
QUERY PROCESSING STRATEGIES IN TIIE PASCALIR

RELATIONAL DATABASE MANAGEMIfNT SYSTEM

Matthias Jarke
Joachim W. Schmidt*

Center for Research on Information Systems
Computer Applications and Information Systems Area

Graduate School of Business Administration
New York University

Working Paper Series

CRIS !I33

GBA #82-28(CR)

This paper has been published in Proceedings 1982 ACM-SIGMOD
International Conference on Management of Data, Orlando, Florida,
June 1982, pp. 256-264.

*The work of Dr. Schmidt was supported in part by Deutsche
Forschungsgemeinschaft, DFG, under grant no. SCHM 45012-1.

QUERY PROCESSING STRATEGIES IN THE PASCAL/R
RELATIONAL DATABASE MANAGEMENT SYSTEM

ABSTRACT :

In the database programming language PASCAL/R, the
programming language PASCAL and concepts based on the
relational data model are integrated. The paper
investigates transformation strategies used in the PASCAL/R
system to evaluate queries with existential and universal
quantifiers. Intermediate data structures are described
using a high-level language tool called a reference to a
selected variable. The predicate calculus approach used in
PASCAL/R offers new insight into recently proposed query
optimization techniques and allows some of them to be
extended.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-82-28

Page 2

1.0 INTRODUCTION

PASCAL/R [141 is a PASCAL-like programming language
which offers a simple, structured, and uniform way to access
a relational database [4]. In this paper, we present
PASCAL/R5s construct for data selection and some strategies
for its efficient evaluation.

PASCAL/R's data definition and selection mechanisms
generalize and combine well-known PASCAL concepts. The
elementary set concept is extended to sets of structured
elements (relations). Relation-valued expressions can be
defined not only extensionally by enumeration of their
elements, but also intensionally by free variables that
range over relations and satisfy a selection predicate.
Logical expressions are extended to first-order predicates
by introducing existential and universal quantifiers.

The query evaluation strategies differ from most
recently published work [2,3,18,191 in that they take into
account universal quantification of variables. This has
consequences for the handling of empty relations as well as
for the generality of certain optimization techniques. A
version of the system described here has been operational
since spring, 1978 [7,8].

This paper is organized as follows. Section 2
describes first-order relational expressions in PASCAL/R,
Section 3 introduces language constructs and intermediate
data structures used in query evaluation. Section 4
presents strategies for efficiency-oriented query
transformation, Section 5 reviews our results and gives
directions for future research.

2.0 RELATIONAL EXPRESSIONS IN PASCAL/R

Figure 1 shows the declaration of a sample database in
PASCAL/R. The four relations represent selected aspects of
a computer science department: Employees, their recent
publications, courses, and a (current) timetable that
associates employees and courses. A RELATION can hold a
variable number of identically structured elements. The
elements are defined by component types (e.g.! daytype,
enumbertype) and are denoted by component identifiers (e.g.,
tday, enr). The list of component identifiers in angular
brackets denotes the key.

A SELECTION is an intensional set definition used to
compose a relation from other relations. It consists of two
parts: A COMPONENT SELECTION specifies the components of
the elements of the resulting relation. A SELECTION
EXPRESSION specifies constraints on the relations contained
in the component selection. Syntactical details can be

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-82-28

Page 3

found in [173, The following example illustrates the use of
a selection.

EXAMPLE 2.1:

Assign to the unary relation, enames, the names of
the employees of status professor who did not
publish any papers in 1977 or who currently offer
courses at a level of sophomore or lower.

enames: =
[<e.ename> OF EACH e IN employees:
(e.estatus = professor)
AND
(ALL p IN papers
((pepyear <> 1977) OR (e.enr <> p-penr))

OR
SOME c IN courses ((c.cleve1 <= sophomore)
AND
SOME t IN timetable
((c.cnr = t.tcnr) AND (e.enr = t.tenr))))l

As can be seen from the above example, the selection
expression is a well-formed formula (wff) of an applied
many-sorted first-order predicate calculus. Its atomic
formulae are called JOIN TERMS; they can be either monadic
(e . g . , e.estatus = professor) or dyadic (e.g., e.enr =
t,tenr). Any of the comparison operators =, <>, <, <=, >,
>= may be used. Element variables (e.g., e) range over
relations (e.g., employees) as declared in a RANGE
EXPRESSION (e.g., e IN employees). These range-coupled
variables can be free (EACH e IN employees), existentially
quantified (SOME t IN timetable), or universally quantified
(ALL p IN papers). A full definition of the calculus is
given in E81.

A. Schmidt El31 proved that an expression of a
many-sorted calculus can be converted into an equivalent one
of a one-sorted calculus by introducing range expressions as
another type of atomic formula and changing the original wff
as follows:

Substitute

SOME rec IN re1 (WFF)
by
SOME rec ((rec IN rel) AND WFF)

and

ALL rec IN re1 (WFF)
by
ALL rec (NOT (rec IN re11 OR WFF).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-82-28

Page 4

Most of the well-known transformation rules for
one-sorted predicate calculus El21 apply directly to the
many-sorted case. The following lemma shows, however, two
exceptions where empty relations may cause unexpected
results.

LEMMA 1: Let A be a wff in which the variable, rec,
does not occur and B any wff. Then the following four rules
hold for the many-sorted calculus:

1. A AND SOME rec IN re1 (B) =
SOME rec IN re1 (A AND Bf
(as in the one-sorted calculus)

2. A OR SOME rec IN re1 (B) =
- A, if re1 = E l (the empty relation)
- SOME rec IN re1 (A OR B), otherwise

3. A AND ALL rec IN ref (B) =
- A, if re1 = [I
- ALL rec IN re1 (A AND B), otherwise

4. A OR ALL rec IN re1 (B) =
ALL rec IN re1 (A OR B)
(as in the one-sorted case)

Proof: By transformation into one-sorted formulae.

Many systems evaluate queries directly as given by the
user. We prefer a standardized starting point for
optimization. Therefore, the PASCAL/R compiler transforms
each selection expression into prenex normal form with a
matrix in disjunctive normal form. It assumes that all
range relations are non-empty but provides information to
adapt the standard form at runtime if necessary.

EXAMPLE 2.2:

The statement in EXAMPLE 2.1 translates to

enames : =
E<e.ename> OF EACH e IN employees:
ALL p IN papers
SOME c IN courses SOME t IN timetable
((e.estatus=professor) AND (p,pyear<>1977)
OR
(e.estatus=professor) AND (p.penr<>e.enr)
OR
(e.estatus=professor) AND
(c.clevel~=sophomore) AND
(t.tenr=e,enr) AND (t.tcnr=c.cnr))l.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-82-28

Page 5

If papers = [I, this must be changed to

enames:=[<e.ename> OF EACH e IN employees:
e.estatus = professor].

In contrast, the above normal form would return the
names of all employees.

In a query with only existential quantification, each
conjunction of the standard form can be evaluated
separately, because

SOME rec IN re1 (WFF1 OR WFF2)

is equivalent to

SOME recl IN re1 (WFF~) OR SOME rec2 IN rel (wFF~)

where WFFl and WFF2 are any wffs. We show in section 4.3,
below, that fully independent evaluation of conjunctions is
not always desirable. In most queries with universal
quantifiers, it is not even permitted, because the above
separation transformation is not applicable.

3.0 QUERY EVALUATION FRAMEWORK

In this section, we outline a framework for query
evaluation. First, we introduce a high-level language tool
which allows one to manipulate element references (a
generalization of TID's used in other systems) in PASCAL/R.
We then discuss the data structures used in our algorithms.
Based on these concepts, we describe a phase-structured
procedure to evaluate standard form queries. In section 4,
we investigate how to transform queries in order to reduce
the processing effort.

3.1 Language Tools

In this subsection, a few more language constructs are
introduced that can be used to describe the PASCAL/R query
evaluation algorithms.

At first, a key-oriented selector mechanism,
rel[keyval], is introduced by which so-called SELECTED
VARIABLES can be named. This array-like notation selects
elements of a relation, rel, by their key value, keyval, and
makes them accessible as variables E171.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-82-28

Page 6

Based on selected variables, we introduce the notion of
a REFERENCE, @rel[keyvall, to a selected variable by which
the access to a selected variable can be supported. A
reference value can be stored in a variable of some newly
introduced reference type which is denoted by prefixing the
referenced relation variable by @. A selected variable can
be regained from its reference by postfixing a reference
variable by @. If we have an element variable, r, ranging
over relation rel, we will often use @r as a short-hand for
@rel[r.keyl. More details of these language constructs can
be found in [8,161.

EXAMPLE 3.1:

A primary index to the relation, employees, that
associates key values and references is initialized
and maintained by the following sketch of a program
(:+ denotes the insert operator in PASCAL/R).

VAR employees : RELATION <enr> OF
RECORD ... END;

enrindex : RELATION <enr> OF
RECORD

enr : enumbertype;
eref : @employees

END ; . ..
BEGIN ...
enrindex := [<e.enr,@e> OF

EACH e IN employees: true];
. * -

employees :+ [<20, technician, 'Highman'>];
enrindex :+ [<20, @employees[20]>~;
* . - .

END,

3.2 Data Structures

All intermediate structures described in this
subsection are given in terms of PASCAL/R relations, mostly
using references as components. Their implementation is
discussed in [7,81.

A SINGLE LIST is a unary relation that stores
references to relation elements satisfying a monadic join
term. Similarly, an INDIRECT JOIN [ll] is a binary relation
that stores references to pairs of relation elements that
satisfy a dyadic join term. Indirect joins are generated in
two steps:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-82-28

Page 7

First, a (partial) INDEX on one relation involved in
the join term is created. Next, the second relation is
tested against the index. The first step can be omitted, if
permanent indexes exist.

Figure 2 shows declarations for the single lists,
indirect joins, and indexes of the join terms in EXAMPLE
2.2.

Let n variables vl, ..., vn occur in the selection
expression. Relations with up to n components of type
reference are used to store references to relation element
combinations satisfying parts or all of the matrix of join
terms.

3.3 Outline Of The Procedure

The structure of the evaluation technique outlined
below is based on an early proposal by Frank Palermo [ll].

In order to reduce working storage requirements,
complete relation elements are replaced by references and no
operation works on more than two relations. The final
result is combined step by step from intermediate results
representing the solution of subqueries. Therefore, the
algorithm has a stage or phase structure:

1. The COLLECTION PHASE evaluates range expressions
and single join terms. The results are single
lists and indirect joins for all monadic and dyadic
join terms in the selection expression. This phase
performs data compression (records to references)
and data reduction (testing join terms).

2. The COMBINATION PHASE manipulates only reference
relations; it evaluates logical operators and
quantifiers in three steps:

Each conjunction is evaluated by combining the
single lists and indirect joins obtained in the
collection phase into n-tuples of references where
n is the number of variables in the selection
expression, This step involves operations like
join or Cartesian product [6 , 9 1 of reference
relations.

The full disjunctive form is evaluated by a
union operation on all these sets of n-tuples.

If quantified variables occur in the selection
expression, quantifiers are evaluated from right to
left, using the relational algebra operations of
projection for existential quantification and

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-82-28

Page 8

division for universal quantification L.5, 111.

3. The CONSTRUCTION PHASE dereferences the results
obtained by the combination phase and projects on
the components specified in the component
selection.

EXAMPLE 3.2:

The subexpression of EXAMPLE 2.2,

(c.cleve1 <= sophomore) AND (c.cnr = t.tcnr)

is evaluated as follows: In the collection phase,
a single list, sl csoph, and an indirect join,
ij - c - t, are created using an index, ind - t - cnr:
sl csoph := [<@c> OF EACH c IN courses: -

c.cleve1 <= sophomore];
ind - t - cnr := [<t.tcnr,@t> OF

EACH t IN timetable: true]:
ij - c - t := [<@c,t.tref> OF

EACH c IN courses,
EACH t IN ind t cnr: - -

c.cnr = t.tcnr1;

In the combination phase, a reference relation,
refrel, is built to evaluate the AND operator:

refrel := [<cl.cref,c2.tref> OF
EACH cl IN sl - csoph, EACH c2 IN ij - c - t

: cl.cref = c2,crefl;

4.0 QUERY OPTIMIZATION STRATEGIES

In the previous section, we outlined an algorithm that
can evaluate general first-order relational expressions. In
this section, we discuss some approaches we have followed in
the PASCAL/R query evaluation system to improve the
efficiency of query evaluation.

Basically, there are two lines of attack. Firstly, one
can transform a query so that its evaluation avoids repeated
access to identical data and keeps intermediate data
structures small. Secondly, one can optimize the
representation of intermediate structures and operations
critical for the efficiency of the evaluation process, In
this paper, we comment on query transformation; specific
representation techniques are discussed in E81.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-82-28

Page 9

Generally speaking, PASCAL/R1s query transformations
have the effect of shifting work load from the combination
phase to the collection phase in order to decrease
combinatorial growth inherent in the combination of
intermediate results, Transformation and evaluation of
relational expressions are guided by the following
strategies:

1. Form subexpressions so that as many computations on
a database relation as possible can be done "in
parallel" without access to other database
relations,

2. Determine nested subexpressions that can be
evaluated in one step.

3. Decrease the cardinality of range relations.

4. Recognize special cases and provide specific
evaluation techniques for them.

4.1 Parallel Evaluation Of Subexpressions

I n section 3.3, each relation is accessed as many times
as variables ranging over it occur in (different) join
terms, Strategy 1 builds subexpressions that can be
evaluated in parallel; thus, each range relation is read no
more than once [Ill.

EXAMPLE 4.1:

In EXAMPLE 3.2, the subexpression

(c-clevel <= sophomore) AND (c.cnr = t,tcnr)

of the query example is transformed into the
subexpression

[<cs.cref,ct.tref> OF
EACH cs IN [<@c> OF EACH c IN courses:

c.cleve1 <= sophomore],
EACH ct IN [<@c,s,tref> OF

EACH s IN [<t.tcnr,@t> OF
EACH t IN timetable: true],

EACH c IN courses
: c.cnr = s.tcnr1

: cs.cref = ct.cref1

The two subexpressions defining cs and ct
require access to the relation, courses. If the
subexpression ranging over timetable is already

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-82-28

Page 10

evaluated before processing of courses starts, both
subexpressions can be evaluated in parallel while
reading the relation one-element-at-a-time E151.

4.2 Evaluation Of Nested Subexpressions

By our first strategy, subexpressions referring to the
same database relation are evaluated in parallel.
Evaluation of a nested subexpression, however, is not
started, before all of its subexpressions have been
evaluated, i.e, in the combination phase.

Strategy 2 determines those nested subexpressions that
can be evaluated in one step, Candidates are conjunctions
of join terms over the same variable. If such a conjunction
contains both monadic and dyadic terms, the monadic terms
can be used to restrict the indirect joins for the dyadic
terms; consequently, single lists need not be constructed.
If there are no dyadic terms over the variable, one single
list represents the relation elements which satisfy all
monadic join terms in the conjunction.

EXAMPLE 4.2:

The subexpression

(c.clevel <= sophomore) AND (c.cnr = t.tcnr)

can be evaluated in one step while reading the
relation, courses:

refrel := E l ;
FOR EACH c IN courses: true DO

IF c.cleve1 <= sophomore
THEN refrel - 31 :+ [<@c,t.tref> OF

EACH t IN ind t cnr: - -
t.tcnr = c.cnrl;

Note, that this technique also allows two indirect
joins to restrict each other; details are given in [7 , 8 1 ,
In many cases, however, the evaluation of a conjunction of
dyadic join terms has to be partially deferred to the
combination phase.

Finally, the parallel evaluation of join terms is
demonstrated for EXAMPLE 2.2 by a sequence of
element-oriented PASCAL/R statements.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-82-28

Page 11

EXAMPLE 4.3:

FOR EACH t IN timetable: true DO
BEGIN

ind t cnr :+ E<t.tcnr,@t>l; - -
ind - t - enr :+ [<t.tenr,@t>]

END ;
FOR-EACH c IN courses: true DO
IF (c.cleve1 <= sophomore)
THEN FOR EACH t IN ind - t - cnr:

t.tcnr = c.cnr DO
ij c t :+ f<@c,t.tref>l;

FOR EACB 5 IN papers: true DO
BEGIN

IF p.pyear <> 1977
THEN sl p77 :+ [<@p>l;
ind - p - enr :+ [<p.penr,@p>j

END ;
FOR EACH e IN employees: true DO
BEGIN

IF e.estatus = professor
THEN sl prof :+ [<@e>j;
IF e.esFatus = professor
THEN FOR EACH t IN ind - t - enr:

t.tenr = e.enr DO
ij - e - t :+ [<@e,t.tref>l;

IF e.estatus = professor
THEN FOR EACH p IN ind - p - enr:

p,penr <> e.enr DO
ij - e - p :+ [<@e,p.pref>l

END :

4.3 Extended Range Expressions

The cardinality of range relations has a very strong
impact on the time and storage consumption of query
evaluation. Therefore, our third strategy looks for query
transformations that replace database range relations given
by the user by relational expressions on these database
relations.

EXAMPLE 4.4:

The reduction of intermediate structures shown in
EXAMPLE 4.2 can be achieved in a totally different
way, The range expression for c is extended from
the database relation courses to the relational
expression

[EACH c IN courses: c.cleve1 <= sophomore].

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-82-28

Page 12

By this transformation, the subexpression displayed
in EXAMPLE 4.1 simplifies to

[<@c,s.tref> OF
EACH c IN [EACH c IN courses:

c.cleve1 <= sophomore],
EACH s IN [<t.tcnr, @t> OF

EACH t IN timetable: true]
: c.cnr = s.tcnr1

Although, for this example, the effect of strategy 3 is
the same as that of strategy 2, in general the extension of
range expressions is more efficient for query optimization,
because it works on a query as a whole and takes into
account the quantifiers. The distinction between the two
strategies has, to our knowledge, not been recognized in the
literature.

Given a standard form selection expression, the
PASCAL/R compiler can find the appropriate monadic
expression, say S(rec1, to extend the range expression of
some variable, rec. To do so, it uses the equivalences

SOME rec IN re1 (S(rec) AND WFF) =
SOME rec IN [EACH r IN rel: S(r)l (WFF)

for existentially quantified variables and

ALL rec IN re1 (NOT (~(rec)) OR WFF) =
ALL rec IN [EACH r IN rel: ~(r)l (WFF)

for universally quantified variables. Free variables are
handled as if existentially quantified.

The current system version supports only conjunctions
of join terms as range expression extensions. The use of
the more general conjunctive normal form is expected to
improve further the efficiency of the system by reducing the
number of conjunctions in the disjunctive form of the
remaining matrix.

The subsequent example demonstrates the advantages of
extended range expressions over strategy 2.

EXAMPLE 4.5:

Provided all range relations are non-empty,
our sample query can be transformed to

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-82-28

Page 13

enames : =
[<e.enarne> OF
EACH e IN [EACH e IN employees:

e.estatus = professor]:
ALL p IN [EACH p IN papers: p.pyear = 19771
SOME c IN [EACH c IN courses:

c.cleve1 <= sophomore]
SOME t IN timetable
((p.penr <> e.enr)
OR
(t.tenr = e.enr) AND (t.tcnr = c.cnr))l

A comparison with EXAMPLE 4.3 shows that most profit
may be gained in the case of a universally quantified
variable. There is one conjunction less to be evaluated and
the size of indirect joins is reduced considerably. In
addition, the evaluation of the employees relation is more
efficient, as e.estatus=professor is tested only once for
each element,

4.4 Specific Techniques For Special Cases

Bottlenecks arise in the combination phase when the
intermediate results from the collection phase are combined
into larger reference relations - in most cases just to be
reduced again to a comparatively small set of references to
qualified relation elements. Strategy 4 breaks up the
strict phase structure by moving quantifiers into the matrix
and evaluating them in the collection phase.

Consider a selection expression with f free variables
1 , . , vf) and n-f quantified variables (v(f+l), ... ,
vn). The matrix in disjunctive form is a disjunction of
conjunct ions

where c consists of AND-connected join terms.

As the quantifiers must be evaluated from right to
left, we can restrict our attention to vn. In which cases
can the quantifier of vn be evaluated already in the
collection phase?

1. Let vn be existentially quantified. Each
conjunction can be evaluated separately and, by
Lemma 1, we can shift the quantifier to the right
of those terms in which vn does not occur. The
quantified sub-wff can be evaluated separately.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-82-28

Page 14

2. If vn is universally quantified, splitting is
possible only by Lemma 1, if vn occurs in no more
than one conjunction. This conjunction can be
split arbitrarily, if the range relation of vn is
non-empty.

EXAMPLE 4.6:

In EXAMPLE 2-2, p occurs in two conjunctions; no
immediate quantifier evaluation seems possible. On
the other hand, in EXAMPLE 4.5, p occurs in only
one conjunction, because extended range expressions
are applied. Quantifier evaluation can be
performed in the collection phase.

The possibility of splitting a formula is of interest
only if there is a way to evaluate the quantified
sub-formula more efficiently than by the standard algorithm.

Here, we restrict ourselves to those cases where there
is only one additional variable (say vm) in the quantified
sub-formula, i.e. it consists only of dyadic join terms
over vn and vm in addition to monadic terms over vn. This
can often be achieved by swapping quantifiers. Quantifiers
may be swapped, if they are equal, or by application of the
various forms of Lemma 1.

The technique works as follows. When vnrel is read,
instead of a complete index only its value list is
generated. Afterwards, when vmrel is read, the quantifier
of vn can be evaluated, because it can immediately be
decided for each element of vmrel whether it corresponds to
SOME respectively ALL elements of vnrel or not. The further
handling is similar to that for monadic join terms. Note
that a similar approach was chosen to resolve chained
queries in SQL [181: however, the user has to decide upon
chaining.

For queries without universal quantifiers where
arbitrary quantifier swapping is allowed, thorough
theoretical results recently developed in a distributed
system environment [2 , 3 1 show under which circumstances the
system can fully resolve a query in the collection phase.

The advantages of quantifier evaluation in the
collection phase can be increased by application of the
following considerations:

If the relational operator of the join term connecting
vm and vn is < or <= (symmetric considerations hold for > or
>=), only one component value of vnrel must be stored. If
vn is existentially quantified, this is the maximum value,
otherwise it is the minimum value of the value list, The

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-82-28

Page 15

reason is that "less than SOME vn component value" is
equivalent to "less than the maximum" and "less than ALL
values" means "less than the minimum".

Also, if the relational operator = occurs combined with
the quantifier ALL of vn, or the operator <> combined with
quantifier SOME, at most one value need to be stored.
Either there is only one component value in vnrel, or the
subexpression can at once be said to be false in the ALL
case and true in the SOME case, because a value in virel
cannot be equal to two different values in vnrel. This
argument assumes that there is a value in virel, i.e., virel
is non-empty, If virel is empty, the result of the
subexpression is known anyway.

EXAMPLE 4.7:

We apply strategy 4 to EXAMPLE 4.5 where the
quantifier sequence of t and c is changed. So we
have the query:

enames : =
[<e.ename> OF
EACH e IN [EACH e IN employees:

e-estatus = professor]:
ALL p IN [EACH p IN papers: p.pyear = 19771

(p.penr <> e.enr)
OR
SOME t IN timetable

((t.tenr = e,enr) AND
SOME c IN [EACH c IN courses:

c.cleve1 <= sophomore]
(c.cnr = t,tcnr))l

The evaluation can be sketched by the following
sequence of statements:

cset:= [<c.cnr> OF
EACH c IN [EACH c IN courses:

c.clevel <= sophomore1
: truel;

tset:= [<t.tenr> OF EACH t IN timetable:
SOME c in cset (c.cnr = t,tcnr)];

pset:= [<p.penr> OF
EACH p IN [EACH p IN papers:

p.pyear = 19771
: truel;

enames : =
[<e.ename> OF
EACH e IN [EACH e IN employees:

e.estatus = professor]:
SOME t IN tset (t.tenr = e.enr)
OR
ALL p in pset (p.penr <> e.enr)l;

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-82-28

Page 16

5.0 SUMMARY AND CONCLUSIONS

Logic and evaluation of relation-valued expressions
with quantifiers and various comparison operators were
analyzed in the framework of the integrated database
language PASCAL/R. The language construct "reference" was
introduced to allow a high-level language implementation.

In the area of query optimization, we believe our
contributions to be the following. Firstly, the widely used
technique of pre-evaluating monadic join terms within a
conjunction of join terms was extended: Parallel evaluation
of join terms while reading a relation allows dyadic join
terms to restrict each other and the extension of range
expressions is a more global way to exploit monadic join
terms. Secondly, it was demonstrated, how "semi-join"
techniques [2 , 3 1 can be interpreted from a general
first-order predicate calculus point of view and extended to
the case of universal quantifiers.

The paper concentrated on logic-based transformations,
Ongoing research tries to integrate them with optimal use of
permanent access paths and to develop further appmaches to
improve the phase structure of the algorithm.

ACKNOWLEDGMENTS

Manuel Mall gave important input to the definition of
selected variables. We would also like to thank Juergen
Koch, Ted Stohr, and one of the referees for helpful
comments which improved the English presentation of the
paper.

REFERENCES

1. M.M.Astrahan et al.: System R: Relational Approach to
Database Management, ToDS 1 (1976), 97-137

2. P.A.Bernstein, D.-M.W.Chiu: Using Semi-Joins to Solve
~elational Expressions, JACM 28 (1981), 25-40

3. P.A.Bernstein, N.Goodman, E , Wong , C.L.Reeve,
J.B.Rothnie: Query Processing in a System for
~istributed Databases (SDD-I), ToDS 6 (19811, 602-625

4. E.F.Codd: A Relational Model of Data for Large Shared
Data Banks, CACM 13 (1970), 377-387

5. E.F.Codd: Relational Completeness of Data Base
Sublanguages, Courant Computer Science Symposium, New
York 1971, 65-98

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-82-28

Page 17

L.R.Gotlieb: Computing Joins of Relations, Proc.
ACM-SIGMOD Conf., San Jose 1975

M.Jarke: Entwurf und Implementation von Algorithmen
zur Behandlung von Anfragen an relationale Datenbanken,
unpubl. diploma thesis, Hamburg 1978 (in German)

M.Jarke, J.W.Schmidt: Evaluation of First-Order
Relational Expressions, IFI-HH-B-78/81, Hamburg 1981

W.Kim: A New Way to Compute the Product and Join of
Relations, Proc. ACM-SIGMOD Conf., Santa Monica 1980

W.Kim: Query Optimization for Relational Databases,
IBM RJ3081, San Jose 1981

F.P.Palermo: A Database Search Problem, 4th Computer
and Information Science Symposium, Miami Beach 1972,
67-101

W.V.O.Quine: Mathematical Logic, 5th ed.,
CambridgelMass. 1965

A.Schmidt: Ueber deduktive Theorien mit mehreren
Sorten von Grunddingen, Mathematische Annalen 115
(1938), 485-506 (in German)

J,W.Schmidt: Some High-Level Language Constructs for
Data of Type Relation, ToDS 2 (1977), 247-261

J.W.Schmidt: Parallel Processing of Relations: A
Single-Assignment Approach, Proc, 5th VLDB, Rio de
Janeiro 1979

J.W.Schmidt: Generalized Selection Mechanisms for
Relations (forthcoming)

J.W.Schmidt, M.Mal1: PASCAL/R Report, IFI-HH-B-72/81,
Hamburg 1981

P.G.Selinger et al.: Access Path Selection in a
Relational Database Managament System, Proc.
ACM-SIGMOD Conf., Boston 1979

E.Wong, K.Youssefi: Decomposition - A Strategy for
Query Processing, ToDS 1 (1976), 223-241

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-82-28

Page 18

FIGURE 1: DECLARATION OF SAMPLE DATABASE

TYPE statustype =
nametype =
titletype =
roomtype =
yeartype =
timetype =
daytype - -
leveltype =
enumbertype=
cnumbertype=

(student, technician, assistant, professor);
PACKED ARRAY [1..10] OF char;
PACKED ARRAY [1..40] OF char;
PACKED ARRAY [1.,5] OF char;
1900..1999;
08000900..18002000;
~monday,tuesday,wednesday,thursday,friday~;
(freshman,sophomore7junior7senior);
1..99;
1. .99;

VAR employees : RELATION <enr> OF
RECORD

enr : enumbertype;
ename : nametype;
estatus : statustype

END ;

papers : RELATION <ptitle,penr> OF
RECORD

penr : enumbertype;
PYear : yeartype;
ptitle : titletype

END ;

courses : RELATION <cnr> OF
RECORD

cnr : cnumbertype;
clevel : leveltype;
ctitle : titletype

END ;

timetable : RELATION <tenr,tcnr,tday> OF
RECORD

tenr : enumbertype;
tcnr : cnumbertype;
tday : daytype;
t t ime : timetype;
troom : roomtype

END ;

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-82-28

Page 19

FIGURE 2: DECLARATION OF AUXILIARY STRUCTURES

(* single lists *)
VAR sl prof : RELATION <eref> OF RECORD eref : @employees END;

slp77 : RELATION <pref> OF RECORD pref : @papers END;
sl-csoph: - RELATION <cref> OF RECORD cref : @courses END;

(* indirect joins *)
ij c t - - : RELATION <cref,tref> OF

RECORD
cref : @courses;
tref : @timetable

END ;
ij e t - - : RELATION <eref,tref> OF

RECORD
eref : @employees;
tref : @timetable

END ;
ij e p - - : RELATION <eref,pref> OF

RECORD
eref : @employees;
pref : @papers

END ;

(* indexes * I
ind - t - enr : RELATION <tenr,tref> OF

RECORD
tenr : enumbertype;
tref : @timetable

END ;
ind - t - cnr : RELATION <tcnr,tref> OF

RECORD
tcnr : cnumbertype;
tref : @timetable

END ;
ind p enr : RELATION <penr,pref> OF - -

RECORD
penr : enumbertype;
pref : @papers

END ;

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-82-28

