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Abstract 

As part of the operation of an Expert System, a 

deductive component accesses a database of facts to help 

simulate the behavior of a human expert in a particular 

problem domain. The nature of this access is examined, and 

four access strategies are identified. Features of each of 

these strategies are addressed within the framework of a 

Logic-based deductive component and the relational model of 

data. 
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1.0 INTRODUCTION 

Decision Support Systems (DSS) require the simultaneous 

management of data, models, and dialogues [Sprague and Carlson 19821. 

DSS research has placed particular emphasis on providing consistent 

user views of models and data [ Bonczek et a1 1982 1, and on supporting 

-access to databases by decision models [Donovan 19761. The emergence 

of practically usable Artificial Intelligence (AI) techniques over the 

last few years impacts these problems in at least two ways. On one 

hand, the interaction between DSS components, and between DSS and user 

can be handled more smoothly using A1 methods for model management 

[Bonczek et a1 1983; Elam and Henderson 19831 and user interfaces 

[Blanning 19831. On the other hand, the addition of knowledge-based 

decision models, in particular expert systems, to the model base of a 

DSS presents new challenges for DSS implementation. It is this latter 

problem that is the focus of this paper. 

An Expert System (ES) is a problem-solving computer system that 

incorporates enough knowledge in some specialized problem domain to 

reach a level of performance comparable to that of a human expert. 

Expert Systems differ from exact or heuristic optimization procedures, 

as used in conventional DSS, in that they mostly base their 

recommendations on informal and qualitative decision rules acquired 

from a human expert, rather than on a complete mathematical 

formalization of a decision problem [Clifford et a1 19831. 

In the heart of an ES lies the program that wreasonsw and makes 

deductions, the inference engine. To reason, both general knowledge 

(rules), e.g. if a person works for a company then he/she gets 
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employee benefits, and specific declarative knowledge (data), e .go 

John works for NYU, is needed. The knowledge is usually represented 

in such formalisms as frames [Minsky 19751, conceptual dependency 

graphs [Schank 19751, production rules [waterman and Hayes-Roth 1979 I ,  

semantic networks [ Brachman 19791, or in standard first-order logic. 

Many of these formalisms can represent both general and specific 

knowledge. Current Expert Systems differ in sophistication, 

conceptual complexity, and computational complexity; for instance, 

the knowledge base may or may not include such concepts as causality, 

intent, physical principles, and simple empirical associations. 

A scenario for consulting an ES using production rules for 

knowledge representation starts with a presentation of a goal or 

desired conclusion. The inference engine chains through (forward or 

backward) a set of production rules to link the conclusion with the 

assumptions, or known nfactsfl. The system's conclusion is then 

presented to the user, who can ask for an explanation of the Ifchain of 

reasoning" used to arrive to the given result. 

This paper is primarily concerned with the organization and 

access of simple declarative knowledge in the knowledge base of ESs. 

To organize these data, two dimensions are considered: variety and 

population. For instance, in a logic-based representation, "variety1' 

refers to the number of different predicates required, and 

tlpopulationft to the number of instances of these predicates. 

In early ESs, which are mostly prototypes and are characterized 

by a large variety and a small population of specific knowledge, the 

inefficiency of data handling is not a critical issue. Therefore, 
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with very few exceptions, little attention has been given in ES design 

to the handling of very large populations. The mechanism to retrieve 

the specific facts does not reach the sophistication and performance 

of database management systems (DBMS), systems that deal effectively 

with large volumes of data [Date 19821, 

This paper investigates the technical issues of enhancing Expert 

Systems with database management facilities, The motivation for such 

enhancements is provided by the rapid advent of ES and the 

increasingly promising impact that they will have in the business 

applications sector - an environment that often implies the presence 

of large databases, usually under the control of a DBMS. 

In Section 2, four database access strategies are identified and 

developed in stages. Tools developed at an earlier stage are often 

necessary in each subsequent stage. The framework is illustrated with 

the use of first-order logic and relational database management. In 

particular, the logic programming language Prolog [Clocksin and 

Mellish 1981 1 is presented in Section 3, and its uses as a programming 

language, a relational database system, and an ES deductive component, 

are outlined. The my Prolog fits into the proposed framework of 

access strategies is the topic of Sections 4 and 5 .  The last section 

presents a summary and some problems for further research. 

2.0 DATABASE ACCESS STRATEGIES BY EXPERT SYSTEMS 

Tuo general architectures are envisioned for the combination of 

the deductive and the database access components of an expert system. 

These two components can either be integrated into one system (the 
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Es), or be independent systems with a defined protocol for 

communication [Vassiliou, Clifford, and Jarke 19831. 

Depending on the level of sophistication for the database access 

facility, integration suggests two distinct access strategies: 

elementary database access, and generalized database management. A 

major distinguishing characteristic between these general strategies 

is their respective ability to deal with secondary storage management, 

and therefore, their capability to deal with large populations of 

specific facts. 

With the advent of ESs in the business environment, a strong 

motivation for coupling an ES with an external DBMS has emerged [Jarke 

and Vassiliou 19831. The investment of an enterprise in two different 

types of systems, both intended to assist decision making and smooth 

the flow of operations, is greatly justified if the two systems are 

able to communicate effectively. Thus, the large amounts of data 

managed by a DBMS can be accessed by the ES in the reasoning process. 

Moreover, the ES can offer an intelligent interface to a DBMS (in 

addition to query languages, report generators, 'etc.). Depending on 

the nature of communication between the two independent systems (ES 

and DBMS), two more access strategies are identified: loose, and 

tight coupling. 

Figure 1 illustrates a natural sequence in the development of 

access strategies. An overview is given in the rest of this section. 
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Development i n  Stages 

I Figure 1: STRATEGIES FQR DATABASE ACCESS BY AN ES I 
I I 

2.1 Elementary Database Access Within An Expert System = S t r a t e g y  - 1 

On t he  s imples t  l e v e l ,  t h e  whole populat ion ofL s p e c i f i c  

d e c l a r a t i v e  knowledge can be represented d i r e c t l y  i n  t h e  knowledge 

base formalism provided by t h e  Expert System. Mechanisms such as 

semantic networks and frames, d a t a  s t r u c t u r e s  where al l  knowledge 

about an  ob jec t  is c o l l e c t e d  toge the r ,  are commonly used i n  ESs. 

Furthermore, s e v e r a l  languages have been developed t o  access and 

manipulate frames and semantic networks, e -g .  NETL, KRL, and KLONE 

[Nau 19831. 
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The first strategy in the manipulation of these data structures 

is based on the assumption that during the ES operation they reside in 

main storage. This simplifies the development of access routines, but 

presents an obvious limitation on the size of the declarative 

knowledge population. 

2.2 Generalized DBMS Within - An Expert System - - Strategy 2 

As the domains to which ES technology is applied increase, a very 

large population of specific knowledge is often required. Such Expert 

Systems have elementary database ' management facilities as separate 

processes [Nau 19831. The minimum requirements for this access 

strategy are secondary storage management and indexing schemes. This 

seems to be the norm for current ESs, even though not all such systems 

exhibit the same level of sophistication. 

Moving a step further, a generalized DBMS may be implemented as a 

sub-process of the ES. The quest for "generalizedw database 

operations in the ES, rather than application-specific database 

access, may not be cost-effective in many cases. A case where 

generalization is effectively justified, is when the ES uses it as 

stepping stone to one of the coupling mechanism described in Sections 

2.3 and 2.4. 

The major limitation in this stage is that often an existing very 

large database may be needed in the Expert System application. 

Assuming a generalized commercial DBMS managing this database, it may 

be prohibitively costly to maintain a separate copy of the whole 

database for the ES. As an example, [Olson and Ellis 19821 report 
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exper iences  with an Expert System used t o  determine problems with o i l  

wells where data from a very l a r g e  IMS database was needed bu t  could 

n o t  be made ava i l ab le .  

2.3 Loose Coupling O f  The With An External  DBMS - st rate^ 3 

Conceptually t h e  s imples t  s o l u t i o n  t o  the problem of  using 

e x i s t i n g  databases managed by an  ex te rna l  DBMS is t o  e x t r a c t  a 

snapshot  o f  the required d a t a  from the  DBMS when t h e  ES begins t o  work 

on a set o f  r e l a t e d  problems. This  por t ion  of  the  database  is s to red  

i n  the  i n t e r n a l  database o f  the  ES as described i n  t h e  previous 

sec t ion .  For t h i s  scenar io  t o  work, the  fol lowing mechanisms are 

required  : 

1. Link t o  a DBMS with unload f a c i l i t i e s ;  

2. Automatic generat ion of  an ES database from t h e  ex t rac ted  
database ; 

3. An " in te l l igencew mechanism t o  know i n  advance which por t ion  
o f  the database is required f o r  ex t rac t ion .  

Such a s t r a t e g y  p resen t s  s e v e r a l  p r a c t i c a l  advantages and could 

be used i n  combination with any of  the two previous access s t r a t e g i e s .  

However, loose  coupling is no t  s u i t a b l e  i f  the p o r t i o n  o f  t h e  database 

t o  be ex t rac ted  is no t  known i n  advance. This  refers t o  t h e  t h i r d  o f  

the  required mechanisms which is c l e a r l y  the  hardest t o  automate. 

When t h i s  mechanism is n o t  automated, the  d e c i s i o n s  have t o  be made 

l l s t a t i c a l l y w  wi th  human in tervent ion .  Furthermore, l o o s e  coupling is 

i n e f f i c i e n t  when d i f f e r e n t  por t ions  of  t h e  database are needed f o r  t h e  

Expert System a t  d i f f e r e n t  times. This  leads t o  t h e  need f o r  t h e  

f i n a l  s tage:  t i g h t  coupling of the  ES with a DBMS. 
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Tight Coupling Of The -- With - External DBMS - 

For this access strategy it is assumed that a very large database 

exists under a generalized DBMS, and the ES needs to consult this 

database at certain points during its operation. Under this script, 

an online communication channel between the ES and the DBMS is 

.required, Queries can be generated and transmitted to the DBMS 

dynamically, and answers can be received and transformed into the 

internal knowledge representation. Thus in tight coupling the ES must 

know - when and how to consult the DBMS, and must be able to understand 

the answers. 

The naive use of the communication channel will assume the 

redirection of all ES queries to the DBMS. Any such approach is bound 

to face at least two major difficulties: 

A.- Number of Database - Calls 

Since the ES normally operates with one piece of information at a time 

(record), a large number of calls to a database may be required for 

each ES goal. Assuming that the coupling is made at the query 

language level, rather than an internal DBMS level, such a large 

number of DBMS calls will result in unacceptable system performance. 

The number of calls at the query language level could be reduced, if 

these calls result to a collection (set) of records. 

B.- Complexity of Database - Calls 

Database languages usually have limited coverage. For instance, the 

majority of query languages do not support recursion. For reasons of 

transportability and simplicity, it may not be desired to include in 
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the coupling mechanism the nembeddingff programming language (e.g. 

PL/1, COBOL), a language that would solve the discrepancies in power 

between the ES and DBMS representations and languages. 

Therefore, to attain tight-coupling, particular care has to be 

given to global optimization in using the communication channel, and 

.to the representation and language translation problems. To the 

authorsf knowledge, tight-coupling to an existing DBMS has not yet 

been implemented in actual systems. It appears that the impact of 

logic programming and the commercialization of relational database 

systems will have a profound effect for tight-coupling in future 

system architectures. Prolog is currently the most widely known 

programming language; it has been announced as the basis of the 5th 

Generation Computer Project in Japan [ Feigenbaum and McCorduck 1983 1 . 
It is becoming clear that logic-based programming languages like 

Prolog will be highly influential in the ESs of tomorrow. In the 

remaining sections of this paper, Prolog and a research effort to 

develop a formalism for coupling a Prolog-based Expert System with a 

relational DBMS are described. 

A PROLOG INTRODUCTION - 

3.1 Prolog & Programming Language 

Prolog is a programming language based on a subset of first-order 

logic, the Horn-clauses. Roughly, this amounts to dropping 

disjunction from logical consequents, and talking only about definite 

antecedent-consequent relationships. 
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Statements.- There are three b a s i c  s ta tements  i n  Prolog ( t h e  symbol c- 

denotes  impl ica t ion ,  and t h e  symbol & denotes the  l o g i c a l  AND): 

c- P. means P is a goal  

A. means A is an a s s e r t i o n  

P C - Q & R & S .  means Q and R and S imply P 

A c l ause  has both a d e c l a r a t i v e  and a procedural i n t e r p r e t a t i o n .  

Thus, 

P C - Q & R & S  

can be read declara t ive ly :  

P is t r u e  - i f  Q and R and S are t r u e  

o r ,  procedural ly ( s imi la r  t o  nstepwise refinementw [Wirth 1971 1) : 

To s a t i s f y  P first s a t i s f y  Q and R and S. 

Programs.- A Prolog program is a sequence o f  c l auses  whose v a r i a b l e s  

are considered t o  be u n i v e r s a l l y  quant i f ied .  Logic p r e d i c a t e s  are 

represented  with Prolog programs, and s i n c e  more than one c l a u s e  may 

be needed t o  def ine  a p r e d i c a t e  ( g o a l ) ,  t h e r e  is a corresponding 

AND/OR graph f o r  each predica te .  The execution of a program involves  

a dep th - f i r s t  search  with backtracking on these  graphs,  and uses  t h e  

u n i f i c a t i o n  process based on t h e  r e s o l u t i o n  p r i n c i p l e  [Robinson 1965 I .  

A s  an  example of  a Prolog program, cons ider  t h e  appending o f  two 

lists t o  form a t h i r d .  I n  t h i s  Prolog system no ta t ion ,  p r e d i c a t e  

names are i n  upper-case, v a r i a b l e s  are i n  lower-case, cha rac te r  

s t r i n g s  t h a t  start with upper-case denote denote cons tan t  va lues ,  

brackets  enclose lists, [ I  is t h e  empty list, and t h e  opera to r  I " 
s e p a r a t e s  the  first element o f  t h e  list from t h e  rest. 
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IIPPEND([I, Y, Y). 
IIPPEND([xly], z, [xlwl) c- APPEND(y, z, w). 

Clause one asserts that appending the empty list to any list 

leaves the list unchanged (stopping the recursion). Clause two states 

that if y appended to z results in w, then a list with first element x 

and remainder y, when appended to z, results in a list with first 

element x and remainder w. 

Given the goal: "<- APPE?$D([A], [B,C], new)", Prolog tries to 

instantiate the variable new to whatever value makes the predicate 

true. The first clause cannot be used the first time around ([A] is 

not [ I )  If the instantiation x=[A], y=[], z=[B,C], and new=[Alw] is 

made then the second clause applies. This requires the evaluation of 

the right-hand side goal: "c- APPEND([], [B,c], w ) " .  For this goal 

the first clause applies, w is instantiated to [B,C] and through 

recursion, new is instantiated to [ A  ,B,CI. 

An important characteristic of Prolog programs is that there need 

be no distinction between input and output parameters. Thus, one can 

also ask for the combination of lists that result in a specific list 

when appended to each other: 

c- APPEND(x, y, [A,B,C]). 

3.2 Prolog And Relational Database Management 

To clarify Prologts approach to relational database management, a 

short description of two different views of relational databases is 

required. The traditional view of relational databases [Codd 1970 1 is 

that of a collection of tables. Formally, a relational database is a 
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relational structure [Kowalski 1981 1. Queries on the database are 

expressed in languages having the power of first-order logic and are 

evaluated in the relational structure (evaluational approach). In 

contrast, a proof-theoretic view would look at a database as a 

collection of sentences - - a theory. A database query is answered by 

proving it to be a logical consequence of the theory (non-evaluational 

approach). This distinction is described in detail in (~inker and 

Gallaire 1978 1. Essentially , it amounts to the difference between 

theories and their interpretations. 

[Kowalski 198 1 1 shows that, under certain conditions, this 

distinction is irrelevant. In particular, it can be shown that all 

queries in first-order logic evaluate to the same value whether the 

relational database is interpreted as a structure or as a logic 

database, provided that: 

1. There are finitely many variable-free atoms; 

2. The database is described by Horn clauses; 

3. The axioms of equality and domain closure are present; and, 

4. Negation is interpreted as finite failure. 

Relational databases can therefore be represented directly in 

Prolog as a listing of all instantiated predicates corresponding to 

relation tuples. For instance, consider the database-oriented view of 

the world of Suppliers-and-Par ts [Date 1982 1. 

The relations (scheme) are: 

SUPPLIER(sno, sname, status, city) 
PART( pno , pname , color, city ) 
SUPPLY ( sno , pno , q ty ) 
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An instance of the database would be represented in Prolog as: 

In addition to database representation, Prolog can be used 

directly as a database query language. 

Each query may have the format [Kowalski 1981 1 : 

c- QUERY (<target-variables) . 
QUERY(ctarget-variables>) <- GOAL - A & GOAL - B &. . . & GOAL-N 

where <target-variables is a list of variables (corresponding to 

attribute names). The interpretation is that the user wants to 

retrieve all instantiations satisfying the goal statements. Thus, 

<target-variables> corresponds to the target list in conventional 

query languages. For instance, consider the Prolog statements: 

/* For all suppliers, 
list the supplier number and the city they live in */ 

<- ~1VES(sno, city). /* where */ 
LIVES(sno, city) <- SUPPLIER(sn0, any - sname, any - status, city). 
/* List the supplier number 

for those suppliers who supply more than one parts */ 
<- SUPPLIES-MANYfsno). /* where */ 
SUPPLIES-MANY(sno) c- SUPPLY(sno,pl,ql) & 

SUPPLY(sno,p2,q2) & NOT(pl=p2), 

* List the supplier number 
for those suppliers who do not supply more than one parts, 
and live either in London or in Paris */ 

c- SPECIAL SUPPLIER(sno). /* where */ 
SPECIAL-S@PLIER(S~O) c- NOT(SUPPL1ES MANY( sno ) ) & 

OR(LIVES(sno, L O ~ N ) ,  LIVES(sno, PARTS) \ .  
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These examples can be used to  i l l u s t r a t e  both t h e  query 

c a p a b i l i t i e s  of the  Prolog formalism, and the  powerful mechanism f o r  

"general ized" views. Such views d i f f e r  from t h e  t r a d i t i o n a l  DBMS 

views i n  t h a t  with t h e  use o f  v a r i a b l e s  they can accept  parameters.  

I n  essence ,  views al low f o r  a f l e x i b l e  d a t a  r ep resen ta t ion .  

[Kowalski 19811 a l s o  details t h e  use of Prolog f o r  i n t e g r i t y  

c o n s t r a i n t s ,  database updates and h i s t o r i c a l  databases.  

3.3 Prolog And Expert Systems - 

A knowledge base can be represented  i n  f i r s t - o r d e r  l o g i c  i f  t h e  

formulas are s u i t a b l y  in te rp re ted .  Therefore, Prolog may be used f o r  

t h e  knowledge representa t ion .  Furthermore, Prolog has t h e  advantage 

t h a t  i t  a l ready has a very powerful inference  engine i n  p lace  

(automatic theorem prover) .  The u n i f i c a t i o n  algori thm used i n  Prolog 

is more genera l  than a simple p a t t e r n  matching algori thm (common i n  

product ion  rule-based s y s  terns [Nau 1983 ] ) . 

A s  an i l l u s t r a t i o n ,  a small "toyw Expert System i n  Prolog is 

presented.  The area of  i n t e r e s t  is t h e  well-known world of  s u p p l i e r s ,  

parts, and supp l i e s .  I n  t h i s  s imple example, the  "expertw is supposed 

t o  recommend where t o  order  by applying t h e  fol lowing r u l e s :  

1. Order only from s u p p l i e r s  who have suppl ied  the  same p a r t  and 

a l l  its subpar t s  before. 

2. Suppl i e r s  from southern Europe are usua l ly  cheaper than those  

from northern Europe. No s u p p l i e r s  o u t s i d e  Europe should be 

considered. 
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3. Display a l l  poss ib le  choices  within t h e  noptimalw category. 

A Prolog exper t  f o r  t h i s  Job would obviously need a represen ta t ion  

both o f  t h e  above r u l e s  and of t h e  da ta  they requ i re ,  such as loca t ion  

and previous supply f o r  each part, and t h e  c l a s s i f i c a t i o n  o f  loca t ions  

i n t o  nor thern  and southern Europe. A sketch  of  a poss ib le  Prolog 

knowledge base follows. 

F i r s t ,  t he  database of  s p e c i f i c  f a c t s  is presented. It is noted 

t h a t  only binary o r  unary r e l a t i o n s  are used i n  t h i s  example, but  t h i s  

is no t  l i m i t i n g  i n  t h a t  t h e r e  is a simple way t o  move between binary 

rep resen ta t ions  and t e rna ry  rep resen ta t ions  [Kowalski 19791. 

/* Simple d e c l a r a t i v e  f a c t s  (da tabase)  */ 

PART(NuT) . 
PART(W1DGET). 
PART(GIZM0). 
PART(SCREW), 
PART( GADGET). 
PART(TH1NGUM). 
PART(SUPERTHINGUM). 

SUBPART(NUT, WIDGET). 
SUBPART(SCREW, GADGET). 
SUBPART(GADGET, GIZMO). 
SUBPART(THINGUM, SUPERTHINGUM). 

HAS SUPPLIED(SMITH, NUT). 
HAS-SUPPLIED( SMITH, WIDGET). 
HASSUPPLIED(SMITH, GIZMO). 
HASSUPPLIED(SMITH , THINGUM) . 
HAS-SUPPLI ED ( JONES, SCREW ) . 
HASSUPPL I ED ( JONES, rwr ) . 
HAS-SUPPLIED ( JONES, w I D G ~  ) . 
HAS-SUPPLIED ( JONES, GADGET 1. 
HAS-SUPPLIED( JONES , GIZMO ) . 
HASSWPL IED( JONES, SUPERTHINGUM ) . 
HAS-SUPPLIED( - BRAKD , SCREW 1. 
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LIVES(SMITH, ROME). 
LIVES(JONES, L0NIX)N). 
LIVES(BRAND, OSLO). 

NORTH(LOND0N). 
NORTH(OSL0). 
SOUTH ( ROME ) . 
SOUTH( ATHENS) , 

Second, the part of the knowledge base containing the general 

rules is presented. 

/* General Rules */ 
SUGGEST ORDER(supplier, part) c- 

GOOD - AND - CHEAP (supplier, part ) . 
/* if no good and cheap suppliers exist, then: */ 

SUGGEST ORDER(supplier, part) c- 
NOT~OOD AND CHEAP (any supplier, part ) ) & 
NORTH EUROPEAIJ( supplier)& 
POTE~AL-SUPPLIER( supplier, part ) . 

GOOD - AND CHEAP(supplier,part) c- 
POTENTIAL SUPPLIER( supplier, part ) & 
SOUTH - E ~ P E A N (  supplier ) . 

MISSING SUBPART(supplier, part) c- 
N O T ~ H A S S U P P L I E D ( ~ ~ ~ ~ ~ ~ ~ ~ ,  part) ) , 

MISSING SUBPART(supplier, part) c- 
SUB PART(^^^ part, part) & 
MISSING - ~ u ~ P ~ ~ T ( s u ~ ~ l i e r ,  any - part). 

NORTHEUROPEAN(supp1ier) c- LIVES(supplier, city), NORTH(city). 
SOUTH-EUROPEAN(supp1ier) c- LIVES(supplier, city), SOUTH(city). 
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To i l l u s t r a t e  the  use o f  t h e  above simple Expert System, some 

examples are given below. I t  is noted t h a t  the  user  p laces  a goal  

(des i red  conclus ion)  a t  t h e  n l  ?-" prompt and t h e  system r e t u r n s  with 

a %ow answer if the  goal  can not  be proven, and with an  assignment of 

va lues  t o  the v a r i a b l e s  used otherwise. If t h e  goal  has more 

s o l u t i o n s  ( o t h e r  va r i ab le  assignments e x i s t ) ,  they are obtained with 

t h e  typing o f  a semi-colon u n t i l  t h e  answer "noH is returned.  

/* Example Execution * / 
1 ?- SUGGEST - ORDER(x,WIW;ET). 
x = SMITH ; 
no 

I ?- SUGGEST ORDER(x,GIZMO). - 
x = JONES ; 
no 

I ?- SUGGEST - ORDER(x,SCREW). 
x = JONES ; 
x = BRAND ; 
no 

PROLOG AS MECHANISM FOR INTEGRATION 

4.1 Prolog - And Access S t r a t e g y  - 1 

A s  ou t l ined  i n  t h e  previous s e c t i o n ,  elementary database 

management corresponds t o  a d i r e c t  use o f  Prolog. The l i m i t a t i o n s  i n  

t h i s  s t r a t e g y  are: 

( a )  Large Databases 

Executing Prolog programs i n  the  manner descr ibed above r e q u i r e s  t h a t  

the  a s s e r t i o n s  r ep resen t ing  t h e  database ( i n s t a n t i a t e d  p r e d i c a t e s )  be 

i n  main s torage .  Even when the  database can f i t  i n  main s t o r a g e ,  and 
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despite the fact that Prolog implementations are very efficient, there 

are limitations in secondary indexing. For instance, the Prolog 

DEC-10 compiler, which is considered to be the most efficient 

implementation, has only one index for the internal database. In 

short, both external and internal data management are needed for large 

databases. 

(b) Generality 

Simple-minded use of Prolog can only offer elementary data management 

facilities. For instance, there is no data dictionary, no database 

schema, and no generalized set-oriented relational operations. It may 

be argued that lack of generality is a matter of convenience rather 

than an issue of substance. On the other hand, it is closely related 

to the first limitation, and in the next stage a uniform mechanism to 

deal with both is used. 

4.2 - A Generalized Database System - In Prolog - - Access Strategy - 2 

Generalized DBMSs gain much of their power by abstracting from 

specific query predicates to generalized retrieval mechanisms such as 

the set-oriented relational algebra operators or the SQL nesting 

mechanisms. One advantage of using these abstractions in Prolog is 

that they allow generalized selection of predicates instead of forcing 

the database programmers to define such predicates separately for each 

class of data. 
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Therefore, we could take a further step towards integrating the 

deductive capabilities of Prolog with database management capabilities 

by implementing a general purpose DBMS directly in Prolog. This can 

be done quite easily, and provides a means of adding flexible and 

general data access mechanisms to the inference engine. 

In order to effect this stage in ES enhancement with data 

management facilities, the first requirement is the definition of an 

internal representation of a relational database. The following 

Prolog version is a simple and direct strategy for this purpose. 

DBSCHEMA = [ DB-NAME, [relations I, [constraints 1 1 

REL-i = [ REL-NAME, [scheme], [domains] 1 
/* for each REL-i, l<=i<=n */ 

SCHEME = [a-1, ..., a-k] /* a list of attributes */ 
DOMAINS = [d-1, ..., d-k] /* a list of domains with */ 

/* DOM(a-I) = d-i */ 
CONSTRAINTS = [ [list-of-fds] , /* functional dependencies */ 

[ list-of-vds], /* value dependencies */ 
[ list-of -sds] ] /* subset dependencies */ 

FD = [ REL-NAME, LHS, RHS 1 /* corresponds: LHS --> R H S  */ 
LHS = [ a-it, a-12, a-il I /* a list of attributes */ 
RHS = [ b-jl, b-32, b-jm 1 /* a list of attributes */ 
VD = [ REL-NAME, ATTR-NAME, LOWER-BOUND, UPPER-BOUND ] 

/* The values for ATTR-NAME must be within the bounds */ 
SD = [ REL-NAME 1 , ATTR-NAME1 , REL-NAME2, ATTR-NAME2 ] 

/* The values in ATTR-NAME1 must also be in ATTR-NAME2 */ 

DBINSTANCE = [ DB-NAME, [relation-instances 1 1 
RELATION-INSTANCE = [ REL-NAME, [tuples] ] 
TUPLE-i = [V-1, ..., V-k] /* V-i is. in d-i, l<=i<=k */ 

This strategy provides a straightforward implementation of the 

structure of a relational database as seen by the user (in this case 

the ES). The Suppliers-and-Parts database of Section 3.2, represented 

in this format, is given in Appendix 1. 
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Given such a representation scheme, one can define any number of 

generalized operations to provide the facilities of a DBMS. The 

feasibility of this has been demonstrated in [Kunifuji and 

Yokota 19821. The basis for the implementation is the predicate 

W3"Ffl built into most Prolog versions, SETOF(x,c,r), returns in the 

-set r all such elements of x that satisfy condition c, For instance, 

the projection of a relation R on scheme (xl,x2,,.,,xn) onto the 

attributes xjl,xj2,...,xjk will have the form: 

SETOF((xj1 ,xj2,. . . ,xjk), ( (xi1 ,xi2,. . . ,xim)̂ R(xl,x2,. . . , xn) ), s) 

where m=n-k, and (xi1 ,xi2,. . . ,xim)̂  denotes the existential 

quantification of these variables. 

As a specific example, the projection of a relation R on scheme 

(a,b,c) onto the attribute c is ltcomputedH by the following Prolog 

program : 

I ?- SETOF(c, ( (a,b)̂ R(a,b,c) ), s). 

Note, however, that this view of the projection operator requires 

the user to know the entire scheme of each relation and the order of 

the attributes in the scheme; this may be too much to ask in general. 

The approach taken here (details are given in Appendix 1) by contrast, 

provides a simple way to specify projection as a generalized operator 

acting on any relation and set of attributes. Prolog programs map 

from this simpler, user-oriented view of the operations, to their 

implementation for the particular database and representation scheme 

chosen. This provides a degree of logical data independence as in the 

traditional levelled architecture of DBMSs [Date 19821. 
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Another feature provided by many DBMSs is the ability to define a 

"viewtt of the database for particular applications. These views 

define only that portion, or rearrangement, of the database of 

interest to a particular user community, effectively screening out the 

rest of the database from their sight. For example, users interested 

-only in the set of suppliers without any of their attributes, could 

define the following view: 

SUPPLIES( s ) c- PROJECT(SUPPLY, [SNAKE 1, result - tuples). 

The user (typically the ES) has a choice between set-oriented and 

tuple-at-a-time retrieval operations. This is accomplished with the 

introduction of an evaluable predicate called "SIMCALLN. This 

predicate simulates Prolog's calls of predicates corresponding to 

relations (i.e. returns a tuple instantiation). Thus, each call of 

the predicate SUPPLY, defined below, will return one tuple of the 

relation SUPPLY (stored in the format described in this Section). 

SUPPLY (sno , pno , qty ) c- SIMCALL(SUPPLY, [sno , pno , qty 1 ) . 

Another issue for the implementation of a generalized DBMS within 

Prolog is that of efficient secondary storage management. For the 

latter, it is reasonable to devise a more sophisticated storage 

strategy (e.6. , B-Trees) , and perhaps to use auxiliary indexing 

schemes, hashing, etc. The use of some of these storage structures 

for implementing a simple business database in Prolog is described in 

[Pereira and Porto 19821, and some general Prolog data structures and 

accessing programs are formalized in [Tarnlund 19781. 
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The work reported i n  [Pereira and Porto 19821 demonstrates that 

f o r  s p e c i f i c  applications,  indexing schemes that guide decisions about 

which portions of external files should be read in to  the in te rna l  

database can be devised, Furthermore, the basic data  access predicate 

( rou t ine)  of Prolog can be changed t o  d i r e c t  data searches of 

secondary storage.  Such Prolog modifications have been c r i t i c i z e d  as 

providing only temporary solut ions ,  while complicating Prolog's basic 

s t ruc tu re  and fur ther  divorcing t h e  language system from formal logic.  

5.0 PROLOG RELATIONAL -- DBMS AS INDEPENDENT SYSTEMS 

5.1 Loose Coupling Of Prolou With A Relational - DBMS 

Loose coupling can eas i ly  be implemented using Prolog and a 

r e l a t i ona l  DBMS, under the assumption tha t  a generalized f a c i l i t y  as 

described above ex i s t s .  A portion of the external  database is loaded 

off- l ine  (before the s t a r t  of the E x p e r t  System session) .  A superset  

of the  data required by the ES can ac tua l ly  be extracted,  but the 

s t ra tegy  may prove infeasible  i f  the superset  is too la rge  or not 

known i n  advance ( too many parameters). 

5.2 Tight Coupling O f  Prolog With - A Relational DBMS 

5.2.1 Overview - 
Tight coupling r e f e r s  t o  a dynamic use of the  communication 

channel between the two systems. Essent ia l ly ,  the ex te rna l  database 

becomes an "extensionw of the in te rna l  Prolog database. A s  i n  the 

general case, the same tno basic problems must be resolved: 

optimization of database calls, and complexity of quer ies .  unnantra* 
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such a coupling system requ i res  dynamic decision-making about t h e  

l o c a t i o n  o f  t h e  d a t a  needed t o  s o l v e  the  c u r r e n t  problem, and an  

e f f e c t i v e  s t r a t e g y  f o r  managing i n t e r n a l  s torage .  

The b a s i c  scenar io  f o r  t i g h t l y  coupling a Prolog-based ES with a n  

e x i s t i n g  r e l a t i o n a l  DBMS is as follows. The use r  consu l t s  t h e  ES with 

a problem t o  be solved o r  a decis ion  t o  be made; t y p i c a l l y  t h i s  w i l l  

be expressed i n  some s o r t  of  user- f r iendly  language i n t e r f a c e ,  but  f o r  

our purposes we can assume t h a t  it  is expressed d i r e c t l y  as a Prolog 

predica te .  Rather than eva lua te  t h i s  user  r eques t  d i r e c t l y ,  i n  a 

t ightly-coupled framework the  p red ica te  would be massaged ( c f .  

nREFLECT," Sect .  5.2.3) i n t o  a s l i g h t l y  modified form whose 

evaluat ion  can be delayed while var ious  transformations are performed 

upon it. This  process is analogous t o  a "pre-processing" s t a g e  i n  

language t r a n s l a t i o n .  The a l t e r e d  p red ica te  is then wmeta-evaluatedw 

(5.2*3) This  involves analyzing t h e  r eques t  i n  its Prolog 

formulation and dynamically determining whatever DBMS q u e r i e s  are 

required at t h a t  s t a t e  9 t he  ES execution f o r  ob ta in ing  t h e  so lu t ion .  

In our case, t h i s  involves formulat ing t h e  q u e r i e s  i n  t h e  r e l a t i o n a l  

language SQL [Astrahan et a1 19761, performing c e r t a i n  opt imizat ions  

upon the  o r i g i n a l  SQL quer ie s  s o  generated,  i s s u i n g  t h e  SQL q u e r i e s  t o  

t h e  DBMS along a communication channel,  r ece iv ing  t h e  r e s u l t  o f  t h e  

query from t h e  DBMS along t h i s  same channel,  and re-formulat ing t h a t  

r e s u l t  wi th in  t h e  i n t e r n a l  database s t r u c t u r e  o f  the  ES. A t  t h a t  

point ,  t he  wmeta-evaluationw of t h e  u s e r ' s  r eques t  is completed, and 

the  Prolog inference engine can eva lua te  t h e  r e q u e s t  with t h e  requi red  

data  i n  its working memory. 
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A s  an example of t h e  need f o r  opt imizat ion ,  consider  a naive  

channel  u s e  ( a l l  Prolog goa l s  are d i r e c t e d  t o  the  e x t e r n a l  DBMS), and 

t h e  d e f i n i t i o n  of the  Prolog clause:  

SECOND - LEVEL-SUBPART(subpno,pno) c- SUBPART(subpno,pnol) (1 
SUBPART(pno1,pno). 

where it is assumed t h a t  "SUBPARTw is a s t o r e d  r e l a t i o n  f o r  d i r e c t  

( f i r s t - l e v e l )  sub-re la t ionships  between p a r t s .  

In  eva lua t ing  t h i s  goal ,  Prolog w i l l  call t h e  l e f tmos t  WSUBPARTfl 

( r e d i r e c t e d  t o  the  DBMS as an a t tempt  t o  eva lua te  i t )  f o r  a database  

tup le .  subpno and pnol w i l l  be i n s t a n t i a t e d  t o  some cons tan t  values.  

Then Prolog w i l l  call t h e  r ightmost  "SUBPARTw with pnol a l r eady  

i n s t a n t i a t e d .  Such a lfollow-upt call w i l l  be made f o r  each 

success fu l  i n s t a n t i a t i o n  o f  pno. Moreover, t h e  process  is repeated  

f o r  each t u p l e  of subpart .  If no second-level subpar t  e x i s t s  i n  t h e  

database,  a l l  these  'follow-up' goa l s  w i l l  fa i l .  Thus t h e  minimum o f  

2n+l number of database c a l l s  is required ,  where n is t h e  number o f  

tup les .  (The e x t r a  call  is t h e  unsuccessful  a t tempt  t o  i n s t a n t i a t e  

t h e  le f tmost  "SUBPART" when a l l  t u p l e s  have been looked a t ) .  I f  t h e r e  

are k second-level subpar t s ,  then Zn+k+l da tabase  calls are needed. 

This  naive approach w i l l  thus  genera te  a p a r t i c u l a r l y  i n e f f i c i e n t  

vers ion  of  a "nested i t e r a t i o n N  query eva lua t ion  a lgor i thm and w i l l  

no t  make use of any query opt imizat ion  procedures o f  t h e  DBMS. 

This  d i f f i c u l t y  can be overcome by c o l l e c t i n g  and j o i n t l y  

executing database c a l l s  r a t h e r  than execut ing  them s e p a r a t e l y  

whenever issued by the  ES. In  essence ,  t h i s  r ev i sed  technique 

rep laces  the  pure d e p t h - f i r s t  approach o f  Prolog by a combination o f  a 

depth-f i rs t  reasoning and a b read th - f i r s t  da tabase  call e x e c ~ 1 t ~ n n  
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In practice, an amalgamation of the ES language with its 

meta-language is used, based on the 'reflection principlet 

[Weyhrauch 1980 1, This allows for a deferred evaluation of predicates 

requiring database calls, while at the same time the inference engine 

(theorem prover) of the ES is working, Since all inferences are 

performed at the meta-level (simulation of object-level proofs), it is 

feasible to bring the complex ES queries to a form where some 

optimization and direct translation to a set of DBMS queries is 

feasible. 

The queries are directed to the DBMS, and the answers obtained 

are transformed to the format accepted by the ES for internal 

databases. Then, the ES can continue its reasoning at the 

object-level. Each invocation of predicates corresponding to database 

relations now amount to an ES internal database goal, rather than a 

call to an external DBMS. The theoretical basis and a detailed 

description of this approach are presented in Sections 5.2.2 and 

5.2.3. 

The second difficulty in successfully coupling a Prolog-based ES 

with a relational DBMS is that Prolog goals, considered as queries, 

can be substantially more complex than queries expressed in a database 

query language such as SQL. For example, most DBMS query languages 

are not able to handle a recursive call such as the Prolog program: 

ANY - LEVEL - SUBPART(subpno,pno) <- SUBPART(subpno,pno). 

ANY - LEVEL - SUBPART(subpno,pno) <- SUBPART(subpno,pl) & 
ANY - LEVEL-SUBPART(p1,pno). 
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Much resea rch  e x i s t s  on t h e  i s s u e  of  recurs ion  i n  databases.  An 

important d i s t i n g u i s h i n g  c h a r a c t e r i s t i c  is t h a t  t h e  depth o f  r e c u r s i v e  

calls t o  da tabases  f s  usua l ly  r e l a t i v e l y  shallow. For i n s t a n c e ,  

cons ider ing  again  the  example o f  subpar t s ,  recurs ion  may only  go t o  a 

few l e v e l s  deep before subsequent r ecurs ive  calls r e s u l t  i n  "nullss  

answers (no tup les  qua l i fy ing) .  This  impl ies  an immediate s t r a t e g y  

wi th in  t h e  framework o f  language amalgamation discussed above: t o  

translate a recurs ive  Prolog goal  t o  SQL, genera te  a series of  calls 

that can be t r a n s l a t e d  d i r e c t l y  t o  SQL, execute the  SQL calls, and 

s t o p  when recurs ion  ends (SQL c a l l s  r e t u r n  n u l l  r e s u l t s ) .  The major 

problem with t h i s  s t r a t e g y  is t h a t  i t  is not  poss ib le  t o  know i n  

advance how many such goa l s  must be generated ( t h e  t r a n s l a t i o n  t a k e s  

place i n  t h e  ES). Therefore,  it  is no t  f e a s i b l e  t o  j o i n t l y  execute  

these  SQL calls. In  o the r  terms, l i t t l e  can be done f o r  t h e  

t r a n s l a t i o n  a t  compile time, s i n c e  the  end o f  recurs ion  can only be 

determined a t  execution time. 

Even under these  r e s t r i c t i o n s ,  much opt imizat ion  can be done 

within the  proposed framework. For example, r e s u l t s  ( t u p l e  va lues )  

from i n i t i a l  SQL calls are used f o r  subsequent SQL calls. Other 

approaches ( e  .g. [Henschen and Naqvi 1982 1 ) handle r ecurs ion  

e legan t ly  and i n  a genera l  way a t  compile time us ing a method t h a t  

replaces  recurs ion  by i t e r a t i o n .  S ince  Prolog has  no i t e r a t i v e  

statements,  and it was no t  des i red  t o  use an  embedded query language 

h e r e  i t e r a t i o n  can be expressed i n  t h e  h o s t  language, t h i s  method is 

i n f e a s i b l e  i n  t h e  framework proposed here.  
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5.2.2 The Theoretical Basis For Language Amalgamation - 

In order to be able to talk about a language L, the use of a 

meta-language ML is required. The amalgamation of an object language 

with its meta-language refers to the ability to move between the two 

languages whenever it appears more convenient or efficient to use one 

rather than the other. 

Suppose that a goal G is to be proven from a set of assumptions 

(hypotheses) A in a first-order language L. There are two ways to do 

this : 

(a) Use the proof procedure of L. 

(b) Simulate the proof procedure of L in ML as follows: Use a 

"reflectw relationship that names the assumptions A and goal G of L as 

Meta-A and Meta-G in ML. The provability of G from A is represented 

by the provability of the predicate rfmetaevaluate(Meta-A, Meta-G)" 

from sentences in ML. 

Implementing amalgamation of L and ML requires the definition of 

the metaevaluate predicate and the naming relationship. In addition, 

it requires a link (reflection principle) between the two languages. 

In this specific case, Horn clause logic (Prolog) is used as the 

object language. The meta-language is Prolog itself - with the 
restriction that all sentences are variable-free. This allows to 

remain in first-order logic. Thus, the naming relationship maps 

variables to special-form constants which simulate a variable in 

meta-Prolog. 
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This implementation of amalganation is based on the high level 

description of the DEMO predicate presented in [Bowen and 

Kowalski 19821, and is similar to the implementation of [Kunifuji and 

Yokota 1982 I. The work reported here ex tends the above approaches by 

providing a more general treatment of evaluable predicates. For 

instance, finite negation (not) and disjunction (or) are treated with 

no restrictions. In addition, the issue of its use in the context of 

the general ES-DBMS coupling mechanism is addressed. 

Linking Prolog and meta-Prolog is accomplished with the 

introduction of a binary predicate called ttMETA1t. For each Prolog 

clause, a corresponding instantiation of the "METAN predicate exists. 

The first term of "METAI1 is a list of predicates; the head of 

the list is the head of the corresponding clause, and the other list 

elements are the terms in the body of the clause. All variables in 

these predicates are translated into constants with a special prefix 

( 1 .  The second term of "METAN allows for the grouping of meta 

instantiations in a program. For example, the corresponding meta 

predicate for: 

ATHENS-SUPPLIER(sno,sname) <- SUPPLIER(sno,sname,status,ATHENS). 
is 

META ( [ ATHENS SUPPLIER ( V sno , V sname ) , 
SUPPLIER( V-sno , V-kame ,f-s ta tus , ATHENS) 1 , PR1) . 

where PR1 is the name of the program (group of "METAW instantiations). 

Since the objective of this approach is to defer the evaluation 

of predicates which correspond to database relations, all such 

predicates are in a delayed evaluation form. In particular, these 

predicates are defined in Prolog as follows: 
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SUPPLY (sno , pno , qty ) <- DBCALL (SUPPLY, [ sno , pno , q ty 1 ) . 

using the non-evaluable binary predicate "DBCALLW. Other predicates 

whose evaluation depends on the database values (e.g. equal, not 

equal) are treated in the same way. 

The implementation of the predicate nbETAEVALUATEH is described, 

together with examples of its use, in Appendix 2. Only a high-level 

description is given here. 

Given a set of assumptions A and a set of goals G to be proven in 

the object language, prove the meta-Prolog predicate: 

METAEVALUATE(assumptions, meta-goals, control, new-goals). 

in the meta-language, where ffassumptionsft is the collection of the 

original assumptions A in the meta-language, and meta - goals is the 
meta-language name of the goals G. Control is a parameter which 

specifies either a bound in the proof of metaevaluate or an action to 

be taken later (e.g. optimization, translation to relational algebra 

or SQL). The result, new - goals, is a series of Prolog predicates in a 
deferred evaluation state (a series of DBCALLs and other non-evaluable 

predicates). 

5.2.3 - The Mechanism For Tight-Coupling. - 

This section describes the overall mechanism that allows for 

deferred database calls. The mechanism is presented pictorially in 

Figure 2. The use of a simple but complete example will illustrate 

the concepts involved. 
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EXPERT SYSTEM DBMS 

OBJECT LEVEL META LEVEL DATABASE LEVEL 

I 
I 
I 

Reach a goal G that 
requires db calls METAEVALUATE 

I 

REFLECT I 
I OPTIMIZE 
I 
I 

GENERATE I 
I 
I SQL-TRANSLATE 
I 

REFLECT 

DBMS I 
Query I 
Evaluation 1 

I 
FORMAT-DATABASE I 

I 

I 
Goal G may now be proven with 
calls to an internal ES database 

I 
I 
I 

Figure 2: THE MECHANISM FOR METAEVALUATIONS 
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(A) REELECT(object-assumptions, meta - assumptions, program-name). 
This function produces "METAH predicates as described in the previous 

section from a set of Prolog statements. It also groups the meta 

predicates by providing a unique program-name, The REnECT function 

is invoked once before the start of a session. 

(B) METAEVALUATE(program - name, meta - goals, control, new-goals). 
Described in Section 5.2.2. 

(B.l) GEERATE(new-goals, results). 

This program is activated by metaevaluate when the control parameter 

assumes a particular value. Given a series of new - goals, it creates 
an internal database relation (result). In doing so, it uses and 

controls the execution of the sub-programs "OPTIMIZEw, 

"SQL - TRANSLATE", "SQL - CALL", and "FORMAT - DATABASEM. Details of the 

implementation of these procedures will be given in a forthcoming 

paper 

(B. 1.1 ) OPTIMIZE(new-goals, optimized-goals), 

This program performs some optimization to the goals generated in 

metaevaluate. One optimization is the removal of redundant goals. 

Another optimization identifies cases where a series of DBMS queries 

is required (e.g., in recursion). By imposing an ordering on the 

goals, *OPTIHIZEfl makes it possible that a query result can be used 

for answering the next query more efficiently. 

(B.1.2) SQL-TRANSLATE(optimized-goals, sql-query). 

This generates SQL queries from optimized goals, First, the procedure 

identifies the database relations involved from the predicate names in 

optimized-goals and its knowledge about the database schema (SQL's 
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FROM clause). Next, it identifies target attributes (SQLts SELECT 

clause) from the universally quantified variables of the original 

goals, and ignores all other variables in the goals unless they serve 

as join fields (e . g . , re1 1. field 1 = rel2. field2). All constant values 

are translated to restrictions on field values (e,g., fieldname = 

constant). 

(B. 1.3) SQL-CALL(sq1-query , answer-location) . 
This is another program activated by "GENERATEu. It invokes the 

existing DBMS by sending an sql-query, with the result redirected to a 

file identified by answer - location. Each answer to a query 

contributes to the eventual result of "GENERATEft. 

(8.1.3.1 ) FORMAT-DATABASE(answer - location, internal-db) . 
Since the existing DBMS cannot be expected to deliver the result in 

the format required by Prolog, this function produces an internal 

Prolog sub-database from the file identified by sql calls. Each such - 
database contributes then to the eventual result of the calling 

function, GENERATE. 

As an illustration of the process outlined above consider the 

following example. The actual Prolog execution and a more detailed 

description can be found in Appendix 2. Assume an ES that uses a 

series of informal, heuristic and exact rules, together with a large 

database of Suppliers-and-Parts managed by an external DBMS. The 

portion of this external database which is necessary for the example 

is assumed to contain the stored relations: SUPPLY and SUPPLIER. The 

hypothetical ES has the schema descriptions of the external database 

and several rules concerning this database. No actual tuples are 
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stored in the internal ES database. Assme further, the ES rule 

(goal) wP~RFORM_PRDER", which among other predicates involves the 

predicate (generalized view) : "GOOD - BET - SUPPLIERn, based on the 
9 

stored relations and other generalized views. 

PERFORM - ORDER(sname , price, delivery) - COLLECT-REQUIREMENTS ( w p r  ice, la tes t-del , pno ) & 
GOOD BET SUPPLIER(sno,pno) & 
MAKE-ADJ~s~'MENTs( - sno , new-delivery ) & ... 

where "GOOD - BET-SUPPLIER" is defined as: 

GOOD - BET-SUPPLIER(sno,pno) c- NORTH EUROPEAN(sno) & 
MA JOR-SUPPLIER( - sno , pno 1. 

NORTH-EUROPEAN( sno ) <- OR (SUPPLIER(sno , n , st ,LONDON ) & 
SUPPLIER(sno,n,st,PARIS)), 

MAJOR - SUPPLIER(sno,pno) c- SUPPLY(sno,pno,qty), & 
CREATER(qty, 300). 

Since an instantiation of "GOOD - BET - SUPPLIERw would require 

database calls, "METAEVALUATEW as the subgoal immediately preceding it 

is used: 

PERFORM ORDER( sname , price, delivery) 
c- C~LLECT REQUIREMENTS(max price, latest del, pno) & 

METAEVA~UATE ( PR 1 , [ GOOD-~ET-SUPPLIER( V-sno - , V - pno ) 1 , 5 ,  newgoals ) & 
! & 
GOOD BET SUPPLIER(sno,pno) & 
MAKE-ADJ~STMENTS( - sno , new-delivery ) & . . . 

Note that the 'cut" ( I )  subgoal assures that the metaevaluate predicate 

will only be executed once. 

The first result from "HETAEVALUATE" is (see also Appendix 2): 

newgoals = [OR(DBCALL(SUPPLIER, [V sno ,V n ,V st ,LONDON] ) , 
DBCALL (SUPPLIER, [ ~ s n o  , VZn, V ~ S  t ,PARIS 1 ) ) & 

DBCALL(SUPPLY, [v-s~o,~ pno,V qtyl) & 
DBCALL(GREATER, [ V - qty ,3001 ) 1- 
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Given t h e  s p e c i f i c  value f o r  t h e  c o n t r o l  parameter of  

nMETAEVALUATEw, t h e  program *'GENERATE" w i l l  be invoked. F i r s t ,  its 

sub-programs Hoptimizelt and ltsql-translatefl w i l l  transform t h e  new 

g o a l s  t o  t h e  SQL-query: 

SELECT sno, pno 
FROM SUPPLIER, SUPPLY 
WHERE ((SUPPLIER.city = 'LONDON') OR (SUPPLIER.city = 'PARIS')) 

AND (SUPPLY.qty > 300) 
AND (SUPPLY.sno = SUPPLIER.sno); 

The call w i l l  be made t o  t h e  e x t e r n a l  DBMS (program: SQL-CALL) , and 

t h e  answer w i l l  be r e t r i e v e d  from answer-location (program: 

FORMAT-DATABASE) , Fina l ly ,  a new i n t e r n a l  database w i l l  be generated 

with t h e  descr ip t ion:  

GOOD - BET - SUPPLIER(sno, pno) 

After t h i s  process,  the  next s ta tements  i n  t h e  Expert System clause  

can use "GOOD-BET-SUPPLIER1' i n  t h e  usual  Prolog way. No a d d i t i o n a l  

e x t e r n a l  database c a l l s  are needed. 

In essence,  ins tead of c a l l i n g  the  DBMS each time a t u p l e  is 

needed, a l l  "qualifyingw t u p l e s  are brought i n t o  t h e  i n t e r n a l  

database. I t  should be noted t h a t  the  above s t r a t e g y  is s i m i l a r  t o  

the  "query modif i c a t i o n w  algorithm [Stonebraker 19751 used i n  some 

commercial DBMSs f o r  view processing. Poss ib ly ,  t h e  s i n g l e  most 

important advantage i n  using the  theorem prover f o r  query modificat ion 

is t h a t  the  whole mechanism is in tegra ted  smoothly and n a t u r a l l y  i n t o  

an ES implementation as a general ized too l .  
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6.0 CONCLUDING REMARKS - - FURTHER RESEARCH 

I n  t h i s  paper a number o f  s t r a t e g i e s  f o r  e s t a b l i s h i n g  a 

coopera t ive  communication between t h e  deductive and d a t a  components o f  

an  Expert System were out l ined.  I t  was shown t h a t  t h e  spectrum o f  

p o s s i b l e  mechanisms t o  l i n k  these  two components is e f f e c t i v e l y  a 

continuum from, a t  one extreme, a s i n g l e  logic-based system t h a t  

implements components, t o ,  a t  the  o t h e r  extreme, two completely 

separate systems with a s t rong  channel of  communication. 

A number of  i n t e r e s t i n g  research  ques t ions  are r a i s e d  by t h e  

spectrum o f  poss ib le  mechanisms f o r  coupling these  two e s s e n t i a l  

components o f  an Expert System. Among t h e  ques t ions  examined are: 

what is a genera l  a r c h i t e c t u r e  f o r  t h e  communication channel between 

these  two components? how can t h e  ES DBCALLs be t r a n s l a t e d  i n t o  t h e  

query language of  the  DBMS? when and how should t h e s e  q u e r i e s  be 

optimized? A research  top ic  under i n v e s t i g a t i o n  is t h a t  o f  i n t e r n a l  

ES database  space management. How does one manage t h e  amount o f  free 

space f o r  s t o r i n g  the  r e s u l t s  o f  e x t e r n a l  da tabase  calls? When space  

has t o  be f r e e d ,  how is the  decis ion  reached and optimized as t o  which 

por t ion  of  the  i n t e r n a l  database need be de le ted?  A longer range 

research  quest ion concerns t h e  i n t e g r a t i o n  o f  t h e s e  four  a c c e s s  

s t r a t e g i e s  i n t o  a s i n g l e ,  meta-expert system t h a t  combines t h e  

e x p e r t i s e  of  t h e  problem domain with e x p e r t i s e  about  these  four  

connection types. Given a p a r t i c u l a r  type o f  problem i n  t h e  domain o f  

the  expert, t h i s  meta-expert system would decide  which type o f  

coupling is most appropr ia te .  
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Finally, a research question of particular interest to the 

database community is the use of an ES as a DBMS *interfacew [Jarke 

and Vassiliou 19831. Could an ES be used as a sophisticated access 

mechanism (e.g. high-level optimization, understanding of user 

intent)? How could an ES assist in the implementation of language 

constructs that allow one to formulate arbitrary predicates with 

relation variables? Such constructs may be used for integrity 

checking and improved locking mechanisms. A tight-coupling mechanism, 

like the one described in this paper, may be required by such a 

nDBMS-exper t ". 
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Appendix 1 

/* This  is t h e  database used as t h e  example i n  s e v e r a l  s e c t i o n s  of t h e  */ /* paper. It  has been copied from Date, and it d e a l s  with t h e  world */ 
/* of SUPPLIERS AND PARTS. * / 
/**************~***iT*********************************ff******************/ 

DBSCHEMA( SUPPLIERS-AND-PARTS, 

[ [SUPPLIER, 
[SNO,SNAME,STATUS,CITY], 
[DSNO,DSNAME,DSTATUS,DCITY] 1, 

[PART, 
[PNO,PNAME,COLOR,WEIGHT,CITY], 
[DPNO,DPNAME,DCOLOR,DWEIGHT,DCITY] 1, 

[SUPPLY, 
[SNO,PNO,QTYI, 
[DSNO,DPNO,DQTY] 1 1, 

[ [FD, SUPPLIER, [sNO], [SNAME,STATUS,CITY] 1, 
CFD, SUPPLIER, [sNAME 1, [sNO,STATUS,CITY 1 1, 
EFD, PART, [PNO], [PNAME,COLOR,WEIGHT,CITY] 1, 
[FD, SUPPLY, [PNO, SNO], [QTY] I, 
[FD, SUPPLIER, [CITY], [STATUS] 1, 
[FD, PART, [PNAME , COLOR I, [CITY 1 1, 
CVD, SUPPLIER, STATUS, 10, 60 1, 
ESD, SUPPLY, [sNO], SUPPLIER, [SNO] 1, 
[SD, SUPPLY, [PNO], PART, LPN01 1 1 ). 

The envisioned use of the  a database is as follows. 
A pred ica te  "openN is used t o  i n i t i a t e  the  database name. 

OPEN( database-name ) 

For ins tance ,  t h e  Prolog statement 

I ?- OPEN(SUPPL1ERS - AND - PARTS). 
w i l l  i n s t a n t i a t e  the  database-name. No other  mention of  t h i s  
name need be made i n  t h e  sequel .  Some small  examples of poss ib le  
quer ies  on t h i s  database scheme follow. 

I ?- RELNAME(re1). 
re1 = SUPPLIER 

I ?- SCHEME(SUPPLIER, scheme). 
scheme = [ SNO , SNAME ,STATUS, CITY 1 
I ?- SHOWKEY (SUPPLIER, key ) . 
key = [SNO] ; 
key = [SNAMEI 
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I ?- SHOWSD(relation, sds) . 
relation = [SUPPLY, SUPPLIER] 
sds = [sno, snol ; 

RELATION = [supply, part] 
IDS = [pno, pno] 

./* An instance of the database */ 

DBINSTANCE( SUPPLIERS AND-PARTS, 
[ E SUPPLTER. - - 

[ [Sl ,SMITH,~O,LOND~N], 
[S2,JONES, lO,PARIS], 
[S3, BLAKE, 30, PARIS I, 
[S4,CLARKl20,L0NDON], 
[S5,ADAMs,30,A~NSl 1 I ,  

[ PART, 
[ [PI ,NUT,RED, 12,LONDoN], 
[P~,BOLT,GREEN, 17,PARIS], 
[P3,SCREW9BLUE, 17,ROMEl, 
[P4,SCREW,RED, 14,LONDON], 
[PS,CAM,BLUE, 12,PARIS], 
[P~,COG,RED, ~~,LONWN] 1 I, 

[ SUPPLY, 
r rs1 ,PI ,3003, 
is1 ,P2,2001, 
IS1 ,P3,4001, 
[Sl ,P4,2001, 
[Sl ,P5,1001, 
[Sl ,P6,1001, 
~S2,P1,3001, 
[S2,P2,4001, 
ES3,P2,2001, 
[S4,P2,2001, 
IS4,P4,3001, 
[S)I1P5,400l 1 1 1 1. 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-83-26 



Page 43 

..................................................................... 
/* These examples illustrate a subset of a relational DBMS, built */ 
/* upon the representation scheme discussed in Section 4. The * / 
/* variable and predicate names have been chosen so as * / 
/* to make the meaning clear. * / .................................................................... 
/* Project ion * / 
/* General form: PROJECT(re1name ,attrlist ,projection) * / 
f ?- PROJECT(SUPPLIER, [CITY], cities). 

cities = [LONDON], [PARIS], [PARIS], [LONDON], [ATHENS] 1 

/* Select ion. */ 
/* General Form: SELECT(relname,attrs,ops,vals,res) */ 

/ ?- SELECT(SUPPLIER, [CITY, STATUS], [=,>I, [PARIS, 201, result). 

result = [ [S3, BLAKE, 30, PARISH 

/* Natural Join. */ 
/* General Form: NATJOIN(relnamel,relname2,result,scheme) */ 

I ?- NATJOIN(SUPPLY, PART, result, scheme). 

result = [[S~,P~,~~O,LO~N,RED,HOT,~~],[S~,P~,~OO,LONDON,WD,HOT,~~], 
[Sl ,P2,200,PARIS,GREEN,BOLT, 171 ,[S~,P~,~OO,PARIS,GREEN,BOLT, 171, 
[S~,P~,~OO,PARIS,CREEN,BOLT, ~~],[!%,P~,~OO,PARIS,GREEN,BOLT, 171, 
[Sl ,P3,400,ROME,BLUE,SCREW, 17],[S1 ,P4,20O,LONDON,RED,SCREW, 141, 
[S~,P~,~OO,LONDON,RED,SCREW, 141, [Sl ,P5,1OO,PARIS,BLUE,CAM, 121, 
[S4,P5,400,PARIS,BLvE,CAM, 12]],[S1 ,P6, ~OO,LONDON,RED,COG,~~]I, 

scheme = [ SNO, PNO , QTY ,CITY, COLOR, PNAME , WEIGHT 1 ; 

/* The following statement simulates the tuple-at-time */ 
/* treatment of Prolog for relational databases defined as * / /* predicates with the form: */ 
/* supply(s1 ,PI, 100) */ 
/* ..* */ .................................................................. 

I ?- SUPPLY(sno, pno, qty). 

pno = PI, 
sno = St, 
qty = 300 
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Appendix 2 

/* **++******************************+++*++***********+++++************ */ 
/* * / 
/* The predicate metaevaluate has four parameters: * / 
/* */ 
I* metaevaluate(Assumptions, Goals, Control, NewGoals) */ 
/* * / /* Given Assumptions and a set of Goals to be proven, using Control, */ 
/* return a new set of goals (NewGoals) - all in a non-evaluable form */ 
/* */ 
/* Algorithm: */ 
/* 1.- Select a Goal (first one). * / 
/* 2.- Select an appropriate Assumption (clause) with meta */ 
/* 3.- Rename the variables in the clauses * / 
/* 4.- Match the renamed variables * / 
/* 5 . -  Add the body of the clause to the rest of */ 
/* the goals producing intermediate goals * / 
/* 6.- Apply the variable differences to the above goals */ 
/* 7.- Use metaevaluate recursively. * / 
/* */ 
/* Recursion stops when: * / 
/* - no goals exist, or */ 
/* - all remaining goals are DBCALLs, or */ 
/* - the arguments of "orw and "notw are all DBCALLs */ 
/* */ /* * * + + + * + * * + + + * + * * * + * 1 c * * * * * * * * * * * * * * n * * * * *  */ 

METAEVALUATE(-,goal ,control ,goal ) <- STOPEVALUATINC(goa1) & 1 .  
METAEvALUATE(~~~~, [goal 1 rest 1, control,newgoals) <- 

META (clause, me ta ) & 
RENAMEVARS(clause,[goallrest],[car(consl) & 
MATCH(goal,car,diff) & 
ADD(meta,cons,rest,intergoals) & 
APPLY(intergoals,diff,othergoals) & 
METAEVALUATE(meta,othergoals,control,newgoals). 

* Description of an external database (stored relations) 
/* This database will be used in the examples that follow 

SUPPLY (sno,pno, qty ) <- DBCALL(SUPPLY, [sno ,pno ,qty 1 ) . 

PART(pno,pname,color,weight,city) <- 
DBCALL(PART, [pno ,~name ,color, weight, city I 1. 

SUBPART( subpno , pno ) <- DBCALL ( SUBPART, [ subpno , pno 1 ) . 
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/* Some generalized views of the external database-(used internally) */ 
ANY LEVEL-SUBPART(spno,pno) <- SUBPART(spno,pno). 
ANY-LEVEL-SUBPART - ( spno , pno ) <- SUBPART ( spno , p 1 ) & 

ANY-LEVEL-SUBPART(p1,pno). 

SUPPLIES-MANY(sno1 <- SUPPLY (sno ,pno1 , qtyl ) & 
SUPPLY (sno , pno2, qty2) & 
NOTEQUAL ( pno 1 , pno2 ) , 

SPECIAL-SUPPLIER(sno ) <- NOT(SUPPL1ES MANY (sno) ) & 
NORTH-EUROPEEN ( S ~ O  ) . 

MAJOR-SUPPLIER(sno , pno ) <- SUPPLY (sno , pno, qty ) & GREATER( qty , 300). 
GOOD - BET-SUPPLIER(sno,pno) <& NORTH EUROPEAN(sno) & 

MAJOR~SUPPLIER(S~O, pno ) . 

* Meta predicate instantiations corresponding to the stored * / 
/* relations and views. Note the use of PR1 as a program name. */ 

NETA ( [PART(V pno, vgname ,V-color ,V-weight, V-city 1, 
DBCALLTPART, [V-pno,V-pname,V-color ,V-weight ,V-city] ) 1 ,PR1) . 

META ( [SUPPLY ( V-S~O, V pn0 , V-qty ) , 
DBCALL ( SUPPLY, Tv-sno , V-pno , V-qty I ) I , PR 1 . 

META ( [SUBPART(V-subpno , V-pno) , DBCALL(SUBPART, [v-subpno , V-pno 1 ) 1 ,PR1). 

META ( [ ANY LEVEL-SUBPART (V-spno , V-pno) , SUBPART ( V-spno , V-pno ) 1 , PR 1 ) . 
META ( [ ANYZEVEL-SUBPART ( V-spno , V-pno ) , 

SUBPART(V-spno,V-pl),ANY-LEVEL-SUBPART(Vgl,V-pno)], PR1). 

META([SUPPLIES-MANY(V-~~~),SUPPLY(V-~~~,VJ~O~,V-~~~~), 
SUPPLY (V sno , V-pno2, V-qty2 ) , 
NOTEQUAL~V-pno 1 , V-pno2 ) I , PR 1 ) . 

META ( [SPECIAL - SUPPLIER( V-sno ) , NOT (SUPPLIES MANY ( V-sno ) ) , 
NORTH-EUROPEEN ( V-sno ) 1 , PR 1 ) . 

META ( [MAJOR_SUPPLIER(V-S~O, V - pno) , SUPPLY (V-sno , V-pno , V-qty ) , 
GREATER( V-qty , 300 ) 1 , PR 1 ) . 

META ( [ GOOD-BET-SUPPLI ER ( V - sno , V - pno ) , NORTH-EUROPEAN ( V-sno ) 
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/* Examples of the execution of w~etaevaluaten. The Control */ 
* value is 1, specifying no extra action (e.g. optimization) */ 
1 2- #ETAEVALUATE ( PR 1 , GOOD-BET-SUPPLIER( V-sno , GADGET ) 1 , 1 , newgoals ) . 
newgoals = [OR(DBCALL(SUPPLIER,[V-S~O,V-N,V-~~,UINWI), 

DBCALL(SUPPLIER, [V-sno, V-N, V-st, PARIS] ) 1, 
DEAL& ( SUPPLY, [ V-S~O , GADGET, V-qty 1 ) , 
DEALL( GREATER, V-qty ,300 1 ) 1 ; 

I ?- METAEvALUATE( PR 1 , [SPECIAL - SUPPLIER( V - sno ) I, 1 , newgoals ) . 
newgoals = [NOT( DBCALL (SUPPLY, [ V sno , V>o 1 , V-qty 1 1 ) , 

DBCAU(SWPLY, [V-S~O,VJ~O~,V qty211, 
DBCALL ( NOTEQUAL, T V - ~ ~ O  1 , V pnoz I , 

OR(DBCALL(SUPPLIER,[V sno,V N ~ V  S~,LONDON]), 
DBCALL(SUPPLIER, [ Vlsno, V ~ N ,  VSst, PARIS 1 ) 1 

/* A Recursive call. Recursion stops after three levels, */ 

newgoals = [DBCALL ( SUBPART, [BOLTS, V-sup 1 ) 1 ; 

newgoals z [ DBCALL ( SUBPART, [BOLTS , V-P 1 I ) , 
DBCALL (SUBPART, [ V-p 1 , V-Sup 1 ) 1 ; 

newgoals = [ DBCALL (SUBPART, [ BOLTS, V p 1 I ) , 
DBCALL(SUBPART,[V pi,~-~iilf, 
DBCALL (SUBPART, [ VIP 1 1 , V-SUP 1 ) 1 

I ?- UETAEVALUATE( PR 1 , [SUPPLIES - MANY ( V-who ) , NORTH-EUROPEAN ( V-uho ) 1 , 1 , ng ) . 
ng = [DBCALL (SUPPLY, [ V-who , V-pno 1 , V-qty 1 1 ) , 

DBCALL (SUPPLY, [ v who, v-pno2, V-qty2 I ) , 
DBCALL ( NOTEQUAL, TV pno 1 , V-pno2 I ) , 
OR(DBCAU(SUPPLIER~[V who,V n,V S~,LONDON]), 

DBCALL(SUPPLIER, [VIuho,v>,VIst ,PARIS] 1) 1 

1 ?- UETAEVALUATE(PR1, [OR(SUPPLIES MANY (SMITH), 
NOT(NOR~~-E~ROPEAN(%ITH) ) ) I, 1 ,ng) . 

ng = [OR(DBCALL(SUPPLY,[SMITH,V-pnol ,V-qtyl]), 
DBCALL(SUPPLY, [SMITH,V-pno2,V_qty21), 
DBCALL (NOTEQUAL, [ V pno 1 , V pno2 1 ) , 
NOT(OR(DBCAU(SUPPISIER, [&ITH,v n,V st,LONDON] 1, 

DBCALL(SUPPLIER,[SHI~,V~,V~~~,PARIS])))) 1 
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