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Abstract

As part of the operation of an Expert System, a
deductive component accesses a database of facts to help
simulate the behavior of a human expert in a particular
problem domain. The nature of this access is examined, and
four access strategies are identified. Features of each of
these strategies are addressed within the framework of a
Logic-based deductive component and the relational model of

data.
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1.0 INTRODUCTION

Decision Support Systems (DSS) require the simultaneous
management of data, models, and dialogues [Sprague and Carlson 1982].
DSS research has placed particular emphasis on providing consistent
user views of models and data [Bonczek et al 1982], and on supporting
‘access to databases by decision models [Donovan 1976]. The emergence
of practically usable Artificial Intelligence (AI) techniques over the
last few years impacts these problems in at least two ways. On one
hand, the interaction between DSS components, and between DSS and user
can be handled more smoothly usiné AI methods for model management
[Bonczek et al 1983; Elam and Henderson 1983] and user interfaces
[Blanning 1983]. On the other hand, the addition of knowledge-based
decision models, in particular expert systems, to the model base of a
DSS presents new challenges for DSS implementation. It is this latter

problem that is the focus of this paper.

An Expert System (ES) is a problem-solving computer system that

incorporates enough knowledge in some specialized problem domain to
reach a level of performance comparable to that of a human expert.
Expert Systems differ from exact or heuristic optimization procedures,
as used in conventional DSS, in that they mostly base their
recommendations on informal and qualitative decision rules acquired
from a human expert, rather than on a complete mathematical

formalization of a decision problem [Clifford et al 1983].

In the heart of an ES lies the program that "reasons" and makes

deductions, the inference engine. To reason, both general knowledge

(rules), e.g. if a person works for a company then he/she gets
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employee benefits, and specific declarative knowledge (data), e.g.
John works for NYU, is needed. The knowledge is ﬁsually represented
in such formalisms as frames [Minsky 1975], conceptual dependency
graphs [Schank 1975], production rules [Waterman and Hayes-Roth 1979],
semantic networks [Brachman 19?9]. or in standard first-order logic.
Many of these formalisms can represent both general and specific
knowledge. Current Expert Systems differ in sophistication,
conceptual complexity, and computational complexity; for instance,
the knowledge base may or may not include such concepts as causality,

intent, physical principles, and simple empirical associations.

A scenario for consulting an ES using production rules for
knowledge representation starts with a presentation of a goal or
desired conclusion. The inference engine chains through (forward or
backward) a set of production rules to link the conclusion with the
assumptions, or known "facts". The system's conclusion is then
presented to the user, who can ask for an explanation of the "chain of

reasoning" used to arrive to the given result.

This paper is primarily concerned with the organization and
access of simple declarative knowledge in the knowledge base of ESs.
To organize these data, two dimensions are considered: variety and
population. For instance, in a logic-based representation, "variety"
refers to the number of different predicates required, and

"population" to the number of instances of these predicates.

In early ESs, which are mostly prototypes and are characterized
by a large variety and a small population of specific knowledge, the

inefficiency of data handling is not a critical issue. Therefore,
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with very few exceptions, little attention has been given in ES design
to the handling of very large populations. The nebhanism to retrieve
the specific facts does not reach the sophistication and performance
of database management systems (DBMS), systems that deal effectively

with large volumes of data [Date 1982].

This paper investigates the technical issues of enhancing Expert
Systems with database management facilities. The motivation for such
enhancements 1is provided by the rapid advent of ES and the
increasingly promising impact that they will have in the business
applications sector - an environmént that often implies the presence

of large databases, usually under the control of a DBMS.

In Section 2, four database access strategies are identified and
developed in stages. Tools developed at an earlier stage are often
necessary in each subsequent stage. The framework is illustrated with
the use of first-order logic and relational database management. In
particular, the 1logic programming language Prolog [Clocksin and
Mellish 1981] is presented in Section 3, and its uses as a programming
language, a relational database system, and an ES deductive component,
are outlined. The way Prolog fits into the proposed framework of
access strategies is the topic of Sections 4 and 5. The last section

presents a summary and some problems for further research.

2.0 DATABASE ACCESS STRATEGIES BY EXPERT SYSTEMS

Two general architectures are envisioned for the combination of
the deductive and the database access components of an expert system.

These two components can either be integrated into one system (the
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ES), or be 1independent systems with a defined protocol for

communication [Vassiliou, Clifford, and Jarke 1983].

Depending on the level of sophistication for the database access
facility, iIntegration suggests two distinct access strategies:

elementary database access, and generalized database management. A

major distinguishing characteristic between these general strategies
is their respective ability to deal with secondary storage management,
and therefore, their capability to deal with large populations of

specific facts.

With the advent of ESs in tﬁe business environment, a strong
motivation for coupling an ES with an external DBMS has emerged [Jarke
and Vassiliou 1983]. The investment of an enterprise in two different
types of systems, both intended to assist decision making and smooth
the flow of operations, is greatly justified if the two systems are
able to communicate effectively. Thus, the large amounts of data
managed by a DBMS can be accessed by the ES in the reasoning process.
Moreover, the ES can offer an intelligent interface to a DBMS (in
addition to query languages, report generators,:etc.). Depending on
the nature of communication between the two independent systems (ES

and DBMS), two more access strategies are identified: loose, and

tight coupling.

Figure 1 illustrates a natural sequence in the development of

access strategies. An overview is given in the rest of this section.
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2.1 Elementary Database Access Within An Expert System - Strategy 1

On the simplest 1level, the whole population of specific
declarative knowledge can be represented directly in the knowledge
base formalism provided by the Expert System. Mechanisms such as
semantic networks and frames, data structures where all knowledge
about an object is collected together, are commonly used in ESs.
Furthermore, several languages have been developed to access and
manipulate frames and semantic networks, e.g. NETL, KRL, and KLONE

[Nau 1983].
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The first strategy in the manipulation of these data structures
is based on the assumption that during the ES operation they reside in
main storage. This simplifies the development of access routines, but
presents an obvious 1limitation on the size of the declarative

knowledge population.

2.2 Generalized DBMS Within An Expert System - Strategy 2

As the domains to which ES technology is applied increase, a very
large population of specific knowledge is often required. Such Expert
Systems have elementary database "management facilities as separate
processes [Nau 1983]. The minimum requirements for this access

strategy are secondary storage management and indexing schemes. This

seems to be the norm for current ESs, even though not all such systems

exhibit the same level of sophistication.

Moving a step further, a generalized DBMS may be implemented as a
sub-process of the ES. The quest for "generalized" database
operations in the ES, rather than application-specific database
access, may not be cost-effective in many cases. A case where
generalization is effectively justified, is when the ES uses it as
stepping stone to one of the coupling mechanism described in Sections

2.3 and 2.4.

The major limitation in this stage is that often an existing very
large database may be needed in the Expert System application.
Assuming a generalized commercial DBMS managing this database, it may
be prohibitively costly to maintain a separate copy of the whole

database for the ES. As an example, [Olson and Ellis 1982] report



Page 8

experiences with an Expert System used to determine problems with oil
wells where data from a very large IMS database was needed but could

not be made avallable.

2.3 Loose Coupling Of The ES With An External DBMS - Strategy 3

Conceptually the simplest solution to the problem of using
existing databases managed by an external DBMS is to extract a
snapshot of the required data from the DBMS when the ES begins to work
on a set of related problems. Tpis portion of the database is stored
in the internal database of the ES as described in the previous
section. For this scenario to work, the following mechanisms are
required:

1. Link to a DBMS with unload facilities;

2. Automatic generation of an ES database from the extracted
database;

3. An "intelligence" mechanism to know in advance which portion
of the database is required for extraction.

Such a strategy presents several practical advantages and could
be used in combination with any of the two previous access strategies.
However, loose coupling is not suitable if the portion of the database
to be extracted is not known in advance. This refers to the third of
the required mechanisms which is clearly the hardest to automate.
When this mechanism is not automated, the decisions have to be made
"statically" with human intervention. Furthermore, loose coupling is
inefficient when different portions of the database are needed for the
Expert System at different times. This leads to the need for the

final stage: tight coupling of the ES with a DBMS.
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2.4 Tight Coupling Of The ES With An External DBMS - Strategy 4

For this access strategy it is assumed that a very large database
exists under a generalized DBMS, and the ES needs to consult this
database at certain points during its operation. Under this script,
an online communication chanﬁel between the ES and the DBMS is

_required. Queries can be generated and transmitted to the DBMS
dynamically, and answers can be received and transformed into the
internal knowledge representation. Thus in tight coupling the ES must
know when and how to consult the DBMS, and must be able to understand

the answers.

The naive use of the communication channel will assume the
redirection of all ES queries to the DBMS. Any such approach is bound

to face at least two major difficulties:

A.- Number of Database Calls

Since the ES normally operates with one piece of information at a time
(record), a large number of calls to a database may be required for
each ES goal. Assuming that the coupling is made at the query
language level, rather than an internal DBMS level, such a large
number of DBMS calls will result in unacceptable system performance.
The number of calls at the query language level could be reduced, if

these calls result to a collection (set) of records.

B.- Complexity of Database Calls

Database languages usually have limited coverage. For instance, the
majority of query languages do not support recursion. For reasons of

transportability and simplicity, it may not be desired to include in
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the coupling mechanism the "embedding" programming language (e.g.
PL/1, COBOL), a language that would solve the discrepancies in power

between the ES and DBMS representations and languages.

Therefore, to attain tight-coupling, particular care has to be
given to global optimization in using the communication channel, and
to the representation and language translation problems. To the
authors' knowledge, tight-coupling to an existing DBMS has not yet
been implemented in actual systems. It appears that the impact of
logic programming and the commercialization of relational database
systems will have a profound effect for tight-coupling in future
system architectures. Prolog 1is currently the most widely known
programming language; it has been announced as the basis of the 5th
Generation Computer Project in Japan [Feigenbaum and McCorduck 1983].
It is becoming clear that 1logic-based programming languages like
Prolog will be highly influential in the ESs of tomorrow. In the
remaining sections of this paper, Prolog and a research effort to
develop a formalism for coupling a Prolog-based Expert System with a

relational DBMS are described.

3.0 A PROLOG INTRODUCTION

3.1 Prolog As A Programming Language

Prolog is a programming language based on a subset of first-order
logic, the Horn-clauses. Roughly, this amounts to dropping
disjunction from logical consequents, and talking only about definite

antecedent-consequent relationships.
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Statements.- There are three basic statements in Prolog (the symbol <-

denotes implication, and the symbol & denotes the logical AND):

<- P, means P is a goal
A. means A is an assertion
P<-Q&RE&S. means Q and R and S imply P

A clause has both a declarative and a procedural interpretation.
Thus,
P<-Q&RE&S
can be read declaratively:
P is true if Q and R and S are true
or, procedurally (similar to "stepwise refinement" [Wirth 1971]):

To satisfy P first satisfy Q and R and S.

Programs.- A Prolog program is a sequence of clauses whose variables
are considered to be universally quantified. Logic predicates are
represented with Prolog programs, and since more than one clause may
be needed to define a predicate (goal), there is a corresponding
AND/OR graph for each predicate. The execution of a program involves
a depth-first search with backtracking on these graphs, and uses the

unification process based on the resolution principle [Robinson 1965].

As an example of a Prolog program, consider the appending of two
lists to form a third. In this Prolog system notation, predicate
names are in upper-case, variables are in lower-case, character
strings that start with upper-case denote denote constant values,
brackets enclose lists, [] is the empty list, and the operator "|["

separates the first element of the list from the rest.
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APPEND([], y, vy).
APPEND([x|y], z, [x|Iw]) <- APPEND(y, 2z, W).

Clause one asserts that appending the empty 1list to any 1list
leaves the list unchanged (stopping the recursion). Clause two states
that if y appended to z results in w, then a list with first element x
and remainder y, when appended to z, results in a list with first

element x and remainder w.

Given the goal: "<- APPEND([A], [B,C], new)", Prolog tries to
instantiate the variable new to whatever value makes the predicate
true. The first clause cannot be'used the first time around ([A] is
not []). If the instantiation x=[A], y=[], 2=[B,C], and new=[Alw] is
made then the second clause applies. This requires the evaluation of
the right-hand side goal: "<- APPEND([], [B,C], w)". For this goal
the first clause applies, w is instantiated to [B,C] and through

recursion, new is instantiated to [A,B,C].

An important characteristic of Prolog programs is that there need
be no distinction between input and output parameters. Thus, one can
also ask for the combination of lists that result in a specific 1list
when appended to each other:

<- APPEND(x, y, [A,B,C]).

3.2 Prolog And Relational Database Management

To clarify Prolog's approach to relational database management, a
short description of two different views of relational databases is
required. The traditional view of relational databases [Codd 1970] is

that of a collection of tables. Formally, a relational database is a
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relational structure [Kowalski 1981]. Queries on the database are

expressed in languages having the power of first-order logic and are
evaluated in the relational structure (evaluational approach). In
contrast, a proof-theoretic view would look at a database as a
collection of sentences - a theory. A database query is answered by
proving it to be a logical consequence of the theory (non-evaluational
épproach). This distinction is described in detail in [Minker and
Gallaire 1978]. Essentially, it amounts to the difference between

theories and their interpretations.

[Kowalski 1981] shows that, under certain conditions, this
distinction is irrelevant. In particular, it can be shown that all
queries in first-order logic evaluate to the same value whether the
relational database 1is interpreted as a structure or as a logic

database, provided that:

1. There are finitely many variable-free atoms;
2. The database is described by Horn clauses;
3. The axioms of equality and domain closure are present; and,

4. Negation is interpreted as finite failure.

Relational databases can therefore be represented directly in
Prolog as a 1listing of all instantiated predicates corresponding to
relation tuples. For instance, consider the database-oriented view of
the world of Suppliers-and-Parts [Date 1982].

The relations (scheme) are:
SUPPLIER(sno, sname, status, city)

PART(pno, pname, color, city)
SUPPLY(sno, pno, qty)
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An instance of the database would be represented in Prolog as:

SUPPLIER(S1,SMITH,20,LONDON).
SUPPLIER(S2,JONES, 10,PARIS).

LR 4

PART(P1,NUT,RED, 12,LONDON) .
PART(P3,SCREW,BLUE,ROME) .

SUPPLY(S1,P1,300).
SUPPLY(S2,P2,200).

In addition to database representation, Prolog can be used

directly as a database query language.

Each query may have the format [Kowalski 1981]:

<- QUERY(<target-variables>).

QUERY(<target-variables>) <- GOAL_A & GOAL B &... & GOAL_N
where <target-variables> is a 1list of variables (corresponding to
attribute names). The interpretation is that the user wants to
retrieve all instantiations satisfying the goal statements. Thus,
<target-variables> corresponds to the target 1list in conventional
query languages. For instance, consider the Prolog statements:

/% For all suppliers,
list the supplier number and the city they live in #/

<- LIVES(sno, city). /®* where %/
LIVES(sno, city) <- SUPPLIER(sno, any_sname, any status, city).

/#* List the supplier number
for those suppliers who supply more than one parts ¥/

<- SUPPLIES_MANY(sno). /%* where #/
SUPPLIES_MANY(sno) <- SUPPLY(sno,p1,q1) &
SUPPLY(sno,p2,q2) & NOT(pi1=p2).

/% List the supplier number
for those suppliers who do not supply more than one parts,
and live either in London or in Paris #/

<- SPECIAL_SUPPLIER(sno). /% where #/
SPECIAL_SUPPLIER(sno) <- NOT(SUPPLIES_MANY(sno)) &
OR(LIVES(sno, LONDON), LIVES(sno, PARIS)).
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These examples can be used to illustrate both the query
capabilities of the Prolog formalism, and the powerful mechanism for
ngeneralized" views. Such views differ from the traditional DBMS
views in that with the use of variables they can accept parameters.
In essence, views allow for- a flexible data representation.

[Kowalski 1981] also details the use of Prolog for integrity

constraints, database updates and historical databases.

3.3 Prolog And Expert Systems

A knowledge base can be represented in first-order logic if the
formulas are suitably interpreted. Therefore, Prolog may be used for
the knowledge representation. Furthermore, Prolog has the advantage
that it already has a very powerful inference engine 1in place
(automatic theorem prover). The unification algorithm used in Prolog
is more general than a simple pattern matching algorithm (common in

production rule-based systems [Nau 1983]).

As an illustration, a small "toy" Expert System in Prolog is
presented. The area of interest is the well-known world of suppliers,
parts, and supplies. In this simple example, the "expert" is supposed

to recommend where to order by applying the following rules:

1. Order only from suppliers who have supplied the same part and

all its subparts before.

2. Suppliers from southern Europe are usually cheaper than those
from northern Europe. No suppliers outside Europe should be

considered.
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3. Display all possible choices within the "optimal" category.

A Prolog expert for this job would obviously need a representation
both of the above rules and of the data they require, such as location
and previous supply for each part, and the classification of locations
into northern and southern Europe. A sketch of a possible Prolog

knowledge base follows.

First, the database of specific facts is presented. It is noted
that only binary or unary relations are used in this example, but this
is not limiting in that there is a simple way to move between binary

representations and ternary representations [Kowalski 1979].

/® Simple declarative facts (database) */

SUPPLIER(SMITH).
SUPPLIER(JONES).
SUPPLIER(BRAND).

PART(NUT).
PART(WIDGET).
PART(GIZMO).
PART(SCREW) .
PART(GADGET).
PART(THINGUM) .
PART(SUPERTHINGUM) .

SUBPART(NUT, WIDGET).
SUBPART(SCREW, GADGET).
SUBPART(GADGET, GIZMO).
SUBPART(THINGUM, SUPERTHINGUM).

HAS__SUPPLIED(SMITH, NUT).
HAS__SUPPLIED(SMITH, WIDGET).
HAS__SUPPLIED(SMITH, GIZMO).
HAS__SUPPLIED(SMITH, THINGUM).
HAS__SUPPLIED(JONES, SCREW).
HAS__SUPPLIED(JONES, NUT).
HAS__SUPPLIED(JONES, WIDGET).
HAS__SUPPLIED(JONES, GADGET).
HAS__SUPPLIED(JONES, GIZMO).
HAS__SUPPLIED(JONES, SUPERTHINGUM).
HAS__SUPPLIED(BRAND, SCREW).
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LIVES(SMITH, ROME).
LIVES(JONES, LONDON).
LIVES(BRAND, OSLO).

NORTH(LONDON) .
NORTH(OSLO) .
SOUTH(ROME) .
SOUTH(ATHENS) .

Second, the part of the knowledge base containing the general

rules is presented.

/* General Rules #/

SUGGEST _ ORDER(supplier, part) <-
GOOD__AND__ CHEAP(supplier, part).

/% if no good and cheap suppliers exist, then: #/

SUGGEST__ ORDER(supplier, part) <-
NOT(GOOD__AND__CHEAP(any__supplier,part)) &
NORTH__EUROPEAN(supplier) &
POTENTIAL__SUPPLIER(supplier,part).

GOOD__ AND__ CHEAP(supplier,part) <-
POTENTIAL__SUPPLIER(supplier,part) &
SOUTH__EUROPEAN(supplier).

POTENTIAL__SUPPLIER(supplier,part) <-
SUPPLIER(supplier) &
PART(part) &
NOT(MISSING _ SUBPART(supplier,part)).

MISSING__SUBPART(supplier, part) <-
NOT(HAS __SUPPLIED(supplier, part)).

MISSING__SUBPART(supplier, part) <-
SUBPART(any_ _part, part) &
MISSING _SUBPART(supplier, any part).

NORTH__EUROPEAN(supplier) <- LIVES(supplier, city), NORTH(city).
SOUTH EUROPEAN(supplier) <- LIVES(supplier, city), SOUTH(city).
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To illustrate the use of the above simple Expert System, some
examples are given below. It is noted that the user places a goal
(desired conclusion) at the "| ?-" prompt and the system returns with
a "no" answer if the goal can not be proven, and with an assignment of
values to the variables used otherwise. If the goal has more
solutions (other variable assignments exist), they are obtained with
the typing of a semi-colon until the answer "no" is returned.

/% Example Execution *®/
| ?- SUGGEST__ORDER(x,WIDGET).
X = SMITH ;
no
| ?- SUGGEST__ORDER(x,GIZMO).
x = JONES ;
no
?- SUGGEST__ORDER(x,SCREW).

= JONES ;
= BRAND ;

X X —

4.0 PROLOG AS THE MECHANISM FOR INTEGRATION

4.1 Prolog And Access Strategy 1

As outlined in the previous section, elementary database
management corresponds to a direct use of Prolog. The limitations in

this strategy are:

(a) Large Databases

Executing Prolog programs in the manner described above requires that
the assertions representing the database (instantiated predicates) be

in main storage. Even when the database can fit in main storage, and
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despite the fact that Prolog implementations are very efficient, there
are limitations in secondary indexing. For inétance, the Prolog
DEC-10 compiler, which is considered to be the most efficient
implementation, has only one index for the internal database. In
short, both external and internal data management are needed for large

databases.

(b) Generality

Simple-minded use of Prolog can only offer elementary data management
facilities. For instance, there is no data dictionary, no database
schema, and no generalized set-oriented relational operations. It may
be argued that lack of generality is a matter of convenience rather
than an issue of substance. On the other hand, it is closely related
to the first limitation, and in the next stage a uniform mechanism to

deal with both is used.

4.2 A Generalized Database System In Prolog - Access Strategy 2

Generalized DBMSs gain much of their power by abstracting from
specific query predicates to generalized retrieval mechanisms such as
the set-oriented relational algebra operators or the SQL nesting
mechanisms. One advantage of using these abstractions in Prolog is
that they allow generalized selection of predicates instead of forcing
the database programmers to define such predicates separately for each

class of data.
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Therefore, we could take a further step towards integrating the
deductive capabilities of Prolog with database management capabilities
by implementing a general purpose DBMS directly in Prolog. This can
be done quite easily, and provides a means of adding flexible and

general data access mechanisms to the inference engine.

In order to effect this stage in ES enhancement with data
management facilities, the first requirement is the definition of an
internal representation of a relational database. The following

Prolog version is a simple and direct strategy for this purpose.

DBSCHEMA = [ DB-NAME, [relations], [constraints] ]

REL-i = [ REL-NAME, [scheme], [domains] ]
/® for each REL-i, 1<=zi<=n #*/

SCHEME = [a=1, ..., a-k] /% a 1list of attributes */

DOMAINS = [d-1, ..., d-k] /% a 1list of domains with #/

/% DOM(a-i) = d-1 ®/

CONSTRAINTS = [ [list-of-fds], /* functional dependencies %/

[list-of-vds], /* value dependencies */

[list-of-sds] ] /* subset dependencies */

FD = [ REL-NAME, LHS, RHS ] /* corresponds: LHS --> RHS %/

LHS = [ a-i1, a-i2, a-i1 ] /* a list of attributes */

RHS = [ b-j1, b-J2, b-jm ] /% a 1list of attributes ®/
VD = [ REL-NAME, ATTR-NAME, LOWER-BOUND, UPPER-BOUND ]

/% The values for ATTR-NAME must be within the bounds #/
SD

[ REL-NAME1, ATTR-NAME1, REL-NAME2, ATTR-NAME2 ]
/* The values in ATTR-NAME1 must also be in ATTR-NAME2 */

DBINSTANCE = [ DB-NAME, [relation-instances] ]

RELATION-INSTANCE = [ REL-NAME, [tuples] ]
TUPLE-1 = [V-1, ..., V-k] /% V-i is in d-1, 1<zi<zk #*/

This strategy provides a straightforward implementation of the
structure of a relational database as seen by the user (in this case
the ES). The Suppliers-and-Parts database of Section 3.2, represented

in this format, is given in Appendix 1.



Page 21

Given such a representation scheme, one can define any number of
generalized operations to provide the facilities of a DBMS. The
feasibility of thié has been demonstrated in [Kunifuji and
Yokota 1982]. The basis for the implementation is the predicate
“"SETOF" built into most Prolog versions. SETOF(x,c,r), returns in the
'set r all such elements of x that satisfy condition c¢. For instance,
the projection of a relation R on scheme (x1,x2,...,xn) onto the
attributes xj1,xj2,...,xJk will have the form:

SETOF({x )1 0)2eunyXIR)y { (11,002, oy T IR " ROHT XD 0u0y EH) )y 8)

where m=n-k, and (xi1,x12,:.: 2In)° denotes the existential

quantification of these variables.

As a specific example, the projection of a relation R on scheme
(a,b,c) onto the attribute c is "computed" by the following Prolog
program:

| ?- SETOF(e, ( (a,b)”R(a,b,c) ), s).

Note, however, that this view of the projection operator requires
the wuser to know the entire scheme of each relation and the order of
the attributes in the scheme; this may be too much to ask in general.
The approach taken here (details are given in Appendix 1) by contrast,
provides a simple way to specify projection as a generalized operator
acting on any relation and set of attributes. Prolog programs map
from this simpler, user-oriented view of the operations, to their
implementation for the particular database and representation scheme
chosen. This provides a degree of logical data independence as in the

traditional levelled architecture of DBMSs [Date 1982].
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Another feature provided by many DBMSs is the ability to define a
"view" of the database for particular applications. These views
define only that pﬁrtion, or rearrangement, of the database of
interest to a particular user community, effectively screening out the
rest of the database from their sight. For example, users interested
-only in the set of suppliers without any of their attributes, could

define the following view:

SUPPLIES(s) <- PROJECT(SUPPLY,[SNAME],result_tuples).

The user (typically the ES) has a choice between set-oriented and
tuple-at-a-time retrieval operations. This is accomplished with the
introduction of an evaluable predicate called "SIMCALL". This
predicate simulates Prolog's calls of predicates corresponding to
relations (i.e. returns a tuple instantiation). Thus, each call of
the predicate SUPPLY, defined below, will return one tuple of the

relation SUPPLY (stored in the format described in this Section).

SUPPLY(sno,pno,qty) <- SIMCALL(SUPPLY, [sno,pno,qtyl).

Another issue for the implementation of a generalized DBMS within
Prolog is that of efficient secondary storage management. For the
latter, it is reasonable to devise a more sophisticated storage
strategy (e.g., B-Trees), and perhaps to use auxiliary indexing
schemes, hashing, etc. The use of some of these storage structures
for implementing a simple business database in Prolog is described in
[Pereira and Porto 1982], and some general Prolog data structures and

accessing programs are formalized in [Tarnlund 1978].
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The work reported in [Pereira and Porto 1982] demonstrates that
for specific applications, indexing schemes that gﬁide decisions about
which portions of external files should be read into the internal
database can be devised. Furthermore, the basic data access predicate
(routine) of Prolog can be changed to direct data searches of
secondary storage. Such Prolog modifications have been criticized as
providing only temporary solutions, while complicating Prolog's basic

structure and further divorcing the language system from formal logic.

5.0 PROLOG AND RELATIONAL DBMS AS INDEPENDENT SYSTEMS

5.1 Loose Coupling Of Prolog With A Relational DBMS

Loose coupling can easily be implemented using Prolog and a
relational DBMS, under the assumption that a generalized facility as
described above exists. A portion of the external database is loaded
off-line (before the start of the Expert System session). A superset
of the data required by the ES can actually be extracted, but the
strategy may prove infeasible if the superset is too large or not

known in advance (too many parameters).

5.2 Tight Coupling Of Prolog With A Relational DBMS

5.2.1 Qverview -

Tight coupling refers to a dynamic use of the communication
channel between the two systems. Essentially, the external database
becomes an "extension" of the internal Prolog database. As 1in the
general case, the same two basic problems must be resolved:

optimization of database calls, and complexity of queries. Momeanven
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such a coupling system requires dynamic decision-making about the

location of the data needed to solve the current problem, and an

effective strategy for managing internal storage.

The basic scenario for tightly coupling a Prolog-based ES with an
existing relational DBMS is as follows. The user consults the ES with
; problem to be solved or a decision to be made; typically this will
be expressed in some sort of user-friendly language interface, but for
our purposes we can assume that it is expressed directly as a Prolog
predicate. Rather than evalua;e this user request directly, in a
tightly-coupled framework the predicate would be massaged (cf.
"REFLECT,"  Sect. 5.2.3) into a slightly modified form whose
evaluation can be delayed while various transformations are performed
upon it. This process is analogous to a "pre-processing" stage in
language translation. The altered predicate is then "meta-evaluated"
(5.2.3). This 1involves analyzing the request in its Prolog
formulation and dynamically determining whatever DBMS queries are
In our case, this involves formulating the queries in the relational
language SQL [Astrahan et al 1976], performing certain optimizations
upon the original SQL queries so generated, issuing the SQL queries to
the DBMS along a communication channel, receiving the result of the
query from the DBMS along this same channel, and re-formulating that
result within the internal database structure of the ES. At that
point, the "meta-evaluation" of the user's request is completed, and
the Prolog inference engine can evaluate the request with the required

data in its working memory.
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As an example of the need for optimization, consider a naive
channel use (all Prolog goals are directed to the_external DBMS), and
the definition of the Prolog clause:

SECOND_LEVEL_SUBPART(subpno,pno) <- SUBPART(subpno,pnol) &
SUBPART(pno1,pno).
where it is assumed that "SUBPART" is a stored relation for direct

(first-level) sub-relationships between parts.

In evaluating this goal, Prolog will call the leftmost "SUBPART"
(redirected to the DBMS as an attempt to evaluate it) for a database
tuple. subpno and pnol will be instantiated to some constant values.
Then Prolog will call the rightmost "SUBPART" with pno1 already
instantiated. Such a 'follow-up' call will be made for each
successful instantiation of pno. Moreover, the process is repeated
for each tuple of subpart. If no second-level subpart exists in the
database, all these 'follow-up' goals will fail. Thus the minimum of
2n+1 number of database calls is required, where n is the number of
tuples. (The extra call is the unsuccessful attempt to instantiate
the leftmost "SUBPART" when all tuples have been looked at). If there
are k second-level subparts, then 2n+k+1 database calls are needed.
This naive approach will thus generate a particularly inefficient
version of a '"nested iteration" query evaluation algorithm and will

not make use of any query optimization procedures of the DBMS.

This difficulty can be overcome by collecting and Jjointly
executing database calls rather than executing them separately
whenever issued by the ES. In essence, this revised technique
replaces the pure depth-first approach of Prolog by a combination of a

depth-first reasoning and a breadth-first database call execntinn
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In practice, an amalgamation of the ES language with its
meta-language is used, based on the 'reflection principle'
[Weyhrauch 1980]. This allows for a deferred evaluation of predicates
requiring database calls, while at the same time the inference engine
(theorem prover) of the ES 1is working. Since all inferences are
performed at the meta-level (simulation of object-level proofs), it is
‘feasible to bring the complex ES queries to a form where some
optimization and direct translation to a set of DBMS queries is

feasible.

The queries are directed to the DBMS, and the answers obtained
are transformed to the format accepted by the ES for internal
databases. Then, the ES can continue its reasoning at the
object-level. Each invocation of predicates corresponding to database
relations now amount to an ES internal database goal, rather than a
call to an external DBMS. The theoretical basis and a detailed
description of this approach are presented in Sections 5.2.2 and

5.2.3.

The second difficulty in successfully coupling a Prolog-based ES
with a relational DBMS is that Prolog goals, considered as queries,
can be substantially more complex than queries expressed in a database
query language such as SQL. For example, most DBMS query languages

are not able to handle a recursive call such as the Prolog program:

ANY_LEVEL_SUBPART(subpno,pno) <- SUBPART(subpno,pno).

ANY LEVEL_SUBPART(subpno,pno) <- SUBPART(subpno,p1) &
ANY_LEVEL_SUBPART(p1,pno).
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Much research exists on the issue of recursion in databases. An
important distinguishing characteristic is that the depth of recursive
calls to databases 1is wusually relatively shallow. For instance,
considering again the example of subparts, recursion may only go to a
few levels deep before subsequent recursive calls result in "null"

~answers (no tuples qualifying). This implies an immediate strategy
within the framework of language amalgamation discussed above: to
translate a recursive Prolog goal to SQL, generate a series of calls
that can be translated directly to SQL, execute the SQL calls, and
stop when recursion ends (SQL calls return null results). The major
problem with this strategy is that it is not possible to know in
advance how many such goals must be generated (the translation takes
place in the ES). Therefore, it is not feasible to jointly execute
these SQL calls. In other terms, 1little can be done for the
translation at compile time, since the end of recursion can only be

determined at execution time.

Even under these restrictions, much optimization can be done
within the proposed framework. For example, results (tuple values)
from initial SQL calls are used for subsequent SQL calls. Other
approaches (e.g. [Henschen and Nagvi 1982]) handle recursion
elegantly and in a general way at compile time using a method that
replaces recursion by iteration. Since Prolog has no iterative
statements, and it was not desired to use an embedded query language
where iteration can be expressed in the host language, this method is

infeasible in the framework proposed here.
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5.2.2 The Theoretical Basis For Language Amalgamation -

In order to be able to talk about a language L, the use of a
meta-language ML is required. The amalgamation of an object language
with its meta-language refers to the ability to move between the two
;anguages whenever it appears more convenient or efficient to use one

rather than the other.

Suppose that a goal G is to be proven from a set of assumptions
(hypotheses) A in a first-order language L. There are two ways to do
this:

(a) Use the proof procedure of L.

(b) Simulate the proof procedure of L in ML as follows: Use a
"reflect" relationship that names the assumptions A and goal G of L as
Meta-A and Meta-G in ML. The provability of G from A 1is represented
by the provability of the predicate "metaevaluate(Meta-A, Meta-G)"

from sentences in ML.

Implementing amalgamation of L and ML requires the definition of
the metaevaluate predicate and the naming relationship. In addition,

it requires a link (reflection principle) between the two languages.

In this specific case, Horn clause logic (Prolog) is used as the
object language. The meta-language 1is Prolog itself - with the
restriction that all sentences are variable-free. This allows to
remain in first-order 1logic. Thus, the naming relationship maps
variables to special-form constants which simulate a variable in

meta-Prolog.
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This implementation of amalgamation is based on the high level
description of the DEMO predicate presented in [Bowen and
Kowalski 1982], and is similar to the implementation of [Kunifuji and
Yokota 1982]. The work reported here extends the above approaches by
providing a more general treatment of evaluable predicates. For
instance, finite negation (not) and disjunction (or) are treated with
no restrictions. In addition, the issue of its use in the context of

the general ES-DBMS coupling mechanism is addressed.

Linking Prolog and meta-Prolog is accomplished with the
introduction of a binary predicate called "META". For each Prolog

clause, a corresponding instantiation of the "META" predicate exists.

The first term of "META" is a list of predicates; the head of
the 1list 1is the head of the corresponding clause, and the other list
elements are the terms in the body of the clause. All variables in
these predicates are translated into constants with a special prefix
(V_). The second term of "META" allows for the grouping of meta
instantiations in a program. For example, the corresponding meta
predicate for:

ATHENS _SUPPLIER(sno,sname) <- SUPPLIER(sno,sname,status,ATHENS).
' META ([ ATHENS_SUPPLIER(V_sno,V_sname),

SUPPLIER(V_sno,V_sname,V_status,ATHENS)], PR1).

where PR1 is the name of the program (group of "META" instantiations),

Since the objective of this approach is to defer the evaluation
of predicates which correspond to database relations, all such
predicates are in a delayed evaluation form. In particular, these

predicates are defined in Prolog as follows:
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SUPPLY(sno,pno,qty) <- DBCALL(SUPPLY, [sno,pno,qty]).

using the non-evaluable binary predicate "DBCALL". Other predicates
whose evaluation depends on the database values (e.g. equal, not

equal) are treated in the same way.

The implementation of the predicate "METAEVALUATE" is described,
together with examples of its use, in Appendix 2. Only a high-level

description is given here.

Given a set of assumptions A and a set of goals G to be proven in

the object language, prove the meta-Prolog predicate:
METAEVALUATE(assumptions, meta_goals, control, new_goals).

in the meta-language, where "assumptions" is the collection of the
original assumptions A in the meta-language, and meta_goals is the
meta-language name of the goals G. Control is a parameter which
specifies either a bound in the proof of metaevaluate or an action to
be taken later (e.g. optimization, translation to relational algebra
or SQL). The result, new_goals, is a series of Prolog predicates in a
deferred evaluation state (a series of DBCALLs and other non-evaluable

predicates).

5.2.3 The Mechanism For Tight-Coupling. -

This section describes the overall mechanism that allows for
deferred database calls. The mechanism is presented pictorially in
Figure 2. The use of a simple but complete example will 1illustrate

the concepts involved.
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EXPERT SYSTEM DBMS

I I
I I

OBJECT LEVEL META LEVEL DATABASE LEVEL

|
I
I
Reach a goal G that

requires db calls METAEVALUATE
| ;
I
REFLECT |
| OPTIMIZE
|
|
GENERATE |
|
| SQL_TRANSLATE
|
I
SQL_CALL
DBMS
Query
Evaluation
REFLECT FORMAT_DATABASE

I
I
Goal G may now be proven with
calls to an internal ES database
I
I
I

Figure 2: THE MECHANISM FOR METAEVALUATIONS
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(A) REFLECT(object_assumptions, meta_assumptions, program_name).
This function produces "META" predicates as described in the previous
section from a set of Prolog statements. It also groups the meta
predicates by providing a unique program name. The REFLECT function

is invoked once before the start of a session.

(B) METAEVALUATE(program_name, meta_goals, control, new_goals).

Described in Section 5.2.2.

(B.1) GENERATE(new_goals, results).
This program is activated by metaevaluate when the control parameter
assumes a particular value. Given a series of new_goals, it creates
an internal database relation (result). In doing so, it wuses and
controls the execution of the sub-programs  "OPTIMIZE",
"SQL_TRANSLATE", "SQL_CALL", and "FORMAT_DATABASE". Detalls of the

implementation of these procedures will be given in a forthcoming

paper.

(B.1.1) OPTIMIZE(new_goals, optimized_goals).
This program performs some optimization to the goals generated in
metaevaluate. One optimization 1is the removal of redundant goals.
Another optimization identifies cases where a series of DBMS queries
is required (e.g., in recursion). By imposing an ordering on the
goals, "OPTIMIZE" makes it possible that a query result can be used

for answering the next query more efficiently.

(B.1.2) SQL-TRANSLATE(optimized_goals, sql_query).

This generates SQL queries from optimized goals. First, the procedure
identifies the database relations involved from the predicate names in

optimized_goals and its knowledge about the database schema (SQL's
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FROM clause). Next, it identifies target attributes (SQL's SELECT
clause) from the universally quantified variables of the original
goals, and ignores 511 other variables in the goals unless they serve
as join fields (e.g., re11.fie1q1 = rel2.field2). All constant values
are translated to restrictions on field values (e,g., fieldname =

constant).

(B.1.3) SQL-CALL(sql_query, answer_location).
This is another program activated by "GENERATE". It invokes the
existing DBMS by sending an sql_query, with the result redirected to a
file identified by answer_location. Each answer to a query

contributes to the eventual result of "GENERATE".

(B.1.3.1) FORMAT-DATABASE(answer_location, internal_db).

Since the existing DBMS cannot be expected to deliver the result in
the format required by Prolog, this function produces an internal
Prolog sub-database from the file identified by sql_calls. Each such
database contributes then to the eventual result of the calling

function, GENERATE.

As an illustration of the process outlined above consider the
following example. The actual Prolog execution and a more detailed
description can be found in Appendix 2. Assume an ES that uses a
series of informal, heuristic and exact rules, together with a large
database of Suppliers-and-Parts managed by an external DBMS. The
portion of this external database which is necessary for the example
is assumed to contain the stored relations: SUPPLY and SUPPLIER. The
hypothetical ES has the schema descriptions of the external database

and several rules concerning this database. No actual tuples are
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stored in the internal ES database. Assume further, the ES rule
(goal) "PERFORM_ORDER", which among other predicates involves the

predicate (generaliZed view): "GOOD_BET_SUPPLIER", based on the

stored relations and other generalized views.

PERFORM_ORDER(sname, price, delivery)
<- COLLECT REQUIREMENTS(max_price, latest_del, pno) &
GOOD_BET_SUPPLIER(sno,pno) &
MAKE_ADJUSTMENTS(sno,new_delivery) &

where "GOOD_BET_SUPPLIER" is defined as:

GOOD_BET SUPPLIER(sno,pno) <- NORTH EUROPEAN(sno) &
MAJOR SUPPLIER(sno ,pno).

NORTH_EUROPEAN(sno) <- OR(SUPPLIER(sno,n,st,LONDON) &
SUPPLIER(sno,n,st,PARIS)).

MAJOR_SUPPLIER(sno,pno) <- SUPPLY(sno,pno,qty), &
GREATER(qty, 300).

Since an instantiation of "GOOD_BET_SUPPLIER" would require
database calls, "METAEVALUATE" as the subgoal immediately preceding it
is used:

PERFORM_ORDER(sname, price, delivery)
<- COLLECT _REQUIREMENTS(max_price, latest_del, pno) &
METAEVALUATE(PR1, [GOOD_BET SUPPLIER(V_sno,V_pno)], 5, newgoals) &
! &
GOOD_BET_SUPPLIER(sno,pno) &
MAKE ADJUSTHENTS(sno new_delivery) &

Note that the "cut" (!) subgoal assures that the metaevaluate predicate
will only be executed once.
The first result from "METAEVALUATE" is (see also Appendix 2):
newgoals = [OR(DBCALL(SUPPLIER, [V_sno,V_n,V_st,LONDON]),
DBCALL (SUPPLIER, [V_sno,V n,V “st,PARIS])) &

DBCALL (SUPPLY, [V_sno,V_pno,V qt.y]) &
DBCALL (GREATER, [V qty,aool)]



Page 35

Given the specific value for the control parameter of
"METAEVALUATE", the program "GENERATE" will be invoked. First, its
sub-programs "optimize" and "sql_translate" will transform the new
goals to the SQL_query:

SELECT sno, pno

FROM SUPPLIER, SUPPLY

WHERE ((SUPPLIER.city = 'LONDON') OR (SUPPLIER.city = 'PARIS'))

AND (SUPPLY.qty > 300)

AND (SUPPLY.sno = SUPPLIER.sno);
The call will be made to the external DBMS (program: SQL_CALL), and
the answer will be retrieved from answer_location (program:
FORMAT DATABASE). Finally, a new internal database will be generated
with the description:

GOOD_BET_SUPPLIER(sno, pno)

After this process, the next statements in the Expert System clause
can use "GOOD _BET SUPPLIER" in the usual Prolog way. No additional

external database calls are needed.

In essence, instead of calling the DBMS each time a tuple is
needed, all "qualifying" tuples are brought into the internal
database. It should be noted that the above strategy is similar to
the "query modification" algorithm [Stonebraker 1975] used in some
commercial DBMSs for view processing. Possibly, the single most
important advantage in using the theorem prover for query modification
is that the whole mechanism is integrated smoothly and naturally into

an ES implementation as a generalized tool.
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6.0 CONCLUDING REMARKS - FURTHER RESEARCH

In this paper a number of strategies for establishing a
cooperative communication between the deductive and data components of
an Expert System were outlined. It was shown that the spectrum of
possible mechanisms to 1link these two components is effectively a
continuum from, at one extreme, a single logic-based system that
implements both components, to, at the other extreme, two completely

separate systems with a strong channel of communication.

A number of interesting research questions are raised by the
spectrum of possible mechanisms for coupling these two essential
components of an Expert System. Among the questions examined are:
what 1s a general architecture for the communication channel between
these two components? how can the ES DBCALLs be translated into the
query language of the DBMS? when and how should these queries be
optimized? A research topic under investigation is that of internal
ES database space management. How does one manage the amount of free
space for storing the results of external database calls? When space
has to be freed, how is the decision reached and optimized as to which
portion of the internal database need be deleted? A longer range
research question concerns the integration of these four access
strategies into a single, meta-expert system that combines the
expertise of the problem domain with expertise about these four
connection types. Given a particular type of problem in the domain of
the expert, this meta-expert system would decide which type of

coupling is most appropriate.



Page 37

Finally, a research question of particular interest to the
database community is the use of an ES as a DBMS "interface" [Jarke
and Vassiliou 1983]. .Could an ES be used as a sophisticated access
mechanism (e.g. high-level optimization, understanding of user
intent)? How could an ES assist in the implementation of language
eonstructs that allow one to formulate arbitrary predicates with
relation variables? Such constructs may be used for integrity
checking and improved locking mechanisms. A tight-coupling mechanisnm,
like the one described in this paper, may be required by such a

"DBMS-expert".
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Appendix 1

JERERRERERFREXERAFRERREARERHERARERRRER R FFERRRRRRRRE TR R R R ERRE /

/% This is the database used as the example in several sections of the #/
/* paper. It has been copied from Date, and it deals with the world */

/% of SUPPLIERS_AND PARTS. */
JIERTE I 03 3606 36 336 3 T 3 I3 0036 00 30 30 30 33030 30 90 30 36 96 6 3006 3600 00 36 30 06 30 00 3 00000 00 30 0000 30 I 000 3 00 000 00 00 0 00 28 /

DBSCHEMA( SUPPLIERS_AND_PARTS,

[ [SUPPLIER,
[SNO,SNAME,STATUS,CITY],
[DSNO,DSNAME,DSTATUS,DCITY] 1,
[PART,

[PNO, PNAME,COLOR,WEIGHT,CITY],

[DPNO, DPNAME ,DCOLOR, DWEIGHT,DCITY] ],
[SUPPLY,

[SNO,PNO,QTY],

[DSNO,DPNO,DQTY] ] 1,

[ [FD, SUPPLIER, [SNO], [SNAME,STATUS,CITY] ],
(FD, SUPPLIER, [SNAME], [SNO,STATUS,CITY] ],
(FD, PART, [PNO], [PNAME,COLOR,WEIGHT,CITY] ],
(FD, SUPPLY, [PNO, SNO], [QTY] 1],

(FD, SUPPLIER, [CITY], [STATUS] ],

(FD, PART, [PNAME, COLOR], [CITY] 1],
(VvD, SUPPLIER, STATUS, 10, 60 1,

(sh, SUPPLY, [SNO], SUPPLIER, [SNO] 1,
[sD, supPLY, [PNO], PART, [PNO] 1 1 ).

The envisioned use of the a database is as follows.
A predicate "open" is used to initiate the database name.

OPEN{ database-name )
For instance, the Prolog statement
| ?- OPEN(SUPPLIERS_AND_PARTS).
will instantiate the database-name. No other mention of this
name need be made in the sequel. Some small examples of possible

queries on this database scheme follow.

| 2~ RELNAME(rel).
rel = SUPPLIER

| ?- SCHEME(SUPPLIER, scheme).
scheme = [SNO,SNAME,STATUS,CITY]

| 2- SHOWKEY(SUPPLIER, key).
key = [SNO];
key = [SNAME]

1mn n



| ?- SHOWSD(relation, sds).

relation = [SUPPLY, SUPPLIER]
sds = [sno, sno] ;

RELATION = [supply, part]
IDS = [pno, pno]

--/% An instance of the database */

DBINSTANCE( SUPPLIERS_AND_PARTS,
[ [ SUPPLIER,

[ [S1,SMITH,20,LONDON],
[s2,JONES, 10,PARIS],
[s3,BLAKE, 30,PARIS],
[S4,CLARK,20,LONDON],
[S5,ADAMS,30,ATHENS] ] ],

[ PART,

[ [P1,NUT,RED,12,LONDON],
[P2,BOLT,GREEN, 17,PARIS],
[P3,SCREW,BLUE, 17,ROME ],
[PY4,SCREW,RED, 14 ,LONDON],
[p5,CAM,BLUE, 12,PARIS],
[P6,COG,RED, 19,LONDON] ] 1,

[ SsupPLY,

[ [s1,P1,300],
[s1,P2,200],
[s1,P3,400],
[s1,P4,200],
[s1,P5,100],
[s1,P6,100],
[s2,P1,300],
[s2,P2,400],
[s3,P2,200],
[s4,pP2,200],
(s4,P4,300],
[s4,p5,400] 11 1).
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/R R R RN RER
/* These examples illustrate a subset of a relational DBMS, built #*/

/* upon the representation scheme discussed in Section 4. The */
/* variable and predicate names have been chosen so as ®/
/% to make the meaning clear. ®/
JRE R EHRERTR IR R R R R AR/
/®* Projection ®/
/%* General form: PROJECT(relname,attrlist,projection) ®/

| ?- PROJECT(SUPPLIER, [CITY], cities).
cities = [[LONDON],[PARIS],[PARIS],[LONDON],[ATHENS]]

/% Selection. #/
/% General Form: SELECT(relname,attrs,ops,vals,res) */

| ?- SELECT(SUPPLIER, [CITY, STATUS], [=,>], [PARIS, 20], result).
result = [[S3,BLAKE,30,PARIS]]

/% Natural Join. ‘ */
/% General Form: NATJOIN(relname1,relname2,result,scheme) *®/

| ?- NATJOIN(SUPPLY, PART, result, scheme).

result = [[S1,P1,300,LONDON,RED,NUT, 12],[S2,P1,300,LONDON,RED,NUT, 12],
[s1,P2,200,PARIS,GREEN,BOLT, 17],[S2,P2,400,PARIS,GREEN,BOLT, 17],
(s3,P2,200,PARIS,GREEN,BOLT, 17], [S4,P2,200,PARIS ,GREEN,BOLT, 171,
[s1,P3,400,ROME, BLUE,SCREW, 17],[S1,P4,200,LONDON,RED, SCREW, 14],
(s4,Pl,300,LONDON,RED, SCREW, 14],[S1,P5, 100,PARIS,BLUE,CAM, 12],

[s4,P5,400,PARIS,BLUE,CAM, 12]],[S1,P6, 100,LONDON, RED,COG, 19] ],

[ SNO,PNO,QTY,CITY,COLOR,PNAME,WEIGHT] ;

scheme

JRRRREERRERERERR AR E TR RFRREERERR R SRR R R RN R RRE TR RN R R AR R AR /

/* The following statement simulates the tuple-at-time %/
/% treatment of Prolog for relational databases defined as ®/
/* predicates with the form: *®/
/% supply(s1,p1,100) ®/
/% sl */

/ii**l*ill*li!lil!*l**l*l*!iiQ**iii*i*!i*!l!lil*ii*ii**iliiiiliii/

SUPPLY(sno,pno,qty) <- SIMCALL(SUPPLY, [sno,pno,qty]).

| ?2- SUPPLY(sno, pno, qty).

pno = P1,
sno = S1,
qty = 300
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Appendix 2

S8 R30I 000 I 3 B0 O30 0 6300 0 3 00 2 30 T 0 O O 0 O R R R ¥/

/% . #/
/* The predicate metaevaluate has four parameters: ®/
/® *®/
/% metaevaluate(Assumptions, Goals, Control, NewGoals) *®/
/% #/

/* Given Assumptions and a set of Goals to be proven, using Control, #*/
/® return a new set of goals (NewGoals) - all in a non-evaluable form #*/

/% ®/
/% Algorithm: */
/% 1.~ Select a Goal (first one). */
/* 2.- Select an appropriate Assumption (clause) with meta #/
/% 3.- Rename the variables in the clauses ¥/
/% 4.- Match the renamed variables *®/
/% 5.- Add the body of the clause to the rest of *®/
/* the goals producing intermediate goals */
/% 6.- Apply the variable differences to the above goals #/
/% 7.- Use metaevaluate recursively. */
/% *®/
/% Recursion stops when: */
/* - no goals exist, or /
/% - all remaining goals are DBCALLs, or */
/% - the arguments of "or" and "not" are all DBCALLs *®/
/% */

S EBEEERERNRERREXNRERHENRTRREEERRERR BRI RRE RN EIRERERENRRRRNRNRRR  *®/

METAEVALUATE(_,goal,control,goal) <- STOPEVALUATING(goal) & !.

METAEVALUATE(meta,[goal|rest],control,newgoals) <-
META(clause,meta) &
RENAMEVARS(clause,[goal|rest],[car|cons]) &
MATCH(goal,car,diff) &
ADD(meta,cons,rest,intergoals) &
APPLY(intergoals,diff,othergoals) &
METAEVALUATE(meta,othergoals,control,newgoals).

/®* Description of an external database (stored relations) */
/% This database will be used in the examples that follow ®/

SUPPLY(sno,pno,qty) <- DBCALL(SUPPLY, [sno,pno,qty]).

SUPPLIER(sno,sname,status,city) <-
DBCALL (SUPPLIER, [sno,sname,status,city]).

PART(pno,pname,color,weight,city) <-
DBCALL(PART, [ pno,pname,color,weight,city]).

SUBPART(subpno,pno) <- DBCALL(SUBPART, [subpno,pno]).
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/* Some generalized views of the external database-(used internally) #/

ANY_LEVEL_SUBPART(spno,pno) <- SUBPART(spno,pno).
ANY LEVEL _SUBPART(spno,pno) <- SUBPART(spno,p1) &
ANY_LEVEL_SUBPART(p1,pno).

SUPPLIES_MANY(sno) <- SUPPLY(sno,pno1,qty1) &
SUPPLY(sno,pno2,qty2) &
NOTEQUAL(pno1,pno2).

SPECIAL_SUPPLIER(sno) <- NOT(SUPPLIES_MANY(sno)) &
NORTH EUROPEAN(snO)

NORTH_EUROPEAN(sno) <- OR(SUPPLIER(sno,n,st,LONDON),
SUPPLIER(sno,n,st,PARIS)).

MAJOR_SUPPLIER(sno,pno) <- SUPPLY(sno,pno,qty) & GREATER(qty, 300).
GOOD_BET_SUPPLIER(sno,pno) <- NORTH_EUROPEAN(sno) &
MAJOR_SUPPLIER(sno,pno).
/% Meta predicate instantiations corresponding to the stored */

/* relations and views. Note the use of PR1 as a program name. */

META([SUPPLIER(V_sno,V_sname,V_status,V_city),
DBCALL(supplier, “[V_sno,V_sname,V_status,V_city] )],PR1).

META([PART(V_pno,V_pname,V_color,V_weight,V_city),
DBCALL{PART, [V _pno,V_pnanme,V_color,V_weight,V_city])],PR1).

META([SUPPLY(V_sno,V_pno,V_qgty),
DBCALL(SUPPLY TV_sno,V_pno,V_qtyl)],PR1).

META ( [ SUBPART(V_subpno,V_pno), DBCALL(SUBPART,[V_subpno,V_pnol)],PR1).

META([ANY_LEVEL_SUBPART(V_spno,V_pno), SUBPART(V_spno,V_pno)], PR1).
META( [ANY_LEVEL_SUBPART(V_spno,V_pno),
SUBPART(V_spno,V_p1),ANY_LEVEL_SUBPART(V_p1,V_pno)], PR1).

META ( [SUPPLIES_MANY(V_sno),SUPPLY(V_sno,V_pno1,V_gty1),
SUPPLY(V sno,V_pno2,V qtyZ),
NOTEQUAL(V pno1 V_pno2)],PR1).

META ([SPECIAL_SUPPLIER(V_sno), NOT(SUPPLIES_MANY(V_sno)),
NORTH EUROPEAN(V sno)] PR1).

META ( [NORTH_EUROPEAN(V_sno), OR(SUPPLIER(V sno,V_N,V_st,LONDON),
SUPPLIER(V_sno,V_N,V_st PARIS))]. PR1).

META([MAJOR_SUPPLIER(V_sno,V_pno), SUPPLY(V_sno, V_pno, V_qty),
GREATER(V_qty, 300)], PR1).

META([GOOD_BET_SUPPLIER(V_sno,V_pno), NORTH_EUROPEAN(V_sno)
MAJOR SUPPLIER(V sno,!
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/* Ezamples of the execution of "metaevaluate". The Control #/
/% value is 1, specifying no extra action (e.g. optimization) #/

| ?- METAEVALUATE(PR1, [GOOD_BET_SUPPLIER(V_sno, GADGET) ], 1, newgoals).

newgoals = [OR(DBCALL(SUPPLIER,[V_sno,V_N,V_st,LONDON]),
DBCALL (SUPPLIER,[V_sno,V_N,V_st,PARIS])),
DBCALL (SUPPLY, [V_sno,GADGET,V_qtyl),
DBCALL(GREATER, [V_qty,300])] ;

| ?- METAEVALUATE(PR1, [SPECIAL_SUPPLIER(V_sno)], 1, newgoals).
newgoals = [NOT(DBCALL(SUPPLY,[V_sno,V_pno1,V_gty1]),
DBCALL(SUPPLY,[V_sno,V_pno2,V_qty2]),
DBCALL (NOTEQUAL,[V_pno1,V_pno2])),
OR(DBCALL(SUPPLIER,[V_sno,V_N,V_st,LONDON]),
DBCALL (SUPPLIER, [V_sno,V_N,V_st,PARIS]))]
/% A Recursive call. Recursion sfops after three levels. ®/

| 2- METAEVALUATE(PR1, [ANY_LEVEL_SUBPART(BOLTS, V_sup)], 1, newgoals).

newgoals = [DBCALL(SUBPART,[BOLTS,V_supl)] ;

newgoals = [DBCALL(SUBPART,[BDLTS,V_p1]),
DBCALL(SUBPART, [V_p1,V_sup])] ;

newgoals = [DBCALL(SUBPART,[BOLTS,V p1]),

DBCALL(SUBPART,[V_p1,V_p11]),
DBCALL (SUBPART, [V_p11,V_sup]l)]

| ?- METAEVALUATE(PR1, [SUPPLIES_HANY(V_HhD).NORTH_EUROPEAN(V_HhO)].1. ng).

ng = [DBCALL(SUPPLY,[V_who,V_pno1,V_gty1]),
DBCALL(SUPPLY,[V_who,V_pno2,V_qty2]),
DBCALL (NOTEQUAL,[V_pno1,V_pno2]),
OR(DBCALL (SUPPLIER, [V_who,V_n,V_st ,LONDON]),
DBCALL(SUPPLIER, [V_who,V_n,V_st,PARIS]))]

| 2- METAEVALUATE(PR1, [OR(SUPPLIES_MANY(SMITH),
NOT(NORTH_EUROPEAN(SMITH)))1,1,ng).

ng = [OR(DBCALL(SUPPLY,[SMITH,V_pno1,V_gty1]),
DBCALL (SUPPLY, [SMITH,V_pno2,V_gty2]),
DBCALL(NOTEQUAL, [V_pno1,V_pno2]),
NOT(OR(DBCALL(SUPPLIER, [SMITH,V_n,V_st,LONDON]),
DBCALL (SUPPLIER, [SMITH,V_n,V_st,PARIS]))))]



