COUPLING EXPERT SYSTEMS WITH DATABASE MANAGEMENT SYSTEMS

Matthias Jarke

Yannis Vassiliou

May 1983

Center for Research on Information Systems
Computer Applications and Information Systems Area
Graduate School of Business Administration
New York University

Working Paper Series

CRIS #54

GBA #83-53(CR)

ABSTRACT

The combined use of Database Management Systems (DBMS)
and Artificial Intelligence-based Expert Systems (ES) is
potentially very valuable for modern business applications.
The large body of facts usually required in business infor-
mation systems can be made available to an ES through an
existing commercial DBMS. Furthermore, the DBMS itself can
be used more intelligently and operated more efficiently if
enhanced with ES features. However, the implementation of
a DBMS-ES cooperation is very difficult.

We explore practical benefits of the cooperative use of
DBMS and ES, as well as the research challenges it presents.
Strategies for providing data from a DBMS to an ES are given;
complementary strategies for providing intelligence from an
ES to a DBMS are also presented. Finally, we discuss archi-
tectural issues such as degree of coupling, and combination
with quantitative methods.

As an illustration, a research effort at New York Univer-
sity to integrate a logic-based business ES with a relational

DBMS is described.

Page 2

1.0 INTRODUCTION

In the mid-sixties the world watched with fascination a volecano
off the fishing town of Heimaey, Iceland, create a new island,
Surtsey, out of its ashes. Such things had happened before, and this
particular creation process went on for four years. But, unlike on
previous occasions, the new island did not vanish in the sea shortly
after its creation but seemed determined to stay. Still, it is a
rather tiny little island made visible to the world mainly by the big

volcanic clouds that accompanied its creation.

Some people began to populate the new island and the problem
arose how to provide them with the necessary things of life from the
neighboring islands (Iceland being the most important). On the other
hand, researchers from all over the world flocked in to unravel the
hidden treasures of this new piece of land in the hope to clarify and
resolve some of the problems in other areas. Currently, fishing boats
manage the traffic but soon something more solid will be required to

cope with the growing interaction.

What does all this have to do with expert systems and databases?
The reader might have noticed a strong resemblance of Surtsey's
development with the emergence of expert systems over the past few
years. Once a small off shot of artificial intelligence, they now
catch the spotlight of publicity after a prolonged period of

laboratory existence,.

Page 3

Much research has been necessary to improve expert systems to
commercial feasibility. With the actual intrusion of expert systems
into the business world, however, the further question arises how to

integrate them into the existing management information systems (MIS).

Can bridges (or at least fishing boats) be built to the other
subsystems that supply the expert system with the necessary business
data and allow them to use corporate planning models and other

mathematical models as a human expert would?

Can, vice versa, the expert system idea be wused to enhance
existing MIS with more intelligence in systems design, usage, and

operation?

Researchers who have addressed these problems typically looked at
certain aspects of one of thel two questions. In this paper, we try to
view them together, with a primary focus on the interaction of expert
systems with large existing databases. To remain in our original
picture, we try to outline a bridge between the two systems that
allows for two=-way traffic enhancing the quality and efficiency of

both types of systems.

The paper will analyze on a high level opportunities and solution
strategies for getting business data from a commercial database system
into an expert system, and for providing expert knowledge to database
systems. For more technical details of the first problem, the reader
is referred to a companion paper [Vassiliou et al. 1983] and to some
work in the Japaness Fifth Generation Computer project [Kunifuji and

Yokota 19821.

Page 4

Certain aspects of the second problem are addressed in [Jarke and
Koch 1983], ([Jarke and Shalev 1983], as well as in the work of many
others (e.g., [Reiter 197813, [Chang 19781, [Kellogg 19811,
[King 19791, [Henschen et al. 1982]). However, the contribution of
this paper is to unify all these approaches in a common architectural
framewrk of what we believe might be the paradigm of forthcoming

advanced decision support systems.

For an illustration, we will use from time to time examples from
an ongoing project at New York University in which a logic-based
business expert system is developsd and interfaced with an existing

relational database and mathematical subroutine libraries.

The paper is organized as follows. Section 2 gives a brief
review of major subsystems and requirements in a business. In
subsequent sections, we study the interaction between these components
focusing on the relationships between databases and expert system
knowledge bases and inf‘erenc.e eng ines. Section 3 presents a
stage-wise approach to the question how to get data for a business
expert system., Section U4 deals with various applications of expert
system technology to the design, use, and operation of database
systems. Finally, section 5 addresses some architectural and
technical problems of the coupling between expert and database
manag ement systems that have to be solved regardless of the direction

of the interaction.

Page 5
2.0 REVIEW OF BUSINESS SUBSYSTEMS AND REQUIREMENTS

In this section, the "islands" to be connected in a business will
be identified, and their interaction requirements investigated. One
type of current business systems 1is characterized by Dbackbone
transaction processing, governed by rules of what can be called a
business program, and typically centered around large centralized or
distributed databases. The knowledge required for building and
working with such systems is typically hidden in procedural f‘c:or‘mt and
cannot be easily changed nor carried over to other similar
applications. Modern transaction processing system types, such as
office automation systems, make <these rules more explicit and
formalize the notion of documents as a central carrier of information

to be handled [Tsichritzis 1982].

Another type of business systems deals more directly with
supporting decisions on various 1levels. Decision support systems
often have their knowledge built in mathematical formulas and models
which are handled by model management algorithms or by the user via a

flexible and power ful user interface [Stohr and White 19821].

Finally, there is a large nunber of human specialists who wuse
experience and expertise together with factual knowledge gained from
databases via query languages to develop recommendations and
explanations in their area of-expertise. Recently, expert systems try
to efficiently support or partially replace such specialists. Expert
systems typically organize their knowledge in the form of if-then
rules and perform some form of pattern matching to find out which

rules apply.

Page 6

To summarize this discussion, it can be said that businesses use:
(1) 1large databases, (2) mathematical formulas and models, (3)
business rules and forms (documents), (4) experience and expertise of
various human specialists. If expert systems are introduced, there
will be another type of subsystem which interacts with the human

decision-makers to complement their expertise.

In this kind of setting it ié not hard to see that much effort is

duplicated if all these systems operate independently of each other.

Today, most mathematical and expert subsystems have their own
data management facilities. If data from a database system are used
they are typically extracted as snapshots before the beginning of a
session. This approach causes problems if the amount of data to be
extracted is large or cannot easily be determined in advance. If the
snapshots are kept over an extended period of time, there is a problem

of keeping them consistent with the main database.

Database management systems wusually offer some mathematical
(e.g., aggregation) capabilities in their wuser interfaces and
elementary rule-based techniques (integrity constraints) to check
their operations. However, often the user would 1like more
sopnisticated retrieval facilities which perform reasoning or
mathematical operations on the data before presenting them to the
user. A higher level of semantic knowledge and deductive capabilities
built into the database system would not only make it more

user-friendly but also safer and more efficient to operate.

Page 7

Finally, on a higher level, it can be observed that system
development effort is duplicated on a large scale in the analysis and
design of business information systems. This happens within but also
anong organizations when systems of the same type are developed again
and again without taking explicit advantage of knowledge from previous

experiences.

Some research has been done to integrate the separate subsystems.
Decision support systems have to base their mathematical modelling
capabilities on solid database management technology to become
cost-effective. By analogy, it can be argued that many expert systerﬁs
which use a large population of specific facts need a communication
channel to the corporate databases. Going a step further, we argue
that future decision support systems will have to integrate all three

components: database, mathematical subsystem, and knowledge base.

As an example for such a system, consider a 1life insurance
consulting expert system currently under development in our group.
The system develops, recommends, and explains customized life
insurance policies for a customer. The system will assist a sales

agent by

(a) extracting customer information from the corporate database
and from interviews to deduce the needs for life insurance coverage in

different stages of the life of a customer;

(b) classifying the requirements in terms of basic actuarial

types of insurance, and relating them to applicable actuarial models

in the mathematical subsystem;

Page 8

(¢) computing a premium for the customized policy, reducing it by
already existing coverage from previous insurance, and comparing the

remainder to the premium paying capabilities of the customer;

(d) analyzing the feasibility of the proposed policy in terms of

legal requirements and corporate objectives;

(e) interacting with the customer to come up with an acceptable
policy that satisfies the customer's needs and has an affordable

premium,

Currently, customized policies are feasible only for major group
policies since there 1is a lack of actuarial experts to support a
process as outlined above. Individual customers can essentially only
choose among a limited number of pre-packaged policy combinations
(insurance products). When operational, the expert system will thus

relieve a bottleneck which seriously impedes service quality.
On the other hand, such a system needs:

(a) information about customers and actuarial table data from a

database system;

(b) a mathematical subsystem to execute actuarial computations

efficiently;

(e) an (extensible) knowledge-based expert subsystem to extract
information, to classify insurance needs, to check time-varying legal

and corporate constraints, and to explain problems and alternatives.

Page 9

We are implementing such a system wusing the logic language
Prolog, a relational database system, and a mathematical subroutine
library. This project is meant to serve as a demonstration of a
typical architecture we expect for upcoming knowledge-based business

decision support systems.

In the remainder of this paper, we shall focus on the interaction
of two of the subsystems discussed in this section, namely,
knowledge-based expert systems and databases. First, we explore
alternatives of extracting data from large and/or existing databases -
getting supply to the inhabitants of the new island. Later on, we
tun our attention the other way: how can existing subsystems,
especially database management systems, be improved when expert system

technology becomes available?

3.0 DATA FOR EXPERT SYSTEMS

In a rule-based expert system, the "inference-engine" uses a set

of rules (the knowledge base) and a collectiorn of specific facts

(database) to simulate the behaviowr of a human expert in a

specialized problem domain.

For instance, the life insurance consulting expert system of
Section 2 uses rules like:
IF C is a customer of a certain age and
when the customer dies a certain amount becomes payable
THEN the customer is said to have a whole life insurance benefit.

and a database containing data about actual customers, insurance and

annuity benefits, mortality values, etc.

Page 10

A database is represented in terms of two basic dimensions:
variety and population. For example, in a logic-based representation
the different 1logic predicates ("customer", "covered by"', etc.)
reflect the variety, and the instances of these predicates ("Smith is
a customer™, "Smith is covered by term annuity", ete.) refer to the

popul ation.

Most expert system databases exhibit a large variety of facts.
In contrast, the population of facts in such databases is more
variable; ranging from a small "laboratory" set to a very large
collection of facts. Thus, expert system databases differ from
traditional commercial databases in that they tend to be more "wide"

and less "deep".

In [Vassiliou et al 1983] we exanrined the problem of expert
system database representation and retrieval, We now present a
summary of our results, We start with an outline of a four-stage
approach in Section 3.1. Then, for an illustration we briefly
describe in Section 3.2 a working implementation of this approach in

the programming language Prolog.

3.1 Four-Stages Of Database Management Development

Four strategies for establishing a cooperative communication
between the deductive and data components of an expert system have
been identified. Starting from elementary facilities for data
retrieval we progress to a generalized DBMS within the expert system,

to a 'loose' coupling of the ES with an existing commercial DBMS,

Page 11

finally, to a 'tight' coupling with an external DBMS. Expert system
designers may opt for one configuration over another depending on data
volume, multiplicity of data use, data volatility characteristics (how
frequently data is changed), or data protection . and security
requirements. Regardless, in a careful design these enhancements are
incremental, allowing for a smooth transition from a less to a more

sophisticated enviromment.

3.1.1 Stage 1: Elementary Data Management Within The ES -

In the simplest case, all data is kept in core and stored ir
mostly ad-hoc data structures. Application-specific routines for data

retrieval and modification are implemented.

3.1.2 Stage 2: Generalized Data Management Within The ES -

When the expert system database is large enough not to fit in
core, elementary data management is not sufficient. Techniques are
needed for external file management (e.g. secondary indexes, data
directory, etec.). These technliques should preferably be application
independent, since a small change in application descriptions méy

require an altogether different mechanism.

Furthermore, depending on the multiplicity of database wuse and
the extent of fact variety required for the ES, general purpose
database management facilities may be needed. Such facilities include
"views", or dyramic database windows, available in most modern

relational DBMSs [SQL, INGRES, ORACLE].

Page 12

Another facility is an integrated data dictiorary that allows for
queries about the database structure. In a nutshell, a generalized
DBMS integrated in the expert system may be necessary to deal

effectively with large databases.

This stage of ernhancing database management facilities seems to
be the norm for expert systems that deal with large databases, even

though not all such systems exhibit the same level of sophistication.

3.1.3 Stage 3: Loose Coupling Of The ES With An Existing DBMS -

Often, the neéd for consulting existing very large databases
arises. Such databases will normally be managed by a commercial DBMS,
In a typical example, [Olson and Ellis 1982] report experience with
PROBWELL, an expert system used to determine problems with oil wells,
A very important source of information for such determination is a
large database stored under the IMS database system. Unfortunately,

this database cannot be made available to the ES in a timely manner.

Existing external databases are typically very large, highly
volatile, and used by several applications. Costs of storing data and
maintaining consistency may prohibit the duplication of such a

database for the sake of the expert system alone.

Loose coupling of an ES with an existing DBMS refers to the
presence of a communication channel between the two systems which
allows for data extraction from the existing database, and subsequent
storage of this "snapshot" as an expert system database. Data

extractions occur statically before the actual operation of the ES.

Page 13

We note that the availability of generalized database management
facilities within the expert system may greatly facilitate this
process. After the internal expert system.database has been expanded

with an external database snapshot, it can be accessed as in stage 2.

3.1.4 Stage 4: Tight Coupling Of An ES With An Existing DBMS -

The main disadvantage of loose coupling is the non—applicability
in cases where automated dyrnamic decisions, as to which database
portion is requiréd, are necessary. During the same ES session, many
different portions of the external database may be required at
different times; the requirements may not be predictable. In
addition, if the exterral database is continuwously updated, for
instance in databases for commodity trading or ticket reservation, the

snapshots become rapidly obsolete.

Tight coupling of an ES with an external DBMS refers to the wuse
of the communication channel between the two systems irn such a way
that the external database appears to the ES as an extension of its
own, Clearly, the most important consideration for the implementation
of tight coupling is the "intelligent" management of the communication

channel - when and how to use the channel.

Our suggested strategy, which we describe in more detail in
Section 3.2.5, assumes the existence of a high-level, sophisticated
mechanism within the ES - an expert system itself - that collects ES
requests for data while simulating the ES deduction process. This

expert extracts and translates the necessary data. The facilities

Page 14

described in Stages 2 and 3 are necessary for the implementation of

tight coupling.

This completes our general discussion of getting data into expert
systems. In the following subsection, we describe an application of
this stage-wise approach to the problem of data Istorage and retrieval
for a Prolog-based expert system using relational database management
systems. Most of the mechanisms described below have been implemented
and tested in experimental Prolog programs presented in [Vassiliou et

al. 19831].

3.2 Illustration - Data For A Prolog-based Expert System

3.2.1 Brief Introduction To Prolog -

Prolog is a programming language based on a subset of first-order
logic, the Horn-clauses. Roughly, this amounts to dropping
disjumection from logical consequents, and talking only about definite
antecedent-consequent relationships. There are three basic statements

in Prolog [Nau 1983 1]:

1= P, means P is a goal to be proved
P. means P is an assertion
P 3=y RS means Qand Rand S imply P

A Prolog program is a sequence of clauses whose variables are
considered to be universally quantified. A clause has both a
declarative and a procedural interpretation. Thus,

P:-Q,R,S

can be read declaratively:

Page 15

P is true if Q and R and S are true
or, procedurally:

To satisfy P first satisfy Q and R and S.

Since more than one clause may be needed to define a predicate
(goal), there is a corresponding AND/OR graph for each predicate. The
execution of a program involves a depth-first search with backtracking
on these graphs, and uses the uification process based on the

resolution principle [Robinson 19651].

A knowledge base can be represented in first-order logic if the
formulas are suitably interpreted. Therefore, Prolog may be used for
the knowledge representation. Furthermore, Prolog has the advantage
that it already has a very powerful inference engine in place. The
wnification algorithm used in Prolog is more powerful than simple

pattern matching algorithms common in production systems.

3.2.2 Elementary Data Management - Naive Use Of Prolog -

On the simplest level of database management facilities
enhancements, stage 1, the whole population of facts can be
represented directly as the expert system database. While ¢this
approach is feasible for any expert system, using Prolog can take us a
step further. Since Prolog does not distinguish between data and
prograns, it canr be used both as a (relational) data representation

and as a query language.

Page 16

Relational databases can be represented directly in Prolog as a
listing of all instantiated predicates corresponding to relation
tuples. For instance, consider a small portion of the insurance
database:

customer(3163, smith, 1935, london)
customer(3154, jones, 1942, atlanta)

LR]

covered_by(3163, 'term insurance')
covered by(3163, 'whole life annuity')

2 .
While general relational schemas are defined only implicitly by
the predicate names, Prolog can be used as a powerful mechanism to
define "generalized views" via additional rules. Views are used in
DBMS to allow for more flexible data access. Prolog rules differ from
traditional view mechanisms [Date 1982] in that with the wuse of
variables they can accept parameters making them equivalent in this
respect to the selector 1language construct proposed for database
programming languages [Mall et al. 1983]. Consider the following
examples:
covered_by many(Custom_id) :- covered_by(Custom id, Benefit1)
covered by(Custom id, Benefit2),
not(Benefit1 = Benefit2).
special_customer(C_id) :- not(covered by many(C_id))
or(customer(C_id,N1,Y1,london) ,
customer(C_id,N2,Y2,paris)).
The first of these Prolog statements can be read as: "A customer
with customer id Custom_id (a variable) is covered by many benefits,
if he/she is covered by at least two benefits which are different",.

Similarly, the second example reads: "A customer is special if he/she

is not covered by many benefits and lives in Paris or London".

Page 17

In addition to representing data and view definitions, Prolog can
also directly represent queries about base data or views. A query is

simply a goal:

:= covered by many(C_id).
which when executed will return in C_id the customer id of a customer

who is covered by many insurance benefits.

3.2.3 Generalized Data Management - A DBMS Implemented In Prolog -

A further step towards integrating the deductive capabilities of
Prolog with DBMS capabilities can be taken by implementing a general
purpose DBMS directly in Prolog - stage 2 in our approach This can be
done quite easily, and provides a means of adding flexiblé and general
data access mechanisms to the inference engine without the need for a

complicated interface to exterrnal database files.

In order to effect this stage in ES-DBMS coupling, the first
requirement 1is the definition of an internal representation of a
relational database. Given such. a representation scheme, one can
define any number of generalized operations to provide the facilities
of a DBMS. Our approach [Vassiliou et al. 1983] provides a simple
way to specify generalized relational operators acting on any relation
and set of attributes. Prolog programs map from this simpler,
user-oriented view of the operations to their implementation for the
particul ar database and representation scheme chosen. This provides a

degree of logical data independence as in the traditional levelled

architecture of DBMSs [Date 1982]..

Page 18

A more application-specific solution is proposed in [Kunifuji and
Yokota 1982]. [Kowalski 1981] details the use of Prolog for integrity

constraints, database updates and historical databases.

Another advantage of a generalized DBMS within Prolog is
efficiency. It is possible to devise a more sophisticated storage
strategy (e.g., B-Trees), and perhaps to use awuxiliary indexing
schemes, hashing, etec. [Tarnlund 19781, The work reported in
[Pereira and Porto 1982)] demonstrates that for specific applications,
clever indexing schemes that guide decisions about which portions of
external files should be read into the internal database can be

devised., However, these strategies are not easily generalizable.

3.2.4 Loose Coupling Of A Prolog-based ES With A Relational DBMS -

Conceptually the simplest solution to the problem of using
existing databases is to extract a snapshot of the required data from
the DBMS before the ES begins to work on a set of related problems -
stage 3 of the approach. The portion of the database is stored in the

internal database of the ES as described previously with Prolog.

For this scerario to work, the following mechanisms are required:

1. Link to a DBMS with unload facilities;

2. Automatic generation of an ES database from the extracted
database;

3. Knowing in advance which portion of the database is required
for extraction (static decision).

Page 19

3.2.5 Tight Coupling of a Prolog-based ES with a Relational DBMS

For the fourth and final stage of our approach as has been
implemented with Prolog, we consider a very iarge existing database
stored under a relational commercial DBMS. The naive use of the
communication channel between the ES and the DBMS will assume the
redirection of all ES queries, on predicates representing relations,
to the DBMS for stored database relations. Any such approach is bound
to face at least two major difficulties: the number of database calls
will be prohibitevely many (each Prolog goal corresponds to a separate
DBMS call), and the complexity of Prolog goals (queries) may make it
impossible to transl ate them directly to DBMS queries (e.g.

recursion) .

These difficulties can be overcome by collecting and jointly
executing database calls rather than executing them separately
whenever required by the ES. In essence, the pure depth-first
approach of Prolog is replaced by a combination of a depth-first

reasoning and a breadth-first database call execution [Reiter 19781].

In practice, we use an amalgamation of the ES language with its
own meta-language, based on the 'reflection principle'
[Weyhrauch 1980]. This allows for a deferred evaluation of predicates
requiring database calls, while at the same time the inference engine

(theorem prover) of the ES is working.

Since all inferences are performed at the meta-level (simulation
of object-level proofs), we are able to bring the complex ES queries

into a form where some optimization and direct translation to a set of

Page 20

DBMS queries is feasible. Note, that at this point it would be
desirable to have an intelligent DBMS that collectively optimizes the
execution of all the queries. We shall discuss such ideas in

section 4.3, below,

The queries are directed to the DBMS, answers are obtained and
transformed to the format accepted by the ES for internal databases.
The ES can continue its reasoning at the object level, Each
invocation of predicates corresponding to database relations will now

amount to an ES database goal, rather than a call to an external DBMS,

By tight coupling, we are now able to use an existing large

relational database as an extension of any internal Prolog database.

4,0 EXPERTS FOR DATABASE SYSTEMS

When compared to requirements for advanced business applications
such as decision support for managerial wusers, current database
manag enent systems display a number of weaknesses. In this section,
"f.e highlight these problems and identify some strategies how they can
be overcome by the use of rule-based techniques. We shall not go into
detail about other artificial intelligence approaches such as natural
language interfaces [Harris 1977, Wahlster 1981] or conceptual
modelling techniques [Brodie and Zilles 1980, Brodie et al. 19831]

which contribute to better database design and usage.

Page 21

4.1 Problems With Current Databass Systems

With the advent of decision support systems and the proliferation
of computers and databases in general ,. the target user population for
database query languages has changed: there are more (potential)
users, such as managers and application specialists who have a high
degree of application knowledge but little patience to acquire much

familiarity with programming concepts [Jarke and Vassiliou 19821].

For such users, higher-level query languages are required which
allow powerful operations without demanding major interaction skills.
Besides the more ergonromic approach taken by the so-called second
generation languages [Vassiliou and Jarke 19831, reasoning

capabilities embedded in the system could allow for a wider range and

more concise formulation of queries.

A second problem arises if users want fairly complex operations
to be performed on the data which are not provided by the query
language. Currently, they can only use a database programming
language [Schmidt et al. 1982] instead of an ad-hoc query language,
and program the operations on the data explicitly. This is not easy
for non-computer specialists and often also prevents the use of DBMS
report generation facilities burdening the wuser with even more

programming tasks.

A third difficulty with most current DBMS is the lack of support
for operations performed ir a context. The system does not have a
partner model of the user [Wahlster 1981]. Neither does it recognize

that multiple users working on the system at the same time ask queries

Page 22

that could be answered collectively [Jarke et al. 19821]. Finally, a
user who wishes to issue a query that is based on the result of a

previous query has to store that result explicitly.

Besides not being as user-supportive as they could be, database
systems could be improved towards more safety of the data and more

efficiency of the execution of read and write transactions.

Safety is guaranteed in a database by enforcing integrity
constraints, and by maintaining consistency throuwgh concurrency
control, However, many DBMS support only rather simple ¢types of
integrity constraints because it 1is hard to test more 'complex
combinations of constraints efficiently. Also,mqst. systems do nrot
support the resubmission of (sequences of) transactions after failure

or user errors [Gray 19811].

Effiéiency mainly refers to the response time for evaluating
queries. Many systems do not recognize all special cases of query
structure or content that permit the use of efficient special-purpose
algorithms. Neither do they recognize sequences of queries where the
output of one can be used as the input of the next (e.g., recursion,

focusing, etec.) .

In the next two subsections, we explore how rule-~based technology
can be used to improve on these problems. As in section 3, we take a
stag e-wise approach to the problem going from the wuser interface of
the system towards its internal operations. It will be seen that many
of the problems are related to each other and allow for common

solution strategies.

Page 23

Again as in section 3, the question arises whether these
strategies can be wused only in newly developed database systems, or
whether an external expert system can be used via a bridge on top of
an existing database system. We shall not address this question in
this section but postpone it to section 5 where we discuss general

issues common to both directions of interaction.

4.2 Expert Application 1: Intelligent Database Usage

In the past few years, much resesarch has been directed towards
making database interfaces more intelligent. The main thrust is
towards more deductive capabilities while less is known about enhanced

functions to be applied to retrieved data.

The first DBMS allowed access only to the stored files, records,
and fields (relations, tuples, and attribute values in the relational
model of data [Codd 1970]). More recent systems provide view
mechanisns that allow the user to name windows through which only a
subset of the database is visible. In the relational Imodel, views are
often called virtual relations, For example, a virtual relation
"whole life insurance bearers" can be defined that contains customers

who have a whole life insurance poliey.

Traditionral view mechanisms are somewhat limited. In the above
example, a separate view of customers would have to be defined for
each type of insurance benefit. The selector concept introduced in

[Mall et al. 1982] allows the defirition of views with parameters.

Page 24

In our example, a selector

with benefit (T) for customer_relation
can be defined where T can assume values such as "whole life
insurance"” or "term annuity". The user can now request or alter the

value of a selected variable

customer[with benefit("term annuity")]

which defines a moving window whose focus depends on the parameter

chosen.

For querying (not wupdating) purposes, Prolog offers similar
facilities in the ™Mgeneralized view" rules presented in section 3.
The Prolog inference engine can perform deductions on these view

definitions, and thus answer queries not immediately answerable from

the stored data.

A number of researchers have investigated these possibilities and
some implemented systems exist. The solutions can be classified in
much the same way a’s the stages givern in section 3. There are:
integrated systems containing both the ES and the DBMS [Minker 1978],
[Warren 1981]; 1loosely coupled systems where the ES does all its work
before the DBMS is called [Chang 19781, [Grishman 1978]!
[Reiter 19781, [Henschen and Naqvi 1982], [Fishman and Naqvi 19821];
and finally the tightly coupled system DADM [Kellogg 1982] that

interleaves deduction in the ES with partial search in the DBMS,

Page 25

Besides offering the user a deduwtive formal query language, such
systems can also support other high-level wuser interfaces such as

natural language [Sagalowicz 19771].

Other approaches which additionally address intelligent wupdating

mechanisms will be described in section 4.3.2, below.

4,3 Expert Application 2: Intelligent Database Operation

The addition of general rules and inference mechanisms to a
database system may improve the user interface, but it also presents a
challenge to the database implementationresearcher. Not orly is the
goal to execute deductive processing efficiently buﬁ the new approach
can be exploited as well to improve the execution of more traditional
database operations. We investigate two areas: deduction-based query
optimization methods, and deduction-based integrity checking for

upd ate transactions.

4,3,1 Query Optimization -

It is of foremost importance to a DBMS that it contains a query
evaluation subsystem which identifies the fastest way to execute a
submitted query. To this purpose, a query is wusually standardized,
simplified, and transformed in a way that makes the application of
fast special-purpose algorithms feasible [Jarke and Koech 19821.
Simplification and standardization can be quite complex if difficult

queries are asked.

Page 26

A deductive component may use meta rules that guide the choice
among the many applicable query transformation rules., [Grishman 19781]
and [Reiter 1978] describe applications of deduction to the
simplification step. [Warren 1981] implements the well-krown query
transformation heuristics of testing sharp restrictions first, and

separating detachable subqueries in logic.

[Jarke and Koch 1983] develop a generalized heuristic called
range nesting that combines both ideas. The deduction mechanism,
howsver, 1is deterministic and contaired in the query 1language
compiler. An extension to this mechanism will use meta rules to
generate alternative strategies and compare their evaluation costs

based on knowledge about storage structures and database statistics.

Another transformation strategy that uses deduction makes more
direct use of the general rules that define the database intension
[Reiter 1978]. Semantic query processing [Kirg 1979, 19811, [Hammer
and Zdonik 1980] applies the integrity constraints of the database to

simplify the execution of queries.

Assume, for example, that the ES contains a legal constraint that
a minor may not get more than $3000 arnuity income. If now the
database is queried for customers with annuities of more than $3000
(or %5000, etc.), minors can be excluded from the search. Depending
on the physical database structuwre, this may or may not speed up
execution. Thus, this strategy also needs meta rules to guide the

application of constraints.

Page 27

Finally, the simultaneous optimization of multiple queries [Jarke
et al. 1982] can be supported by an ES. One strategy is to remember
selected query results to be used later [Finkelstein 1982], another to
recognize common subexpressions in a batch of queries. A last area
where expert knowledge is helpful is the complex problem of selecting

physical storage structures and access paths [Paige 1982].

4.,3.2 Transaction Management -

Changes in the database must obey the general laws defined by
static (i.e., data value, referential) and dynamic (i.e., data value
change) integrity constraints. The DBMS has to determine is which of
the many general laws apply to a speéific operation on specific data.
Again, a pattern-matching oriented deduction process can be used
[Nicolas and Yazdanian 1978], [Henschen et al. 1982]. Meta rules can
be used to determine the possible delay of integrity checking until
the changed datal is actually needed [Lafue 1982]. While this idea may
improve system efficiency it is unclear whether it is feasible from a
management standpoint to keep the integrity of the database unknown

over an extended period of time.

A, second question also affects the user interface of the system:
how to react to violations? [Nicolas and Yazdanian 1978] see three
alternatives: reject the operation; accept the operation but do not
change the database until further operations are submitted so that the
transaction as a whole leaves the database in a consistent state
[Gray 1981]; or trigger automatic changes to other data items to

bring the database back to a consistent state.

Page 28

The appropriate choice depends on many factors which can be
partially controlled by meta rules and partially by the user. A
knowledge-based database architecture proposed in [Jarke and
Shalev 1983] contains an input management system to avoid umnecessary

resubmission of transactions in such cases.

Language constructs such as the selector mechanism described in
section 4.2 can be wused for both query optimization and transaction
control, First, the definition predicate of the selector can be used
to identify the applicable integrity constraints for semantic query
optimization and wupdate control. Second, the selector defines
candidate physical access paths which may lend themselves to "view
indexing" [Roussopoulos 1982] in which the collection of answers to
the parameterized selection predicate is stored as a physical access
path. [Paige 1982] describes a method of "finite differencing" which
dynamically generates and maintains views for query optimization and

integrity control purposes.

5.0 ARCHITECTURAL AND TECHNICAL ISSUES IN COUPLING

To summarize ow overview of ES applications to database
management, it can be said that the techniques used both within and
between the two proposed stages of intelligent use and intelligent
operation are very similar., A system that incorporates most of the
prOpésed strategies in a wiform architecture should be clearly
feasible. On the other hand, such systems would need the same
coupling mechanisms as the ones described in section 3 which in turn

might greatly benefit from more intelligent databases. Therefore, in

Page 29

this last section of the paper we pose some architectural questions
looking at the interaction between ES and DBMS from a higher

perspective.

One might think that the natural architecture would be a uniform
integrated system written in and usable through one language: either
an extended database programming language [Schmidt et al. 1982] with
deductive capabilities, or an ES language with general programming

capabilities, such as Prolog [Kowalski 1981, Walker 19831.

However, not only has each of these languages 1its own
idiosyncrasies making it awkward to use in certain subsystems (e.g.,
complex computations in Prolog), but also this architecture defeats
the whole purpose of exploiting existing DBMS and quantitative
methods. We therefore have to exclude this theoretically elegant

alternative.

Three candidate architectures have been identified for the
coupling of independent systems. This categorization is based on
where processing takes place and how the interaction 1is controlled.

We discuss each architecture in turn.

One architecture calls for a total distribution of processing and
control. The two systems interact by exchanging messages, as in an
"actor" approach [Hewitt 1976, Dhar 1983]. Each interaction assumes a
master to slave relationship between the originator and the receiver
of the message, but both systems are self-contained "and can be
operated independently. An advantage of this architecture is a large

degree of application and system independence, allowing for

Page 30

transportability to other ES and DBMSs. How much each system each
system has to know about the other's capabilities is an important
consideration. The duplication of knowledge representations may
introduce the dangers of redundancy, namely 1inconsistency and

incompatibility.

At ;:.he other extreme, concentration of prqcessing and control, a
system integration can be envisiored. One of the two subsystems (ES
or DBMS) may assume a more dominant role. This approach has naturally
been followed by most researchers who focus on one direction of the
interaction between ES and DBMS, for example [Chang 1978, Fordyce and
Sullivan 1983, Kellogg 19821]. The architecture suggests a more
variable distribution of labor (e.g. where query optimization is
done) than the typically predetermined labor separation of distributed
systems. There is much flexibility and potential in such an
architecture, at the expense of transportability. Arnother difficulty
with this solution is the integration of additional ex ternal

subsystems.

Finally, in a third architecture, processing is distributed but
control is now the responsibility of a separate subsystem, a
supervisor program. In essence, the supervisor performs all the
necessary steps for interfacing the ES with the DBMS (e.g.,
translations) , and manages the interaction between them. This appears
as a compromise architecture with the main advantage of allowing for a
smoother interaction with other subsystems. Such subsystems include
mathematical models and modules for knowledge acquisition, generation

of alternative solutions [Reitman 1982], database design, and user

Page 31

inter faces. The challenging research question would be how to
implement a supervisor that makes full use of the capabilities of the

various subsystems without duplicating their features.

Within each architecture, means must be provided to translate
knowledge representations and transaction requests between subsystems.
As pointed out in section 3, the similarity between Prolog and the
relational data model makes this task relatively easy., If other
database models are used, however, intermediate ¢translation and
optimization steps become necessary. Depending on the architecture
chosen, it must be decided which subsystem is responsible for this

task.

6.0 CONCLUDING REMARKS

Several practical benefits from the cooperative use of expert
systems with database management systems were identified. The overall
goal of our work is an advanced system effectively supportiné business
decisions. Such a system would integrate database management, model

management, and expert system technology within the same architecture.

At New York University, we are exploring several strategies for
this goal. A stage-wise approach requiring simul tanreous research on
complementary topics as outlined in this paper is being designed and

implemented.

Page 32

Acknowledgments

The work reported in this paper is supported in part by a joint
study with International Business Machines Corporation. Jim Clifford
designed and implemented the internal relational database system in
Prolog and co-developed the staged approach to getting data into the
expert system. Taracad Sivasankaran did a major part of the initial
design and prelimirary implementation of the insurance expert system
used as an example in this paper. We also thank the other project
members, Hank Lucas, Ted Stohr, Norm White, and especially Walt
Reitman for encouragement and many helpful discussions. Fipally, we
thank Sibylle Hentsch of Hamburg University for aquainting us with the
intricacies of volcanoces off Iceland.

References

1. K.A.Bowen, R.A,Kowalski, "Amalgamating Language and Metalanguage
in logic Programming", Logic Programming, K. Clark and S.A.
Tarnlund, eds., Academic Press, 1982.

2. R.Brachman, "On the Epistemological Status of Semantic Networks",
in N.V.Findler (ed.), Associative Networks: Representation and
Use of Knowledge by Computer, Academic Press, 1977, 3-50.

3. M.Brodie, S.Zilles, Proc. Workshop on Data Ab straction,
Databases, and Conceptual Modelling, SIGMOD Record 11, 2 (1980).

4, M.Brodie, J.Mylopoulos, J.W.Schmidt (eds.), Perspectives on
Conceptual Modelling, Springer 1983.

5. B.Chandrasekaran, "Expert Systems: Matching Techniques to
Tasks", NYU Symposium on Artificial Intelligence Applications for
Business, New York, May 1983.

6. C.L.Chang, "DEDUCE 2: Further Investigations of Deduction in
Relational Databases", in H.Gallaire, J.Minker (eds,), Logic and
Databases, Plenum 1978, 201-236.

7. W.F.Clocksin, and C.S.Mellish, Programming in Prolog, Springer
1981.

8. E.F.Codd, "A Relational Model for Large Shared Data Bases", CACM,
Vol.13, No.6, June 1970, 377-387.

9. V.Dhar, "Desigring an Intelligent Decision Support System for
long Range Planning: An Artificial Intelligence Approach", Ph.D.
Thesis Overview Report, Pittsburgh, February 1983.

10. R.Davis, "Expert Systems: Where are we? And where do we go from
here?", Proc. Tth IJCAI, Vancouver, August 1981.

11

12‘

13.

4.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

Page 33

S.Finkelstein, "Common Expression Analysis in Database
Applications", Proc. ACM-SIGMOD Conf,, Orlando, Fl., 1982,
235-245.

D.Fishman, S.Nagvi, "An 1Intelligent Database System: AIDS™,
Proc. Workshop on Logical Bases for Data Bases, Toulouse,
December 1982,

K.J.Fordyce, G.A.Sullivan, "Artificial Intelligence in Decision
Support Systems: Presentation of an AI Technology and its
Application in Working pss", un published manuscript,
Poug hkeepsie, April 1983.

H.Gallaire, J.Minker (eds.), logic and Databases, Plenum 1978.

J.Gray, "The Transaction Concept: Virtues and Limitations",
Proc. T7th VLDB Conf., Cannes 1981, 144-154,

R.Grishman, "The Simplification of Retrieval Requests Generated
by Question Answering Systems", Proc. U4th VDB Conf., Berlin
1978, 400-406.

B.Grosz, "TEAM Extended Abstract", Proc. Philadelphia Database
Inter face Workshop (P.Buneman, ed.), Pniladelphia, October 1982.

M.Hammer , S.Zdonik: "Knowledge-Based Query Processing", Proc.
6th VLDB Conf., Montreal 1980, 137-147.

L.R.Harris, "User-Oriented Data Base Query with the ROBOT Natural
Language Query System", Proc. 3rd VLDB Conf., Tokyo 1977,
303-312.

L.Henschen, W.McCune, S.Nagqui, "Compiling Constraint-Checking
Formulas from First-Order Formulas", Proc. Workshop on Logical
Bases for Data Bases, Toulouse, December 1982,

L.Henschen, S.Naqvi, "On Compiling Queries in Recursive
First-Order Databases", Proc. Workshop on logical Bases for Data
Bases, Toulouse, December 1982,

C.Hewitt, "Viewing Control Structures as Patterns of Passing
Messages", AI Memo 410, MIT, Cambridge, December 1976.

M.Jarke, J.Koch, "A Survey of Query Optimization ir Centralized
Database Systems", NYU Working Paper Series, CRIS#i4, GBA 82-T3
(CR), November 1982,

z L]
M.Jarke, J.Koch, "Range Nesting - A Fast Method to Evaluate
Quantified Queries", Proc. ACM-SIGMOD Conf,, San Jose, May 1983.

M.Jarke, J.Koch, M.,Mall, J.W.Schidt, "Query Optimization
Research in the Database Programming Languages (DBPL) Project",
Database Engineering 5 (September 1982), 11-14.

26.

27.

28.

29.

30.

31.

32.

33.

34,

35.

36.

37.

38.

39.

Page 34

M.Jarke, J. Shalev, "A Database Architecture for Supporting
Business Transactions", NYU Working Paper Series CRIS #51, GBA
83-27 (CR), submitted for publication.

M.Jarke, Y.Vassiliou: "Choosing a Database Query Language",
submitted for publication, November 1982. :

C.Kellogg: "Knowledge Management: A Practical Aralgam of
Knowledge and Data Base Technology", Proc. NCAI 1982.

J.J.King, "Exploring the Use of Domain Knowledge for Query
Processing Efficiency", Technical Report STAN-CS-79-781, Stanford
University, December 1979.

J.J.King, "QUIST: A System for Semantic Query Optimization in
Relational Data Bases", Proc. 7th VLDB Conf., Cannes 1981,
510-517.

R.Kowalski, "logic as a Database Language", unpublished
manuscript, Imperial College, Lonrdon, July 1981. .

S.Kunifuji, H.Yokota, "Prolog and Relational Datab'ases for Fifth
Generation Computer Systems", Proc. Workshop on logical Bases
for Data Bases, Toulouse, December 1982.

G.Lafue, "logical Foundations for Delayed Integrity Checking",
Proc. Workshop on lLogical Bases for Data Bases, Toulouse,
December 1982.

M.Mall, M.Reimer, J.W.Sechmidt, "Data Selection, Sharing, and
Access Control in a Relational Scernario", in M.Brodie,
J.Mylopoulos, J.W.Schmidt (eds.), Perspectives on Conceptual
Modelling, Springer 1983.

M.Minsky, "A Framework for Representing Knowledge", The
Psychology of Computer Vision, P.H. Winston, ed., McGraw-Hill,
New York, 1975, 211-=2T77.

S.Nagvi, D,Fishman, L.Henschen, "An Improved Compiling Technique
for First-Order Databases", Proc. Workshop on logical Bases for
Data Bases, Toulouse, December 1982.

D.Nau, "Expert Computer Systems", Computer, February 1983, 63-85.

J.-M.Nicolas, K.Yazdanian, "Integrity Checking in Deductive
Databases", in H.Gallaire, J.Minker (eds.), logic and Databases,
Plenum 1978, 325-344,

J.-M.Nicolas, R.Demolombe, "On the Stability of Relational
Queries", Proc. Workshop on logical Bases for Data Bases,
Toulouse, December 1932,

uo‘

u1l

42,

43.

4y,

u5,

46.

u7.

ua.

49,

50.

51.

52.

53.

Page 35

J.P.Olson, S.P.Ellis, "PROBWELL - An Expert Advisor for
Determining Problems with Producing Wells", Proc. IBM
Scientific/ Engineering Conference, Poughkeepsie/N.Y., November
1982, 95-101.

R.Paige, "Applications of Finite Differencing to Database
Integrity Control and Query/Transaction Optimization", Proc.

Workshop on logical Bases for Data Bases, Toulouse, December

1982.

L.M.Pereira, A.Porto, "A Prolog Implementation of a Large System
on a Small Machine", Departmento de Informatica, Universidade
Nova de Lisboa, 1982.

R.Reiter, "Deductive Question-Answering on Relational Data
Bases", in H.Gallaire, J. Minker (eds.), Logic and Databases,
Plenum 1978, 149-178. '

W.Reitman, "Applying Artificial Intelligence to Decision Support:
Where Do the Good Alternatives Come From?", in M.J.Ginzberg,
W.Reitman, E,A.Stohr (eds.), Decision Support Systems, North
Holland Publ, Co., 1982.

J.A.Robinson, "A Machine Oriented Logic Based on the Resolution
Principle", JACM, 1965, Vol.1, No.4, 23-U41,

N. Roussopoulos, "View Indexing in Relational Databases", ACM-TODS
7 (June 1982).

D.Sagalowicz, "IDA: An Intelligent Data Access System"”, Proc.
3rd VLDB Conf., Tokyo 1977, 293-302.

J.W.Sehmidt, M.Mall, J.Koch, M.Jarke, "Database Programming
Languages", in P,Buneman (ed.), Proc. Philadelphia Database
Inter face Workshop, Philadelphia, October 1982.

E.A. Stohr, N.H. White, "User Interfaces for Decision Support
Systems: An Overview", International Jourral of Policy Analysis
and Information Systems 6, 4 (1982), 393-423.

R.C.Schank, Conceptual Information Processing, North-Holland, New
York, 1975.

S.A.Tarnlund, "logical Basis for Data Bases", unpublished, 1978.

L.Travis, C.Kellogg, "Deductive Power in Knowledge Management
Systems: Ideas and Experiments", Proc. Workshop on Logical
Bases for Data Bases, Toulouse, December 1982.

D.Tsichritzis, "Form Management", CACM 25 (1982), 453-478.

54.

55.

56.

57.

58.

59.

60.

61.

Page 36

Y. Vassiliou, J. Clifford, M. Jarke, "How does an Expert
System Get Its Data?", NYU Working Paper CRIS #50 , GBA 83-26
(CR), submitted for publication.

Y.Vassiliou, M.Jarke, "Query Languages - A Taxonomy" , in
Y.Vassiliou (ed.), Human Factors and Interactive Computer
Systems, Ablex, Norwood, N.J. 1983.

W.Wahlster, "Natural Language AI Systems: State of the Art and

.Research Perspective", in J.Siekmann (ed.), Proc. GWAI 81,

Springer 1981.

A.Walker, "Data Bases, Expert Systems, and PROLOG", NYU Symposium
on Artificial Intelligence Applications for Business", New York,
May 1983.

D.H.D.Warren, L.M.Pereira, F,Pereira, "PROLOG - The Language and
its Implementation Compared with LISP", Proc. Symp. on AI and
Programming Languages, SIGPLAN Notices, Vol.12, No.8, 1977,

D.H.D.Warren, "Efficient Processing of Interactive Relational
Data Base Queries Expressed in logie", Proec. Tth VLDB Conf.,
Cannes 1981, 272-282.

D.Waterman, F.Hayes-Roth (eds), Pattern Directed Inference

Systems, Academic Press, 1979.

R.Weyhrauch, "Prolegomena to a Theory of Mechanical Formal
Reasoning", Artificial Intelligence, Vol.13, 1980, 133-170.

