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ABSTRACT

Efficient ways to process unanticipated queries
are a crucial prerequisite for the success of
generalized database management systems. A wide
variety of approaches for improving the performance
of query evaluation algorithms have been proposed:
logic-based and semantic transformations, fast
implementations of basic operations, and combina-
torial or heuristic algorithms for generating and
choosing among alternative access plans. This
paper surveys these approaches in the framework

of a general query evaluation procedure using the
relational calculus representation of queries.

The focus is on centralized database systems; some
relationships to other system types are studied.
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INTRODUCTION

Database management systems (DBMS) have become a standard tool
for shielding the computer user from details of secondary storage
management. This is supposed to improve the productivity of
application programmers and to facilitate access of computer-naive

end users.

There have been two major research areas in database systems.
One is the analysis of data models into which the real world can be
mapped and on which user interfaces for different user types can be
built. Such conceptual models iﬂclude the hierarchical, the
network, the relational, and a number of semantic-oriented models
and have been reviewed in a large number of books and surveys

rcHAM761, (TAYL767, TTsIC767, TKIM797.

A second area of interest is safe and efficient implementation.
Data have become a central resource of most organizations. Each
implementation meant for production use must take this into account
by guaranteeing safety of the data in the cases of concurrent access

[BERN81e], recovery (VERH78', and reorganization "SOCK79].

On the other hand, a main criticism of many early DBMS's has
been their lack of efficiency in handling the general operations

they offer, especially the content-based access to data by queries.

Query optimization tries to solve this problem. In doing so,

it has to integrate a large number of techniques and strategies
ranging from logical transformations of queries to the optimization

of access paths and the storage of data on the file system level.
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Traditionally, all these approaches use different languages to
describe their solutions. This is probably one of the reasons that
there has not been a comprehensive survey of query optimization

techniques so far.

The goal of this paper is to discuss guery optimization
techniques in the common framework of the relational calculus
representation of queries. This has been shown to be technically
equivalent to a relational algebra representation TCODD72]7,
TKILUG82a], and extendible to the implementation of network DBMS
[DAYAS82]. TFor the sake of a reasonable size, the paper concentrates
on query optimization in centralized DBMS. This means, that the

following related areas will not be treated in detail:

User optimization: The overall cost of an information system

is composed of the DBMS cost and the costs of user efforts to
work with the system. The two areas interface in the
functionality and usability of the query language fvasss2?,
TJARK82b!, especially the response time of the system. If one
assumes given functional capabilities of the query language and
a response time minimization objective of the query
optimization system, query optimization can be handled as a

separately tractable subproblem of user optimization.

File Structures: A query optimization algorithm has to choose

among a variety of existing access paths to resolve a query.
The internal details of implementing such access paths,
however, and the derivation of the related cost factors, are

beyond the scope of this paper.
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Distributed DBMS: The physical distribution of data in a DBMS

has been the subject of much recent research in concurrency
control and query optimization. Distributed query processing
is related to centralized processing in the sense that it uses
the techniques presented here for local pre-processing but the
specific communications-related approaches will not be

discussed in detail.

The paper is organized as follows. Section 1 gives a global
framework for guery optimization. A top-down approach integrates

the different levels discussed in subsequent sections.

Section 2 compares four techniques for representing queries in
terms of their suitability for optimization. Section 3 mostly
relies on one of these techniques, the relational calculus, for
presenting logic-based transformation methods of query optimization.
The emerging area of semantic query optimization is addressed

briefly.

After being transformed, a query must be mapped into a sequence
of operations that finally return the requested result. Section 4
analyzes the implementation of such operations on a given low-level
system of stored data and access paths. Finally, section 5 presents
optimization procedures“to integrate these operations into a

globally optimal access plan.
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1. THE QUERY OPTIMIZATION PROBLEM

This section states the objectives of query optimization and
presents a general procedure in order to structure the solution

process.

1.1 Queries

A guery is a language expression that describes data to be
retrieved from a database. In the context of query optimization, it
is often assumed that queries are expressed in a content-based {and
often set-oriented) manner which gives sufficient choice among

alternative evaluation procedures.

Queries are used in several settings. The most obvious
application are direct requests by end users who need information
about structure or content of the database. If there are only
standard requests, queries can be optimized manually by programming
the associated search procedures and offering the user menu
selection or similar techniques. However, an automatic query
optimization system becomes necessary, if ad hoc queries are asked

using a general purpose query language.

A second application is the use of queries in transactions
which change the stored data in a way that is based on their current

value ("give all professors a 10% salary increase").

Finally, query-like expressions are used internally in a DBMS,

for example, to check integrity constraints.
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1.2 Optimization Objectives

The economic principle requires that any optimization either
tries to maximize the output for a given amount of resources, or to
minimize the resource usage for a given output. Query optimization
tries to minimize the response time for a '‘given query language and

mix of query types (if known) in a given system environment.

In order to allow for a fair comparison of efficiency, the
functional capabilities of the systems to be compared must be
similar. The requirement of "relational completeness" coined by
fcopD72? (compare section 2.1, below) has become a quasi-standard.
Therefore, the techniques surveyed in this paper are presented as
contributions to implementing queries in a relationally complete

language with minimal evaluation cost {(i.e., response time).
The total cost to be minimized is the sum of

Communication Cost: The cost of transmitting data from the

site where they are stored to the sites where computations are
performed and results are presented. These costs are composed
of costs for the communication line which are usually related
to the time the line is open, and of costs for the delay in
processing caused by transmission. The latter - more important
for query optimization - is often assumed to be proportional to

the amount of data transmitted.

Secondary Storage Access Cost: The cost of {or time for)

loading data pages from secondary storage into main memory.
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Storage Cost: The cost of occupying secondary storage and

memory buffers over time. Storage costs are relevant only, if

storage becomes a system bottleneck and is variable between

queries. The latter is usually not true.

Computation Cost: The cost for (or time of) using the CPU.

The structure of query optimization algorithms is strongly

influenced by the trade-off among these cost components.

In long-range distributed DBMS, communication delay dominates
the costs while the other factors are only relevant for local sub-

optimization.

In centralized systems, the stress is on minimizing the time
for secondary storage accesses although, for complex queries, the

CPU costs may be quite high [GOTL757.

Finally, in locally distributed DBMS, all factors have similar
weights resulting in very complex cost functions and optimization

procedures.

This paper focuses on query optimization in centralized DBMS.
This can be justified as follows. Centralized query optimization
appears as a subproblem”in distributed systems. In addition,
centralized query optimization is a problem in its own right in many
large main-frame databases and, more recently, in personal

microcomputer DBMS.
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The consequence of concentrating on centralized query
optimization is that communication costs do not enter the decision
because communication requirements (with users and storage devices)
are independent of the evaluation strategy. For the optimization of
single queries, secondary storage costs are irrelevant as well;
therefore, they will be considered only whére one deals with the

simultaneous optimization of several queries.

There remain the costs of secondary storage accesses {usually
measured by the number of page accesses) and of CPU usage (often
measured by the number of comparisons to be performed). A number of
common ideas underly most techniques to reduce these factors: they
try to avoid double work, to use standardized parts, to look ahead
to avoid unnecessary operations, %o choose elementary operations,
and to sequence them in an optimal way. The following example may

indicate how this can be achieved.

Consider a relational database with the schema (key attributes

are underlined)

employees (enr, ename, status, city)

papers (enr, title, year)

departments (dname, city, street-address)
courses (cnr, cname, abstract)

lectures (cnr, dname, enr, daytime)

The database describes employees offering certain lectures to
departments of a geographically distributed organization. ZEmployees
are characterized by their status, the city where they live, and the

papers they have written.
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Assume that someone wants to know which departments in New York
offer courses on database management. There are many possible
strategies to solve this query four of which will be compared,
below. Assume first, that all relations are physically sorted by
ascending key values and that no special access paths such as

indexes exist.

Strategy 1

1. Merge courses and lectures.

2. Sort the result by dnames.

3. Merge the result with departments. Concurrently,

4. select the combinations with city = 'New York' and
cname = 'database management', and

5. keep only the dname column.

This strategy is obviously very costly because it generates an
intermediate result which is roughly the product of the
participating relations. Therefore, one would like to reduce the

size of the relations to be sorted and merged.

Strategy 2

1. Select the departments with city = 'New York' and
keep only the dname column.

2. Select the courses with cname = 'database management' and
keep only the enr column.

3. Merge the cnr list with the lectures relation and keep only
the dname column.

4. Sort the dname column gained in step 3.

5. Merge the dname columns of steps 1 and 4.
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Strategy 2 reduces the relations to be processed by selecting
only the necessary elements and projecting onto those columns that
are needed for further processing. However, the procedure can be
further improved by using a pipelining technique for the quasi

parallel execution of steps 2 and 3 of strategy 2.

Strategy 3

1. Merge courses with lectures, keeping only the dname field of
combinations with cname = 'database management'.

2. Sort the dname list generated.

3. Merge the list with the departments relation, keeping

only dnames with city = 'New York'.

Step 1 avoids the creation and subsequent reading of an
intermediate result (the cnr list of strategy 2). This is
advantageous because the two relations, courses and lectures, have
the same sort order. Otherwise, the reduction in sorting costs
induced by the selection and projection in step 2 of strategy 2

would offset the relatively small cost of the cnr list.

Assume now that two indexes exist in the database, i.e., for
the cnr and the dname attributes of the lectures relation. An index
can be viewed as a binary relation, associating an attribute value
with references to the corresponding relation elements. However,
indexes are implemented in a way that allows for fast retrieval by
the value attribute. Assume further that the sort order of
references is the same as that of the underlying relations { note,

that this does not hold in a general paged environment).
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Strategy 4

1 -

If

partial

Select the dname for departments with city = 'New York'.
Concurrently, for each such dname, retrieve the
corresponding index elements ( giving references to the
relation, lectures) and store them in a binary relation
(partial dname index).

Sort the partial dname index by ascending lectures

reference. Note, that the above assumption implies that

the references are also sorted by ascending cnr and dname.

Select the cnr for courses on 'database management'.
Concurrently, for each such cnr, retrieve the matching
lectures references from the cnr index and merge them
with the partial dname index keeping only the dnames.
Sort the resulting dname list to remove duplicates if

unique names are desired.

reference sort order does not follow element sort order,

cnr index similar to the partial dname index must be

constructed and sorted before merging. In neither case, however,

access to the relation, lectures, is required.

The effect of query optimization can be quite impressive.

Assume the following physical storage data for the above example.

There are 100 departments 5 of which are located in Wew York.

A physical block can take 5 department records or 50 dname values.

12

a
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There are 500 courses 20 of which are on database management.

Physical block size is 10 records or 50 cnames.

-

There are 2000 lectures of which 300 present database
management courses, 100 are held New York departments, and 20 (from
3 departments) satisfy both conditions. Physical block size is 10

records or 50 references.

Assume further that sorting time is N*log(2)N where N is the
file size in blocks, and that there is a buffer of one block for

each relation.

Under these assumptions, the costs of the four strategies

(number of secondary storage accesses) are approximately

Strategy 1: 3100
Strategy 2: 450
Strategy 3: 450 (actually 2 less than strategy 2)
Strategy 4: 150

Thus, a reduction by a factor of approximately 20 has been
achieved. For larger databases, more complex queries, and more

sophisticated techniques much higher reductions are often possibvle.
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1.3 Top-Down Approach to Query Optimization

Query optimization research in the literature can be divided in

two classes which would contrast as being bottom-up and top-down.

On one hand, researchers soon detected that the overall query
optimization problem is very complex. Therefore, theoretical work
started with special cases such as the optimal implementation of
important operations or evaluation strategies for certain
sub-classes of queries. BSubsequent research tried to compose larger

building blocks from these early results.

On the other hand, a need for working systems triggered the
development of full-scale evaluation procedures "PALE727, "TASTR75]7,
[WONG76). They stressed the generality of solutions and handled
query optimization in a uniform and heuristic manner. As this often
did not achieve competitive system efficiency, the current trend
seems to be to incorporate more knowledge about special case
optimization into the general procedures. At the same time, the
general algorithms themselves are augmented by combinatorial

cost-minimization procedures for choosing among strategies.

This paper follows the second approach. The following general
evaluation procedure serves as a framework for the specific

techniques developed in query optimization research.

Step 1: Find an internal query representation into which user
queries can easily be mapped and which leaves the system all

degrees of freedom to optimize the evaluation.
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Step 2: Apply logical transformations to the query
representation that (1) standardize the query in order to
simplify the next transformation steps, (2) simplify the query
to avoid double work, and (%) ameliorate the query to
streamline the evaluation and to allow special case procedures
to be applied.

Step 3: Map the transformed query into alternative groups and
sequences of elementary operations for which a good
implementation and the associated costs are known. The result
of this step is a set of candidate "access plans".

Step 4: Compute the overall cost for each access plan, choose

the cheapest one, and execute it.

The first two steps of this procedure are to a large degree
data-independent and thus can be handled mostly at compile time.
The quality of the steps 3 and 4, that is, the richness of the
access plans generated and the optimality of the choice algorithn,

heavily depend on knowledge about data values in the database.

This has two consequences. First, these steps can only be done
at runtime, which means that the possible gain in efficiency must be
traded off against the cost of the optimization itself. Second, a
meta-database (e.g., an augmented data dictionary) must maintain
general information about the database structure and statistical
information about the database contents. As in many similar
operational research problems (e.g., inventory control), the costs
of this additional information system must be compared with the

value of its information.
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2.  QUERY REPRESENTATION

Queries can be represented in a number of forms. In the
context of query optimization an appropriate query representation
form has to fulfill the following requirements:

- it should be powerful enough to express

a large class of queries;
- it should provide a well-defined base
for query transformation.
In the following, we shall present four different query
representation forms each of which has been used in a number of

approaches to query optimization.

2.1 The Relational Calculus

The relational calculus as introduced in TCODD717, fcODD727 is
a notation for defining the result of a query through the
description of its properties. The representation of a gquery in
relational calculus consists of two parts, i.e., the target list and

the selection expression.

The selection expression specifies the contents of the relation

resulting from the query by means of a first-order predicate, i.e.,
a generalized Boolean expression possibly containing existential
and/or universal quantifiers. The target list defines the free
variables occurring in the predicate, and specifies the structure of
the resulting relation. Example 2.1 demonstrates the relational
calculus representation using the syntax of the database programming

language Pascal/R [SCHM77].
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Example 2.1:

Names of professors who published some paper in 1981.
[<e.name> OF
EACH e IN employees: e.status = professor
AND
SOME p IN papers

(e.enr = p.enr AND p.year = 1981)]

In the target list, i.e., in the subexpression preceding the
colon, the range of the (free) variable e is restricted to elements

of the relation employees. The relation employees is therefore

called the range relation of e. The term '<{e.name>' indicates that

only the names of employees are considered in the result.

The predicate following the colon defines constraints on the
free variable. The first constraint is a monadic term restricting
the free variable to those employees who have the status professor.
This constraint is AND-connected with a dyadic term, relating
employees to papers, and another monadic one, further restricting
the result to those employees who published some paper in 1981. The
comparison operators usually allowed in terms are =, #, <, >, <=,

and >=.

As opposed to the one-sorted predicate calculus, the relational
calculus allows variables to be bound to different sorts { range
relations, e.g. variable e is bound to employees and variable p is
bound to papers). The 6onsequences of the many-sortedness of the
relational calculus with respect to query transformation are

discussed in section 3.
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In addition to the logical operator AND, the operators OR and
NOT can also be used in predicates. Relational calculus predicates

are completely defined by the following recursive rules:

1. A (monadic or dyadic) term is a predicate.
2. Let A be a predicate, rec a tuple variable, and rel
a relation. Then
(i) SOME rec IN rel (A)
(ii) ALL rec IN rel (A)
are predicates.
3. Let A and B be predicates. Then
(i) NOT (A) (negation)

-

ii} A AXD B (conjunction)
(iii) A OR B (disjunction)
are predicates.

4. No other formulae are predicates.

In [CODD727 the relational calculus has been introduced as a

yardstick of expressive power. A representation form is said to be

relationally complete if it allows the definition of any query

result definable by a relational calculus expression.

Clearly, relational completeness has to be considered as a
minimum requirement with respect to expressive power. An
often-cited example for a conceptually simple query which goes
beyond relational completeness is "find the names of employees
reporting to manager Smith at any level", provided a hierarchy of
employees is modeled in a single relation (e.g., via 2 name and

manager attribute). In general, the computation of the transitive
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closure requires a calculus of higher order [PIR0O79.

Furthermore, queries in today applications often contain
aggregations which cannot be expressed in pure relational calculus.
However, the extension of relational calculus by aggregate functions

is rather straightforward (KLUG82b.

2.2 The Relational Algebra

The relational algebra as defined in [CODD72! is a collection
of operators on relations. These operators fall in two classes,
i.e., traditional set operators such as Cartesian product, union,
intersection, and difference, and special relational algebra
operators such as restriction, projection, join, and division. The
special operators will be defined, below, by relating them to

equivalent relational calculus expressions.

The restriction operator applied to a relation R constructs a

horizontal subset of its elements according to a simple predicate.
Rest(R,pred) = [EACH r IN R: pred]

Restriction predicates are usually monadic terms, intra-relational

dyadic terms (both variables are bound to the same relation), or

conjunctions thereof.

The projection operator serves for the construction of a

vertical subset of a relation R by selecting a set A of specified
attributes and eliminating duplicate tuples within these attributes.

Proj(R,A) = [<A> OF EACH r IN R: truel
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The join operator permits two relations R and S to be combined
into a single relation whose attributes are the union of the
attributes of the relations R and S.

Join(R, A op B, S) = [EACHr INR, EACHs IN S: r.A op s.B]
The comparison operators op allowed in joins are the same as those
in dyadic terms of the relational calculus; If op is the equality

operator '=', the "natural" join omits either A or B in the result.

The division operator provides an algebraic counterpart to the
universal quantifier. It is defined as follows:
Divi(R, A by B, S) = <compl(A)> OF EACH r IN R:
ALL s IN S SOME t IN R

(t.compl(A% = r.compl(A) AND
t.A = s8.B)

where compl(A) is the complement of A in the attribute set of R.

The definition indicates, that division is a rather complex
operation which can make the understanding of a query a difficult

job.

Example 2.2 represents the query of example 2.1 in relational

algebra.

Example 2.2:

Names of professors who published some paper in 1981.

Proj(Rest(Join( employees,
enr=enr,
Rest( papers,year=1981)),
status=professor),
name)
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As opposed to a relational calculus expression which describes
the relation resulting from the query by means of its properties, a
relational algebra expression defines an algorithm for the
construction of the resulting relation. Therefore, a calculus
expression appears to be a better starting point for query
optimization since it provides an optimizer only with the basic
properties of the query which might get hidden in a particular

sequence of algebra operators.

With respect to relational completeness, however, the
relational algebra is at least as powerful as the relational
calculus. In [CODD72! it has been shown, that any relational
calculus expression can be translated into an equivalent algebra
expression. An analogous result for algebra and calculus
expressions extended by aggregate functions has been proven in

[KLUGS2a].

2.3 Query Graphs

Graphs have been used for the visual representation of
structured objects in a number of areas. Two well-known examples
are the use of syntax trees in compiler construction and the use of

AND/OR graphs in artificial intelligence applications.

In the context of Qﬁery optimization, graphs are used for the
representation of queries or query evaluation strategies. Two
classes of graphs can be distinguished: object graphs and operator

graphs.
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Nodes in object graphs represent objects such as (relation)

variables and constants. Edges describe predicates that these
objects are to fulfill TPALE721, TWONG79]. Object graphs contain
the properties of the query result and are therefore closely related

to the relational calculus.

Operator graphs describe an operator-controlled data flow by

representing operators as nodes which are connected by edges
indicating the direction of data movement. In [SMIT757, TYA079]
operator graphs have been used for the representation of algebra
expressions. TFigures 2.1 and 2.2 give one example each for an

object graph and an operator graph.

Query graphs have many attractive properties. The visual
presentation of a query often leads to an easier understanding of
its structural characteristics. In addition, graph theory offers a
number of results useful for the automatic analysis'of graphs {e.g.,
discovery of cycles, tree property). And finally, a main advantage
of query graphs is that they can be easily augmented with additional
information. The augmentation of graphs with details of the

physical data organization of a database is discussed in subsection

Bsds
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Figure 2.1 An object graph representing the example query.
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Figure 2.2: An operator graph representing the example query.
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2.4 Tableaux

— s

Tableaux as defined in TAHO79a-c] are a tabular notation for a
subset of relational calculus queries characterized by containing no
universal quantifiers and only AND-connected terms. Such queries

are frequently referred to as conjunctive queries TROSE80?, TCHANT7].

Tableaux are specialized matrices the columns of which
correspond to the attributes of the underlying database. The first
row of the matrix, called the summary, serves the same purpose as
the target list of a relational calculus expression. The other rows

describe the predicate.

The symbols appearing in a tableau are distinguished variables

(representing free variables), nondistinguished variables

(representing existentially quantified variables), constants,

blanks, and tags (indicating the range relation).

The construction of a tableau T representing the query of
example 2.1 starting with tableaux for single relations and
proceeding with combining these tableaux to new tableaux for larger
and larger subexpressions is illustrated in figure 2.3.

Distinguished variables are denoted by a's, nondistinguished ones by

b's.

Expressions containing disjunctions (unions) and negations
(differences) can be represented by sets of tableaux "SAGI8S0’.
Therefore, tableau sets can be considered a relationally complete
representation form. The specific value of tableaux with respect to

query optimization will be discussed in section 3.2.



status name enr year
T(employees) = | al a2 a3 !
L af a2 a3 i
T( papers) = | a3 a4 I
I a3 a4 |
T( Rest(papers,year=1981) ) =
! a3 1981 |
l a3 1981 |
T( Join( employees,
enr=enr,
Rest( papers,year=t981) ) =
: al a2 a3 1981 |
| at a2 a3 i
i a3 1981 |
T( Rest{Join(employees,
enr=enr,
Rest( papers,year=1981),
status=professor) ) =
| professor a2 83 1981 :
| professor a2 a3 [
i a3 1981 |
T( Proj(Rest(Join(employees,
enr=enr,
Rest( papers,year=1981),
status=professor),
name) ) =
| a2 l
| professor a2 b3 :
) b3 1981 |

————————— — — . O o o T T T T T —— i —— ——
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employees

papers

papers

employees
papers

employees
papers

employees
papers

Figure 2.2: Stepwise construction of a tableau representing

the query of example 2.1
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o 1 QUERY TRANSFORMATION

Queries cannot only be expressed in a number of different
representation forms, but also, for each expression representing
some query there may exist a number of semantically equivalent
expressions of the same form. The transformation of an expression
into an equivalent one by means of well-defined rules is the subject

of this secticn. We distinguish three goals of query transformation:

- the construction of a standardized starting point

for query optimization (standardization);

- the elimination of redundancy (simplification);

- the construction of ameliorated expressions

3.1 Standardization

Several approaches to query optimization define a standardized
starting point through a normalized version of the underlying query
representation form [PALET727, TWONG76], TJARK81], TKIM821. In the
following, we shall present two normal forms for the relational
calculus together with the rules to be obeyed by the normalization

procedure.

A relational calculus representation of a query is said to be

in prenex normal form if its selection expression is of the form

SOME/ALL rt1 IN rell .. SOME/ALL rn IN reln (M)

where M is a quantifier-free predicate.
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M is called the matrix and can also be standardized. A matrix
consisting of a disjunction of conjunctions (of terms Aij) such as
(A11 AND .. AND A1n) OR .. OR (Am1 AND .. AND Amn)

is said to be in disjunctive normal form, and a matrix consisting of

a conjunction of disjunctions such as
(A11 OR .. OR Aln) AND .. AND (Am? OR .. OR Amn)

is in conjunctive normal form.

The prenex normal form combined with the normal forms for the
matrix yields two normal forms for relational calculus expressions:

disjunctive prenex normal form (DPNF) and conjunctive prenex normal

— e

EEEE (CPNF). The use of DPNF is motivated by the goal to keep
intermediate results small during the evaluation of a query, since
in many cases disjunctions can be evaluated independently of each
other [BERN81al, [JARK81 1. The CPNF has proven useful for the
reduction of queries into serializable components [WONG76! and for
data-dependent amelioration (e.g., testing the most restrictive

disjunction first).

The transformation of an arbitrary relational calculus
expression into prenex normal form is a matter of moving quantifiers
over terms {(from right to left). Quantifier movement is governed by

the transformation rules of table 3.1.
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Q1: A AND SOME r IN rel (B(r))
{==>
SOME r IN rel (A AND B(r))

Q2: A OR SOME r IN rel (B(r))

{==>
a) SOME r IN rel (A OR B(r)) | rel # I
b) A I rel =[]
Q3: A AND ALL r IN rel (B(r))
{==
a) ALL r in rel (A AND B(r)) | rel # ]
b) A | rel = []

Q4: A OR ALL r IN rel (B(r))
{==>
ALL r IN rel (A OR B(r))

Q5: SOME r1 IN rell SOME r2 IN rel2 (A(ri,r2))
{==
SOME r2 IN rel2 SOME r1 IN rell (A(r1,r2))

Q6: ALL r1 IN rell ALL r2 IN rel2 (A{r1,r2))
{==>
ALL r2 IN rel2 ALL r1 IN relt {A(r1,r2))

Q7: SOME r IN rel (A(r) OR B(r))
{==
SOME r IN rel (A(r)) OR SOME r IN rel (B(r))

Q8: ALL r IN rel (A(r) AND B(r))
{==>
ALL r IN rel (A(r)) AND ALL r in rel (B(r))

Q9: NOT ALL r IN rel (A(r))
<==
SOME r IN rel (NOT(A(r)))

Q10:NOT SOME r IN rel (A(r))

{==>
ALL r IN rel (NOT(A(r)))

Table 3.1: Transformation rules for quantified expressions



b)

Commutative Laws
A OR B {==>
A AND B {==>
Associative Laws
(AOCRB) ORC <==>
(A AND B) AND C <==
Distributive Laws
A OR (B AND C) <==>
A AND (B OR C) <==>

Idempotency Laws

A CR A {==>
A AND A {==>
A OR NOT(A) {==>
A AND NOT(A) {==>
A OR FALSE {==>
A AND TRUE <==>
A OR TRUE L=
A AND FALSE {==>

NOT (NCT (A)) {==>
De Morgan's Laws

NOT (A AND B) {==>
NOT (A OR B)  <==>

Page 29

B OR A

B AND A

A OR (B OR C)
A AND (B AND C)

(A OR B) AND (A OR C)
(A AND B) OR (A AND C)

TRUE
FALSE

TRUE
FALSE

NOT (A) OR NOT (B)
NOT (A) AND NOT (B)

Table 3.2: Transformation rules for the matrix

The distinction of the cases between empty and non-empty range

relations in rules Q2 and Q3 of table 3.1 is due to the

many-sortedness of the relational calculus [JARK82al.
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A relational calculus expression can be transformed into an
equivalent expression of a one-sorted calculus by introducing a
range definition such as (r IN rel) as another type of atomic

predicate:

O1: SOME r IN rel (pred)
SOMEzr ((r IN rel) AND pred)
02: ALL r IN rel (pred)
ALE-;>((r 1 pel) wad pred)
The application of rules Q2a and Q3a when moving a quantifier over 2
term would therefore yield a wrong result in the case of an empty
range relation. It follows, that an automatic normalization of an
arbitrary relational calculus expression must preserve information
about the original range definition of variables, so that runtime

modifications according to rules Q2b and Q3b can be performed when

necessary.

Normalization of the matrix is rather straightforward and can
be achieved by using DelMorgan's laws, the distributive laws, and the

law of double negation (see table 3.2).

3.2 Simplification

We have already seen that there might be several semantically
equivalent expressions representing one and the same query. One
source of origin for differences between any two equivalent
expressions is their degree of redundancy [HALL76], (STRO7971. A
straightforward evaluation of a redundant expression would lead to

the execution of a set of operations some of which are superfluous.
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Therefore, query optimization aims at the elimination of
redundancy by means of transforming a redundant expression into an

equivalent non-redundant one.

A redundant expression can be simplified by applying the

transformation rules M4a to M4i considering idempotency (see table

3.2). The application of these rules is complicated by the fact that
idempotency can occur at any level in the expression due to the

presence of common subexpressions, i.e., subexpressions occuring

more than once in the expression representing the query. Thus, in

order to simplify an expression like

TEACH e IN employees:

e.name = 'Smith'
OR

(e.;gatus = assistant OR e.status = professor)
A

NOT(e.status = professor OR e.status = assistant)’
to
TEACH e IN employees: e.name = 'Smith']
by means of rules Mla and M4g, the subexpressions
(e.status = assistant OR e.status = professor)

and
(e.status = professor OR e.status = assistant)

must first be recognized as being equivalent. Algorithms for the

recognition of common subexpressions are given in THALL74al.

The recognition of common subexpressions and the application of
idempotency rules have to be performed concurrently rather than
sequentially, éince the simplification of an expression by means of
idempotency rules‘may yield further common subexpressions which in

turn are subject to simplification.
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Expressions that are bound to empty relations can also be

simplified. Transformations rules for their simplification are given

in table 3.3. Note, that these rules can only be applied at runtime.

Et: [EACH r in [1: pred] | <==> []

E2: l<r.A1,..,r.An> OF EACHE r IN []J: pred] <==> [

E3: SOME r IN [] (pred) {==> FALSE

E4: ALL r IN [1 (pred) {==> TRUE

Table 3.3: Transformation rules for expressions

with empty relations

Terms serve as atomic predicates in the relational calculus
(section 2.1). However, the matrix can be simplified if the semantic
of the comparison operators is taken into account explicitly. One
important application is the so-called constant propagation which
uses transitivity laws such as

r.A op s.B AND s.B = const ==> r.A op const

to reduce the number of dyadic terms in a query. Algorithms that
minimize the number of rows in tableaux as introduced in section 2.4
systematically exploit such simplification rules for conjunctive
queries [AHO79al. Since the number of rows in a tableau is one more
than the number of joins (dyadic join terms) in the expression, the
minimization of the numbgr of rows corresponds to the elimination of

redundant joins.

TSAGI80! extends the tableau techniques to cover the
simplification of expressions containing disjunctions.' The
generalization to all expressions of a relationally complete

language, however, is still an open problem [SAGIS81T.
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Bes Amelioration

Query simplification does not necessarily produce a unigue
expression in the sense that there may exist other non-redundant
expressions which are semantically equivalent to the one generated
by some simplification technique. The evaluation of expressions
corresponding to one and the same query may differ substantially
with respect to performance parameters such as the size of
intermediate results, the number of relation elements accessed, etc.
In the following, we present a set of query transformation
heuristics which, when applied to expressions, yield ameliorated

expressions with respect to evaluation performance.

The simplest transformations considered in this section are the

combination of a sequence of projections into a single projection

and the combination of a sequence of restrictions into a single

restriction [SMIT75]1, [HALL76]. The corresponding transformation
rules are:
At: Proj{..Proj(Proj(R,A1),A2),..,An)
Proj(R,An)
A2: Rest(..Rest(Rest(R:predi):pred2):..:predn)
{==>
Rest(R:predl AND pred2 AND .. AND predn)
Combining intrarelational operations has two advantages. First,
repetitive reading of the same relation is avoided, and second,

existing access paths may be used for the combined operation and not

only for the first operation in the sequence.
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Minimization of the size of intermediate results to be
constructed, stored, and retrieved is the goal of a number of
ameliorating transformations. One important heuristic moves
selective operations such as restriction and projection over
constructive operations such as join and Cartesian product in order
to perform the selective ones as early as possible [SMIT75'. In the
context of relational calculus, the consideration of a certain
evaluation sequence can be represented by a nested expression. The
evaluation of a nested expression starts with the evaluation of the
innermost nesting, followed by its surrounding nesting and so on
until the outermost nesting is reached. A nested expression implying
the early evaluation of monadic terms {restrictions) is given in

exmple 3.1.

Example 3.1: A nested expression equivalent to the
expression in example 2.1.

[<e.name> OF
EACH e IN [EACH e IN employees: e.status = professorl:
SOME p IN TEACH p IN papers: p.year = 1981
(e.enr = p.enr)

The early evaluation of selective operations is a special case

of the so-called guery detachment as introduced in TWONGT76]1. There,

a subexpression that overlaps with the rest of the expression on a
single variable is detached and forms an inner nesting. This is done
recursively at any nesting level until the expression cannot be
further reduced. Example 3.2 demonstrates the detachment of a

subexpression in a complex expression.
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Example 3.2: Departments offering lectures that are held by
professors who live in the same city where
the department is located and who have published

some paper in 1981.

The corresponding expression:

[EACH 4 IN departments:
SOME 1 IN lectures
SOME e in employees

(e.status = professor
and

d.iﬁgme=l.dname AND l.enr=e.enr AND e.city=d.city

SOME p IN papers
(p.year = 1981 AND p.enr = e.enr))

An equivalent expression produced by query detachment:

[EACH 4@ IN departments:
SOME 1 IN lectures
SOME e IN [EACH e IN
[EACH e IN employees: e.status = professor):
SOME p IN [EACH p IN papers: p.year = 19811
(e.enr = p.enr)
(d.dname=1.dname AND 1l.enr=e.enr AND e.city=d.city)’

An object graph representing the query is shown in Figure 3.1.

———————— T —

'EACH 4 IN |
| departments|
d.city / \\d.dname
e.city / \ l.dname
!SOME e IN| e.enr=c.enr |SOME 1 IN|
|employees| -—— !lectures |
e.enr| \
= \
p.enr| \
___________ * e.status=prof
|SOME p IN|
| papers -
|
|
|
*
p.year=1981

Figure 3.1: Object graph for example 3.2
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Note that the resulting nested expression is irreducible since
it cannot be separated into two subexpressions overlapping on a
single variable. In other words, the nested expression contains a

cycle. This is also obvious from figure 3.1.

The importance of the distinction between cyclic and acyclic
(tree-like) expressions for query processing will be further
discussed in subsection 4.3. At this point, we shall mention only
that there are cycles which can be further reduced, for example
those that are introduced by transitivity. In [BERN81b!, TBERN814],

algorithms for the detection of such benign cycles are described.

The concept of extended range expressions "JARK82al provides a

generalization of query detachment in that it also considers
expressions containing universal quantification. Database relations
defining the range of a relation variable are replaced by calculus
expressions according to the following transformation rules:
A3: TEACH r IN rel: predl AND pred2’
[EA§§>r IN TEACH r IN rel: predi]: pred2’
A4: SOME r IN rel (pred! AND pred2)
SO;E=r IN [EACH r IN rel: predl] (pred2)
AS5: ALL r IN rel: (NOT(predl) OR pred2)
AL£=:>IN [EACH r IN rel: predi] (pred2)
Note that transformation rule A5 for universally quantified
variables is especially profitable since through the reduction of

the number of conjunctions in the outer nesting, the intermediate

results can be expected to be considerably smaller in size.
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The ameliorating transformations presented so far use
information from three sources: general transformation rules and
heuristics guiding their usage, knowledge about the relational data
structures, and the query itself. Two other knowledge bases have not
been considered: integrity constraints that complement the
structural data definition in many database systems, and the data

itself.

Integrity constraints are predicates that must be true for each
element of a certain relation or for each combination of elements of
a certain group of relations (referential integrity). Thus, they can
be added to the selection expression of any query without changing
its truth value. There are a few approacheé making use of this
observation under the labels of knowledge-based [HAMM8O! or semantic

query processing [KINGS81].

Assume for example, that one integrity constraint says: "we.
hire only professors who have at least one paper per year". In this
case, the evaluation of example 2.1 (asking for professors with
papers in 1981) becomes trivial, and the evaluation of example 3.2

is substantially simplified.

Adding an integrity constraint to a selection expression can
also change the séructuré of the query to make it more tractable.
Consider the constraint: "we hire only local professors". In this
case, the term 'd.city=e.city' in example 3.2 can be omitted. The

remaining query does no longer contain a cycle.
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The success of semantic query processing depends largely on the
development of efficient heuristics for choosing among the many
transformations made possible by adding any combination of integrity
constraints to the query. QUIST KING81] uses artificial
intelligence type rules to make this decision for a special class of

relational databases.

TYAO079) points out that there are cases where the optimal

transformation is data-dependent. The heuristics presented above may

not always be optimal, especially when certain access paths are
supported by physical data structures. One consequence of such data
dependence is that, in addition to the query compiler, also the
runtime support must be equiped with query transformation

facilities.

Furthermore, if heuristics do not yield satisfactory results
simultaneous optimization of the physical and the logical level
becomes necessary. Before turning to such integrated approaches,
however, the physical evaluation of query components has to be

described.
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4. QUERY EVALUATION

This section presents methods for the evaluation of query
components of varying complexity such as one-variable expressions,
two-variable expressions, and multi-variable expressions. The
individual approaches can be viewed as thé building blocks of a
general query evaluation system. Their associated costs and ranges
of applicability constitute the input to the last stage of the query

optimization process which generates the optimal access plan.

4.1 One-Variable Expressions

One-variable expressions describe conditions for the selection
of elements from a single relation. A naive approach to their
evaluation would be to read every element of the relation and test
if it satisfies each term of the expression. Since this approach is
very costly, especially in the presence of large relations and
complex expressions, various techniques have been used to improve
its efficiency. These techniques aim at reducing the number of
element accesses, and at reducing the number of tests applied to an

accessed element.

The number of element accesses can be reduced by employing data
structures that provide access paths other than the exhaustive
sequential access. One possibility is to keep the relation sorted
with respect to one or more attributes so that it can be accessed in
ascending or descending order. This has proven useful for the
evaluation of range expressions, i.e., expressions tﬁat define an

interval of attribute values.
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Direct and ordered access is also provided by indexes. An index
is a relation which associates attribute values with references to
relation elements, usually called tuple identifiers (TIDs). We

distinguish one-dimensional indexes supporting access via a single

relation attribute, and multi-dimensional indexes supporting access

via a set of attributes. One-dimensional indexes are usually
implemented by ISAM [IBM66] or B-tree [BAYE72] structures. An

overview of multi-dimensional index structures is given in [BENT79].

The number of tests applied to an accessed relation element
during expression evaluation can be reduced by means of runtime
transformations of the expression. The optimization of a special

class of expressions, Boolean expressions, has since long been a

research topic in compiler construction [GRIE71). Boolean
expressions, i.e., quantifier-free AND/OR connected terms are an
integral part of a number of control structures in high-level
programming languages. The overall idea for the code optimization of
Boolean expressions is to generate code that skips over the
evaluation of expression components no longer relevant to the value
of the expression as a whole. For example in the statement
IF A AND B THEN
statement 1
ELSE
statement_2
END
the evaluation of term B is superfluous and the ELSE-branch can be
executed right away in case term A has already been évaluated to

FALSE.
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The same idea applied to the evaluation of one-variable
expressions in query languages [GUDE737, (LIU76) can be interpreted

as query simplification at runtime.

Changing the order in which individual expréssion components
are evaluated is another approach to improve evaluation efficiency.
Several algorithms are known to lead to optimal evaluation sequences
in certain situations with [HANA77], and without [BREI75]

considering a priori probabilities for attribute values.

4.2 Two-Variable Expressions

Two-variable expressions describe conditions for the
combination of elements from two relations. In general, two-variable
expressions are composed of monadic terms, restricting single
variables independently of each other, and dyadic terms,
establishing the link between both variables. In this subsection we
shall first describe the basic methods for the evaluation of a
single dyadic term corresponding to the join operator defined in
subsection 2.2 and then discuss strategies for the evaluation of

arbitrary two-variable expressions.

Approaches to the implementation of the join operation can be
classified into those,nwhere the order in which relation elements
are accessed is relevant, and into those, where it is not. The basic
method independent of the order of element access is the so-called

nested iteration method [PECH76], "SELI79]. In this method, every

pair of relation elements is accessed and concatenated if the join

condition is satisfied.
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A sketch of the algorithm follows:
FOR i :=1 TO N1 DO
read i-th element of R1;
FOR j :=1 TO N2 DO
read j-th element of R2;
form the join according to the join condition;
END;

END;

Let N1 (N2) be the number of elements of the relation read in
the outer (inner) loop, then N1 + N1*N2 secondary storage accesses
are required to evaluate the dyadic term assuming that each element

access needs one secondary storage access.

The nested iteration method can be augmented by the use of an
index on the join attribute(s) of R2. Instead of scanning R2
sequentially for each element of R1, the matching R2 elements are
retrieved directly [KLUG82bl. Thus, only N1 + N1*N2*3j12 accesses are
required where j12 is a join selectivity factor describing the

reduction of the Cartesian product R1*¥R2 by the join condition.

The nested block method [KIM80] adapts the nested iteration

method to a paged-memory environment. The method assumes a main
memory buffer which holds one or more pages of both relations. Each

page contains a set of relation elements.

The algorithm itself is basically identical to the one of the
nested iteration method except that memory pages are read instead of
single relation elements. The number of secondary storage accesses

needed to form the join is reduced to P1 + (P1/B1)*P2 where P1 (P2)
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is the number of pages occupied by the outer (inner) relation and Bi
is the number of pages of the outer relation held in the main memory
buffer. The formula makes clear that it is always preferable to read
the smaller relation in the outer loop (that is, to make P1 < P2).
Note that only P1 + P2 accesses are necessary, if one of the

relations can be kept entirely in the main memory buffer.

The merge method BIAS77], [SELI79] is based on a certain order

in which relation elements are accessed. Both relations are scanned
in ascending or descending order of join attribute values and merged
according to the join condition. Approximately N1 + N2 + S2 + 52
secondary storage accesses are required where S1 and S2 denote the
number of secondafy storage accesses necessary to sort the
relations. In case the relations are already sorted or indexes are
available, the merge method appears to be the most efficient

approach to evaluate a dyadic term [MERR81b]1.

Methods for the evaluation of arbitrary two-variable

expressions are combined of strategies for one-variable expressions

anad algorithms for the computation of dyadic terms. They differ in
the way they make use of and/or temporarily create access paths such
as indexes, links, and sorting, and in the order in which the terms
are processed. One such method applied to the evaluation of the
query in example 2.1 is illustrated in the operator graph of figure

4.1.
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Figure 4.1: Operator graph illustrating the evaluation
of example query 2.1. The existence of
various indexes is assumed.
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The method makes extensive use of indexes. Tuple identifiers
resulting from the processing of monadic terms and those that
satisfy the join condition are intersected and then used to access
the relation elements. These elements are projected onto attributes
appearing in the dyadic term and in the target list. The projected

elements are concatenated and projected on the target attribute.

In [BIAST76] and [YAO79! various other algorithms are presented
and systematically compared with respect to their efficiency. Their
reéults demonstrate that often no a priori best algorithm exists so
that one has to rely either on heuristics or on an expensive cost

comparison of many alternatives for each query.

4.3 Multi-Variable Expressions

Strategies for the evaluation of multi-variable expressions,
i.e., expressions containing at least two variables, are the largest
building blocks for a general query processing system. There are two
basic approaches, which will be referred to as parallel processing

and stepwise reduction.

The parallel processing of query components serves to avoid

repeated access to the same data, and creation and subsequent
reading of temporary rgsults. Repeated access to the same data can
be avoided by simultaneous evaluation of multiple query components.
In TPALE727, 2ll monadic terms associated with some variable are
completely, and the dyadic terms partially processed. Existing AND
conections among terms can also be exploited in parailel to reduce

the size of intermediate results [JARKS81].




Page 46

A similar approach on a higher level is taken in TKLUG82b!
where aggregate functions and complex subqueries are computed in
parallel. Scheduling strategies for the parallel processing of query

components are discussed in [SCHM79].

The pipelining of operations that cén work on partial output of
preceding operations is another technique that exploits parallelism
rsMIT75]1, TYAO79]. For example, restriction and projection can be
pipelined so that only a relatively small buffer for data exchange
is needed instead of the creation and subsequent reading of a

temporary relation.

Aspects of simultaneous evaluation and pipelining are combined
in the so-called feedback method [ROTH74], TCLAU80!. The idea is to
use partial results of a join operation in order to restrict its
input. The degree to which this can be done depends on the
quantification of variables occuring in the join term. For example,
consider the expression

[EACH r IN R: ALL s IN S (r.A op s.B)].

Assume that the join term is evaluated by nested iteration. While
testing some element, r, it is found that r.A op s.B is false for a
certain s with s.B = ¢1. Because of the universal guantification of
s, r is rejected, and an elimination filter can be added:

[EACH r IN R: NOT (tr.A op c1) AND ALL s IN S (r.A op s.B)]
because the same s would fail all r that do not satisfy the first
term. On the other hand, if r with r.A = c2 passes the test, a
true-filter can be added [CLAU8S0T:

[EACH r IN R: r.A op c2 OR NOT (r.A op c¢1) AND ...].

Both filters can be updated subsequently to sharpen the constraints.
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The second basic approach to the evaluation of multi-variable

expressions will be motivated by means of the following example.

Example 4.1:

Figure 4.2 shows an object graph representing the expression

[<d.dname> OF
EACH d IN departments:
SOME e IN employees {(e.status=professor

AND e.city=d.city)
AND

SOME 1 IN lectures (l.daytime>8pm
AND 1.dname=d.dname) ]

d.dname
0
|
f
I
'EACH 4 IN |
idepartments|
d.city// \\d.dname
e.city / \ 1l.dname
'SOME e IN; ISOME 1 IN|
\employees| |lectures |
e —mm oo
| I
| |
| [}
* *
e.status=prof l.daytime>8pm

Figure 4.2: Cbject graph for example 4.1

Expressions like the one in example 4.1 are called tree

expressions [GOOD821, TSHMU81] since their associated query graph is
a tree. A simple approach to evaluating such an expression would be
to form the join of the three relations, restrict the intermedizate
result according to monadic terms and finally projecf it onto the

attributes appearing in the target list. As shown already in the
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introductory example (section 1.2, strategy 1), this approach
performs very poorly. This is even more problematic in a distributed
environment where'each relation resides on a different site. The
reasons are that entire relations are transmitted from site to site,
and that the relation at the target site is temporarily expanded
through the formation of the join, although the final result will

only be a horizontal and vertical subset of it.

In [BERN81d] the stepwise reduction of tree expressions {with

free and existentially quantified variables) has been introduced
which often outperforms the simple approach above, in a
decentralized as well as in a centralized setting. The method is

based on a modified join operation, i.e., the so-called semijoin.

The semijoin of a relation R by a relation S equals the join of
these relations projected back onto the attributes of relation R
BERN81a]. The advantage of the semijoin is, that its evaluation
only requires the transmission of a value-list of the join
attributes, instead of an entire relation, since only 'half of a

join' is to be formed.

The evaluation of a tree expression by means of stepwise
reduction proceeds as follows: starting from the leaves of the query
tree representing the expression, one semijoin per edge is executed
in breadth-first leaf-to-root order. Thus, a tree expression
containing n variables is completely processed by n-1 semijoins if
every variable except the one corresponding to the root of the tree
is existentially quantified. An additional semijoin ﬁrocedure in

reversed order is required in case all variables are free.
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Strategies for the evaluation of tree expressions containing

both existential and universal quantifiers must take into account

the order in which these guantifiers appear in the expression.

Stepwise reduction is only possible when the processing of the

edges of the query tree (breadth-first leaf-to-root) corresponds to

the order of the quantifiers in the expression (right to left).

Example 4.2:

Consider the query tree of figure 4.3 which represénts

the expression

[<d.dname> OF
EACH 4@ IN departments:
ALL p IN papers
SOME e IN employees

AND

(p.enr=e.enr AND e.city=d.city)

SOME 1 IN lectures (1l.dname=d.dname)

———— — o o s et

ISOME 1 IN|
!lectures |

—— e —————— i —

d.dname
0
|
|
|
1
\EACH 4 IN |
| departments|
d.city /
e.city /
|SOME e IN|
| employees/
e.enr /
p.enr /
iALL P IN}
| papers |

—————

Figure 4.2: Object graph for example 4.2
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Processing the tree in breadth-first leaf-to-root order
would yield the value of the expression

f<d.dname> OF
EACH 4 IN departments:
SOME e IN employees
ALL p IN papers
(p.enr=e.enr AND e.city=d.city)]
AND
SOME 1 IN lectures (l.dname=d.dname)

which is not equivalent to the original expression.

The position of an existential and a universal quantifier
cannot be interchanged without changing the meaning of the
expression, except in the cases of rules Q1 through Q4 of table 3.1.
The problem does not occur in expressions containing only one sort
of quantifiers since their positions can be arbitrarily interchanged

according to transformation rules Q5 and Q6.

Cyclic expressions are the complement of tree expressions with

respect to the entire set of expressions. Although there are some
benign exceptions [BERN81c], cyclic expressions in general can not

be stepwise reduced by means of semijoins TGOOD817.

Example 4.3:

Consider the query: "names of departments that offer lectures
after 8pm given by professors who live in the city where the

department is located."™ The corresponding relational calculus
expression and a query graph are shown in figure 4.5.

There is no sequence of semijoins corresponding to edges of

the query graph of example 4.3 that produces the correct result
(the empty relation) if the database is in the state shown in
figure 4.4. The reason is that the semijoin technigue only
considers one edge at a time, and thus looses restrictive
conditions introduced through the feedback effect of the cycle.
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departments | dname | city | street-address

———————— ——— i ——— — ————— — T —————

ood : cit | s1

I d2 i ei2 | s2
employees , enr | ename | status | city

! et | ent | st1 I eit

I e2 | en2 | st2 I ei2
lectures | cnr | enr | dname | daytime

I el | et | a2 ! daf

i e2 | e2 ; a1 | da?2

Figure 4.2: Some possible database state.

[<d.dname> OF
EACH d IN departments:
SOME e IN employees
(e.status=professor
AND
SOME 1 IN lectures
(l.daytime>8pm
AND
d.dname=1.dname AND l.enr=e.enr AND e.city=d.city))]

d.dname
0
|
|
I
I
'EACH 4 IN |
|departments|
d.city / \\d dname
e.city / \ l.dname
|SOME e IN| e.enr=l.enr |SOME 1 IN!
lemployees| ———semmmemm e | lectures |
e S
I |
| |
I |
* *
e.status=prof l.daytime>8pm

Figure 4.5: Calculus expression and object graph
for example 4.3
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In [KAMB82] a proposal is made that is supposed to generalize
the applicability of the semijoin technique to cyclic expressions.
The overall idea is to transform the cyclic query graph into a tree
by adding appropriate terms to some edges of the graph. Figure 4.6
demonstrates the technique applied to the cyclic expression of

example 4.3.

d.dname
0
|
|
1
|
EEACH d IN |
idepartments|
d.city / \ d.dname=1.dname
=/ \ d.city=l.city
e.city / \
|SOME e IN| e.enr=l.enr |SOME 1 IN|
|employees|-—- -llectures |
——————————— e.city=l.city |--————==--
| |
1 |
* ¥*
e.status=prof l.daytime>8pm

Figure 4.6: Augmented object graph for example 4.3

The additional terms 'd.city=l.city' and 'l.city=e.city' imply
the condition 'd.city=e.city' by transitivity. Thus, the resulting
graph is equivalent to a chain, a special form of tree. Note, that
adding the new terms (conceptionally) requires to add the city
attribute to the schema of the lectures relation (to be initialized

with null values).
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The query tree is then processed in semijoin fashion by
executing a generalized semijoin for each edge, taking into account
the newly introduced attributes. The amount of data transfer is

reduced by means of specialized compression techniques.

Methods for the efficient implementation of operations like the
ones presented in this section are candidates for hardware
components to be integrated in specialized database machines. Since
a detailed discussion of this topic would go beyond the scope of
this paper, we shall only refer to a set of articles [LANG78],
fsMIT79], MARY80! containing a survey of hardware approaches to

query optimization.
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5.  ACCESS PLANS

The previous section dealt with techniques for the efficient
evaluation of query components that can be used as building blocks
of a general query evaluation aigorithm. ihe question remains how to
combine these blocks into an optimal or at least heuristically good
evaluation procedure for arbitrary expressions. The input of such a
procedure should be the logically pre-processed query as described
in section 3, the existing storage structures and access paths, and
a cost model. The output is an optimal access plan. The procedure

consists of the following steps.

1. Generate all reasonable logical access plens for evaluating
the query. Ameliorating transformations (section 3.3) may reduce the

number of plans to be generated and compared.

2. Augment the logical access plans by details of the physical
representation of data as gained from the meta database (sort

orders, existence of physical access paths, statistical

information).

2. Apply a model of access and processing costs to choose the

cheapest access path.

An early example of such a process is described in TSELI79’.
TYAOT79] analyzes the optimal evaluation of two-variable
quantifier-free queries in a framework similar to the one described
above. A rather complete approach recently proposed by TROSE82T will
be described in some detail later. An example in a distributed

environment is [BERN81a].
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This section first reviews the generation of access plans and
then the choice problem and the related cost models. The quality of
the optimal solution is strongly influenced by the available storage
structures and access paths. They usually cannot be optimized for a
single ad-hoc query. Therefore, the last subsection briefly

considers the simultaneous optimization of multiple queries.

5.1 Generation of Access Plgﬂg

Access plans describe sequences of operations (operator graphs)
or intermediate results (object graphs) leading from the existing
data structures to a query result. A good query optimizer should
generate a set of plans rich enough to contain the optimal plan but

small enough to keep the optimization effort acceptable.

Two extreme approaches are described in [SMIT75] and [YAO79].
"SMIT75] use a rigid set of 'automatic programming' query
transformation rules similar to the ones discussed in section 3. The
procedure generates exactly one access plan which need not be

optimal.

On the other hand, "YAO79' generates all access plans possible
in a given physical environment. While this may be feasible in the
context of two-variable.queries, it becomes prohibitively costly for

very complex queries.

Other approaches look for a compromise between heuristic

selection and detailed generation of alternative access plans.
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For example, System R [ASTR75], (SELI79] applies a hierarchical
procedure based on the nested block concept of SQL. On the lower
level, evaluation plans for each query block are generated and
compared. On the upper level, the sequence in which the query blocks
are evaluated is determined. [KIM82] notes that this concept puts
too much emphasis on the user-specified block structure oflthe query

and therefore introduces query standardization steps.

A similar compromise was chosen in INGRES [WONG79], where the
heuristic decomposition approach reduces a query to a set of
subqueries containing at most two variables. For each of these
subqueries, a more detailed analysis of its optimal implementation

is performed.

A more comprehensive procedure for generating access plans to
solve conjunctive queries without universal quantifiers and
aggregates was proposed by [ROSE82). In two steps, an object graph
of logical access plans and an operator graph of physical access

plans are developed.

The first step starts with a 'join template' of the Query, that
is, an object graph where the nodes describe range relations and the
edges correspond to dyadic terms. A final node represents the query
result. Each hierarchy yith the final node as its root and existing
data structures as leaf nodes represents a logical access plan. The
restriction of range relations by monadic terms and the selection of
target attributes by projection are not considered at this level,
but are supposed to be taken care of in parallel to ény access to

the range relations.
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The join template closely corresponds to the pre-optimized form
of a query as described in section 3. However, query evaluation can
also make use of direct access structures present in the DBMS, for
example, indexes or CODASYL set chains. The logical access plans are
completed by augmenting the join template with sequences of

intermediate results which make use of these existing access paths.

Some nodes in the logical representation are class nodes, that
is, they represent a whole class of alternative physical
representations or operation results. These are elaborated in the
second part of the access plan generation procedure. "ROSE82!
consider the operations of joining, scanning, sorting, and creating
an access path. For joins and scans, alternative implementations are
analyzed. The {usually very large) graph of physical operation
sequences is not created in full since non-optimal paths to

intermediate results are pruned as soon as better ones are detected.

5.2 Selection of Access Plans

The choice among physical access plans either follows heuristic
rules or is based on a cost model of storage structures and access
operations. In this subsection, cost models and their integration

into optimization procedures will be reviewed.

While a few researchers consider working storage requirements
[PALE72], [KINM82] or CPU costs [GOTL75], [SELIT9] most cost models
are based on the number of secondary storage accesses. For a given
operation, this figure is influenced by the size of its operands, by

the access structures used, and by the size of main memory buffers.
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At the beginning of the evaluation, the operands are existing
data struétures of known size such as relations or indexes. In later
stages, however, most operands are results of preceding operations
and the cost model must estimate their size using information about
the original data structures and the selectivity of the operations

already performed on them.

[DEM080] and [RICH81] give comprehensive listings of size
estimates for operations such as restriction, projection, and join
based on certain assumptions. The review of these assumptions,

below, is largely based on the work of [CHRI81].

The number of elements selected from a relation of size N by a
condition A=c is N*f(A=c) where f(A=c) is called the restriction
selectivity factor for attribute A and constant c. Most cost models
assume a uniform distribution of attribute values, that is, f{A=c) =
1/n(A) where n(A) is the number of different values occuring in A.
(CHRI81] has shown that this is not only unrealistic in many large
databases, but also leads to very pessimistic cost estimates
inhibiting the use of direct access structures. He therefore
suggests more general assumptions about the value distributions,
e.g., exponential distributions or a combination of a discrete
distribution for the most frequent values and a2 simple assumption

for the rest.

For example, in a relation describing university members, the
number of elements of type 'student' (say 90% of all elements) can
be stored explicitly while the uniform distribution assumption

applies to the rest (professors, deans, secretaries, etc.).
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Following an independence assumption of attribute value
distributions, the selectivity factor for a conjunction of
restrictions on different attributes is traditionally set to be the
product of the selectivity factors for each restriction. Again,
[CHRI81 ] has shown this to be pessimistic and presents estimates
using knowledge about correlations between occurences of attribute

values.

The number of elements in a equi-join can be estimated using a
join selectivity factor j12 that estimates the number of pairs
<x1,x2> satisfying the join condition to N1¥N2*j12. To compute j12,
it is usually assumed that the join field values have uniform
distribution and that the two distributions are independent.

Multivariate statistics can yield more realistic estimates [CHRIS81].

The final cost measure is the number of secondary storage
accesses not the sizes of intermediate results. The relationship
between the two figures depends on the physical storage structures

involved and on the proportion of elements to be accessed.

Assume first that all elements of an operand of size W have to
be accessed. Then, the optimal number of secondary storage accesses
would be N/B where B is the blocking factor of the operand. This can
only be achieved if thg elements are stored densely and if it is
clear from the beginning on which physical records the elements

reside.
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For example, the so-called segment scan of System R has to look
at a superset of the necessary pages to find all elements of a

relation [SELI79]. If the elements have to be read in some
predetermined sequence, the elements must not only be stored densely

but also sorted by the given reading order.

If direct access to a subset of the elements is used, the
number of secondary storage accesses to retrieve n of the N elements
depends on the clustering of elements on physical blocks. Optimal
clustering can reduce the number of pages to be accessed to n/B, and
the conventional random placement assumption (CHRI81] is a worst

case one.

In conclusion, the traditional assumptions about value
distributions and element placements tend to overestimate costs and
thus to bias cost estimates against direct access structures. On the
other hand, the more sophisticated techniques require more
statistical information about the database. The question of how to

keep such information up-to-date is not yet fully resolved.

How are the cost estimates used in query optimization? As
mentioned in the previous subsection, there are heuristic procedures
that do not use them at all. Other approaches combine heuristic
reduction of choices with enumerative cost minimization in the 'end
game' [WONG79). Some experiments indicate that some combinatorial

analysis can improve database performance considerably [EPST80’.

For that part of the choice procedure that does make use of

cost estimates, there are two ways to do so.
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First, the costs of each alternative access plan can be
determined completely [BLAS76]1, (YA079]. This approach has the
advantage of covering techniques like parallelity or feedback in a

realistic way. On the other hand, the optimization effort is high.

Second, the cost of strategies can be computed incrementally in
parallel to their generation. While being sometimes less precise,
this approach allows to evaluate whole families of strategies with
common parts in parallel and thus reduces optimization costs
considerably. For example, [ROSE82] keep only the cost minimal way
to each intermediate result while discarding the rest as soon as its

non-optimality is detected.

An extension of the second approach would be a dynamic query
optimization proceduré. The idea derives from the observation that,
at each moment, only the next operation to be performed has to be
finally determined. To guarantee overall optimality, only the
consequences of this decision for the rest of the algorithm must be
evaluated. A dynamic procedure has actual information about 211 its
operands including intermediate results. This inforuation can also

be used to update the estimates of the remaining steps.

Besides the costs of such a procedure itself, there is a danger
to get stuck in local thima if no lookahead is applied. However, if
used carefully, it could improve the performance of the evaluation
of such queries for which the actual intermediate results differ

from the expected ones.
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5.3 Support for Multiple Queries

All query evaluation procedures presented in previous sections
concentrate on optimizing the performance for a single query. This
may be inefficient on the average when compared with a strategy that
supports multiple queries simultaneously because such a strategy can
consider "investments" in additional access paths that are not
cost-effective for a single query. A limited number of approaches
addresses this problem. They can be classified in four groups by the
time scope for which decisions are made: (1) simultaneous
optimization of batched queries; (2) context-sensitive query

processing; (3) index selection; and (4) physical database design.

A set of queries which are submitted at approximately the same
time can be batched for more efficient evaluation. The techniques
for batched evaluation are similar to those described in subsection
4.3 for multi-variable expressions. For example, results of common
subexpressions can be shared among queries, and subexpressions
accessing the same physical data can do so in parallel. In addition,
certain physical access paths such as sorting or temporary indexes
can be provided which pay off for the batch as a whole. Little is
known about detailed results in this area. "KIM81b] has developed a
preliminary architecture, and a number of ongoing research projects

is described in [DATABZ].

Even if the queries to be optimized are not known in advance
query processing strategies can at least make use of some known
context in which queries are asked. One approach [CHRN?Q], "MAIES81],

[FINK82] observes that queries often refer to former queries and
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that it may be profitable to store query results, as derived
relations or simply in a FIFC buffer. Another group of techniques
makes use of language constructs such as selectors [MALL82] or views
[ROUS82] to support queries in the context provided by these

concepts.

Many examples in this paper show the importance of existing
indexes for the performance of query evaluation algorithms. From
this aspect, indexes can hardly hurt anywhere but are most
profitable if they are very selective and support access to
attributes frequently refered to in queries. However, index
selection must also take into account altering transactions because
they must change the index in addition to the base data. The index
selection problem has been described in several survey [BAT0827 and
tutorial papers [SEVE77], (TEOR80]. The statistical assumptions
discussed in the previous subsection also underly many of these
models preventing the creation and use of possibly profitable

indexes [CHRIS81].

Pinally, the efficiency of query optimization also depends on

the general underlying database design. Important aspects include

the horizontal clustering of relation elements by attribute values
TSALT787, and the vertical partitioning of attributes by frequency
of combined access [HAMM79]. However, longterm query optimization is
only one of many aspects of physical database design. The general
problem is so complex that decision support systems have been built

to combine computerized optimization and human judgement [CARLS1].
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SUMMARY AND CONCLUSIONS

An overview of logical transformation techniques and physical
evaluation methods was given using the framework of the relational
calculus. It was shown that a large body of knowledge has been
developed to solve the problem of query eveluation efficiency in

centralized databases.

Even disregarding the problems of distributed query
optimization, however, many problems remain open. Promising research
problems include: global optimization of complex gqueries with
quantifiers and other aggregates; simultaneous optimization of
multiple queries; and context-sensitive query processing including
the use of database semantic. Another interesting area not directly
addressed in this survey is query optimization in database systems
with more advanced access paths such as multiple attribute indexes
and database machines, or with complex data structures such as

statistical databases, historical databases, or CAD/CAM databases.
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