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DATABASE ACCESS REQUIREMENTS OF KNOULEDCE-BASED SYSTEMS 

Abstract 

Knowledge bases constitute the core of those Artificial Intelligence 
programs which have come to be known as Expert Systems. An 
examination of the most dominant knowledge representation schemes used 
in these systems reveals that a knowledge base can, and possibly 
should, be described at several levels using different schemes, 
including those traditionally used in operational databases. This 
chapter provides evidence that solutions to the organization and 
access problem for very large knowledge bases require the employment 
of appropriate database management methods, at least for the lowest 
level of description -- the facts or data. We identify the database 
access requirements of knowledge-based or expert systems and then 
present four general architectural strategies for the design of expert 
systems that interact with databases, together with specific 
recommendations for their suitability in particular situations. An 
implementation of the most advanced and ambitious of these strategies 
is then discussed in some detail. 

1 -0 INTRODUCTION 

Evidence for the successful application of Artificial Intelligence (AI) 
research is nowhere stronger than in the area of Knowledge-Based or Expert 
Systems (ES) cCLIF831. In addition to being among the first A1 systems which 
are finding their place in the commercial world, Expert Systems seem to lessen 
the controversies between differing A1 research approaches, and even contribute 
to wider overlaps of A1 with sciences like Philosophy or Cognitive Science. 

Although a formal theory of Expert Systems is yet to be developed, there 
are some key common features that can be identified. As a computer system 
attempting to act like a human expert in a limited application domain, an ES 
shares similar goals with other, more traditional, cmputer application systems. 
What differentiates an ES from these traditional systems are its overall 
architecture, and, usually, its method of development. Expert Systems are 
typically developed in an incremental way. A small group of about three people, 
filling the three roles of application domain expert, programmer, and knowledge 
engineer, successively refines the ES to approximate the behavior of the expert. 

--------------- 
This work was carried out as part of a joint study with the IBM 
Corporation. 
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1t- may be argued, however, that this approach is very similar to that taken in 
Information Systems Analysis and Design, especially when the technique of 
"prototypingW is used. The interested reader will find more information on this 
aspect of ES construction in [HAYE831 or other introductory articles on Expert 
Systems -- we shall not be concerned with the incremental nature of ES 
development in this chapter. 

Overall architecture seems to be the most unusual aspect of Expert Systems. 
An often-quoted motto of ES researchers is that "in the knowledge lies the 
power." In consequence, an ES is based on two principles: the appropriate 
representation of the application domain knowledge, and the control of this 
knowledge. These two principles are embodied in the two top-level components of 
the ES architecture: a knowledge base and an inference engine. The application 
domain knowledge is represented in a knowledge base, which is further divided 
into two subcomponents: the data level (ground, specific facts), and the 
knowledge level (rules, general principles, or problem heuristics). This 
division of the ES knowledge base brings together two research threads in AI: 
declarative and procedural representation schemes. 

The other architectural component of an ES, the control mechanism, is often 
termed an inference engine. The inference engine matches a problem description 
to the stored knowledge. This match can be done either to analyze a certain 
situation (e.g., in medical diagnosis) or to synthesize a solution for a 
specific problem (e. g., a computer configuration). Such an inference engine can 
be a pattern matcher, theorem prover, or network search mechanism customized for 
a particular expert system, or it may exist already in the compiler of a 
corresponding knowledge representation language such as OPS-5 [FORG8O], Prolog 
[KOWA79], or EMYCIN [VANM79]). Even in the latter case, some additional control 
mechanism may be required to cut down the number of inferences to be made. 
Typical of the control techniques employed are state-space search, propagation 
of constraints, and problem reduction [GEVA82 1. 

It is with respect to knowledge representation that strong parallels 
between A1 and Database Management research can be drawn. Knowledge 
representation schemes in A1 share the same objective with the data models which 
have been developed for Database Systems, namely, to represent data for an 
enterprise or "slice of reality." However, AI-based knowledge representations 
emphasize the richness, flexibility, and faithfulness of the representation, 
while the data models are limited from their realizations as Database Management 
Systems (DBMS), which emphasize efficient access and manipulation of a more 
permanently structured, stored representation of reality [ 11. This difference 
is largely the result of the motivations in these two fields: modelling human 
reasoning processes on the one hand, and information management on the other. 

After several years of parallel developments in A1 and Database Management, 
it is now generally recognized that the two fields can benefit from exchanges of 
accumulated expertise in representation topics. This chapter considers the 
possible uses of Database Management principles and techniques for AI, and 
specifically for Expert Systems. 

Following a brief introduction to A1 knowledge-representation schemes and 
their use in current Expert Systems, the data-access requirements of an ES are 
identified. An analysis of four Expert System architectures for efficient 
access and storage of at least part of their knowledge base is then presented. 
These possible architectures are contrasted with a number of different data 
access requirements to present a set of specific recommendations for the 

--------------- 
[ 11 cTSIC821 gives a detailed description of several data models, while 

[MYLO84 1 presents a comprehensive introduction to knowledge 
represen tat ion. Furthermore, both [ WONG77 1 and [ BROD84 1 examine the 
relationships between A1 and DBMS representation schemes- 
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implementation of the data access component in an Expert System. Finally, some 
important research issues for the realization of these architectures are 
examined. Throughout the chapter we will illustrate various concepts and issues 
with examples taken from a life-insurance expert system currently under 
development at New York University. 

2-0 KNOWLEDGE REPRESENTATION - A1 AND DBMS 
In this section, we examine A1 knowledge representation strategies and 

relate them to their counterparts in Database Management Systems. A major 
conclusion that can be drawn is that it is possible to have multiple 
representations for the knowledge base of an ES. Furthermore, at least part of 
the knowledge base of an ES can be represented as a database under the control 
of a DBMS. Therefore, the designer of an ES has to consider the tradeoff 
between the choice of a specialized representation which allows for efficient 
access and storage of data, and the cost of providing translations between it 
and other representations more suitable for inference purposes. 

According to the classification scheme in [NAU82 I, the ES s application 
domain knowledge can be described at two levels: data and knowledge. 
Generally, at the data level, the object types, t h e r  properties and 
relationships, together with the object instances are represented. This, in 
DBMS terms, corresponds to a database. At the knowledge level, rules and/or 
procedures and actions on the objects, together with meta-knowledge about the 
scope, limits, relevance, and importance of what is known are represented. 
There is no direct correspondence with DBMS concepts. Yet, some parallels can 
be drawn between representation at the knowledge level and data dictionary 
entries, coupled with externally written application programs for a database. 

The separation of the knowledge base in data and knowledge levels should 
not be confused with the often-made distinction between declarative and 
procedural knowledge representation schemes [MYLO84 I. In declarative 
representations, the knowledge base is a collection of declarative statements, 
while in the latter, a set of procedures constitute the knowledge base. But, a 
declarative representation scheme (e.g. first-order logic) can be used for the 
representation of the application domain both at the data and knowledge levels. 

2.1 Knowledge: Domain Rules, Principles, And Heuristics - 
A knowledge base can be regarded as a collection of procedures expressed in 

some language (in A1 systems, this has typically meant LISP). It is generally 
believed that the pattern-directed procedures of PLANNER [HEW171 1 had a major 
influence in procedural knowledge representations [MY1,0841. Such procedures are 
not ltcalledn, as in ordinary programming languages, but are "activated" by the 
inference engine whenever the knowledge base is searched or modified. 

Production Rules cWAT~791 have become the most popular schemes among 
pattern-directed procedures. Each rule is a simple program with the format: 

IF <condition> THEN <action> 

where the condition is typically a conjunction of predicates, and the action 
activates other procedures which potentially change the state of the knowledge 
base. Production rules can be used to represent a variety of different types of 
inference, as illustrated in the following examples: 

1. From SITUATION to APPROPRIATE ACTION: 

IF evidence of diabetes is found 
m N  request a doctor's statement from applicant 
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IF thiazide is present in the blood 
THEN applicant is taking high blood pressure medication 

3. PROPERTY ImRITANCE 

IF applicant is female 
THEN applicant has a greater life-expectancy than a male 

Production rules are typically used as description tools for 
problem-solving heuristics, replacing a more formal analysis of the problem into 
a deterministic algorithm. In this sense, the rules are thought of as.ltrules of 
thumb," incomplete but very useful guides to making decisions that cut down the 
size of the problem space being explored. These rules must be provided as input 
to an expert system by the human expert. This is usually done iteratively, 
perhaps by means of an interactive program that guides and prompts the expert to 
make this task easier, and which might also do some limited consistency 
checking. Rules have been proposed in some sense as a simulation of the 
cognitive behavior of human experts. Viewed in this light, rules can be seen 
not just as a neat formalism to represent expert knowledge in a computer but 
rather as a model of actual human behavior. 

In combination with pattern-directed procedures, conditional probabilities 
and static descriptions of phenomena have been used in Expert Systems for the 
representation of knowledge (e.g. , in Internist [POPL77] ) . 

Given a suitable interpretation of logical formulas, first-order logic can 
also be used to represent procedural knowledge for the application domain. For 
example, assuming that P, Q, R are formulas, then the formula P AND Q -> R can 
be interpreted procedurally as: to show that R is true, first show that P and Q 
are true, For example, the logical formula: 

applicant (XI AND age(X,Y) AND greater(Y,50) AND 
visited-doctor(X ,Date) AND difference-in-days(Date,Today,Z) AND 
less( Z ,90 ) --> needs-physical( X) OR needs-doctor-statement (X) 

asserts that an applicant over 50 years old who has seen a doctor within the 
last three month must either submit a doctor's statement or submit to a physical 
examination. 

A major problem with general first-order logic for knowledge representation 
is the difficulty in expressing control structures that efficiently guide the 
use of a large knowledge base. In the hope of reducing such problems, practical 
tools such as the logic programming language Prolog do not use full first-order 
logic, but only the subset known as definite (Horn) clauses. Furthermore, Horn 
clauses are interpreted in a procedural way reminiscent of the backward chaining 
of production rules, leading to a more efficient search process. However, the 
power of representation is reduced since only a subset of first-logic order is 
used. For instance, the example presented above is not a Horn clause. 

2.2 Data: The Declarative Representation Of Facts -- 
2.2.1 First-Order Logic. - Precise knowledge can be stated as assertions over 
objects that take the form of first-order predicates with functions and equality 
tKOWA79 I. For example, unary predicates such as "male(X )" or "disease(X )"  might 
be used to classify which of a set of objects were, respectively, males and 
diseases. Predicates of binary and higher degrees ("doc tor-of (X , Y )", 
'premium(X,Y,Z)", etc.), and functions of arbitrary degrees (e.g. "age(X)") can 
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also be defined, Simple facts are represented as instantiations of predicates, 
i.e., with actual values instead of variables (e.g. male(John), doctor-of(John, 
Elizabeth). Since logic is purely declarative it allows multiple uses of the 
same piece of knowledge, but, as mentioned above, it has been criticized for 
lack of organizational principles. There is a simple and direct correspondence 
between first-order logic and the relational model; [GALL78 1 provides a 
comprehensive view of this correspondence. 

2.2.2 Networks. - Semantic networks [BRAC79] seem to be more popular in other 
A1 applications (e . g . , natural language processing) than in expert sys terns. 
Nevertheless, a number of expert systems rely on network formalisms, among them 
very large systems such as Internist [ POPL77 1, Prospector [HART78 1, and Sophie 
[BROW81]. A portion of the knowledge about an insurance application and some of 
its related entities is represented in Figure 1. Networks are a natural and 
efficient way to organize knowledge: nodes describe objects, concepts, or 
situations whereas arcs define the relevant relationships. "Reasoningw in a 
network-based system corresponds to traversing the network along the arcs, or to 
pattern matching of problem descriptions with subnets; a large number of exact 
and heuristic mechanisms exist for these tasks. One advantage of semantic 
networks over logic (often referred to as Nchunkinglt) is that all knowledge 
about the object being described can be explicitly represented around the 
object, thus allowing for associative access to related knowledge. The 
disadvantages of the network approach stem from the lack of formal semantics for 
the structures, which makes verification of the correctness of reasoning very 
difficult . NETL [ FAHL79 1 and KLONE [ BRAC79 1 are examples of computer languages 
that have been developed for the access and manipulation of semantic networks. 
It is interesting to note that the networks of the CODASYL model of data can be 
viewed as a very simple form of semantic network, 

PAID-IN 

USUALLY-PAID-IN 

FIEURE 1: SEXANTIC NETWORK EXAMPLE 
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2.2.3 Frames. - Much knowledge is based upon experience, the expectations 
aroused from previous situations and Che application of general concepts to a 
specific problem. Frames [MINS~~, ~ 0 ~ ~ 7 7 1  are a very general and powerful 
knowledge-structuring device that takes these psychological phenomena into 
account. They are templates for stereotypical situations, and provide a 
structure to such experiential knowledge by offering so-called slots which can 
be filled with type descriptions, default values, attached procedures, etc. The 
notion of attached procedures, in particular, allows for the development of 
general-purpose strategies for maintaining a frame-based knowledge 
representation. Figuse 2a shows a simple instantiated frame representing 
information about a particular insurance policy. This particular frame might be 
expanded as in Figure 2b with slots to attach procedures that would 

r 

HOLDER 

AGE 

SEX 

DRIVING 
HISTORY 

BE2EFICIARX 

TYPE 
A 

J.Clifford 

34 

MALE 

P-Comely 

II 

-1 Policy# 36097 

FIGURE 2a: FRAME EXAMPLE 

WHEN WHEN YIW 
IEEDiZD ADDED RMOVED 

HOLDER 

AGE 

SEX 

DRIVING 
HISTORY 

BEWEFICIARY 

TYPE 

SLOTS> Policy# 36097 /" 
PROCEDURE ADD DRIVING HISTORY (POLICY) 

NOT~FY-UND~URITER (POLICY, POLICY .DRIVIWG_AISTORY 
EXPECT (POINT-ADJUSTMENT(POL1CY) ) 

FIGURE 2b: F'RAHE EXAMPLE WITH PROCEDURAL ATTACEHENT 
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automatically be invoked when the knowledge base is modified by, e.g., addition 
or deletion of values in any of the slots of a frame. Like semantic networks, 
frames offer organizational principles for representing knowledge which are 
superior than the ones offered by logic formalisms. Several computer systems 
have been developed for the manipulation of these complex data structures. 
Among these, we mention KRL [BOBR77 I, STROBE ISMIT831, and FRL tGOLD771. 

2,2.4 Multiple Knowledge Representations. - It has been argued [DAVI81] that no 
one of the knowledge representation methods is ideally suited for all tasks. In 
very complex systems requiring many sources of knowledge simultaneously (e.g., 
for speech recognition [ERMAaO]), the elegance of uniformity may have to be 
sacrificed in favor of exploiting the benefits of multiple knowledge 
representations each tailored to a different subtask. 

It is worth noting that it may often be difficult to distinguish between 
the data and knowledge levels in an Expert System. The sane situation can be 
represented either at the data level, or at the knowledge level. Using the 
logic formalism of PROLOG, which combines procedural and declarative knowledge, 
we present an example of this phenomenon. 

Consider the definitions of rating classifications given to prospective 
customers of an insurance company. The parameters for determining the rating 
are the customer's age, and the number of debit points accumulated from an 
analysis of other personal information. (For instance, a person gets "xtf debit 
points if he or she smokes.) For example, a customer whose age is between 15 and 
29, with an accumulated 20 points or fewer, is rated llpreferredtl. With 
increasing age, the number of points that will disqualify a customer from 
getting a Hpreferredn rating decreases. Similar definitions exist for other 
classifications, such as "standardgt, "bad riskw, "terrible riskw, etc. 

Procedurally, one can represent these classifications as production rules 
or logic clauses : 

preferred IF 
((age between 15 and 29) AND (points between 0 and 200) ) OR 
((age between 30 and 39) AND (points between 0 and 150)) OR 
((age between 40 and 49) AND (points between 0 and 100)) OR 
((age between 50 and 99) AND (points between 0 and 50)). 

with similar clauses for the other ratings. 

Alternatively, these classifications can be given in a declarative way, by 
using logic assertions (unit clauses) with the general format: [21 

rating(Min-Age ,Max-Age ,Min - Points,Max-Points, Rate-Class) . 
The "meaningw of such an assertion would reside in its interaction with 
the other predicates and rules in the knowledge base. These would 
have to be structured to give this assertion its interpretation as: 

A person between the ages of Min Age and Max Age, with 
a number of points between ~in-~Eints and Mag-points, is 
classified in the specified Rate-Class. 

For instance, the assertions: 

--------------- 
[2] In this Prolog notation, predicates and constant values are 

represented in lower case, and variable names always start with an 
upper-case character. 
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and the clause: 

preferred IF 
rating(Min-Age,Max - Age,Min-Points,Max-Points,'preferredl). 

define "preferredw customers. It can be seen that the above combines 
descriptions at the data and knowledge levels. 

Notice the strong similarity between the above representation scheme with 
the relational model, where the last clause is similar to a relational "vieww 
defined on the stored table RATING, as a selection where the Rate-Class 
attribute has value 'preferred1. This latter, declarative, representation is 
more flexible than the one that uses only procedural rules, in that it allows 
for multiple ways of viewing the ratings classifications. For instance, the 
question "what is the maximum number of points that a 50 year old customer may 
accumulate and still get a preferred ratingn can be answered directly, given the 
declarative representation. Of course, depending on the application, this 
flexibility may not be necessary. 

2.3 Remarks 

It is fair to say that, in general, A1 knowledge representation schemes are 
more powerful than their counterparts in database management, and in particular, 
the three popular data models: relational, hierarchical, and network. For 
instance, A1 representation schemes embed inferencing capabilities. Using fixed 
inference rules, it is po'ssible to deduce new facts from old ones. 

However, the computer systems that have been developed for the manipulation 
of the basic objects (frames, semantic networks, etc.) in A1 representation 
schemes lack most of the secondary storage management facilities, which are 
commonly offered in database management systems. For instance, features such as 
concurrency control, data security and protection, and, possibly most important, 
optimized access of data residing in secondary storage, are not part of A1 
systems. For example, Expert Systems typically load their knowledge base into 
main storage before the actual ES session begins. This may not have been an 
important limitation of previous or current Expert Systems; with very few 
exceptions, their application domains had no need of sophisticated DBMS 
mechanisms. It is only with the introduction of ESs into the commercial world 
that their data access requirements have begun to change. These requirements 
are identified and classified in the next section. 

3.0 CLASSIFICATION OF ACCESS REQUIREMENTS 

The data access requirements of Expert Systems can be classified along 
several dimensions. Among the most important are the volume of data needed to 
perform effectively, the origin of this data, and the timing of the decision as 
to which subset of the data is required. In this section we discuss these 
dimensions and illustrate them with examples, 

Data Volume. - Historically, the knowledge bases in Expert Systems have been -- 
relatively small in size, small enough, in fact, to fit in main storage. 

One of the largest knowledge bases for major Expert Systems is that of 
Internist. It is reported in CPOPL831 to contain over 500 disease entities 
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(each requiring several records), and 3,500 manifestations (history items, 
symptoms, physical signs, and laboratory data). [3] However, most ESs developed 
to date appear to have very modest data needs; for example, the initial 
production version of the expert system R1, which suggests a design for a 
computer system configuration, contained about 750 rules EMCDE811. Even when 
new data is created through deductions or generate-and-test methods in Expert 
Systems, e.g., in CNIC0831, and CSTEF781, main storage is still sufficient to 
contain the knowledge base. -. 

Recently though, it has become increasingly apparent that ESs may have to 
manage very large volumes of data. For instance, in CAD applications of Expert 
Systems large amounts of data are needed for the support of conclusions by an ES 
[LAFU83]. Also, for commercial applications of ES technology, very large , 
operational databases will need to be consulted for more accurate ES operatiod, 
[KUNI82, LAFU83, VASS83, JARK84a I. Of course, data volume is also relative to 
the size of the computer system and its main storage, In one of the first ESs 
implemented on a microcomputer, the LSI-11, the knowledge base contains data on 
scientific disciplines and development goals in Portugal, together with their 
interactions [PERE~~]. The knowledge base in this system consists of a 
hierarchical set of tables representing correspondences between scientific 
disciplines and government development goals. Since these tables are quite 
extensive (roughly 26,500 nfactsw are being represented), not all of the 
knowledge base in this system can reside in main storage. However, the storage 
management strategies developed in this case are appropriate only to the 
particular domain and are not readily generalized. 

In cases like the above, main storage is insufficient--with virtual 
memories, you may never run out of space, but, eventually, will certainly run 
out of time. 

Database Origin, - Most Expert Systems developed to date use their own database 
of facts, custom-made to best suit the application-specific requirements. 
Practically speaking, however, if ESs are to be applied in the commercial world 
they will need access to nexternaln data sources. These "externalH data are 
typically operational databases managed by a DBMS and shared by other 
applications. Issues like data volatility (frequency of database updates ) , data 
currency (how important is an up-to-date representation), and data security and 
protection influence the decision of whether to access the '*externalw data 
through the DBMS, or whether that data can be duplicated, restructured, and 
permanently stored as part of the ESfs own knowledge base. 

A representative example is the case of PROBWELL, an ES for the detection 
of problems in oil wells [OLS082], which requires data from a large operational 
database under IMS. Also, in an NYU project on Expert Systems for Business, it 
was determined that a life-insurance underwriting expert needs data from several 
external data sources (large customer databases, actuarial tables, etc. 
[ JARK84a 1 ) . 

It is mostly speculation whether other ESs reported in the literature might 
have profited from access to data stored in a DBMS. But since the mechanisms 
for such linkage were not available, this need may have been buried. It seems 
reasonable to suppose, however, that as ESs find wider commercial applications, 
we will see more interaction between ES and DBMS. 

Determinism in Data Access Requirements. - Let us assume that the the database --- 
is large enough that only portions of it can reside in main storage at any one 
time. The knowledge of what particular information will be relevant to the 
- - -  . a . . 

--------------- 
[3] Roughly, an entity in Internist corresponds to a tuple of a relation 

in a relational database, and a manifestation corresponds to an 
attribute. 
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decision-making process during an ES session is in some cases available in 
advance, while in other situations it can only be determined during the course 
of the user/system interaction. If the data requirements can be pre-determined, 
this directly implies the possibility of making "statictt decisions, as to which 
portion of the database is actually needed by the ES. An example of where 
"staticH, pre-determined decisions are not feasible is the life-insurance 
underwriting expert at NYU. In each ES session, the customer profile as defined 
by the insurance application is completely different, thus requiring separate 
actuarial tables and related customer-account records. Furthermore, asseach 
piece of data is examined in light of the evolving customer profile, additional 
data requirements are dynamically generated. In general, the use of t'variablesM 
as parameters in data access is a strong indicator of non-determinism in ESs. 

4.0 STRATEGIES FOR DATABASE ACCESS IN EXPERT SYSTEMS 

Four strategies for establishing a cooperative communication between the 
deductive and database access components of an expert system have been 
identified in [VASS831. The spectrum of possible enhancements of an expert 
system with data management facilities is essentially a continuum. Starting 
from elementary facilities for data retrieval, e.g., a file system, we progress -- 
to a generalized DBMS within the expert system, to a tloose' couplinq of the ES 
with an existing commercial DBMS, and finally to a 'tightt coupling with an 
external DBMS. The four strategies can be considered to be subcases of two 
general architectures. The deductive and the database access components of an 
expert system can either be integrated into one system (the ES), or be 
independent systems which interact through a communications protocol [VASS84 1. 
This is illustrated in Figure 3. 

TIE DECLARATIVE KNOWLEDGE ACCESS REQIJIRBEMTS OF ES 
I 
I 
I 

I I 
I I 
I I 

INTEGRATION OF ES AND DBMS COUPLING OF ES HIM EXTERNAL DBMS 
I I 
I I 
I I 

I I I I 
I I I I 
I I I I 

ELMEWTARY ACCESS GENERALIZED D M  LOOSE COUPLING TIGHT WUPLING 

- - - > - - - > - - - > - - - > - - - > - - - > - - - > - - - >  
I ? 
4 

- - - >  
I 

Development in Stages 

Figure 3: STRATEGIES FOR DATABASE ACCESS BY AN ES 

Expert system designers may choose one architecture over another depending 
on data volume, determinism in data access, and origin of the database, as 
described above; specific recommendations for the strategy selection problem 

' are given in Section 4.5. These strategies could be developed independently, 
but in a careful design these successive enhancements would be incremental, 
allowing for a smooth transition to the next, more sophisticated strategy. 
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4.1 Elementary Database Access Within An Expert System - strategy 1 --- 
The most commonly employed strategy for data access in ESs is to build an 
application-specific set of data structures and associated access routines in 
main memory. Systems like KRL, KLONE, FRL, NETL, and STROBE are used for the 
representation of the application-domain facts, but also provide data 
manipulation and simple access mechanisms. Other packages typically used in ESs 
exist in LISP libraries, e-g., DEFSTRUCT C M O O N ~ I  1, and The Record Package 
[MAS174 1. Frequently, ES designers implement their own application-specific 
data-handling programs, as in the case of Internist LPOPL771. The direct use of 
the elementary database features of PROLOG (e.g. the nassertm predicate to add 
new facts, or the "retracttf predicate to delete facts) is also an example of 
this Elementary Data Access Strategy. 

What characterizes all such approaches is the direct manipulation of data 
objects in main storage. Otherwise, they differ in the degree of generality and 
data-independence they offer. 

4.2 Generalized DBMS Within An Expert System - Strate~y 2 
In attempting to deal with large data volumes, efforts are underway to 

implement database management system components for an ES. For example, STROBE 
is being extended into a DBMS ELAFU831. Because of its immediate correspondence 
with relational database concepts, PROLOG has been the favorite language for 
ES-internal DBMS implementations. For our life-insurance project we have 
implemented a generalized relational database management system within PROLOG to 
support a data dictionary with relation schemes, functional dependencies, 
external file handling, and the query capabilities of a relational algebra or 
calculus, This type of consolidation of database and programming language 
systems has also been investigated by ESCHH77 1. PROLOG data access extensions 
to handle external file management are reported in [CHOM83] and [PARS83]. 

It is worth noting, however, that all these efforts are still early in 
development,' and that they only mention as future plans the extensions of an 
Expert System to a full-pledged DBMS (i.e. accounting for data sharing, 
security, protection, etc.). Regardless, extending an ES to provide the 
facilities of a DBMS is a conceptually elegant approach, which may prove to have 
practical benefits in the long run. 

4.3 - Loose Couplinq Of The ES With An External DBMS - Strategy 3 - -  
Conceptually the simplest solution to the problem of using existing 

databases managed by an external DBMS is to extract a snapshot of the required 
data from the DBMS when the ES begins to work on a set of related problems. 
This portion of the database is stored as the ESfs own internal database in 
combination with any of the two previous access strategies. In current ESs, 
some form of loose coupling is used with Elementary Data Access mechanisms. 
Extensive use of this,strategy, is limited by the degree of non-determinism in 
data access requirements, and by the fact that it incurs data-mapping overhead 
which for a large database can be quite high. 

4.4 Tight Coupling Of The ES With An External DBMS - Strategy 2 
In this access strategy the ES plays the role of an "intelligentw user of a 

generalized DBMS that manages a very large database. This is contrasted with 
loose coupling, where the ES is a one-time, simple user of the DBMS. Utilizing 
a tight-coupling scenario requires an online communication system between the ES 
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and the DBMS. Queries can be generated and transmitted to the DBMS dynamically, 
and answers can be received and transformed into .the internal knowledge 
representation. Thus in tight coupling the ES must know when and how to consult 
the DBMS, and must be able to understand the answers. The consequence of such 
dynamic use of the communication system is that the external database becomes an 
ttextensionw of the ES's knowledge base, 

To attain tight coupling, particular care has to be taken to minimize the 
use of the communication system, and to the data representation and language 
translation problems. This is the topic of Section 5. To the authors' 
knowledge, tight coupling to an existing DBMS has not yet been implemented in 
actual systems, but research efforts are underway EIWNI82, VASS84 1. It appears 
that the impact of logic programming and the commercialization of relational 
database systems will have a profound effect for tight coupling in future system 
architectures. 

4.5 Recommendations - In Choosing An Architecture - 
The designer of an expert system is faced with many architectural 

decisions, including how to structure the knowledge base, what form of inference 
engine is most appropriate, and so forth. We have discussed above the growing 
trend toward the development of ESs in environments involving very large 
databases; this introduces another decision for the ES designer, viz. what 
form of communication path between the ES and the database is appropriate? 

Given the three dimensions along which we have analyzed the database access 
requirements of an ES, and the four strategies for ES-DBMS coupling, it becomes 
possible to provide some guidance for this decision by examining all of the 
combinations of system characteristics along these three dimensions, and 
suggesting appropriate coupling strategies for each. Figure 4 presents these 
suggestions in the form of a simple decision table. [4] For example, a 
situation involving very large data volume but no existing database is handled 
by Rule 3 in the table -- the suggestion for this situation is either to build 
into the ES generalized DBMS capabilities, or to acquire a DBMS to manage the 
large data volume, and use a tight-coupling strategy between the two systems. 
Other possible combinations of characteristics lead to different architectural 
recommendations. 

As anyone who has developed an ES can readily attest, however, there are no 
really hard and fast rules that apply across the diverse domains to which ES 
technology has been and will continue to be applied. This table should 
therefore be viewed as a set of overall recommendations for broad categories of 
problem domains, rather than as a shortcut for avoiding careful examination of 
the unique characteristics of the problem at hand. For example, a recent paper 
tLAFU83 1 presents some empirical evidence that particular characteristics of the 
environment (both of the problem space itself and of the available hardware) 
often override an architectural decision made on purely theoretical grounds. 

--------------- 
[4] The terminology used is the table is: At the condition part, N, Y 

denote NO and YES respectively and a dash "-" denotes that the entry 
could be either. At the action part, an X denotes that this action 
should be taken. It should be noted that, more than one X's in the 
same column (rule), imply that there is a choice of actions. 
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RILES 

Figure 4: DECISION TABLE FOR TIE DETERnINATION OF AN ES ARCHITECTURE 

5.0 OPTIMIZATION REQUIREMENTS 

CONDITIONS 

............................. 
I s  there a very large 
data voltme? 

I s  there an existing 
database? 

Are the data access 
requirements determined 
during the session? 

............................. 
ACTIONS 

............................. 
Strategy 1: Elementary Data 

Access 

Strategy 2: Extension of ES 
to  Generalized 
DBUS 

Strategy 3: Loose Coupling 
with External 
DBUS 

Strategy 4: Tight Coupling 
with External 
DBMS 

The problem of optimizing database accesses  by expert  systems does no t  
arise i n  a l l  of the  previously presented a rch i tec tures .  If s t r a t e g y  1 is 
se lec ted ,  the expert system w i l l  handle the  database of s p e c i f i c  f a c t s  i n  t h e  
same way as the general r u l e s  of  t he  knowledge base. Strategy 2 ( a  DBMS within 
the expert  system) permits the adaptat ion of  any query processing s t r a t e g i e s  t o  
the pa r t i cu l a r  needs of the  exper t  systems language. In  s t r a t e g y  3 ( loose  
coupling),  the expert system a c t s  l i k e  any normal user of a DBMS and can be 
t rea ted  accordingly. 

Optimization of the ES-DBMS i n t e r ac t ions  therefore becomes an  i s s u e  only 
when a tight-coupling a rch i t ec tu re  ( s t r a t egy  4 )  is employed. The way an exper t  
system uses its da ta  is typica l ly  very d i f f e r e n t  from what a database management 
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system is designed for. On the one hand, an expert system may issue a sequence 
of closely related calls, for instance, when using recursion in a logic-based 
representation. On the other hand, an expert system typically considers only 
one fact at a time whereas a relational DBMS can also work efficiently when 
confronted with set-oriented queries. Furthermore, this fact-at-a-time access 
requests will result in a very inefficient use of the communication system, as 
is demonstrated in [VASS84]. Since tight coupling has rarely been used to date 
in ES-DBMS, we shall limit the following discussion to a review of some recent 
work at NYU tVASS83, VASS84, JARK84bl for interfacing a Prolog-based expert 
system with a relational database system which supports an SQL interface. 

During the conversion of Prolog predicates into SQL queries, the 
above-mentioned problems are solved by use of an intermediate language. This 
language mediates between Prolog and SQL in the sense that it is a 
(variable-free) subset of Prolog but - like SQL - gives a set-oriented 
description of the desired data in terms of stored base relations rather than 
views (as in the original Prolog version). 

The optimization process can thus be divided into three steps [ JARK84bl. 
First, a preprocessing mechanism collects ES requests for data while simulating 
the ES deduction process tVASS831. As soon as a database-related request is 
encountered in the expert system, it stops its reasoning process and gives 
control to a higher, or meta-language, program, which simulates the continuation 
of the database-related reasoning to collect similar database requests. In 
effect, this mechanism delays the submission of individual tuple-oriented 
queries by converting them into more noptimizablen set-oriented ones, expressed 
in the intermediate language. 

In the second step, the intermediate language expressions are optimized. 
Two techniques are employed: semantic query simplification, and common 
subexpression optimization in recursive calls. Query simplification (described 
in the introductory chapter by Jarke in this book) removes redundant 
subexpressions from a query, based on idempotency laws in connection with the 
detection of certain tautologies and contradictions in a query. Semantic query 
simplification employs integrity constraints such as value bounds for 
attributes, functional dependencies, and subset dependencies between primary and 
foreign keys in relations to detect more such simplifications than those visible 
from the original syntactic form of the query. 

To optimize recursive calls, we exploit the case when the answer to each 
query step submitted to the database constitutes part of the input to subsequent 
queries. To avoid re-calculations, the result of each step in the recursion is 
kept as an intermediate result until the entire recursive query has been 
evaluated. The complete answer -- later used in the further reasoning process 
after the meta-language processing -- is composed as the union of the results at 
each intermediate step. 

The optimized query is then translated to the DBMS query language and 
executed by the DBMS. The answer is loaded into the internal expert system 
database, or -- if that is too small -- into a temporary database relation. 
Garbage collection may be required to preserve the internal database as a 
rapidly accessible buffer in the presence of multiple unrelated database calls. 

Only after all this has been completed does the meta-level evaluation stop 
and return control to the object-level of the expert system. The latter can now 
continue its reasoning with all the relevant data for the current search process 
provided in the internal database. If a new branch (backtracking from the start 
of the meta-level evaluation) of reasoning is considered, a new database call 
may be issued. 

It should be noted at this point that this solution is not the only 
possible approach. Although not in the immediate context of expert systems, 
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various compilation methods have been proposed for so-called deductive 
databases, e . ,  systems in which a special-purpose expert system is 
superimposed upon a particular database system. Compilation is quite easy in 
the context of non-recursive reasoning EREIT78, GRAN811 but requires the 
presence of iteration constructs in the target language otherwise CHENS821. In 
[ JARK84a1, an overview of such approaches is presented in the general context of 
database-expert systems interaction. 

6.0 CONCLUDING REMARKS 

The issue of Expert System interaction with Database Management Systems is 
emerging as an area for research, and one which can provide both practical and 
theoretical payoffs as the problems become identified and solutions are 
proposed. It can be expected that both areas will profit from this interaction. 
Expert systems will become more robust as they provide more of the facilities 
that are considered standard in commercial DBMSs: centralized storage and 
control of valuable data, efficient storage and access routines for large 
volumes of data, the ability to support multiple users, rollback and recovery 
strategies, and so forth. Database Management Systems will become more 
intelligent as they adopt more powerful knowledge representation schemes. and 
by means of the deductive capabilities of Expert Systems, they will provide much 
more sophisticated querying and decision-making capabilities than mere 
information'management, 

We have described a number of different strategies for interfacing these 
two types of systems, from one extreme of merging the two systems into one, to a 
dynamically controlled interaction between two independent systems at the other 
end of the spectrum. Criteria that are relevant to the determination of the 
appropriate strategy to adopt for a particular problem domain were identified 
and discussed. The reader should bear in mind that there are very few real 
systems in operation today that have addressed the problems discussed in this 
chapter. It is clear that as interactions between knowledge-based systems and 
database management systems become more widespread, more issues will be 
identified and additional solutions proposed, 
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