
AN OPTIMIZING PROLOG FRONT-END TO

A RELATIONAL QUERY SYSTEM

Matthias Jarke
James Clifford

Yannis Vassiliou

January 1984

Center for Research on Information Systems
Computer Applications and Information Systems Area

Graduate School of Business Administration
New York University

Working Paper Series

CRIS #65

GBA #84-24(~~)

Published in Proceedings ACM-SIGMOD International Conference on
Management of Data, Boston, June 18-21, 1984.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-24

AN OPTIMIZING PROLOG FRONT-END TO

A RELATIONAL QUERY SYSTEM

Abstract

An optimizing translation mechanism for the dynamic interaction
between a logic-based expert system written in PROLOG and a re-
lational database accessible through SQL is presented. The
mechanism makes use of an intermediate language that decomposes
the optimization problem and makes the proposed approach target-
language independent. It can either facilitate expert system -
database interaction, e.g., when integrating expert systems into
business systems, or augment existing database with (external)
deductive capabilities.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-24

Page 2

1.0 INTRODUCTION

Efforts to bring together methods from artificial
intelligence and database research have caused much interest
in both communities. Cooperation between the areas can be
fruitful in conceptual modelling [Brodie et al. 19841, in
providing database data to expert systems, in supporting
very high-level user interfaces for databases, and in
improving database efficiency. In particular, the
similarity between relational database concepts and
logic-based deduction has focused the attention on
integrating these two elements in various ways [Gallaire and
Minker 1978; Gallaire et al. 1981; Nicolas et al. 19821.

In previous work [~arke and Vassiliou 1984; Vassiliou
et al. 1983, 19841, we investigated strategies for providing
data management capabilities to expert systems. We
presented a technique of 'tight coupling' between a
logic-based expert system and a relational DBMS, employing
delayed execution of database calls. Our implementation
uses an amalgamation between a logic programming language
(PROLOG) with a suitable meta-language of itself, expressed
in a variable-free subset of the logic programming language
 o ow en and Kowalski 19821. We also postulated algorithms
for the further processing, optimization, and translation
into the database query language at hand of the generated
database calls, without actually describing such algorithms.

In this paper, we generalize the notion of expert
system--database coupling and describe an optimizing
translation mechanism which allows for the continued
efficient exchange of queries and/or data between a
PROLOG-based expert system and a relational DBMS accessible
through SQL. The mechanism is designed to enable
portability to similar query languages such as QUEL
[Stonebraker 19761 or PASCAL/R [Schmidt 19771. It can be
used regardless of whether one wants to provide database
information to an expert system or to enhance the user
interface or the efficiency of an existing conventional
database system from 'outside' if one is unable or unwilling
to extend the DBMS itself.

This work was carried out as part of a joint study being
conducted with the IBM Corporation.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-24

Page 3

Our approach employs an intermediate language, DBCL. This
language is a variable-free subset of PROLOG designed to be
similar to tableaux as introduced in [~ h o et al. 19791.
~ttention in this paper will be focused on conjunctive,
negation- and function-free queries but extensions to
general DBCL predicates are also discussed.

The introduction of DBCL partitions the problem of
efficient PROLOG-SQL translation into three major
components: the translation of PROLOG data requests into
DBCL statements; the syntactic and semantic optimization of
such DBCL statements; and the translation of the optimized
DBCL statements into queries expressed in the target
language, in our case SQL.

Since we assume two independent subsystems to be
coupled, our query optimization methods are somewhat
different from those presented in previous research on
PROLOG databases. For example, the kind of query
optimization achieved by reordering PROLOG goals [warren
19811 should be taken care of by the existing query
processor of the DBMS. Our strategies focus more on
DBMS-independent query simplification and multiple query
optimization. The tableau-like structure of DBCL allows the
application of results obtained by database theory, although
it turns out that some of these results have to be extended
for practical purposes.

The paper is organized as follows. Section 2 presents
the global architecture of the proposed translation
mechanism. After a definition of the DBCL subset to be used
in this paper in section 3, section 4 briefly reviews the
translation process from PROLOG to DBCL. The DBCL-SQL
translation has been implemented in PROLOG using a syntax
tree mapping approach (section 5) . Section 6 demonstrates
how syntactic (relational data structures) and semantic
(integrity constraints) knowledge about the underlying
database can be exploited for DBCL query simplification.
Finally, section 7 presents an outlook of what can be done
to support multiple query evaluation, including recursive
database calls, through the creation and storage of suitable
intermediate results.

2.0 ARCHITECTURE OF THE TRANSLATION MECHANISM

The basic problem in optimizing the interaction between
PROLOG and a conventional relational query lanaguage is the
translation of a series of tuple-oriented data requests,
addressing parameterized and possibly recursive views in
PROLOG, into (sequences of) set-oriented queries to base
relations. Thus, an efficient translator must (a) collect
tuple-oriented requests to form set-oriented queries, and
(b) optimize the processing of parameterized views.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-24

Page 4

.....................
1 PROLOG: I
I tuple-at-a-time I
I recursive views I
I PROLOG syntax
.....................

I

I
METAEVALUATE: I collect database requests

I
I I I 1 I
I v v v

.....................
I

LOCAL I 1 GLOBAL
OPTIMIZE: 1 / DBCL: I I OPTIMIZE:
syntactic I I set-oriented I I multiple
and semantic 1 I base relations I I related
simplification I I PROLOG syntax I I database calls

I I
I I I I I

I
TRANSLATE: I generate target query

I
v

/ SQL: I
I set-oriented I
I base relations I
I target syntax
.....................

I

Figure 1: Architecture of PROLOG-SQL translation mechanism

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-24

Page 5

The overall architecture of our approach is summarized
in Figure 1. The central idea involves the introduction of
an intermediate language of database calls (DBCL), which is
set-oriented and uses base relations but is still expressed
in PROLOG (to be precise: in a variable-free subset of
PROLOG). The use of DBCL separates the two aforementioned
tasks. Thus, phase (a) becomes independent of the target
database query language and a large number of optimizations
can be performed without reference to the target language.
DBCL will be defined formally in section 3, followed by a
description of the functions shown on the arcs of Figure 1:

1. Metaevaluate translates PROLOG statements into DBCL
statements. It is described in [~assiliou et al. 1983,
19841 for a slightly different intermediate language,
and adapted for our current purposes in section 4.

2. Translate (see section 5) generates a set of queries in
the target database language, SQL, from a DBCL
predicate.

3. Local optimize (see section 6) removes redundancy from a
DBCL predicate to eliminate the execution of unnecessary
operations. Techniques used for this purpose are
similar to view processing strategies as described,
e.g., in [Ott and Horlaender 1982; Rosenthal and
Reiner 19821.

4. Global optimize (see section 7) has two functions.
First, it determines which parts of a DBCL expression
can be evaluated using the internal PROLOG database, and
for which parts external database queries have to be
generated. Second, it decides whether query results
should be stored for future reference, a feature of
particular importance in processing recursive database
calls.

We conclude this overview by briefly mentioning two crucial
software components required to support the above functions,
and some alternatives for their implementation.

An internal database system in the logic language can
be used for storing query answers from the external
database. Garbage coliection-may become an issue if some of
these results are large and not reused. In addition, a
merge procedure must be provided to combine internal and
external database segments. An alternative strategy is
provided by storing query results in the external database
system, to keep a clean separation between database and
logic program data. It is not clear which alternative is
preferable in general. Our mechanism employs an internal
DBMS because query results are expected to be fairly small.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-24

Page 6

An amalgamation rocedure between logic programming
language and metalanguage + Bowen and Kowalski 19821 is
required since our approach requires a self-modifying
program that uses a precompilation of itself.
~lternatively, the view definitions could be translated at
logic program design time [~eiter 19781. However, if
recursion appears, this "compiled" approach requires
iteration constructs not readily available in PROLOG
[~enschen and Naqvi 19841.

3.0 FORMAL DEFINITION OF DBCL

One of the main motivations for the introduction of
DBCL is the collection, joint optimization, and therefore
delayed execution of tuple-oriented PROLOG data requests.
To prevent their immediate execution, PROLOG data requests
must be manipulated in a metalanguage. Since PROLOG itself
is used as this metalanguage (see section 4), the data
requests must be converted into a variable-free
representation to avoid instantiation of variables. This
form is constructed from the original PROLOG predicate as
follows. Constants are translated into themselves.
universally quantified variables of the original goal clause
are preceded by a "t " (these variables denote the target
attributes of the queryr. Other variables are preceded by a
"v and a number is appended to them to distinguish between
diFferent variables addressing the same attribute.

A BNF grammar of DBCL is provided in Figure 2. Note,
that in general a DBCL statement may contain references to
arbitrary PROLOG predicates as well as negation and
disjunction (denoted by ";" in the grammar). In the
remainder of this paper, we shall concentrate on a subset of
DBCL that contains only metaterms without negation. The
only predicate names allowed besides database relation names
are the standard comparison operators. Essentially, this
amounts to a reduction of the generated queries to
conjunctive queries including inequality comparisons, but
without embedded functions.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-24

Page 7

Figure 2: Grammar for full DBCL

A DBCL predicate for conjunctive queries takes the form

 el comparisons contains predreferences, moved to the end of
the predicate by goal reordering [warren 19811. The four
DBCL components are explained below. They are designed in a
way that makes DBCL similar to (tagged) tableaux
[~llman 19821,

Schema is a list of attributes of the underlying
database schema together with the name of the database of
interest.

Example 3-1:

Throughout this paper, we shall use a database, empdep, of
two relations, describing employees (characterized by
number, name, salary, and department number) and departments
(characterized by number, function, and manager number),

empl (eno, nam, sal, dno)
dept (dno, fct, mgr)

The schema for this database is defined by the list

[empdep, eno, nam, sal, dno, fct, mgrl.

When relations are used in tableau format, their definition
follows the above schema, with a value of "*" specified for
attributes that do not apply.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-24

Page 8

In addition to this syntactic specification of the
schema, semantic inteqrity constraints can be specified.
Since we assume the use of an existing database system, we
cannot expect very sophisticated types of constraints to
hold. In this paper, only three kinds of integrity
constraints (we believe, the most frequent ones in practice)
will be considered:

(1) value bounds for ordered attributes are expressed in
PROLOG in the format

which means that L <= x <= U for all values x of attribute A
in relation R.

(2) functional dependencies within relations are expressed
in the format

funcdep(R, Al, A2)

which means that for all pairs x, y of elements of relation
R:

where A1 and A2 are subsets of the attribute sets of R. An
important subset of functional dependencies are key
constraints.

(3) referential integrity constraints are denoted

which means that the set of values appearing in the
attribute(s1 A1 of relation R1 must be a subset of the set
of key values appearing in R2.

Referential integrity constraints are a subset of the
so-called inclusion dependencies [~agin 19811. They map the
fact that each attribute, property, or relationship is based
on the existence of (a unique combination of) underlying
objects. This translates into the rules that (a) the
right-hand side (or superset) of a referential integrity
constraint always refers to the key of some relation
(identifying exactly one of the underlying objects), and (b)
no attribute may appear in more than one left-hand side of a
referential integrity constraint.

Example 3-2:

In the example database, we assume the following integrity
constraints to hold:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-24

Page 9

valuebound (empl, sal, 10000, 90000).
funcdep (empl, [naml, [enol).
funcdep (empl, [enol, [nam, sal, dnol).
funcdep (dept, [dnol, [fct, rngr])
funcdep (dept, [mgrl, [dno]).
refint (empl, [dnol, dept, [dno]).
refint Wept, [mgrl, empl, [eno]).

It is easy to express inference rules over these
dependencies in the same format, using variables instead of
constants, e.g., funcdep(~el,~ttrset,~ttrset) -- the
reflexivity axiom. Such inference rules can be used for
semantic query optimization, see section 6.

Targetlist has the same format as Schema and defines
the schema of the result relation of the database call.

Relreferences is a list whose elements are lists, each
corresponding to a row in a (tagged) tableau and having the
same format as Schema, with "*" values for non-applicable
attributes. In terms of SQL, each relreference corresponds
to a relation variable. If symbols corresponding to
variables e l starting with t or v) are duplicated in
the Relreferences, each pair corresponds-to an equijoin.

Relcomparisons is a list of lists, each corresponding
to a relational comparison (e.9. less, greater). It may be
empty if no such comparisons exist. Each sublist maps to
either an inequality restriction or an inequality join.

We conclude this section by a comprehensive example
illustrating the DBCL representation of general conjunctive
database calls.

Example 3-3:

Let a PROLOG view called "works - dir - for" be defined as
follows:

works - dir- for(^, Y) :-
empl(-, XI D)
dept(D, -. ~ i .
empl(M1 Y, - I -) .

The underscores represent distinct but irrelevant variables.
Consider the query: "who works directly for Smiley for less
than 40000?"

:- works dir for(^, smiley),
empl(7, X, S, -) , less(S, 40000).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-24

Page 10

This would translate to the tableau-like DBCL
representation:

dbcl(
[empdep, eno, nam , sal, dno , fct, mgrl,

[works - dir - for,
* r t - Xr * I * r * I *I,

[[empl, v - Enol, t - X, v - Sall, v D, *. * I r * [dept , * r * r v-D, v - Fct2, v MI,
[empl , v MI smiley, v - ~a13: v ~ n o 3 , * , -*Ir
[empl, v - ~no4, t - XI v - S, v-~no4, - * , " 1 1 ,

[[less, v-S, 4000011).

4.0 TRANSLATION OF PROLOG INTO DBCL

PROLOG statements are translated into DBCL by the
predicate metaevaluate, which is described in detail in
[vassiliou et al. 1983, 19841. The function of metaevaluate
is to delay the execution of database-related clauses in
PROLOG, and to collect the related database calls for
set-oriented processing. In order to perform this function,
the database references are translated into DBCL using an
amalgamation of PROLOG with a suitable meta-language as
described in ow en and Kowalski 1982; Kunifuji and
Yokota 19821. If the original predicate involves recursion,
a sequence of DBCL statements is generated.

Example 4-1:

Assume that the relations empl and dept are stored in an
external database, whereas the internal PROLOG knowledge
base contains the following facts and rules (the specific
database-related predicates are not shown here, see
[vassiliou et al. 19841):

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-24

Page 11

specialist(jones, guns).
specialist(miller, driving).
specialist(smiley, thinking). ...
works - dir - for(X, Y) :- (... as in example 3.3 ...)
same - manager(x, Y) :- works dir for (x, M),

works-dir-for - (Y, MI,
neq(~,Y).

partner(W, X, Skill) :-
metaevaluate(pr5,

[same manager(t XI w)], no optim, DBCL), !,
same - manager(^, w): specialist(^, skill).

That is, if employee W has to perform a specific task
requiring a certain Skill, W can find a partner for that
task by looking for employees X who have the same skill and
work for the same manager. pr5 is a program name, no optim
indicates that query optimization is turned off, and DBCL is
the variable that will hold the database query expressed in
DBCL .
Assume that employee Jones looks for a partner who is a
specialist in driving. The corresponding query

:- partner(jones, X I driving).

would be resolved partially using database data and
partially within PROLOG. First, the evaluation of the
metaevaluate predicate would result in the creation of
instantiated same manager predicates in the internal PROLOG
database. Then, PROLOG would combine the same-manager data
with the specialist information, using its normal
tuple-at-a-time procedure. Note that the cut (!) after the
metaevaluate predicate makes sure that it is evaluated only
once (i.e., the queries resulting from its evaluation are
submitted to the database only once).

For the purposes of this paper, the most important
function of metaevaluate is the simulation of PROLOG's
deduction procedure in order to translate the view

same - manager(t - X, jones)

into the DBCL predicate

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-24

Page 12

dbcl(
[empdep, eno, nam, sal, dno , fct, mgr],

[same - manager,
* r

t - XI
* I

v - MI
j ones,

*I

v - MI

5.0 TRANSLATION OF DBCL INTO SQL

The second translation step of the proposed mechanism
converts DBCL into the target language, here assumed to be
SQL. Since only function-free conjunctive queries are
considered, the generated queries do not require nesting
[~ i m 19821. The algorithm just has to fill in the
information from the DBCL tableau into the
SELECT...FROM...WHERE... pattern according to the following
rules:

1. Each row of the Relreferences section corresponds to a
variable definition in the FROM clause.

2. Attributes with entries in the Targetlist appear in the
SELECT clause, together with an appropriate variable
name (number of the first row where the same entry
appears).

3. Each constant in the Relreferences is translated into a
restrictive condition (with an equality comparison
operator) whose left-hand side is determined by the row
(variable name) and the column (attribute name) of the
appearance.

4. Each pair of equal symbols in the Relreferences starting
with t or v is translated into an equijoin term. The
components are again determined by their location as in
the previous step.

5. Each row in Relcomparisons is mapped into a restrictive
or join term. The names of the participating variables
and attributes are determined by the location of the
first occurrence of the same symbols in the
Relreferences section.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-24

Page 13

6. Non-repeated variables do not appear in the SQL query.

Example 5-1:

~ollowing the above rules, the query in example 4-1 is
translated into:

SELECT vl . nam
FROM empl vl, dept v2, empl v3,

empl v4, dept v5, empl v6
WHERE (vl.dno = v2.dno) AND (v2.mgr = v3.eno) AND

(v4.dno = v5.dno) AND (v5.mgr = v6.eno) AND
(v4.nam = 'jones') AND (v3.nam = v6.nam) AND
(v1,nam f 'jones')

More formally, the translation process can by described as a
mapping from the DBCL syntax tree to an SQL syntax tree. An
example is provided in the Appendix.

6,O SYNTACTIC AND SEMANTIC QUERY SIMPLIFICATION

The DBCL and SQL examples presented so far are directly
generated from the corresponding PROLOG predicates.
Unfortunately, direct view translation tends to carry a
large overhead of superfluous operations. Our mechanism
does not rely on the database system but applies syntactic
and semantic query simplification techniques within DBCL to
remove such inefficiencies.

Syntactic methods attempt to reduce the number of joins
in a query by removing redundant tuple variables, or by
replacing joins with projections through constant
propagation. The main task is the recognition and removal
of common subexpressions. In a tableau representation, join
minimization corresponds to the minimization of the number
of rows E A ~ O et al. 19791. Our algorithms for this
syntactic step are based on proposals by Sagiv El9831 but
extended to a multi-relation environment, in which variables
may appear in more than one tableau column [~ohnson and
Klug 19831.

Often, syntactic simplification rules become applicable
only after equivalence transformations based on semantic
integrity constraints have been executed. Systems such as
QUIST [King 19811 use semantic knowledge about single data
objects or small groups of them for different kinds of
efficiency-oriented query transformations; such heuristics
usually require a large amount of detailed knowledge and
sophisticated A1 techniques to choose from applicable
integrity constraints. In contrast, our algorithms only use
general semantic integrity rules, applying to relations as a
whole, for query simplification. In particular, the three
types of integrity constraints introduced in section 3

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-24

Page 14

(value bounds, functional dependencies, and referential
constraints) are used as the knowledge base. We consider
each type in turn.

6.1 Value Bounds

Value bounds can be added to Relcomparisons to check
for contradictions or redundant comparisons. For example,
if the value of 40000 were replaced by 200000 in the
condition, less(S, 40000), of example 3-3, the inequality
could be omitted since its satisfaction is already implied
by the integrity constraint that all salaries must fall in
the range between 10000 and 90000. On the other hand, a
value of 2000 would yield the empty relation as a result to
the whole query because of a contradiction with the same
integrity constraint. Another opportunity for
simplification may arise from certain combinations of
inequality conditions. For example, in "A >= B and B >= C
and A C", the last condition could be replaced by the
sharper "A > C", and "A >= B and B >= C and C >= A" is
equivalent to "A = B and B = C", which could be expressed
more efficiently by renaming variables in Relreferences,
discarding the inequalities. The PROLOG implementation of
such inequality-based simplifications is based on a graph
procedure described in [~osenkrantz and Hunt 19801.

6.2 Functional Dependencies

One of the main reasons for designing DBCL in a
tableau-like fashion is the availability of functional
dependencies for tableau simplification, using variations of
the chase process that have been widely studied since the
original paper by Aho et al. [1979]. Since we consider
functional dependencies only within relations, the
Relreferences section of a DBCL predicate can be partitioned
by relation names. The process then tries to equate rows
within each partition and to remove duplicates, thereby
simplifying the Relreferences. Care has to be taken for
correct renaming since -- in contrast to normal tableaux --
we allow comparisons between different columns of a tableau
(e.g:, between mgr and eno). Our implementation employs a
version of the fast chase algorithm proposed by Downey et
al. [19801, adapted to the problem of query simplification
rather than lossless join tests. In particular, our version
does not only detect equivalence classes of tableau entries
but actively removes duplicate rows.

Example 6-1:

Consider the three rows addressing empl elements in the
Relreferences section of the DBCL predicate in example 3-3.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-24

Page 15

Applying the functional dependency,

funcdep(emp1, [naml, [enol),

we can replace all occurrences of v - En04 by v - En01 and
consequently, since

funcdep(emp1, [enol, [nam,sal,dnol),

the first and the last row can be equated, and one of them
omitted leading to the simplified expression (note the
renaming in the Relcomparisons section)

dbcl(
[empdep , eno , nam, sal, dno , fct, mgrl,

[works - dir - for,
* r t - X I * r * r * 1 * I #

[[empl, v - Enol, t - X, v - Sall, v DI * r *I
[dept , * r * I * r v-D, v - Fct2, v MI
[empl , v - M I smiley, v - Sa13, v - ~ n o 3 , *. -*ii,

[[less, v - Sall, 4000011).

6.3 Referential Integrity

The application of referential integrity constraints
allows the deletion of certain 'dangling' rows from the
Relreferences section and thus of unnecessary variables and
join terms. A row r with tag R dangles if the set of I R I
attributes can be partitioned into two sets containing
variables RPi, i=l, ..., m, and RNj, j=m+l, ..., IRll, such
that (a) for all j , r[RNj] is a value starting with v that
appears nowhere else in the DBCL predicate, and (b) tKere is
a row r' with tag R' and attributes RP'i, i=l, ..., m, such
that ~ [R P ~ I = r'[~~'i] for i=l, ..., m. A dangling row r is
deletable if there is an referential constraint, refint(R1,
XRP'~, ..., RP'mI, RI [RP~, ..., RP~]), for some row r' that
satisfies condition (b).

Note, that -- due to condition (a) -- the deletion of a
dangling row can cause other rows to become deletable.
Therefore, row deletion due to referential integrity
constraints is a recursive process.

We are aware of one proposed view optimizer that uses
inclusion dependencies in this way [~osenthal and
Reiner 19821. However, only directly applicable
dependencies are considered. This is not surprising since
the test whether a general inclusion dependency can be
derived from a given set is known to be computationally

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-24

Page 16

difficult [Casanova et al. 19821. The restriction to
'key-based' dependencies proposed in [~ohnson and Klug 19821
(i.e., that the right-hand side of each inclusion dependency
must be a subkey and the left-hand side must not contain key
attributes) amounts to the same fact, namely that inclusion
dependencies are applicable either directly or not at all.
The referential integrity constraints used in this paper do
allow indirectly derived referential dependencies but there
is a relatively simple and efficient method of drawing
inferences since each attribute may appear only on the
left-hand side of (at most) one referential integrity
constraint. The algorithm is sketched below; it assumes an
arbitrary but fixed numbering of attributes in the database
schema.

A1 orithm 1
h , e - P r o c e d u r e for Referential ~ntegrity) :

Input: A pair ([~a,[~l,.,.,AmlI, [~b,[~l,,..,Bm]])
representing a hypothesized referential
integrity constraint, and a set of given
referential integrity rules,
originally marked "unused".

Output: Success (the constraint is derivable from
the stored referential constraints)
or failure (it is not).

Procedure:

1. Initialize a variable CURRENT with the hypothesized
referential constraint.

2. Sort the two attribute lists in CURRENT by ascending
attribute numbers on the left-hand side.

3. By the inference axioms given in [Casanova et al. 19821,
a referential constraint RC is applicable if the
left-hand side of CURRENT is a subsequence of the
left-hand side of RC. If no "unused" referential
constraint is applicable, stop with failure: the
hypothesized rule is not derivable from the existing
referential integrity constraints.

4. Replace the left-hand side of CURRENT by the appropriate
subset of the right-hand side of the applicable
referential constraint RC. If now the right-hand side
and the left-hand side of CURRENT match, stop with
success: there is a (derived) referential integrity
constraint between attributes Al, ..., Am of Ra and
attributes B1, ..., Bm of Rb. Otherwise, mark RC "used"
and return to step 2.

The correctness proof for this procedure is left to a
forthcoming paper. Note, that by definition of the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-24

Page 17

referential constraints (see section 31, at most one rule
will apply in each step, and because of the rule marking in
step 3, no rule will be used more than once. Therefore, the
algorithm not only terminates but can also be implemented
quite efficiently. Its exact complexity depends on the
matching procedure used for detecting applicable rules.

6.4 Summary Of The Simplification Algorithm

Our prototype simplification algorithm does not yet
utilize semantic and syntactic query simplification methods
in a fully integrated manner. For example, it does not take
into account the interaction of functional dependencies with
referential integrity constraints but applies them
sequentially. Moreover, checking value bounds and
functional dependencies could be integrated more
efficiently. Nevertheless, the procedure sketched below
covers a large class of possible improvements.

Algorithm - 2 (DBCL Simplification Procedure):

1. Add value bounds to Relcomparisons for attribute
variables appearing there and check whether all
constants appearing in Relreferences are within their
domains. If not, stop with an empty query result.

2. Set the Boolean variables REPEAT and FIRSTTIME to true.

3. Apply the inequality simplification algorithm (section
6.1; if a contradiction is detected, stop with an
empty query result; if variables have to be renamed due
to newly detected equality conditions or if FIRSTTIME,
set REPEAT to true and FIRSTTIME to false, else set
REPEAT to false.

4. If REPEAT then do the following:
apply a functional dependency chase algorithm with
deletion of duplicate rows (section 6.2); if a
contradiction is detected, stop with an empty query
result: if variables have been renamed return to 3.

5. Remove deletable dangling tuples from Relreferences
recursively (section 6.3).

6. Minimize the remaining tableau by a syntactic algorithm
(section 6.0).

Example 6-2:

Consider the query of examples 4-1 and 5-1. There are no
applicable valuebounds in this case. However, knowledge
about the functional dependencies allows the deletion of two

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-24

Page 18

rows in the Relreferences section. The first functional
dependency given in section 3 said that no two employees
with the same name have different employee numbers. But eno
is a key of relation empl by the second functional
dependency. Therefore, the third and the last row of the
predicate describe the same set of employees. Renaming row
6 permits the deletion of that row by the trivial syntactic
simplification rule, A AND A <==> A. During this process,
the mgr attribute in row 5 has been renamed to v - M1. Using
the same reasoning as before, we can equate rows 2 and 5,
rename again, and remove row 5. This ends step 4 of the
algorithm; since still no valuebound applies, the tableau
immediately before step 5 looks as follows:

dbcl(
[empdep, eno, nam, sal, dno , fct, mgrl,

[same - manager,
*I t - X, * r * r * r *I r

[[empl, v - Enol, t - X, v - Sall, v Dl, * I * I ,
Edept , * I * I *, v-~1, v - Fct2, v - MI],
[empl, v M1, v - M, v Sa13, v - ~503, * , "3 I

[empl, v - ~iio4, jones, v-~al4, - v - Dl, * I *I 1 ,

[[neq, t - X, jonesll).

In this DBCL predicate, the third row dangles; it is
also deletable since v - M1 appears in the second row and
there is a (directly applicable) referential integrity
constraint between mgr in dept and eno in empl. After the
deletion of the third row, the second row dangles and is
also deletable. Thus, the final DBCL predicate looks as
follows:

dbcl(
[empdep, eno, nam, sal, dno, fct, mgrl,

[same - manager,
* I

[[empl, v Enol, t X I v Sall, v Dl, * , *I I

[empl, v-~no4, - jones, v-sal4, - V D ~ , - * , *]I,

[[neq, t - XI jonesll).

Informally speaking, the stored semantic knowledge allowed
us to simplify the question: "who works (directly) for the
same manager as jones?" to: "who works in the same
department as Jones?" The above DBCL predicate translates
into the SQL query:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-24

Page 19

SELECT v1,nam
FROM empl vl, empl v2
WHERE (vl.dno = v2.dno) AND (v2.nam = 'jones')

AND (vl.nam { 'jones')

Comparing this with example 5-1, we note that four out of
five join operations have been avoided by the application of
semantic constraints,

7.0 EXTENSIONS

The procedures presented thus far deal only with
function-free conjunctive queries. The extensions surveyed
in this section have to handle disjunction, negation,
general PROLOG predicates appearing in database requests,
and recursive database calls. Details will be left to a
forthcoming paper.

The simplest way to handle disjunction is converting
the DBCL predicate into disjunctive normal form, and
generating a query for each of these conjunctions. This is
done in some existing DBMS (for instance, CCA's SDD-1
 ernst stein et al. 19811) but may not be the most efficient
solution [Grant and Minker 1981; Sagiv and Yannakakis
19801.

A problem with negation is that it is difficult to
determine the meaning of it as soon as Relreferences extend
over more than one relation. For example, consider a view
definition

manager(X~Y) :- empl (X ,-,-, D) , dept (D,-, y) .
Should the query, :- not(manager(jones, MI) return all
numbers of employees who are managers but do not manage
Jones (to be retrieved from the dept relation), or should it
also return the employees who are not managers at all (to be
retrieved from the empl relation)? Note that the latter
interpretation would utilize a referential integrity
constraint. If it can be decided which query is meant, its
evaluation involves first computing the positive result, and
then its complement in the appropriate set. Instead of set
difference, SQL's nested expressions (NOT IN (. . ,) I can also
be used.

If not all database references are lumped together in a
view definition, there may be embedded predicates and PROLOG
'cuts' mixed with them to express certain relationships
between the retrieved data. Some standard predicates can be
handled within SQL, for instance inequality- comparisons or
built-in functions. If other predicates occur within the
DBCL predicate several queries have to issued, and the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-24

Page 20

interaction between their results must be evaluated in
PROLOG. Not only will this happen tuple-at-a-time but the
partial query results may not even fit in main memory.
Therefore, we are investigating a more structured approach
based on the extensions of relational calculus proposed in
 lug 19821. A first step in this direction that avoids the
aforementioned space problems, at the expense of more
computing time, is a step-wise evaluation process that
evaluates the partial queries from right to left, using what
amounts to a version of tuple substitution [~ong and
Youssefi 19761.

Often, it is advantageous to process multiple database
queries simultaneously by recognizing common subexpressions
[Jarke 19841. In particular, the problem of handling
recursion in deductive databases has attracted considerable
attention in the literature [Gallaire et al. 1981; Henschen
and Naqvi 1984; Minker and Nicolas 19831. Where these
papers are concerned with optimization issues at all, they
focus on the idea of preserving intermediate results for the
next steps. The following example is meant to demonstrate
this approach but also its limitations and the need for
additional efficiency-oriented research,

Example 7-1:

Consider a recursive view definition that describes that
someone (called Low) is working for someone else (called
~ i g h) at any level.

works for(low, ~ i g h) :-
works dir for(Low, High).

works fo?(Low, ~ i g h) :-
works dir f o r (~ ~ ~ , ~edium),
works-forr%edium, - ~ i g h) .

Assume a query that asks for "Smiley's people":

:- works - for(People, smiley).

Naive processing of this would generate a sequence of
increasingly complex queries:

1.) works dir for(People, smiley).
2) works-dir-for(~eople, XI),

works air for(~1, smiley).
3) works dir for(~eople, Xl),

works air for(X1, X2),
works-dir-for(~2, - - smiley).

etc.

Each recursive step adds one condition to the query. For
readability, the view representation of works dir - for was
used; in reality, the queries would address three database

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-24

Page 21

relations for each view, making the duplication of effort
even more obvious. Therefore, it would be useful to store
the result of each step in an intermediate relation to be
used in the following step, instead of re-executing the
previous query as part of the new one. In essence, this can
be achieved by augmenting the definition of works - for as
sketched below.

works for(low, BOSS) :-
se~rel(intermediate(Boss)),
works for boss(low, Boss, Boss).

works for boss(low, Currenthigh, Boss) :-
intermzdiate(~urrenthigh),
works directly fortlow, currenthigh).

works for boss(low, Currenthigh, Boss) :-
intermGdiate(~urrenthigh),
works directly for(Medium, Currenthigh),
setrei(interme~iate(~edium)),
works - for - boss(Low, Medium, Boss).

The predicate, setrel, creates a unary intermediate
relation. Using this method,

:- works - fort~eople, smiley).

would first set the intermediate relation to containing just
"Smiley", then all people who work for him directly, etc.
Each generated SQL query would take the same form:

SELECT v3.ename
FROM empl vl, dept v2, empl v3,

intermediate v4
WHERE (vl.dno=v2.dno) AND (v2,mgr=v3.eno) AND

(v3.nam=v4.nam)

The final result would be the union of all these query
results.

On first sight, this seems to be a nice solution to
handling recursion efficiently. Unfortunately, just asking
another query to the same view completely upsets our scheme.
Consider the query, . - works for(jones, Superior),
requesting the names of Jones' managers at any level. Here,
the proposed solution would still work. However, it would
generate as the first intermediate relation all employee
names, then all names of immediate employees of any manager
(i.e., everybody except the top manager), and so forth until
the hierarchy is exhausted. Although the final solution is
smaller than in the first query, the intermediate results
are much (and unnecessarily!) larger. A better solution
would have to generate a more efficient original view
definition that generates solutions bottom-up rather than
top-down, namely:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-24

Page 22

works for(~ow, High) :-
works directly for(Low, High).

works for(~ow, High) :-
works directly - for(~edium, ~igh),
works-for(~ow, - ~edium).

It is open, how this kind of optimization can be
detected by a query optimizer. (~fter the revision of this
paper, we became aware of a new approach by Marque-Pucheu et
al. El9841 which provides a partial solution. However, the
question how to integrate the optimization of recursive
queries with the type of optimization proposed in section 6
remains to be investigated.)

8.0 CONCLUDING REMARKS

A mechanism for coupling expert systems and database
systems was presented. Our approach differs from integrated
expert systems databases [warren 19811, as well as from
so-called deductive databases such as BDGEN [~icolas and
Yazdanian 19831, in that it provides a connection mechanism
attached to the expert systems language, yet is independent
of any particular application. We believe that the proposed
method can contribute to a practical integration of expert
systems into real-life business environments, and to more
intelligent and powerful operation of existing relational
database systems [~arke and Vassiliou 19841.

The PROLOG-DBCL and DBCL-SQL translations, as well as
initial versions of the query simplification procedures,
have been implemented. We are still working on more
efficient support for recursive queries, and on extensions
to the local optimizer, covering disjunction, negation, and
general embedded PROLOG functions.

REFERENCES

1. Aho, A.V:, Sagiv, Y., Ullman, J.D., "Efficient
optimization of a class of relational expressions",
ACM-TODS 4, 4 (19791, 435-454.

2. Bernstein, P.A., Goodman, N., Wong, E., Reeve, C.L.,
Rothnie, J.R., "Query processing in a system for
distributed databases (SDD-I)", ACM-TODS 6, 4 (19811,
602-625.

3. Bowen, K.A., Kowalski, R.A., "Amalgamating language and
metalanguage in logic programming", in K.Clark and
S.A.Tarnlund (eds.), Logic Proqramming, Academic Press,
1982.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-24

Page 23

4. ~rodie, M., Mylopoulos, J:, Schmidt, J.W. (eds.), - On
Conceptual ~odellinq, Springer 1984.

5. Casanova, M.A., Fagin, R., Papadimitriou, C.H.,
"~nclusion dependencies and their interaction with
functional dependencies", Proc. First Symposium - on
principles - of Databases, Los Angeles 1982, 171-176.

6. Downey, P.J., Sethi, R., Tarjan, R.E., "Variations on
the common subexpression problem", Journal of the ACM ---
27,4 (1980), 758-771.

7. Fagin, R., "A normal form for relational databases that
is based on domains and keys" ACM Transactions on -
Database Systems 6, 3 (1981). 387-i15,

8. ~allaire, H., Minker, J. (eds.), ~ogic Databases,
Plenum 1978.

9. Gallaire, H., Minker, J., Nicolas, J.M. (eds.) ,
Advances - in Database Theory, Vol.1, Plenum Press, 1981.

10. Grant, J., Minker, J.! "Optimization in deductive and
conventional relational database svstems" . in
H.Gallaire, J.Minker, J.M.Nicolas (eds.) , &~dvanc&s in
Database Theory, Plenum Press, New York, 1981, 195-234.

11. Henschen, L.R., Naqvi, S., "On compiling queries in
recursive first-order databases", Journal of the ACM 31, ---
1 (1984), 47-85.

12. Jarke, M., "Common subexpression isolation in multiple
query optimization", in Kim, W., Reiner, D., Batory, D.,
(eds,), Query Processing - in Database Systems, Springer,
to appear 1984.

13. Jarke, M., Vassiliou, Y., "Coupling expert systems with
database management systems", in Reitman, W. (ed.),
~rtificial ~ntelli~ence Applications for Business,
Ablex, Norwood, NJ, 1984, 65-85.

14. Johnson, D.S., Klug, A., "Testing containment of
conjunctive queries under functional and inclusion
dependencies",- roc. ACM Symposium on Principles - of
Database Systems, Los K e l e s 1982, 164-169.

15. Kim, W. "On optimizing an SQL-like nested query",
ACM-TODS 7, 3 (1982), 443-469.

16. King, J.J., "QUIST: A system for semantic query
optimization in relational data bases", Proc. 7th VLDB --
Conf., Cannes 1981, 510-517.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-24

Page 24

17. Klug, A., "Access paths in the 'Abe' statistical query
facility", Proc. ACM-SIGMOD Conf., Orlando 1982,
161-173.

18. ~unifuji, S,, Yokota, H., "Prolog and relational
databases for Fifth Generation Computer Systems", Proc.
Workshop on Logical Bases - - for Data Bases, Toulouse,
December -82.

Marque-Pucheu, G., Martin-Gallausiaux, J., and Jomier,
G*, "Interfacing Prolog and relational data base
management systems", in Gardarin, G., Gelenbe, E.
(eds.), New Applications -- of Data Bases, Acadamic Press,
to appear 1984.

Nicolas, J.M., Gallaire, H,, and Minker, J. (eds.),
Proc. Workshop on Logical Bases - for Databases,
Toulouse, December 1982.

Nicholas, J.-M., Yazdanian, K., "An outline of BDGEN: A
deductive DBMS", in R.E.Mason (ed.), Information
Processing - 83, North-Holland 1983, 711-717.

Ott, N., Horlaender, K., "Removing redundant join
operations in queries involving views", IBM Scientific
Center Heidelberg Technical Report TR-82.02.003 (1982).

Reiter, R., "Deductive question-answering on relational
databases", in Gallaire, H., Minker, J., Logic and
Databases, Plenum 1978, 149-177.

Rosenkrantz, D.J., Hunt, M.B. "Processing conjunctive
predicates and queries", Proc. -- 6th VLDB, Montreal 1980,
64-74.

Rosenthal, A * , Reiner, D., "Querying relational views of
networks", Proceedings IEEE COMPSAC, 1982.

Sagiv, Y., "Quadratic algorithms for minimizing joins in
restricted relational expressions", SIAM Journal - of
Computing 12, 2 (1983), 316-328.

27. Sagiv, Y., Yannakakis, M., "Equivalences among
relational expressions with the union and difference
operators", JACM 27 (1980), 633-655.

28. Schmidt, J.W. "Some high-level language constructs for
data of type relation", ACM-TODS 2, 3 (1977), 247-261.

29. Stonebraker, M., "The design and implementation of
Ingres", ACM-TODS 1, 2 (1976).

30. Ullman, J.D., Principles - of Database Systems, Computer
Science Press 1982.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-24

Page 25

31. Vassiliou, Y., Clifford, J., Jarke, M., "How does an
expert system get its data?", Proc. 9th VLDB Conf.,
Florence, October 1983, 70-72.

32. ~assiliou, Y., Clifford, J., Jarke, M., "Access to
specific declarative knowledge by expert systems: the
impact of logic programming", Decision Support Systems
1, 1 (1984).

33. Warren, D.H.D., "~fficient processing of interactive
relational data base queries expressed in logic", Proc.
7th VLDB Conf., Cannes 1981, 272-282. --

34. Wong, E., Youssefi, K., "Decomposition- a strategy for
query processing", -- ACM TODS 1 (19761, 223-241.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-24

Page 26

APPENDIX

The execution of our prototype PROLOG programs is
demonstrated by the example of the works dir-for predicate
introduced in section 3. The output shown-is actual PROLOG
output, run using DEC-20 Prolog under TOPS-20, but has been
edited to fit the Proceedings format.

Consider the query: "who works directly for Smiley?" This
would be expressed in Prolog as:

:- works - dir - for(~am,smiley).

The metaevaluation of this query yields:

I ?- metaevaluate(pr5,
[works - dir - for(t - nam,smiley)l, no - optim, NEW).

NEW = [dbcall(empl,v eno,t nam,v sal1,v - dno),
dbcall(dept,v Sno,v Tct,v enol),
dbcall(emp1,v-enol,&niley~v - - sal2,v - dno2) 1

This metaevaluated query is further transformed into the
tableau-like DBCL format:

dbcl(
[empdep , eno , nam, sal, dno, fct, mgr] I

[works - dir - for,
*, t - nam,

[[empl, v - eno, t - nam, v - sall, v dno, * I *I I

[dept , * r * , * v-dno, v - fct, v - enoll,
[empl, v - enol, smiley, v - sa12, v - 31102, * , *I],

Finally, it is translated into an equivalent SQL formulation
of the query (sqltrans), and the SQL version is displayed
(sqlprint):

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-24

Page 27

SELECT vl2. nam
FROM empl v12, dept v13, empl v14
WHERE (vl2.dno=vl3.dno) AND (vl4.nam='smiley')

AND (vl3.enol=vl4.enol)

DBCL =
[E empdep , eno, nam, sal, dno, fct, m9rl I

[works - dir - for,
*, t - nam,

[[empl, v - eno, t - nam, v - sall, v dno, * I *I I

[dept , * r * I *, v-dno, v - fct, v - enoll,
[empl, v - enol, smiley, v - sa12, v - ano2, * I *I I,

E l l .

SYNTAXTREE =
select(Lvl2.t naml,

from(~(empl~vl2),(dept,vl3),(empl,vl4)1),
where([equal(dot(vl2,v dno),dot(vl3,v - dno)),

equal(dot(vl4,na~),smiley),
equal(dot(vl3,v - enol),dot(vl4,v - enol))]))

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-24

