnecessary. Further,  it show also 

know that  zn general, formated invoices proceed directly for on-line verification. Based on 

this, it should direct London invoices to  the "verify and correct on linen operation. 

In summary,  we have used two types of knowledge in underst,anding the existing design 

and the effects of changes to  it: general knowledge about donlain-specific constraints (i.e., 

unforn~ated invoices require conversion), and speci fzc knowledge about the  purpose of existing 

design objects in the form of rationales for existing design choices (i.e., t he  existence of the 

convert bubble in figure 4 depends on  the existence of unformated invoices). 
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2.3. The Role of Essentiality 

*London and Tokyo Will Not Sell Fuels Anymore". This represertts a rnore radical 

type of change than the first. Intrtitively, it seents clear that  clesign changes as well as 

major related nlodifications are needecl irl several sections of the code. In this case, lack of 

invoices from Tokyo obviates the need for a r~tanual add and edit operation at  level 1 ( a  

m a n u a l  input operation was required because these were p u p e r  invoices). However, tlle auto 

load and edit is still required because New York invoices 111ust still be processed. 

This exanlple illustrates the idea of e s s e n t z i ~ l ~ t y  In ctesign; the Tokyo invoices dataflow was 

art e s s e n t z a l  i~tpil t  for ~itanttal acicl allti eclit. In n rnore general sense, the p u r p o q e  o f  a 

nlartual add ancl e d ~ t  operation was to process paper invotces. The  ottter tnputs to tt ( the  

discount payable slips, codes and expenses) were czuzalzary, and in fact d e p e n d e n t  on Tokyo 

i~ivoices. 111 effect, bubble 1 stays (although sorrle of its lower level components 

corresponding to London operations are removed), while bubble 3 must be deleted. The  

revised level 1 dataflow design is shown in figure 6. 

It should also be noted that  although the manual add and edit operation is no longer 

necessary, some of the  lower level operatio~ts associated with it are still required ~ I I  order to  

process New York invoices. At the programming level, this Irlesns that  the code 

correspondi~lg to those operations is not deleted since it is shared with the  au to  load and 

edit process. 

l ~ h i s  illustrates the  "non-uniform" nature of dataflow diagram entities, t ha t  is, 
relationships anlong "u~tconnected" entities, and the design consequences tha t  can emerge due 
to changes in them. 
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2.4. The Role of Analogy 

"The Venezuela Office Will Sell Fuels". This correspor~cls to  a high level change that  

is likely to induce widespread changes into the existing design. First, sorrle additions must 

be rriade at  level 1. The types of cha~tges, however, depend on the nature of the  sales 

invoices from Venezuela. If the invoices are conipnterized, an input into bubble 1 is required 

whereas paper invoices would call for iritrocluci~~g a rriarluaI add and edit operation. 

Sinlilarly, a t  the next lower level, the operations required would depend on other, rllore 

detailed features of the i~ivoices (i.e. are they fornlatecl. unforn~ated,  etc.). 

This example illustrates the use of analogy in reasoning about a new sitiiatior~. Design 

additions a t  the various levels depend on how "si1nilarn the Venezuela invoices are to  

existing ones, and the design ramifications of these similarities and differences. This type of 

reasoning requires a systern to carry out an elaborate nlatch between desig~i parts the system 

currently knows about,  and a new design in order to draw out their analogous features. 

Specifically, it requires some notion of what are the z m p o r t a n t  dimensions in the analogy 

being sought. In this example, relevant attributes in drawing the analogy are the rnedzum o f  

the invoices, tha t  is, whether they are computerized or  manual, and whether they are 

formated.  Once the important features are realized, the design rarrlifications become clear. 

2.5. Summary: The Need for Teleological Knowledge 

In walking through the examples, we have attached fairly rich iriterpretntions to  the  

various design components that  are zmplzczt in the design. These iriterpretat~oris derive from 

the purpose of the application which cannot be determined from l o o k i ~ ~ g  a t  the resulting 

design alone. Since the design is an  artifact (Simon, 1981), its teleological structure is 

imposed by the deszgner's conception of the problem. This  conception nlay change repeatedly 

during the evolutionary design process. In other words, there is no  a przorz *theoryn relatirig 

problems to  designs; rather, the rationale for a particular design follows from a subjective 

world-view of the designer. 
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If a program is to be able to  reason about about the types of changes illustrated in the  

exalnples, it riiust have a fornial representation for the knowledge that  reflects the teleology 

of the design. Because such highlv contextual kl~owledge about a potential application area is 

i~iipossible to design into a systeni a priori, the knowledge iiiust be ucyuzred by the  system 

durzny systenr design. T o  d o  this, the program must be equipped with niecl~ariisn~s that  

enable it to learn about design decisions in an  application area tliat it knows nothing about 

at  the s tar t  of the  design. It niust then apply this growing body of acquired knowledge to  

reason about subsequent niodifications to an  existing design, or to construct new designs 

based on new but i r r ~ i l n r  rerluire~~ierits. 111 the following section, we describe an architecture 

called R E M A P  that  is geared toward tlie extraction and nianagenient of the process 

knowledge involved in syst.e~lis development slid ~ilailitenance. 

3. REMAP: ARCHITECTURE AND IMPLEMENTATION 

REMAP (REpresentation and MAintenance of Process knowledge) is a knowledge based 

system designed to  address the needs identified in the  previous section. It is apparent from 

the examples tha t  application-specific knowledge plays a key role in reasoning about a 

design. This  raises a n  important  question, namely, how is this knowledge to be acquzred by 

REMAP? 

In most projects involving the construction of a knowledge based system, the systent 

builder constructs the rilodel of expertise by first specifyi~ig a represel~tatiori. and t,fien 

accreting the knowledge base in accordance with the  precepts underlvirig tile chosen 

representation. I ' n f o r t u ~ a t e l ~ ,  large scale application developnients t,ake place in a wide 

variety of donlairis tliat nlay have little in conlnion. This u~tiqueness of each application 

situation discourages cor~st ruct io l~  of a kltowledge base tha t  might be valid for (I rensoriable 

range of applications. 

If a knowledge based systerii is to be able to support the  process of systems analysis and 

design, it 111ust have an iriitial representational franiework, arid ~liechaiiisrlis t o  augnient this  
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franlework with domain specific knowledge that  captrlrer the purpose of cleslgn clecisions and 

relationships among them. As more is learried, i t  should he possible to rrse this process 

k~towledge to  reason about design cha~lges,  at~cl clrnw analogies in exte~ldilig a design to  deal 

with new situatiotls. 

In the following subsections, we develop a knowleclge represe~ltatiori for this process 

k~lowledge, aiid preaerlt a niodel of how it rltight he extracted ancl used by tlte REMAP 

syste~n architecture. Each of tire conlpo~lents of this architecture illustrates the use of a 

certain type of process knowledge. We conclude the section by illustrating how these 

components irlteract through a global coritrol structure, arld describe a partial irrlplel~lentation 

of some key features of the systern. 

3.1. Representing Designs Using Structured Objects 

The REMAP model centers around deszgn  objects .  The designer defines zn.qtcsnces of sllch 

objects, whereas the REMAP system maintains a genera l z za t ion  h z e r u r c h y  of object t y p e s .  

The structure of an object type definition in the hierarchy is as follows: 

OBJECT TYPE 

type name : <string> 
child - of : <set of object types> 
parent - of : <set of object types> 
components: <set of slots> 
operators : <set of procedures/methods> 

The "child-OF and "parent-of" components position an  object type in the generalization 

hierarchy. "Conlponents" slots describe typical aspects of an  object iristarice of the given 

type. As an  example, corlsider the initial top-level definition of a generic object type: 
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OBJECT TYPE 
type name : generic - object 
child - of : ( 1  
parent - of : unknown 
components: (identifier : <string> 

type : <string> 
because - of : <set of objects>) 

operators : (define, remove) 

This rneans that  any object will have an  identifier, a type,  and a "because-of' slot. The 

generic object type has no parent since it is a t  the top of the hierarchy, and its children are 

yet to be specified. The "because-of' slot defines the razson d 'e tre  of an object instance and 

will be further discussed in the next subsection. 

A "generic' object provides very little s t r~lc tura l  information about its semantics. It is 

therefore useful to  speczfy subtypes for which additional slots are defined in order to  capture 

the meaning of object irlstarlcea of such a subtype. This can be represertted uslrtg a 

generalization hierarchy of object types as show11 in figure 7 .  Sotne instances of dataflows 

and transforms used in the three scenarios of section 2 are shown in figure 8. 

In principle, the system could begin with the generic object type and then learn all 

subtypes fro111 scratch. Since such a procedure would be rather cunlbersome for the  designer, 

the system should be provided with a small initial knowledge base. 111 the  Structured 

Analysis example used throughout this paper, this corlsists of the  definitiori of object types 

corresponding to da ta  flow diagram conventions. The five major corr~por~ents are defined 

below (cf. figure 7 ) :  
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INITIAL OBJECT TYPE HIERARCHIES 
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Figure 7 
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OBJECT TYPE 
type name : dataflow - 
child - of : generic - object 
parent - of : unknown 
components: (part - of : dataflow; 

medium : <string>; 
from, to : process) 

operators : (redirect, nostart, noend) 

OBJECT TYPE 

type - name : transform 
child - of : generic object 
parent - of : (process, external, datastore) 
components: (inputs, outputs : <set of dataflows>) 
operators : ( )  

OBJECT TYPE 
type - name : process 
child - of : transform 
parent - of : unknown 
components: (part - of : process) 
operators : (expand, noinput, nooutput) 

OBJECT TYPE 

type - name : datastore 
child - of : transform 
parent - of : unknown 
components: (data - structure : <set of data elements>) 
operators : (define - structure, noinput, nooutput) 

OBJECT TYPE 
type - name : external - entity 
child - of : transform 
parent - of : unknown 
components: ( )  

operators : ( )  

External entities could be further broken down into data source, data sink, and interactor. 

The slot value nunknowtl" refers to the fact that the slot values should be, but have tlot yet 

been, defined. 
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'4s nrl exa~rlple of instance definztzons, consider the followirlg clescription of the "Londorl" 

exterr~al  entity and one of the sales invoice dataflows geriernted by it (cf. figure 8) 

{identifier : London 
type : external - entity 
because - of : ( )  

inputs : 0 
outputs : (London-direct-sales-invoices, 

London-assigned-sales-invoices, 
London-statistical-sales-invoices) 

{identifier : London-direct-sales-invoices 

type : dataflow 
because - of : (London) 
part - of : 0 
medium : magnetic tape 
from : London 
to : auto-load-and-edi t) 

Similarly, instances corresporldi~~g to other object types can be defined. Note, t ha t  tahe 

instance definitions have all the slots defined in their inlmediate type, as well as inheriting 

those of their supertypes. 

This representation allows us to define d a t a  flow diagrams completely. It is also possible 

to  perforni "syntacticn consistency checks using information in the  hierarchy. As n, sirriple 

example, if n bubble has rto i r~puts ,  it must be removed or new inputs rrlust be defined. 

However, application-specific i~ l fo r~na t ion  is not nlair~tained in this representation. For  

instance, if London invoices beco~rle "fornlatedn,  ramifications of this change c a ~ ~ n o t  be 

assessed using the knowledge in the hierarchy a lo~le  (i.e., without using the "because-of' 

slot). T o  reason about such situations, additional knowledge structures are required, which 

we describe below. 
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3.2. Representing Rationales as Dependencies 

Design decisions at tlie Structured Analysis level clefine bubble and dataflow objects. The 

rationale or jus t i f i ca t ion  of a decision corisist,s, in t ,ur~i ,  of otlier decisioris. T o  illustrate, 

consider figure 9 which sliows a network of dependencies aIuorig a few of the dataflows arid 

bubbles consiclered so far. Specifically, t he  auto-loacl-&lid-eclit is justified by the exist:.nce of 

New York arid London iilvoices, which forin its "set of support" (Doyle. 1978) or tlie 

curr~ulative reason for it,s existence. The convert operat,iori is justified because London sales 

invoices are not fornlatecl correctly. Sinlilar cteperidericies can be identified for otlier 

decisions. 

The conlplete depe~idency network corresporidi~ig to a design niay be viewed as 

incorporating the overall purpoJe of a set of design decisions. The general form of a 

dependency is: 

(<decision> <justification>) 

where <decision> arid <justification> are both object instances. 111 REMAP,  each design 

object tnaintaiiis a cuiriulative set of justifications in its because-of slot that  constitutes its 

set of support. 

In order to denlolistrate the usefltlriess of this dependency network, let us reconsider the 

first scenario where the London invoices become formated. In this case, the  convert 

operation is no longer required since its essentzal support elernents have been eliminated. 

Similarly, in the second scenario where the London office does not sell fuels anymore, no 

Inore invoices are generated from London. Again, no conversiotl operation is required. 

However, the  auto load and edit operation is still required because New York invoices are 

still t o  be processed. 

In general, an existing dependency network such as the orie on figure 9 can be used to  

assess certain ranlifications of a change, a process cornnlonly referred to  as helze f 

muin tenance  (Doyle, 1978). In the above exanlple, conversion is not  required for London 
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invoices. However, tlie dependency network does not indicate how these invoices should be 

treated because this k~iowleclge is not rxpressec-l in the network. 111 order to assess the 

complete repercussioris of the change. ailclitiorial knowleclge of a more general nature is 

required. For example, t o  realize that  forrtlatecl Lo~idori iiivoices should be treated like New 

York invoices (and should proceed directly for verification), it is necessary to  kiiow that  zn 

general formated invoices are verified directly. This knowledge can then be used to reasoil 

about all object instances corresporiclirig to formated invoices. 

3.3. Learning as Rule Formation 

Dependency inforrriation as t~iclicatect in figure 9 is represented in terrris of oh~ect  znstnnces. 

For exarnple. tlie auto-load-and-edit (bubble I )  is justified by the two kinds of dataflow 

objects originating fro111 London. A n  object type corresponding to  this invoice dataflow 

might have slots such as data ,  arriount. or office originating the invoice. However, not all 

slots are relevant to  the justification. For example, the  auto-load-and-edit is perforrried 

because the invoices are computerized, regardless of their other features. If the  systeni is to 

be able to  leurn anything from existing designs, it ~r ius t  also have access to the general 

rules on  whzch the dependenczes have been based because the  rules differentiate the 

important features of the relationship froni the  incidental. It must generalize the 

depende~icies, which can be thought of as examples,  into rules. 

There are two approaches to exarriple baseci generalization described in the literature. The 

controlling factors tha t  dictate which of the two approaches to adopt are the number of 

examples that  are available, and the  extent of an  u n d e r l y n g  theory in the donlain under 

consideration. 

For domains with little or no theory, i t  is desirable to  have a very large number of 

examples from which to  generalize. In such situations, gerleralizatiorl involves detecting 

patterns in the data ,  which is essentially a process of theory formatzon.  Examples of this 

approach can be fourtd in hlichalski (1983), Langely et. a1 (1983), and  Smith  (1980). Borgida 
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and Willia~rlsorl (1985) apply the snrne idea to the reorganization of database schemas based 

on the analysis of exceptions in a crtrrent schema. 

In contrast, for generalization basetl on few or single exanlples, it is best if there exists n 

strong theory of the donlain. The exanlple can then be verified for correctness using the 

theory, and then gerleralized into a useful for111 (i.e. a rule) for subsequer~t use by 

tnaintaining only the essential features of the exarrlple -- where these features are clerived as 

a side effect of applying the theory. Mitchell et.al (1985) and Mahadevan (1085) describe 

this approach in the context of digital circuit theory. 

Unfortunately, neittler of these approactles appears feasible for our problenl since application 

areas are too diverse and 1cliosy11cratic to provide a theory, and examples are few. This 

forces us to 111ake a eo~newltat strong assun~ption about the systerrl clesign process, rianlely, 

that  when the designer specifies the purpose of a clesign fragrnent as part of an initial 

system design, the rationale is a reasonably accurate one. While the validity of this 

assunlptior~ is debatable in principle, it appears to be a reasonable one in practice (Yourdon, 

1976) since the analysis and design process irlvolves extensive exchange between users and 

analysts -- by the tirrle design specifications are actually articulated in terms of a structured 

~rrethodology (like SADT, or DFDs), there are well defined rationales for them. In light of 

this, REMAP requires the designer or  user to generalize specific dependencies to  design rules 

during ttte process of systerzt analysis and design. This requires articulation of the  

justifications for choices, as well as of the general basis for the justifications. In effect, the 

"exp lana t io~~"  for the dependency f o r ~ r ~ s  the basis for constructing the rule. 

A more crucial issue however, is what form these rules niight take. O n  the one hand, the  

rule can be expressed in terms of objects and their slot values, for example: 

(dataf low 
medium: computerized) ==> verify on line 

{dataf low 
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medium: paper) ==> perform conversion 

If tlie nlediu~il slot has not been defined before. the type clefinition of ciataflow can first be 

extended to include it. Nevertheless, there is a rilajor prohlern with this schetiie. Recall t,hat, 

so far, the generalization hierarchy for clatnflows is extrenlely shallow i~iclucling orily vile 

type, namely the dataflow (cf. figure 8 ) .  Adding addit,ional slots for each rille will soon 

yield very coniplex object types. 111 looking at the different invoices -- which are instances of 

type dataflow -- it is apparent that  different attributes are relevant i11 descrihiiig the 

various instances. For example, paper invoices niight he distinguished by their co lo r ,  an 

at tr ibute that  is irrelevant for describing coriiputerizecl invoices. Thus,  ir~ost  slots in t,he 

extended dataflow type definition would remain llnfilled for many objects. 

This situation can be expected to occur in the early stages of the systerrl analysis process, 

when the syste~rl  is still unfamiliar with the application area. New design decisions could be 

added and instantiated as instances of an existing type although they differ qualitatively 

from other instances, arid might therefore be better off described i ~ i  ternls of a different 

bundle of attributes. 

When instances vary sufficiently, this indicates tha t  the generalization hierarchy must be 

extended to include niore specific subtypes. For exa~riple, exteriding the generalization 

hierarchy in figure 8 would involve creating two new types, narrlely paper-invoices and 

computerized-invoices arid re-classifying the  existing instances in light of this new 

classificatio11. Further, co~nputerized-invoices can then be broken down into magnetic-tape- 

invoices and on-line-invoices if appropriate.2 The  reconfigured generalization hierarchy would 

then appear as in figure 10, and iri coritrast to the rule representatio~l above, the  rule could 

 his raises the following question: how rrtight the prograxrl differentiate aIrioIig situations 
where the generalization hierarchy should be extended versus those where little is to gained 
by extension? Although we have yet to address this question adequately, it appears tha t  a 
reasonable heuristic for deciding wlleri t o  exterid t h e  generalization might be based on tlie 
need for additional ~ I o t s  to differentiate newly defined object instances. 
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then be stated in ternts of the newly defined object t,ypes. 

To  illustrate, such rules might appear as: 

{computerized-invoices) ==> perform auto-load-and-edit 

{paper-invoices) ==> perform manual-add-and-edit 

It should be possible to use these rule structures in two ways. First, if an  operation ar~ch as 

auto-load-and-edit is part of a design and has one or more corriputerized inputs coming into 

it, these s l~ould  be added atitonlatically to the operation's set of support. Second, if no such 

inputs are in the design, the rule can be used to compare "expectedn reasons for the 

operatio~t to the justifications provided by the user, or to suggest cltanges in designs tha t  

appear "inconsistentn with the knowledge in the  rules. 3 

3.4. Analogical Reasoning Using Object Classification and Rules 

In section 2, we introduced a scenario where a new operation was added, nantely, sales of 

fuels front Venezuela. In order to  assi~nilate such a change into art existing design, a 

program must be able to utilize its krtowleJge concerning the purpose of "similar" design 

fragments. Specifically, it must deter~nirte what features of the new situation are the  same as 

objects it already knows about,  and then a t te~r tp t  to learn about the unique features of the 

new situation, represented in terms of one or several design objects. 

As we have pointed out,  knowledge about the various design objects is orga~lized in the  

form of a generalization hierarchy, with rules referencing nodes in this hierarchy. 111 order to  

categorize a new object, it is necessary to  first determine, if possible, the most specific level 

of abstraction in the generalization hierarchy tha t  is applicable to  it.  For example, if 

REMAP'S current knowledge about dataflows is tha t  shown in figure 11, and contputerized 

 his assumes that  the rule is "correctn. An existing rule tha t  turns  out  t o  be 
inaccurate, leads to  a "contradictiorl" in which case the rule can be discarded by the belief 
~ltairitertance ntachinery, or refined interactively. 
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but unforn~ated invoices cotlie in or1 ruagrletic tape froni Venezuela, tlley would be classified 

as a nnMagnetic-tape-invoiceJ" dataflow. Once the tiiost specific level is found, rules 

referencing objects a t  that  level can be applied. For exaniple, if Veriezuela invoices had been 

forniated, a rule callirlg for a "verify arid correct on line" operatio11 would be applied. 

Similarly, if a match on other attributes is found, tilore specific rules can be applied. In 

general, it is likely that  rules applicable to  s o ~ n e  of the attributes of a new object will be 

found, while the systerti will riot have rules cleali~ig with others. For these, new rules rnust 

be extracted froni the user 

If no rules are applicable to the newly defined object at  the most specific level, the systern 

can look for more general rules that  might he applicable. Specifically, this involves ~ i ~ o v i n g  

up the ge~ieralizatiori hierarchy until a rule is found that  is applicable at  a higher level of 

generality. In the exatriple considered above, this would involve gathering rules applicable t o  

magnetic-tape invoices. then cotiiputerized invoices, and finally dataflows iri gelieral. For 

Venezuela invoices, we can see that  one of the rules rrientioned in the previous section will 

apply at the  level of computerized invoices, suggesting tha t  an  auto-load-and-edit operation 

be performed on them. 

It should be noted that  even tllougti there rrlay not be a n  object in the design that  is 

similar to the new one, existing rules might still apply. For example, Loildon invoices were 

previously unformated; this had required a convert operation which was subsequently 

eli~riinated when the form of these invoices was changed. However, the niore general piece of 

knowledge tha t  should have bee11 extracted a t  tha t  time in the for111 of a rule, now beconies 

applicable to  Venezuela invoices. 

Finally. we should distinguish between the analogical rensonzng procedure described above, 

and the learnzng by analogy procedures of Winston (1979) and others. In analogical learning, 

there is typically a domain where a known theory already exists in the  form of rules or  

some other converiierit representation; examples fro111 this do~iinin are then riiatched with 
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exaniples from a doninin in whicll the learning is to occur. Drawing analogies between the  

exa~nples leads t o  rule for~tiat ion in the target cloninin. In contrast, ar~alogical reasoning, as 

we have described i t ,  involves deterlulrling what i ~ p p l z l i '  to a new situation gzL'en what is 

already known in the same doniain. This requires breaking clown the new sitrlatior~ ~ n t o  

parts that  the system already knows how to deal with In our representation, this requires 

~riatching the new situation successively against rtlore geileral knowledge about the application 

by n~oving up the  generalization hierarchy. The procedure is described niore forrrlally i ~ i  the 

following subsection. 

3.5. REMAP Control Structure 

In order to incorporate new knowledge and to  reason about user critiques, the model 

requires an overall control structure that  enables it to switch among design support arid 

knowledge acquisition modes. Figure 11 provides a high-level transition network 

representation of the main ~tlodes. 

The add mode is the usual starting point for a new systeni. The designer can add a set 

of proposed new design objects and their associated dependencies. The system can invoke the  

analogzcal reasonzng ~t lode to  assist in this task to  whatever extent possible. The belze f 

mazntenance  mode is responsible for checking the corisistency of proposed changes with 

respect to  existing object types and rules. The learnrng niode interacts with the user in 

order to  establish a generalization of dependencies tha t  are [tot derivable from existing rules, 

possibly adding new rules and specifying new object types. The  systeni then rrioves into the 

belief maintenance mode in order to check the compatibility and consequences of the newly 

acquired knowledge. 

If there is an existing desig~i to  be iniproved, or reused for another system, the system will 

s tart  in the crztzque mode. Here, the designer may want  t o  chaiige or  add to  certain par ts  

of the design. Again, feasibility and possible learning opportunities induced by the change 

can be studied in the belief rrlai~iteriarlce (for a fornial description of belief rl~airttenance 
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slgoritllms, see Doyle (!979) and hlc.4llester (1980)) and learrlirig rnocles. The interaction of 

these contponents of the REMAP nrcliltectllre is described below in "Structured English." 

Add-mode : 
1. DOWHILE user is entering object instances. 
2. Accept object instances. 
3. Invoke Analogical-Reasoning-mode 
4. IF enabling conditions of a rule are 

satisfied by instances 
THEN 4a. Create dependencies generated by rule. 

4b. Invoke belief maintenance. 
ELSE 4c. Accept dependency. 

4d. Invoke Learn-mode 

Learn-mode: 
1. Extract essential features (slot values) of objects. 
2. IF slot value is an object instance 

THEN 2a. Note its type 
ELSE 2b. IF needed slot does not exist 

THEN Create-new-type-mode. 
3. Propose generalization (rule) in terms of the identified 

or defined types. 

Create-new-type-mode: 
1. Record context (slot values) of object instance. 
2. Define new data type corresponding to relevant slot of 

this instance. Establish an IS-A link to 
parent-of of the object instance. 

3. Create a new instance of the new data type. 
4. Assign slot values to the new instance 

corresponding to the old instance. 
5, Destroy the old object instance. 

Critique-mode: 
1. Accept user critique in the form of negation to existing 

decision, or addition to design. 
2. IF negation 

THEN invoke belief maintenance 
ELSE invoke Add-mode. 
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1. Identify lowest level in generalization hierarchy into 
which the newly defined object can be categorized. 
Call this the focus. 

2. While focus is not the root of the generalization 
hierarchy: 

2a. Find and instantiate rule applicable at focus. 
2b. IF applicable rule does not include all 

attributes of newly defined object 
THEN Invoke Learn-Mode. 

3.6. Implementation Status 

Sonte key aspects of the REMAP architecture have been incorporatetl in a small system 

intended to test their feasibility. The  systern contains an imple~~tentatiori  of the object type 

hierarchy and an  initial knowledge base about d a t a  flow diagrams. Knowledge is represented 

using FLAVORS (Moon and Weinreb, 1981), a LISP-based utility tha t  supports object- 

oriented programming. An annotated example irlteraction is displayed in Exhibit 1. The  

example demonstrates eortle features of the various niodes of figure 11, rtarrlely the "add" 

and "learn" ~tlodes in addition to setting u p  the dependencies. The user begins by inforrrling 

the systern about a new design fragnient. nar~iely, London invoices. Specifying the type of 

object being defined causes the system to  query the trser about the relevant attributes. The  

generalization hierarchy is then ~ugrrlerited with the new objects, arid justificatior~s including 

their general bases (the rules) are extracted. In sulru11ary7 the irttplertientation so far  has the  

capability to  accept d a t a  flow diagram object i~~s tnnces ,  t o  gerierslize cleperldet~cies t o  rules, 

and to  expand the ger~eralization hierarchy. 

A feature currently being added is a conrtection between FLAVORS and McAllester's 

(1982) belief mainte~lance system, RUP,  so we rrlay utilize its belief niairltenance tl~achirrery. 

In addition, a more habitable user interface is under development. 111 nlatchi~lg "sinlilar" 

situations to ones known to R E M A P  (i.e. the  arlalogical reasoning mode), we intend to use 

methods similar to  Wir~storl's analogical reasoning (Winston, 1979). Specifically, in 
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To begin with, t l ~ r  user itlay wislt to eltier a d e ~ c r i p t i o ~ ~  of a fraq~ner~t of the data flow diagr*. tn this example, we deftfie 
tlrr fragtl~er~t in level 1 cnr reppo~~di~~g to the autc-load-a~~tl-edit. TItr "'" sigtt reprew11t.i the eysten~ top level prompt. l 'ze~ 

irtpt~t i* underlined. Ar~itotatiotrr to the rlialoaue are provitlrd ill parc~~tl~eies.  

* a d  
type: external-entity 
name: London 
output: London-direct-sales invoices 

London-assianed-sales-invoices 
London-statistical-sales-invoices 

type: dataflow 
name: London-direct-sales-invoices 
from: London 
to: auto-load-and-em 
medium: maatape 

0 

0 

(Similarly, other dataflows are entered.) 

type: process 
name: auto-load-and-edit 
inputs: London-direct-sales invoices ... 
outputs: Sales-invoices Error-re~ort Exce~tion-reDort 
because-of: London-direct-sales-invoices 

London-assianed-sales-invoices 
London-statistical-sales-invoices 
NY-direct-sales-invoices 
NY-assianed-sales-invoices 

(Tlte "because-of" slot simply records the justification3 for performing an auto-load-and-edit operation. At this point, cin h e  
basis of the infor~uation supplied by the user, tlte ryster11 auqnlents the generalizatio~t hierarchies as indicated ill figure 9. Now 

having noted the justifications, the systenr proceeds with attempting to construct rules based on generalizatioar of theee 
dependencies.) 

Identify the essential features of the object required for the depet~dency: 

(dataflow name: London-direct-sales-invoices ' 

medium: magtape 
from: London 
to: autoload-and-edit) 

==> (auto-load-and-edit) 

: maataoe London 

(The user states that the fact that the input is on magnetic tape justifies the auto-load-and-edit operation (a more general 
reason, not expressable here, is that the input is cornputenzed as opposed to nlanual). A h ,  the user states that tlre operatioa 
is required because there's an input from London. The system attenrpta to "generalize" this by considering whether this is true . 
for inputs fron~ exter~tal entities in general, as we see below.) 

London is an instance of an external-entity. 
Is the following rule true: 

((magtape)(external.entity)) ==> auto-load-and-edit 
:yes 

,Having eslahlisl~ed t l~is  rule. the syeheni will go tltrouqlt a si111ilar process for otlter inputs that are trot similar 10 tile ogle just 
cottsidered sitice tlte depctde~~ciec ritahlirlrrd by t l t rn~ are explainable hy tlrc rule just estahliel~ed. 111 tltid exsrr~plr, it wotiltl 
skip the r e ~ n a i ~ ~ i n g  Lor~durt illvoicer and proceed Lo establish t l ~ e ~ r e l a t i o ~ ~ s l ~ i p  between auto-load-altd-edit and New York irtvoicei.) 

Exhibit 1 

* 



determining similarities. it will be necessary to determine the  zmportant aspects of a 

situation, and use them together with classlficatiorl based knowledge in order to  assess the  

correspondence of situations. 

Although we believe that  the current system demonstrates the feasibility of soirie iniportn~it  

features of our model, substantial additional research will be required prior to n full-scale 

inipler~~entatio~i.  Leaving aside itlterface issues such as grapllics input and otitpnt, there is a 

need to extend two aspects of tlie ~rlodel itself. 

On the one hand, the type hierarchy rilay grow very quickly; nletliodologies w ~ l l  be rieecled 

to keep it a t  a ti~anageable size, arlcl to help tlie user locate the correct type for a new 

instance. One way to reduce the number of types would be to  allow multiple typing of 

instances and/or multiple inheritance in the type hierarchy. However. rriultiple i~ilieritarice 

introduces its own set of problems, such as it~corisistency arid search coniplexity. 

On the other hand, the present model only hanclles jus t i f ica t io~~s  for existing design 

decisions. A Inore prescriptive approach could associate feasibility bounds for subsequent 

design decisions with an  object. For exatilple, it should be possible to state that  the choice 

of paper invoices exclude tlie use of the auto-load-and-edit process, even if the alternative, 

manual-add-and-edit, has not yet been defined elsewhere. A further step is the autumuttc 

chozce between several feasible alternatives (Dhar and Quayle, 1985), acconlplished by the 

incorporation of a new object type goal into the model. A design object rriight he declared 

dependent on a goal object if it is the optzmul solutzon with respect to that  goal. As 

requirements change, design clioices may have to be revised due  to  different trade-offs. 

4. DISCUSSION 

The REMAP concept can be viewed as a knowledge-based tool for tlie representation and 

maintenance of design process knowledge, to be eniployed as part  of an  integrated software 

development and nlaintenance environment. Other in ipor ta~i t  features of such an e~ivirorin~ent 
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such 1a11g1iage interfaces, editors, version corttrollers etc. (Korlsyiiski, 1984) have yet to be 

interfaced to  our syste~rt but are not currently the focus of this research. 

The importance of REMAP'S objectives is cotlfirnled by two rece~lt  reciuirerr~ents studies ort 

specification-based computing environments (Balzer, et.al, 1982) and on Artificial Intelligence 

tools for design support in general (as contrasted to  infor~nation systenls design) (Mostow, 

1985). Balzer et.al. entphasize the rteed for supporting syste~lts evolutiori a t  the design level 

as well as a t  the software level, 111 particular, they suggest that  desigu tools should be 

changeable, and that  inter-user int-eractio~r shoulcl be supported. We believe that  REAMAP 

corttributes to the first goal by nlaintaining an evolviilg object type hierarchy (which for 

instance, would allow ttte defiriitZiorr of a new design language other ttiart da ta  flow 

diagrants), whereas ttte second is achieved by rnakirlg each designer's justificatio~ls for design 

fragments explicit. Mostow (198.5) also st,resses the need for itlaking design goals, design 

decisions and their rationales explicit. 

In contrast t o  these recognized demands, existing databases or kllowledge bases for software 

development tend to focus on the management of design objects rather than on the process 

knowledge captured by REMAP. Design databases evolved from the d a t a  dictionary concept 

which provides system-wide management of d a t a  structures as an  aid in keeping notation in 

the  systems designs and progra~its "consiste~lt*. It was soon realized that  the d a t a  clictio~lary 

idea also applied to the ntarlagerl~ent of process/module libraries (Narayariaswanly, et.al. 

1985), and to other design objects at  higher levels of abstraction. Iittegrated ertviron~rlents 

such as TRW's  Software Productivity Systerrt ( B o e h ~ n  et.al, 1982) or TEDII iM ( B l u ~ n .  1983) 

also allow the designer to relate design objects, programs, and test cases hartdicapped by the 

lack of a precise requirements specification language (Borgida et.al. 1984), and because the 

relationship between requirements and designs is not explained iri ternts of design decisio~ls 

and their rationales. 

Proponents of prototyping (Nauniann and Jenkins, 1982) clai~rt t ha t  syste~lls  cttarlgeability 
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is nutonlatically achieved or  substantially aupport,etl throuqh the prototyping process and cite 

case studies ill support of t,his claint (- ippleton.  197:)). However, others have recog~iized tha t  

in conlplex systems, the prototyping idea t~irist be apptied s t  ~r l~t l t ip le  levels of abstraction 

(Groner et. al, 1979). Tltis in turn, requires snhstn~lt ial  control of the  process: taking into 

account the design ratiorialeu aricl rules learned fro111 errors in previous prototypes (Dhar  and 

Jarke, 1985). While sorue researchers clairrl that  such control can be provitleci by ilotriairi or  

other technique specific stariclards. policies a~tcl coristrai~lts to be enforced in the cleveloprrielit 

and maintenance euvironrllerit (Jarke and Shalev, 1984; Minsky and Borgicia. 1984: 

Morgenstern, 198:3), t,tlis approach assuIrles t-hat such constraints can be erion~eratecl a priori. 

A more ambitious approach, enlbodied in the PLEXSYS project (Konsy [)ski et,.al, 1984) 

integrates constraint management into a full design support environment. PLEXSYS' dynamic 

r~tetasystems (Kotteman and Konsy~lski, 1984) have represent application-specific knowledge in 

ternis of art "axiomatic" model that  can propagate certairt types of changes to the object 

level where design decisions are represented. This approach is si~riilar in spirit t o  Davis' 

(1979) idea of using "~r t e t a  ~ltodels' to maintain and reason about object level knowledge 

contained in t h e  MYC'IN system (Stlortliffe, 1976). Several other knowledge base 

rnanagernent cotr~ponet~ts of A1 syst,enls have been structured along sinlilar lines. 

While this approacf~ has proven successful in situations where the scope of applications 

known to  the  rneta-model can be defined in advance, it has furtdatrierital l i~rutations if the  

application donlain is not known a priori. Under such circunistances, the high level   nod el, 

even if definable, Irlay become general t o  the point of missing the subtleties involved in an  

application area. Wltat is needed instead, is a rtlectianisnl by which the high level model 

itself can be synthesized ori the basis of experience in the applicatiolt area. Consequently, 

REMAP follows an "open systenis" approach (Hewitt, 1985) tha t  begins by representing 

knowledge about relationships arrlong instarlces in a domai11 in terms of dependencies, and 

generalizes some of these into a growing corpus of rules. In this way, the process knowledge 

involved in building an  application car, be used for increnlerital nlodificatiort of desigrts, artcl 
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where possible, t o  acquire knowlecige in terrrls of applicatiorl specific rules. 

Methodologically, our approacli has much i11 corrlrrion with the  Progra~llnler's Apprentice 

(PA)  project (Shrobe, 1979; Waters, 1982; Rich, 1984). Tlie PA is an iiit,elIige~~t system that, 

is designed to  assist expert prograrrlnlers wit,ll tile ~rlnirlterla~lce of large programs. Like 

REMAP, the P A  uses a depe~lclericy network of clloices in order to  represent and reason 

about evolvirig progrartls. However. there are t3wo irrlport,n~it differerkces. Our  focils is OIL the  

more abstract parts of ttie desig~t as opposed to the level of coding. More irrlporta~ltly, 

because of the diversity of applications! we are u~lable  to assume a fixed library of "cliclles" 

or prograr~ltr~ing  construct,^, but 111ust build up t,his krkowledge or1 the basis of application- 

specific designs. However, orlce our system has corlstructed and orga~lized a library of cliches, 

they could be used to reason about "analogous* situations in a similar manner as t,lte PA.  

5. CONCLUSIONS 

The approach proposed in this paper suggests a novel way of thinking about sys t e~ns  

evolution which emphasizes the designer's assunlptions and justifications, rather than 

generally valid "~rleta-theories" of design. This reorientatiori is of particular ir~iportance in tile 

presence of ~ r~u l t ip l e  designers sirice nlaliy apparelit "logical co~itradictiotis" nlay arise as a 

result of different perspectzves.  each based on a different set of assunlptions. 

Fro111 a practical viewpoint, tile emptlasis or1 design cha~lges  is of particular i~riport ,a~lce 

since it is estimated that  at  least 50% and probably as rrluch as 70% of software costs go 

into maintenance. Yet, problems of design evolutiorl have not been adequately addressed by 

previous methodologies, whereas they co~ls t i tu te  the focus of our approach. The  work 

reported here is considered a first s tep towards a process-oriented design environment which 

is expected to  have in~por tan t  applications in a t  least three areas. 

First, the prototyping method of systems development is enhanced by a learning coniponent 

that  prevents the repetition of design errors and supports a better fornlal understandirlg of 
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the systeni's donlain. Second, the ~~rlcles~rnble prnctlre of just updating program 

docunlentation in tlie nlainterlance phase of tlie software life cycle is replaced by a 

r~lethodology for ~na in ta i~ l ing  consiste~it designs; furtliertriore, the nietflod also prov~cles 

guidance iii tlie propagatio~i of proposed chaiiges. 

Finally, the ar~alogy-based reasorli~ig conlponerlt of tlie nlet l~od supports the reuse of cocle 

arid desig~is it1 s y s t e ~ ~ t s  that  are si111ilar to existing ones. It also provicles the designer of 

such syste~ns with access to the rationales for tlie original design, tlius per~li i t t , i~lg t,he 

ellcapsulation of required clesign clifferences and the icleritificatio~i of suitable alternatives. 

This co~ttrollecl "clonirlg" capability is particularly valuable in organizations tha t  have to 

construct a large n ~ t ~ t ~ b e r  of fur~ctionnlly si~rlilar systenls for different ciivisions. If process 

k~lowledge is [lot ~nai~l ta i i led  a u t o ~ ~ ~ a t i c a l l y ,  such organizations have to  rely or1 t,lie experience 

and loyalty of a few key i~~dividuals .  
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