
AN OPTIMIZING PROLOG FRONT-END TO 

A RELATIONAL QUERY SYSTEM 

Matthias Jarke 
James Clifford 

Yannis Vassiliou 

January 1984 

Center for Research on Information Systems 
Computer Applications and Information Systems Area 

Graduate School of Business Administration 
New York University 

Working Paper Series 

CRIS #65 

GBA #84-24(~~) 

Published in Proceedings ACM-SIGMOD International Conference on 
Management of Data, Boston, June 18-21, 1984. 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-84-24 



AN OPTIMIZING PROLOG FRONT-END TO 

A RELATIONAL QUERY SYSTEM 

Abstract 

An optimizing translation mechanism for the dynamic interaction 
between a logic-based expert system written in PROLOG and a re- 
lational database accessible through SQL is presented. The 
mechanism makes use of an intermediate language that decomposes 
the optimization problem and makes the proposed approach target- 
language independent. It can either facilitate expert system - 
database interaction, e.g., when integrating expert systems into 
business systems, or augment existing database with (external) 
deductive capabilities. 
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1.0 INTRODUCTION 

Efforts to bring together methods from artificial 
intelligence and database research have caused much interest 
in both communities. Cooperation between the areas can be 
fruitful in conceptual modelling [Brodie et al. 19841, in 
providing database data to expert systems, in supporting 
very high-level user interfaces for databases, and in 
improving database efficiency. In particular, the 
similarity between relational database concepts and 
logic-based deduction has focused the attention on 
integrating these two elements in various ways [Gallaire and 
Minker 1978; Gallaire et al. 1981; Nicolas et al. 19821. 

In previous work [~arke and Vassiliou 1984; Vassiliou 
et al. 1983, 19841, we investigated strategies for providing 
data management capabilities to expert systems. We 
presented a technique of 'tight coupling' between a 
logic-based expert system and a relational DBMS, employing 
delayed execution of database calls. Our implementation 
uses an amalgamation between a logic programming language 
(PROLOG) with a suitable meta-language of itself, expressed 
in a variable-free subset of the logic programming language 
 o ow en and Kowalski 19821. We also postulated algorithms 
for the further processing, optimization, and translation 
into the database query language at hand of the generated 
database calls, without actually describing such algorithms. 

In this paper, we generalize the notion of expert 
system--database coupling and describe an optimizing 
translation mechanism which allows for the continued 
efficient exchange of queries and/or data between a 
PROLOG-based expert system and a relational DBMS accessible 
through SQL. The mechanism is designed to enable 
portability to similar query languages such as QUEL 
[Stonebraker 19761 or PASCAL/R [Schmidt 19771. It can be 
used regardless of whether one wants to provide database 
information to an expert system or to enhance the user 
interface or the efficiency of an existing conventional 
database system from 'outside' if one is unable or unwilling 
to extend the DBMS itself. 

This work was carried out as part of a joint study being 
conducted with the IBM Corporation. 
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Our approach employs an intermediate language, DBCL. This 
language is a variable-free subset of PROLOG designed to be 
similar to tableaux as introduced in [ ~ h o  et al. 19791. 
~ttention in this paper will be focused on conjunctive, 
negation- and function-free queries but extensions to 
general DBCL predicates are also discussed. 

The introduction of DBCL partitions the problem of 
efficient PROLOG-SQL translation into three major 
components: the translation of PROLOG data requests into 
DBCL statements; the syntactic and semantic optimization of 
such DBCL statements; and the translation of the optimized 
DBCL statements into queries expressed in the target 
language, in our case SQL. 

Since we assume two independent subsystems to be 
coupled, our query optimization methods are somewhat 
different from those presented in previous research on 
PROLOG databases. For example, the kind of query 
optimization achieved by reordering PROLOG goals [warren 
19811 should be taken care of by the existing query 
processor of the DBMS. Our strategies focus more on 
DBMS-independent query simplification and multiple query 
optimization. The tableau-like structure of DBCL allows the 
application of results obtained by database theory, although 
it turns out that some of these results have to be extended 
for practical purposes. 

The paper is organized as follows. Section 2 presents 
the global architecture of the proposed translation 
mechanism. After a definition of the DBCL subset to be used 
in this paper in section 3, section 4 briefly reviews the 
translation process from PROLOG to DBCL. The DBCL-SQL 
translation has been implemented in PROLOG using a syntax 
tree mapping approach (section 5 ) .  Section 6 demonstrates 
how syntactic (relational data structures) and semantic 
(integrity constraints) knowledge about the underlying 
database can be exploited for DBCL query simplification. 
Finally, section 7 presents an outlook of what can be done 
to support multiple query evaluation, including recursive 
database calls, through the creation and storage of suitable 
intermediate results. 

2.0 ARCHITECTURE OF THE TRANSLATION MECHANISM 

The basic problem in optimizing the interaction between 
PROLOG and a conventional relational query lanaguage is the 
translation of a series of tuple-oriented data requests, 
addressing parameterized and possibly recursive views in 
PROLOG, into (sequences of) set-oriented queries to base 
relations. Thus, an efficient translator must (a) collect 
tuple-oriented requests to form set-oriented queries, and 
(b) optimize the processing of parameterized views. 
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Figure 1: Architecture of PROLOG-SQL translation mechanism 
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The overall architecture of our approach is summarized 
in Figure 1. The central idea involves the introduction of 
an intermediate language of database calls (DBCL), which is 
set-oriented and uses base relations but is still expressed 
in PROLOG (to be precise: in a variable-free subset of 
PROLOG). The use of DBCL separates the two aforementioned 
tasks. Thus, phase (a) becomes independent of the target 
database query language and a large number of optimizations 
can be performed without reference to the target language. 
DBCL will be defined formally in section 3, followed by a 
description of the functions shown on the arcs of Figure 1: 

1. Metaevaluate translates PROLOG statements into DBCL 
statements. It is described in [~assiliou et al. 1983, 
19841 for a slightly different intermediate language, 
and adapted for our current purposes in section 4. 

2. Translate (see section 5 )  generates a set of queries in 
the target database language, SQL, from a DBCL 
predicate. 

3. Local optimize (see section 6 )  removes redundancy from a 
DBCL predicate to eliminate the execution of unnecessary 
operations. Techniques used for this purpose are 
similar to view processing strategies as described, 
e.g., in [Ott and Horlaender 1982; Rosenthal and 
Reiner 19821. 

4. Global optimize (see section 7 )  has two functions. 
First, it determines which parts of a DBCL expression 
can be evaluated using the internal PROLOG database, and 
for which parts external database queries have to be 
generated. Second, it decides whether query results 
should be stored for future reference, a feature of 
particular importance in processing recursive database 
calls. 

We conclude this overview by briefly mentioning two crucial 
software components required to support the above functions, 
and some alternatives for their implementation. 

An internal database system in the logic language can 
be used for storing query answers from the external 
database. Garbage coliection-may become an issue if some of 
these results are large and not reused. In addition, a 
merge procedure must be provided to combine internal and 
external database segments. An alternative strategy is 
provided by storing query results in the external database 
system, to keep a clean separation between database and 
logic program data. It is not clear which alternative is 
preferable in general. Our mechanism employs an internal 
DBMS because query results are expected to be fairly small. 
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An amalgamation rocedure between logic programming 
language and metalanguage + Bowen and Kowalski 19821 is 
required since our approach requires a self-modifying 
program that uses a precompilation of itself. 
~lternatively, the view definitions could be translated at 
logic program design time [~eiter 19781. However, if 
recursion appears, this "compiled" approach requires 
iteration constructs not readily available in PROLOG 
[~enschen and Naqvi 19841. 

3.0 FORMAL DEFINITION OF DBCL 

One of the main motivations for the introduction of 
DBCL is the collection, joint optimization, and therefore 
delayed execution of tuple-oriented PROLOG data requests. 
To prevent their immediate execution, PROLOG data requests 
must be manipulated in a metalanguage. Since PROLOG itself 
is used as this metalanguage (see section 4), the data 
requests must be converted into a variable-free 
representation to avoid instantiation of variables. This 
form is constructed from the original PROLOG predicate as 
follows. Constants are translated into themselves. 
universally quantified variables of the original goal clause 
are preceded by a "t " (these variables denote the target 
attributes of the queryr. Other variables are preceded by a 
"v and a number is appended to them to distinguish between 
diFferent variables addressing the same attribute. 

A BNF grammar of DBCL is provided in Figure 2. Note, 
that in general a DBCL statement may contain references to 
arbitrary PROLOG predicates as well as negation and 
disjunction (denoted by ";" in the grammar). In the 
remainder of this paper, we shall concentrate on a subset of 
DBCL that contains only metaterms without negation. The 
only predicate names allowed besides database relation names 
are the standard comparison operators. Essentially, this 
amounts to a reduction of the generated queries to 
conjunctive queries including inequality comparisons, but 
without embedded functions. 
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Figure 2: Grammar for full DBCL 

A DBCL predicate for conjunctive queries takes the form 

  el comparisons contains predreferences, moved to the end of 
the predicate by goal reordering [warren 19811. The four 
DBCL components are explained below. They are designed in a 
way that makes DBCL similar to (tagged) tableaux 
[~llman 19821, 

Schema is a list of attributes of the underlying 
database schema together with the name of the database of 
interest. 

Example 3-1: 

Throughout this paper, we shall use a database, empdep, of 
two relations, describing employees (characterized by 
number, name, salary, and department number) and departments 
(characterized by number, function, and manager number), 

empl (eno, nam, sal, dno) 
dept (dno, fct, mgr) 

The schema for this database is defined by the list 

[empdep, eno, nam, sal, dno, fct, mgrl. 

When relations are used in tableau format, their definition 
follows the above schema, with a value of "*"  specified for 
attributes that do not apply. 
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In addition to this syntactic specification of the 
schema, semantic inteqrity constraints can be specified. 
Since we assume the use of an existing database system, we 
cannot expect very sophisticated types of constraints to 
hold. In this paper, only three kinds of integrity 
constraints (we believe, the most frequent ones in practice) 
will be considered: 

(1) value bounds for ordered attributes are expressed in 
PROLOG in the format 

which means that L <= x <= U for all values x of attribute A 
in relation R. 

(2) functional dependencies within relations are expressed 
in the format 

funcdep(R, Al, A2) 

which means that for all pairs x, y of elements of relation 
R: 

where A1 and A2 are subsets of the attribute sets of R. An 
important subset of functional dependencies are key 
constraints. 

(3) referential integrity constraints are denoted 

which means that the set of values appearing in the 
attribute(s1 A1 of relation R1 must be a subset of the set 
of key values appearing in R2. 

Referential integrity constraints are a subset of the 
so-called inclusion dependencies [~agin 19811. They map the 
fact that each attribute, property, or relationship is based 
on the existence of (a unique combination of) underlying 
objects. This translates into the rules that (a) the 
right-hand side (or superset) of a referential integrity 
constraint always refers to the key of some relation 
(identifying exactly one of the underlying objects), and (b) 
no attribute may appear in more than one left-hand side of a 
referential integrity constraint. 

Example 3-2: 

In the example database, we assume the following integrity 
constraints to hold: 
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valuebound (empl, sal, 10000, 90000). 
funcdep (empl, [naml, [enol). 
funcdep (empl, [enol, [nam, sal, dnol). 
funcdep (dept, [dnol, [fct, rngr]) 
funcdep (dept, [mgrl, [dno]). 
refint (empl, [dnol, dept, [dno]). 
refint Wept, [mgrl, empl, [eno]). 

It is easy to express inference rules over these 
dependencies in the same format, using variables instead of 
constants, e.g., funcdep(~el,~ttrset,~ttrset) -- the 
reflexivity axiom. Such inference rules can be used for 
semantic query optimization, see section 6. 

Targetlist has the same format as Schema and defines 
the schema of the result relation of the database call. 

Relreferences is a list whose elements are lists, each 
corresponding to a row in a (tagged) tableau and having the 
same format as Schema, with "*"  values for non-applicable 
attributes. In terms of SQL, each relreference corresponds 
to a relation variable. If symbols corresponding to 
variables e l  starting with t or v ) are duplicated in 
the Relreferences, each pair corresponds-to an equijoin. 

Relcomparisons is a list of lists, each corresponding 
to a relational comparison (e.9. less, greater). It may be 
empty if no such comparisons exist. Each sublist maps to 
either an inequality restriction or an inequality join. 

We conclude this section by a comprehensive example 
illustrating the DBCL representation of general conjunctive 
database calls. 

Example 3-3: 

Let a PROLOG view called "works - dir - for" be defined as 
follows: 

works - dir- for(^, Y) :- 
empl(-, XI D) 
dept(D, -. ~ i .  
empl(M1 Y, - I  - ) .  

The underscores represent distinct but irrelevant variables. 
Consider the query: "who works directly for Smiley for less 
than 40000?" 

:- works dir  for(^, smiley), 
empl(7, X, S, - ) ,  less(S, 40000). 
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This would translate to the tableau-like DBCL 
representation: 

dbcl( 
[ empdep, eno, nam , sal, dno , fct, mgrl, 

[works - dir - for, 
* r t - Xr * I  * r * I  *I, 

[[empl, v - Enol, t - X, v - Sall, v D, *. * I r  * [ dept , * r * r v-D, v - Fct2, v MI, 
[ empl , v MI smiley, v - ~a13: v ~ n o 3 ,  * ,  -*Ir 
[empl, v - ~no4, t - XI v - S, v-~no4, - * ,  " 1 1 ,  

[[less, v-S, 4000011). 

4.0 TRANSLATION OF PROLOG INTO DBCL 

PROLOG statements are translated into DBCL by the 
predicate metaevaluate, which is described in detail in 
[vassiliou et al. 1983, 19841. The function of metaevaluate 
is to delay the execution of database-related clauses in 
PROLOG, and to collect the related database calls for 
set-oriented processing. In order to perform this function, 
the database references are translated into DBCL using an 
amalgamation of PROLOG with a suitable meta-language as 
described in    ow en and Kowalski 1982; Kunifuji and 
Yokota 19821. If the original predicate involves recursion, 
a sequence of DBCL statements is generated. 

Example 4-1: 

Assume that the relations empl and dept are stored in an 
external database, whereas the internal PROLOG knowledge 
base contains the following facts and rules (the specific 
database-related predicates are not shown here, see 
[vassiliou et al. 19841): 
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specialist(jones, guns). 
specialist(miller, driving). 
specialist(smiley, thinking). ... 
works - dir - for(X, Y) :- (... as in example 3.3 ... ) 
same - manager(x, Y) :- works dir for (x, M), 

works-dir-for - (Y, MI, 
neq(~,Y). 

partner(W, X, Skill) :- 
metaevaluate(pr5, 

[same manager(t XI w)], no optim, DBCL), !, 
same -  manager(^, w):  specialist(^, skill). 

That is, if employee W has to perform a specific task 
requiring a certain Skill, W can find a partner for that 
task by looking for employees X who have the same skill and 
work for the same manager. pr5 is a program name, no optim 
indicates that query optimization is turned off, and DBCL is 
the variable that will hold the database query expressed in 
DBCL . 
Assume that employee Jones looks for a partner who is a 
specialist in driving. The corresponding query 

:- partner(jones, X I  driving). 

would be resolved partially using database data and 
partially within PROLOG. First, the evaluation of the 
metaevaluate predicate would result in the creation of 
instantiated same manager predicates in the internal PROLOG 
database. Then, PROLOG would combine the same-manager data 
with the specialist information, using its normal 
tuple-at-a-time procedure. Note that the cut ( ! )  after the 
metaevaluate predicate makes sure that it is evaluated only 
once (i.e., the queries resulting from its evaluation are 
submitted to the database only once). 

For the purposes of this paper, the most important 
function of metaevaluate is the simulation of PROLOG's 
deduction procedure in order to translate the view 

same - manager(t - X, jones) 

into the DBCL predicate 
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dbcl( 
[empdep, eno, nam, sal, dno , fct, mgr], 

[same - manager, 
* r 

t - XI 
* I 

v - MI 
j ones, 

*I 

v - MI 

5.0 TRANSLATION OF DBCL INTO SQL 

The second translation step of the proposed mechanism 
converts DBCL into the target language, here assumed to be 
SQL. Since only function-free conjunctive queries are 
considered, the generated queries do not require nesting 
[ ~ i m  19821. The algorithm just has to fill in the 
information from the DBCL tableau into the 
SELECT...FROM...WHERE... pattern according to the following 
rules: 

1. Each row of the Relreferences section corresponds to a 
variable definition in the FROM clause. 

2. Attributes with entries in the Targetlist appear in the 
SELECT clause, together with an appropriate variable 
name (number of the first row where the same entry 
appears). 

3. Each constant in the Relreferences is translated into a 
restrictive condition (with an equality comparison 
operator) whose left-hand side is determined by the row 
(variable name) and the column (attribute name) of the 
appearance. 

4. Each pair of equal symbols in the Relreferences starting 
with t or v is translated into an equijoin term. The 
components are again determined by their location as in 
the previous step. 

5. Each row in Relcomparisons is mapped into a restrictive 
or join term. The names of the participating variables 
and attributes are determined by the location of the 
first occurrence of the same symbols in the 
Relreferences section. 
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6. Non-repeated variables do not appear in the SQL query. 

Example 5-1: 

~ollowing the above rules, the query in example 4-1 is 
translated into: 

SELECT vl . nam 
FROM empl vl, dept v2, empl v3, 

empl v4, dept v5, empl v6 
WHERE (vl.dno = v2.dno) AND (v2.mgr = v3.eno) AND 

(v4.dno = v5.dno) AND (v5.mgr = v6.eno) AND 
(v4.nam = 'jones') AND (v3.nam = v6.nam) AND 
(v1,nam f 'jones') 

More formally, the translation process can by described as a 
mapping from the DBCL syntax tree to an SQL syntax tree. An 
example is provided in the Appendix. 

6,O SYNTACTIC AND SEMANTIC QUERY SIMPLIFICATION 

The DBCL and SQL examples presented so far are directly 
generated from the corresponding PROLOG predicates. 
Unfortunately, direct view translation tends to carry a 
large overhead of superfluous operations. Our mechanism 
does not rely on the database system but applies syntactic 
and semantic query simplification techniques within DBCL to 
remove such inefficiencies. 

Syntactic methods attempt to reduce the number of joins 
in a query by removing redundant tuple variables, or by 
replacing joins with projections through constant 
propagation. The main task is the recognition and removal 
of common subexpressions. In a tableau representation, join 
minimization corresponds to the minimization of the number 
of rows E A ~ O  et al. 19791. Our algorithms for this 
syntactic step are based on proposals by Sagiv El9831 but 
extended to a multi-relation environment, in which variables 
may appear in more than one tableau column [~ohnson and 
Klug 19831. 

Often, syntactic simplification rules become applicable 
only after equivalence transformations based on semantic 
integrity constraints have been executed. Systems such as 
QUIST [King 19811 use semantic knowledge about single data 
objects or small groups of them for different kinds of 
efficiency-oriented query transformations; such heuristics 
usually require a large amount of detailed knowledge and 
sophisticated A1 techniques to choose from applicable 
integrity constraints. In contrast, our algorithms only use 
general semantic integrity rules, applying to relations as a 
whole, for query simplification. In particular, the three 
types of integrity constraints introduced in section 3 
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(value bounds, functional dependencies, and referential 
constraints) are used as the knowledge base. We consider 
each type in turn. 

6.1 Value Bounds 

Value bounds can be added to Relcomparisons to check 
for contradictions or redundant comparisons. For example, 
if the value of 40000 were replaced by 200000 in the 
condition, less(S, 40000), of example 3-3, the inequality 
could be omitted since its satisfaction is already implied 
by the integrity constraint that all salaries must fall in 
the range between 10000 and 90000. On the other hand, a 
value of 2000 would yield the empty relation as a result to 
the whole query because of a contradiction with the same 
integrity constraint. Another opportunity for 
simplification may arise from certain combinations of 
inequality conditions. For example, in "A >= B and B >= C 
and A C", the last condition could be replaced by the 
sharper "A > C", and "A >= B and B >= C and C >= A" is 
equivalent to "A = B and B = C", which could be expressed 
more efficiently by renaming variables in Relreferences, 
discarding the inequalities. The PROLOG implementation of 
such inequality-based simplifications is based on a graph 
procedure described in [~osenkrantz and Hunt 19801. 

6.2 Functional Dependencies 

One of the main reasons for designing DBCL in a 
tableau-like fashion is the availability of functional 
dependencies for tableau simplification, using variations of 
the chase process that have been widely studied since the 
original paper by Aho et al. [1979]. Since we consider 
functional dependencies only within relations, the 
Relreferences section of a DBCL predicate can be partitioned 
by relation names. The process then tries to equate rows 
within each partition and to remove duplicates, thereby 
simplifying the Relreferences. Care has to be taken for 
correct renaming since -- in contrast to normal tableaux -- 
we allow comparisons between different columns of a tableau 
(e.g:, between mgr and eno). Our implementation employs a 
version of the fast chase algorithm proposed by Downey et 
al. [19801, adapted to the problem of query simplification 
rather than lossless join tests. In particular, our version 
does not only detect equivalence classes of tableau entries 
but actively removes duplicate rows. 

Example 6-1: 

Consider the three rows addressing empl elements in the 
Relreferences section of the DBCL predicate in example 3-3. 
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Applying the functional dependency, 

funcdep(emp1, [naml, [enol), 

we can replace all occurrences of v - En04 by v - En01 and 
consequently, since 

funcdep(emp1, [enol, [nam,sal,dnol), 

the first and the last row can be equated, and one of them 
omitted leading to the simplified expression (note the 
renaming in the Relcomparisons section) 

dbcl( 
[ empdep , eno , nam, sal, dno , fct, mgrl, 

[works - dir - for, 
* r t - X I  * r * r * 1  * I #  

[[empl, v - Enol, t - X, v - Sall, v DI * r  *I 
[ dept , * r * I  * r v-D, v - Fct2, v MI 
[ empl , v - M I  smiley, v - Sa13, v - ~ n o 3 ,  *. -*ii, 

[[less, v - Sall, 4000011). 

6.3 Referential Integrity 

The application of referential integrity constraints 
allows the deletion of certain 'dangling' rows from the 
Relreferences section and thus of unnecessary variables and 
join terms. A row r with tag R dangles if the set of I R I  
attributes can be partitioned into two sets containing 
variables RPi, i=l, ..., m, and RNj, j=m+l, ..., IRll, such 
that (a) for all j ,  r[RNj] is a value starting with v that 
appears nowhere else in the DBCL predicate, and (b) tKere is 
a row r' with tag R' and attributes RP'i, i=l, ..., m, such 
that ~ [ R P ~ I  = r'[~~'i] for i=l, ..., m. A dangling row r is 
deletable if there is an referential constraint, refint(R1, 
XRP'~, ..., RP'mI, RI [RP~, ..., RP~]), for some row r' that 
satisfies condition (b). 

Note, that -- due to condition (a) -- the deletion of a 
dangling row can cause other rows to become deletable. 
Therefore, row deletion due to referential integrity 
constraints is a recursive process. 

We are aware of one proposed view optimizer that uses 
inclusion dependencies in this way [~osenthal and 
Reiner 19821. However, only directly applicable 
dependencies are considered. This is not surprising since 
the test whether a general inclusion dependency can be 
derived from a given set is known to be computationally 
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difficult [Casanova et al. 19821. The restriction to 
'key-based' dependencies proposed in [~ohnson and Klug 19821 
(i.e., that the right-hand side of each inclusion dependency 
must be a subkey and the left-hand side must not contain key 
attributes) amounts to the same fact, namely that inclusion 
dependencies are applicable either directly or not at all. 
The referential integrity constraints used in this paper do 
allow indirectly derived referential dependencies but there 
is a relatively simple and efficient method of drawing 
inferences since each attribute may appear only on the 
left-hand side of (at most) one referential integrity 
constraint. The algorithm is sketched below; it assumes an 
arbitrary but fixed numbering of attributes in the database 
schema. 

A1 orithm 1 
h , e - P r o c e d u r e  for Referential ~ntegrity) : 

Input: A pair ([~a,[~l,.,.,AmlI, [~b,[~l,,..,Bm]]) 
representing a hypothesized referential 
integrity constraint, and a set of given 
referential integrity rules, 
originally marked "unused". 

Output: Success (the constraint is derivable from 
the stored referential constraints) 
or failure (it is not). 

Procedure: 

1. Initialize a variable CURRENT with the hypothesized 
referential constraint. 

2. Sort the two attribute lists in CURRENT by ascending 
attribute numbers on the left-hand side. 

3. By the inference axioms given in [Casanova et al. 19821, 
a referential constraint RC is applicable if the 
left-hand side of CURRENT is a subsequence of the 
left-hand side of RC. If no "unused" referential 
constraint is applicable, stop with failure: the 
hypothesized rule is not derivable from the existing 
referential integrity constraints. 

4. Replace the left-hand side of CURRENT by the appropriate 
subset of the right-hand side of the applicable 
referential constraint RC. If now the right-hand side 
and the left-hand side of CURRENT match, stop with 
success: there is a (derived) referential integrity 
constraint between attributes Al, ..., Am of Ra and 
attributes B1, ..., Bm of Rb. Otherwise, mark RC "used" 
and return to step 2. 

The correctness proof for this procedure is left to a 
forthcoming paper. Note, that by definition of the 
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referential constraints (see section 31, at most one rule 
will apply in each step, and because of the rule marking in 
step 3, no rule will be used more than once. Therefore, the 
algorithm not only terminates but can also be implemented 
quite efficiently. Its exact complexity depends on the 
matching procedure used for detecting applicable rules. 

6.4 Summary Of The Simplification Algorithm 

Our prototype simplification algorithm does not yet 
utilize semantic and syntactic query simplification methods 
in a fully integrated manner. For example, it does not take 
into account the interaction of functional dependencies with 
referential integrity constraints but applies them 
sequentially. Moreover, checking value bounds and 
functional dependencies could be integrated more 
efficiently. Nevertheless, the procedure sketched below 
covers a large class of possible improvements. 

Algorithm - 2 (DBCL Simplification Procedure): 

1. Add value bounds to Relcomparisons for attribute 
variables appearing there and check whether all 
constants appearing in Relreferences are within their 
domains. If not, stop with an empty query result. 

2. Set the Boolean variables REPEAT and FIRSTTIME to true. 

3. Apply the inequality simplification algorithm (section 
6.1; if a contradiction is detected, stop with an 
empty query result; if variables have to be renamed due 
to newly detected equality conditions or if FIRSTTIME, 
set REPEAT to true and FIRSTTIME to false, else set 
REPEAT to false. 

4. If REPEAT then do the following: 
apply a functional dependency chase algorithm with 
deletion of duplicate rows (section 6.2); if a 
contradiction is detected, stop with an empty query 
result: if variables have been renamed return to 3. 

5. Remove deletable dangling tuples from Relreferences 
recursively (section 6.3). 

6. Minimize the remaining tableau by a syntactic algorithm 
(section 6.0). 

Example 6-2: 

Consider the query of examples 4-1 and 5-1. There are no 
applicable valuebounds in this case. However, knowledge 
about the functional dependencies allows the deletion of two 
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rows in the Relreferences section. The first functional 
dependency given in section 3 said that no two employees 
with the same name have different employee numbers. But eno 
is a key of relation empl by the second functional 
dependency. Therefore, the third and the last row of the 
predicate describe the same set of employees. Renaming row 
6 permits the deletion of that row by the trivial syntactic 
simplification rule, A AND A <==> A. During this process, 
the mgr attribute in row 5 has been renamed to v - M1. Using 
the same reasoning as before, we can equate rows 2 and 5, 
rename again, and remove row 5. This ends step 4 of the 
algorithm; since still no valuebound applies, the tableau 
immediately before step 5 looks as follows: 

dbcl( 
[empdep, eno, nam, sal, dno , fct, mgrl, 

[same - manager, 
*I t - X, * r * r * r *I r 

[[empl, v - Enol, t - X, v - Sall, v Dl, * I * I ,  
Edept , * I * I *, v-~1, v - Fct2, v - MI], 
[empl, v M1, v - M, v Sa13, v - ~503, * ,  "3 I 

[empl, v - ~iio4, jones, v-~al4, - v - Dl, * I *I 1 ,  

[[neq, t - X, jonesll). 

In this DBCL predicate, the third row dangles; it is 
also deletable since v - M1 appears in the second row and 
there is a (directly applicable) referential integrity 
constraint between mgr in dept and eno in empl. After the 
deletion of the third row, the second row dangles and is 
also deletable. Thus, the final DBCL predicate looks as 
follows: 

dbcl( 
[empdep, eno, nam, sal, dno, fct, mgrl, 

[same - manager, 
* I  

[[empl, v Enol, t X I  v Sall, v Dl, * ,  *I I 

[empl, v-~no4, - jones, v-sal4, - V D ~ ,  - * ,  *]I, 

[[neq, t - XI jonesll). 

Informally speaking, the stored semantic knowledge allowed 
us to simplify the question: "who works (directly) for the 
same manager as jones?" to: "who works in the same 
department as Jones?" The above DBCL predicate translates 
into the SQL query: 
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SELECT v1,nam 
FROM empl vl, empl v2 
WHERE (vl.dno = v2.dno) AND (v2.nam = 'jones') 

AND (vl.nam { 'jones') 

Comparing this with example 5-1, we note that four out of 
five join operations have been avoided by the application of 
semantic constraints, 

7.0 EXTENSIONS 

The procedures presented thus far deal only with 
function-free conjunctive queries. The extensions surveyed 
in this section have to handle disjunction, negation, 
general PROLOG predicates appearing in database requests, 
and recursive database calls. Details will be left to a 
forthcoming paper. 

The simplest way to handle disjunction is converting 
the DBCL predicate into disjunctive normal form, and 
generating a query for each of these conjunctions. This is 
done in some existing DBMS (for instance, CCA's SDD-1 
 ernst stein et al. 19811) but may not be the most efficient 
solution [Grant and Minker 1981; Sagiv and Yannakakis 
19801. 

A problem with negation is that it is difficult to 
determine the meaning of it as soon as Relreferences extend 
over more than one relation. For example, consider a view 
definition 

manager(X~Y) :- empl (X ,-,-, D) , dept (D,-, y) . 
Should the query, :- not(manager(jones, MI) return all 
numbers of employees who are managers but do not manage 
Jones (to be retrieved from the dept relation), or should it 
also return the employees who are not managers at all (to be 
retrieved from the empl relation)? Note that the latter 
interpretation would utilize a referential integrity 
constraint. If it can be decided which query is meant, its 
evaluation involves first computing the positive result, and 
then its complement in the appropriate set. Instead of set 
difference, SQL's nested expressions (NOT IN ( . . , ) I  can also 
be used. 

If not all database references are lumped together in a 
view definition, there may be embedded predicates and PROLOG 
'cuts' mixed with them to express certain relationships 
between the retrieved data. Some standard predicates can be 
handled within SQL, for instance inequality- comparisons or 
built-in functions. If other predicates occur within the 
DBCL predicate several queries have to issued, and the 
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interaction between their results must be evaluated in 
PROLOG. Not only will this happen tuple-at-a-time but the 
partial query results may not even fit in main memory. 
Therefore, we are investigating a more structured approach 
based on the extensions of relational calculus proposed in 
 lug 19821. A first step in this direction that avoids the 
aforementioned space problems, at the expense of more 
computing time, is a step-wise evaluation process that 
evaluates the partial queries from right to left, using what 
amounts to a version of tuple substitution [~ong and 
Youssefi 19761. 

Often, it is advantageous to process multiple database 
queries simultaneously by recognizing common subexpressions 
[Jarke 19841. In particular, the problem of handling 
recursion in deductive databases has attracted considerable 
attention in the literature [Gallaire et al. 1981; Henschen 
and Naqvi 1984; Minker and Nicolas 19831. Where these 
papers are concerned with optimization issues at all, they 
focus on the idea of preserving intermediate results for the 
next steps. The following example is meant to demonstrate 
this approach but also its limitations and the need for 
additional efficiency-oriented research, 

Example 7-1: 

Consider a recursive view definition that describes that 
someone (called Low) is working for someone else (called 
~ i g h )  at any level. 

works for(low, ~ i g h )  :- 
works dir for(Low, High). 

works fo?(Low, ~ i g h )  :- 
works dir f o r ( ~ ~ ~ ,  ~edium), 
works-forr%edium, - ~ i g h )  . 

Assume a query that asks for "Smiley's people": 

:- works - for(People, smiley). 

Naive processing of this would generate a sequence of 
increasingly complex queries: 

1.) works dir for(People, smiley). 
2) works-dir-for(~eople, XI), 

works air for(~1, smiley). 
3) works dir for(~eople, Xl), 

works air for(X1, X2), 
works-dir-for(~2, - - smiley). 

etc. 

Each recursive step adds one condition to the query. For 
readability, the view representation of works dir - for was 
used; in reality, the queries would address three database 
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relations for each view, making the duplication of effort 
even more obvious. Therefore, it would be useful to store 
the result of each step in an intermediate relation to be 
used in the following step, instead of re-executing the 
previous query as part of the new one. In essence, this can 
be achieved by augmenting the definition of works - for as 
sketched below. 

works for(low, BOSS) :- 
se~rel(intermediate(Boss)), 
works for boss(low, Boss, Boss). 

works for boss(low, Currenthigh, Boss) :- 
intermzdiate(~urrenthigh), 
works directly fortlow, currenthigh). 

works for boss(low, Currenthigh, Boss) :- 
intermGdiate(~urrenthigh), 
works directly for(Medium, Currenthigh), 
setrei(interme~iate(~edium)), 
works - for - boss(Low, Medium, Boss). 

The predicate, setrel, creates a unary intermediate 
relation. Using this method, 

:- works - fort~eople, smiley). 

would first set the intermediate relation to containing just 
"Smiley", then all people who work for him directly, etc. 
Each generated SQL query would take the same form: 

SELECT v3.ename 
FROM empl vl, dept v2, empl v3, 

intermediate v4 
WHERE (vl.dno=v2.dno) AND (v2,mgr=v3.eno) AND 

(v3.nam=v4.nam) 

The final result would be the union of all these query 
results. 

On first sight, this seems to be a nice solution to 
handling recursion efficiently. Unfortunately, just asking 
another query to the same view completely upsets our scheme. 
Consider the query, . - works for(jones, Superior), 
requesting the names of Jones' managers at any level. Here, 
the proposed solution would still work. However, it would 
generate as the first intermediate relation all employee 
names, then all names of immediate employees of any manager 
(i.e., everybody except the top manager), and so forth until 
the hierarchy is exhausted. Although the final solution is 
smaller than in the first query, the intermediate results 
are much (and unnecessarily!) larger. A better solution 
would have to generate a more efficient original view 
definition that generates solutions bottom-up rather than 
top-down, namely: 
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works for(~ow, High) :- 
works directly for(Low, High). 

works for(~ow, High) :- 
works directly - for(~edium, ~igh), 
works-for(~ow, - ~edium). 

It is open, how this kind of optimization can be 
detected by a query optimizer. (~fter the revision of this 
paper, we became aware of a new approach by Marque-Pucheu et 
al. El9841 which provides a partial solution. However, the 
question how to integrate the optimization of recursive 
queries with the type of optimization proposed in section 6 
remains to be investigated.) 

8.0 CONCLUDING REMARKS 

A mechanism for coupling expert systems and database 
systems was presented. Our approach differs from integrated 
expert systems databases [warren 19811, as well as from 
so-called deductive databases such as BDGEN [~icolas and 
Yazdanian 19831, in that it provides a connection mechanism 
attached to the expert systems language, yet is independent 
of any particular application. We believe that the proposed 
method can contribute to a practical integration of expert 
systems into real-life business environments, and to more 
intelligent and powerful operation of existing relational 
database systems [~arke and Vassiliou 19841. 

The PROLOG-DBCL and DBCL-SQL translations, as well as 
initial versions of the query simplification procedures, 
have been implemented. We are still working on more 
efficient support for recursive queries, and on extensions 
to the local optimizer, covering disjunction, negation, and 
general embedded PROLOG functions. 
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APPENDIX 

The execution of our prototype PROLOG programs is 
demonstrated by the example of the works dir-for predicate 
introduced in section 3. The output shown-is actual PROLOG 
output, run using DEC-20 Prolog under TOPS-20, but has been 
edited to fit the Proceedings format. 

Consider the query: "who works directly for Smiley?" This 
would be expressed in Prolog as: 

:- works - dir - for(~am,smiley). 

The metaevaluation of this query yields: 

I ?- metaevaluate(pr5, 
[works - dir - for(t - nam,smiley)l, no - optim, NEW). 

NEW = [dbcall(empl,v eno,t nam,v sal1,v - dno), 
dbcall(dept,v Sno,v Tct,v enol), 
dbcall(emp1,v-enol,&niley~v - - sal2,v - dno2) 1 

This metaevaluated query is further transformed into the 
tableau-like DBCL format: 

dbcl( 
[ empdep , eno , nam, sal, dno, fct, mgr] I 

[works - dir - for, 
*, t - nam, 

[[empl, v - eno, t - nam, v - sall, v dno, * I *I I 

[ dept , * r * ,  * v-dno, v - fct, v - enoll, 
[empl, v - enol, smiley, v - sa12, v - 31102, * ,  *I], 

Finally, it is translated into an equivalent SQL formulation 
of the query (sqltrans), and the SQL version is displayed 
(sqlprint): 
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SELECT vl2. nam 
FROM empl v12, dept v13, empl v14 
WHERE (vl2.dno=vl3.dno) AND (vl4.nam='smiley') 

AND (vl3.enol=vl4.enol) 

DBCL = 
[ E empdep , eno, nam, sal, dno, fct, m9rl I 

[works - dir - for, 
*, t - nam, 

[[empl, v - eno, t - nam, v - sall, v dno, * I  *I I 

[dept , * r * I  *, v-dno, v - fct, v - enoll, 
[empl, v - enol, smiley, v - sa12, v - ano2, * I *I I, 

E l l .  

SYNTAXTREE = 
select(Lvl2.t naml, 

from(~(empl~vl2),(dept,vl3),(empl,vl4)1), 
where([equal(dot(vl2,v dno),dot(vl3,v - dno)), 

equal(dot(vl4,na~),smiley), 
equal(dot(vl3,v - enol),dot(vl4,v - enol))])) 
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