CONDITIONAL STATEMENTS AND PROGRAM CODING:

AN EXPERIMENTAL EVALUATIUN+

Iris Vessey

Ron Weber*

University of Queensland
Australia

October 1982

Draft Paper Only-Comments Welcome

Center for Research on Information Systems
Computer Applications and Information Systems Area
Graduate School of Business Administration
New York University

Working Paper Series

CRIS #45
GBA #82-74 (CR)
+Acknowledgement: We are indebted to Bert Holland of NYU for his

assistance with the doubly multivariate statistical procedures and
to Kieran Mathieson for his comments on an earlier version of this paper.

#*Visiting Professor, Computer Applications and Informations Systems Area,
Graduate School of Business Administration, New York University, 1982-83.

r for Dietal Economy Research

Page 1

CCNDITIONAL STATEMENTS ANLD PROGRAM COLING:

AN EXPERIKEKTAL EVALUATICRN

1. Introduction

The- conditional statement occupies a central place in the theory
and practice of programming. In terms of theory, the form of the
conditional has been the focus of much of the debate in the structured
programming literature. Should the GOTO statement be prohibited so
that the conditionzl is implemented in an IF-THEN-ELSE form rather
than an IF-GOTO form ({see [7, 13])? In terms of practice, several
studies have shown the high frequency with which conditional
statements are wused in Gprogram code. Elshoff [5], for example,
studied 12C commercial PL/I programs and found that conditionals
constituted 17.8 per cent of statement types used, raniked second
behind assignment statements (see also [12, 19]). Interestingly, only
17 per cent of IF statements used the ELSE clause; the correlation

coefficient between IF statements and GOTO statements was .C.

Even with fourth generation nonprocedural languages, conditionszl
statements still appear to be a primary construct. After extensive
experience with Focus, Read and llarman [18, P- 109} conclude: "The
4CLs are currently being called 'nonprocedural languages', but this
term is too limited because in large, real world systems a liberal
sprinkling of procedural code (e.g. IF statements) is essential.”
Eoth Focus and liomad, for example, provide several forms for

implementing conditional statements [10, 16}. Indeed, it is a moot

point whether nonprocedural languages will ever replace procedural

Center for Digital Economy Research
Stem School of Busimess
Working Paper [S-82-74

Page 2

languages (and conditionals). Welty and Stemple [24] found that users
performed better when formulating complex queries in procedural code
than they did wusing nonprocedural code. They hypothesized that
procedural code allowed the users to think in terms of a concrete
model that facilitated their coding the queries. Thus, at least for
the forseeable future, the importance of conditional statements seems

assured.

In spite of their importance, however, the empirical research
undertaken on conditional statements 1is meagre. Given that most
programming languages allow conditionals to be implemented in several
ways, one would expect that programmer rerformance using the different
forms would be a significant concern. Of the few studies undertaken,
perhaps the research conducted by Sime, Green, and Cuest £9, 22, 23]
is the pioneering and seminal work. Cpecifically, they investigated
programmer performance when conditionals were implemented as a nested
structure (IF-THEN-ELSE) instead of a branch-to-label structure
(IF-GOTG). Across several experiments they found evidence in favor of

the nested structure.

For some researchers, the form that the conditional should take

now seems somewhat a closed matter. Shneiderman [21, p. &1]

concludes: ". . . controlled experiments and a variety of informal
field studies indicate that the choice of control structures does make
a significant difference in programmer performance. Evidence supports
the anecdote that the number of bugs in a program is proportional to

the square of the number of GOTCs, . . ." Cthers, however, are

sceptical. Sheil [20, p.107] concludes: "Unless the {uncited)

Center for Digital Economy Research
Sterm School of Business
Working Paper [8-82-74

Page 3

'informal studies' which are alluded to (by Chneiderman) are very
compelling, the evidence suggests only that deliberately chaotic

conirol structure degrades performance.”

Wnile intuitively we Dbelieve in the superiority of the
IF-THEN-ELSE form of the conditional over the IF-GOTC form, like GZheil
we do not believe that the matter is settled. Upon close examination
of the research conducted by Sime, Green, and Cuest, we argue there
are some important confoundings that make their results equivocal. We
do not mean these comments to be a criticism of Sime, Green, and Guest
since their studies were exploratory. levertheless, in this research
we attempt to control for these confoundings and examine once again

the nested conditional versus the branch-to-label conditional.

The remainder of the paper proceeds as follows. Section 2
reviews the prior research conducted by Sime, Creen, and Guest and
summarizes their findings. Section 3 identifies further research
questions that arise from their work, thereby providing the rationale
for the current research. cection 4 describes the langusages
investigated 1in the current research. Section 5 presents the theory
and hypotheses underlying our research. Section 6 describes the
research methodology used. Sections 7 and 8 present the data analysis
and discuss the results obtained. Section 9 identifies some
limitations of the research. Finally, section 1C presents our

conclusions.

Center for Digital Economy Research
Sterm School of Business

Working Paper [S-82-74

Fage 4

2. Prior Research

In their first attempt to investigate the effects of different
implementations of the conditionzl contruct, Sime, Green, and Cuest
[22} studied two languages: JUKP, a language incorporating a
branch-to-label conditional; and NEST, a language incorporating a
nested conditional (see Tables % and 4). To enable them to study a
limited ©but controlled set of effects, both were artificial languages
with severely restricted syntax and semantics. Subjects, who were
inexperienced programmers, first learned one language and wrote
solutions for five problems; then, six weeks later, they learned the
other language and wrote solutions for the same problems. The
subjects worked interazctively. When they were satisfied their program
was complete, the system checked their code for syntactic errors.
When these errors were corrected, the program was executed. Cemantic
errors were identified in & novel way. The problems involved
constructing programs to follow a cooking recipe to prepare food for a

Ll

"mechanical hare.” The hungry hare gave an auditory signal if its food

was not prepared correctly.

Table 1 summarizes the reported experimental results. A
significantly greater number of subjecits in the JUNP group failed to
complete the experimental tasks in the allotted time. Furthermore,
the JUKP group made significuntly more semantic errors and tock
significantly more time to complete z problem than the NEST group. In
terms of the transfer condition, subjects who first learned NEST and
then JUNP had a significantly greater number of problems that took

longer to complete on the second trial than the group that first

Center for Digital Economy Research
Sterm School of Business
Working Paper [8-82-74

Page 5

(=4

learned JUFP and then HLEST. Ecoth groups showed improvement, but it
seems as 1if it 1is more difficult to program in JUNF after learning

KEST whereas it is easier to program in KEST after learning JUMP.

LInsert Table 1 about here]

- - 3 — q
In their second experiment, Sime, Green, and Guest EEQJ
investigated two more micro-languages that incorporated a nested

"

conditional: REET-BE, which used +the words '"begin" and end" to
designate the scope of a conditionazl; and HEST-INE, which designated
the scope of a conditional by repeating the predicate with a "NOT"
term (see Table %). The syntax of these languages resolved ambiguity

that arose with the NEET language when mnultiple actions were

associated with a condition.

Three groups of subjects having no programming experience learned
the JUMP, NEST-EL, and FEST-INE languages. Again, they undertook five
problems to feed the hungry hare. In this experiment, however, a

transfer condition was not investigated.

Table 1 summarizes the reported results. The difference between
the proportions of each group successfully completing all problems in
the allotted time was not statisticsally significant, although JUNP
outperformed NEST-INE, which in turn outperformed NEST-EE.
Significantly more semantic errors per problem were made by the JUMP
group, and NEST-INE outperformed NEST-BE. Significantly more
syntactic errors were made by the DNEST-BE group, and NEST-INE
outperformed JUNMP. Wnhen both syntactic and semantic errors were

considered together, the LEST-EE group solved significantly fewer

Center for Digital Economy Researc

Stern School of Business

Working Paper [S-82-74

Fage €

problems on the first attempt, and JUMP outrerformed HKEST-IKE. In
terms of error lifetimes, however, KEST-INE programs could be debugged

significantly faster, and JUKP outperformed KEST-BE.

Two important conclusions derive from these results. First, the
superiority of the nested conditional and +the branch-to-label
conditional is equivocal. According to some performance criteria, the
JUMP language outperforms the NEST-BE language. It seems, therefore,
that the choice of language used to implement the nested conditional
is 4n important issue. Second, the results provided Jime, Creen, and
Guest with important insights as to why at least some implementations

of the nested conditional may be superior to the branch-to-label

conditional. They identified +two fundamental programming tasks:
taxcnomizing -- identifying the conditions under which certain actions
must be performed; and tracing -- describing the order in which

instructions are executed. Both are important activities during the
program desigrn, coding, and debugging tasks. They argue that the two
nested languages, with their automatic indenting, redundantly code
(spatially) much sequence information, thereby facilitating the
tracing task. The JUMP 1language, they argue, cannot be indented
successfully, and so a task requiring clear sequence infomation, such
as drafting a program, will be easier in the nested languages than in
JUNP. In terms of the taxonomizing task, NEST-INE facilitates
identifying what conditions produce an action through redundantly
coding the predicates. JUMP and RXEST-BE, however, require more
extensive search of the sequence information to determine, for

example, which NCT condition is sssociated with 2 particular action.

Center for Digital Economy Research
Sterm School of Business
Working Paper [8-82-74

Page 7

These results motivated Green [9], in two <carefully controlled
experiments, to examine whether experienced programmers indeed
achieved different levels of performance, depending on the 1language
used, across tracing and taxonomizing tasks. In the first experiment
he presented subjects with a program written in either JUKP, NEST-RE,
or KEST-INE, gave them a set of truth-values for the program
predicates, and asked them to indicate the action that would be taken
as a result of these truth-values. He hypothesized that the time
taken to identify the action using JUNP would be slightly longer than
the time taken wusing NEST-BE or NEST-INE because subjects had to
identify labels in the JUMP program; however, there should be no
differences between the nested forms. For the tracing task, the
results confirmed his expectations: JUMP took slightly longer
(statistically significant difference) than the nested forms; and
although NEST-IKE took slightly longer than NEST-BE, the difference

was not statistically significant {see Table 1).

In the second experiment, Green agsin presented subjects with =
program written in either the JUMP, NEST-BE, or KEST-INE languages.
This time, however, he gave subjects the action to be taken and asked
them to provide the truth-values for the predicates that would invoke
that action. Since this was a taxonomizing task, he hypothesized that
subjects would take longest with JUMP, and KEST-BE would take longer
than NEST-INE. Again, the results confirmed his expectations: JUME
took longer than NEST-BE, and NEST-BE took longer than NEST-INE. The

differences were statistically significant (see Table 1).

Center for Digital Economy Researcl
Sterm School of Business
er [S-82-74

Working P

b

1

&)

Page

3. Rationale for the Current Research

While intuitively we zgree with the results obtained by Zime,
Green, and Guest, there are two areas where we tzke exception. First,
the experimental task that Sime, Green, and (:2st [22. 23] gave their
subjects comprised three programming tasks: desigr, coding, and
debugging. The subjects were naive or inexperienced programmers. It
seems they were not given formal training in how to undertake each of
the +three tasks; thus, their results may reflect somewhat
idiosyncratic approaches to the tasks. Perhaps with formal training
in each task, the differences among the languages may dissipate. We
develop this issue 1in the first section below. ZSecond, while the
nested languages were indented, JUHP was not indented. Green [9,
p.105] argues that "GOTQ conditiorals cannot, in general, be
indented."” We disagree. In the second section below, we argue that
Zime, CGreen, and Guest have adopted a language syntax that is toeo
restrictive. Consequently, coding their 1language in indented form
indeed 1is difficult, but indenting can be accomplished easily if the
syntax is relaxed slightly. This modified language 1is a closer
approximation of real-world programming languages and allows a

"fairer" comparison with the nested languages.

%.1 Programming Task Confounding

In the two experiments conducted by Sime, Green, and Guest
{22,23}, subjects learned the micro-languages primarily from written
instructions. They do not appear to have been trained in a

language-free context with respect to good design, coding, and

Center for Digital E
Stern School of Bus

Page §

debugging practices. Like Floyd [6] we argue there are "paradigms" in
programming =-- good practices that exist independently of programming
languages. lLanguages should be evaluated in terms of how well they
allow these paradigms to be dimplemented as code. Perhzps for the
simple experimental tasks used by Sime, Green, and Guest, the
inexperienced subjects intuitively identified the good design, coding,
and debugging practices that should have been used to solve the
problems assigned. We suspect that this is not the case, however, at

least for the JUMP languzge, if not for the nested languages.

Consider, first, the program design task. For the simplistic
experimental problems given to subjects, there are two primary
activities. First, the conditions under which an action is performed
must be determined. This is the taxonomizing task identified by Sime,
CGreen, and Guest. Furthermore, to check the accuracy and completeness
of the taxonomy developed, tracing might also be performed. Second,
the order in which conditional tests will be carried out in the
pregram must be determined. When Sime, Green, and Cuest presented
their instructions to subjects, the taxonomizing task had already been
completed. For example, a typical instruction was: "Foil: All
things which are juicy, not hard and not tall." Subjects still had to
perform the second task, however. /s we show below, there is a formal
way to determine the sequence in which tests should be performed. B
subjects are not shown this method, part of the effects obtained by
Sime, Creen, and Guest may reflect that, for naive subjecfs, the
languages they evaluated facilitated differentially choosing the
sequence of tasks to be performed. Had the subjects been shown how to

choose the =sequence of tasks, part of the effects obtained may have

Center for Digital Economy Resear

Sterm School of Business

Working P

er [8-82-74

b

1
ch

disappeared.

Censider, next, the ccding task. Here we identify still ancther
type of activity to be perfcrmed; namely, the sequencing activity
wherebv a program design must be converted intc the linear (physically
ccntigucus) sequence cf oprecgram ccde., It is similar to tracing in
that a programmer prcceeds from ccnditicns to acticns. Neverthel ess,
it differs inscfar as tracing folleows instructicns that are logically
contigucus whereas sequencing determines the phvsical crder of

instructions.

Given a formal program design, sequencing 1is a straightfcrward
activity. Ccnsider Table 24 which shcws a decision table
representation ¢of Problem 5 in Sime, Green, and Guest [23]. The
decision table constitutes a formzal representaticn of the orogram
desigrn. Each rule shows the necessary taxen informaticn. Morecver,
previding the decisicn table has been sorted accerding te the usual
rules, it prescribes the order in which conditions shculd be tested --
namely, the corder of the rcws in the ccndition stub (see, e.g., [31).
Sequencing then prcceeds by progressivelyv partitioning the table intc
"yas" and "ne" branches, representing these branches via a decisicn
tree, and ceding the tree in a left-to-right fashicn (precrder
traversal) . Table 2 shcws how a decision tree has been used toc
partition the decisicn table. Table 3 shcws our coding of Table 2 in
the NE3ST, NEST-BE, and NEST-INE languages. Ncte that the sequence of
ccde in each sclution raflects a precrder trasversal c¢f the decision
tree drawn toe partition the decisicn table. Note, alse, that our

solutions correspond to those given by Sime, Green, and Guest [23].

enter for Digital Econom
Sterm School of Business

Working Paper [S-82-74

Page 11
[Insert Tables 2 and 3 about here]

The decision table, decisicn tree, and preorder traversal
techniques are language-independent formal program design and coding
techniques {paradigms). Once a programmer knows these techniques,
sequencing is a somewhat trivial task, providing that the language
syntax used to implement the design permits preorder traversal of the
tree. It is here that the deficiencies in the JUNP language proposed

by Sime, Green, and Guest become apparent.

Consider Table 4, which shows the JUNP solution for the decision
table shown 1in Table 2. The correspondence between the table (tree)
and JUMP solution is not clear-cut. Why? The syntax of JUMP does not
permit & preorder traversal of the tree. This can be rectified
easily, however, by a slight modification to the syntax. If the
language allows an unconditional GOTO, Table 4 shows the solution.
Note that the unconditional GOTO has not been used in an unconstrained
fashion. It has been used to reflect the NOT branch of the decision
tree. Furthermore, the order of 1labels 1is determined easily by
labeling according to a preorder transversal of the tree {see Table
2). Again, providing the language accommodates the IOT branch of the
tree, the program design and sequencing tasks are language
independent. Insofar as the widely-used programming languages that
provide a branch-to-label conditional also permit an unconditional
transfer of control, Sime, Green, and Cuest's comparison of JUNMP with
the nested 1languages is somewhat "unfair". JUMP programmers are
forced to wundertake a more complex sequencing task, and the

experimental results do not bear on the relative strengths and

Center for Digital Economy Research
Sterm School of Business
Workin er [8-82-74

weaknesses of 'nested versus branch-to-label implementations of

conditionals in real-world programming languages.

[Insert Table 4 about here]

As a consequence of the above arguments, we =zlso question the
results obtained by Sime, Green, and Cuest [23] with respect to the
debugging capabilities of the languages. FRecall that Sime, Creen, and
Guest [23] found errors in NEST-INE easiest to correct. Furthermore,
Creen [9] found the tracing and taxonomizing tasks (fundamental to
debugging) to be easiest in the nested languages. There are two
rroblems with these results. First, in terms of £Sime, Green, and
Guest, if for naive programmers the languages facilitated
differentially the program design task, the errors existing at the end
of coding may not have been equally serious. Thus, subjects may have
undertaken debugging starting from different bases. In addition, to
the extent that the program designs were not equally clear to the
subjects, the debugging results are confounded. Second, in terms of
Green's research, the JUMP results may reflect the absence of a clear
NCT condition expressed via an unconditional transfer of control. We
do not question the internal validity of Green's results, only the
external validity in terms of languages that provide branch-to-1label

conditionals.

In the current research we attempt to disentangle various
effects. Since program design can be carried out independently of the
language used, this factor is controlled. Furthermore, we ©believe

Green's research provides compelling evidence that nested languages,

Center for Digital Economy Research
Sterm School of Business
Workin er [8-82-74

Page 13

especially DNEST-INE, will outperform JUMF for debugging tasks.
Whether nested languages will outperform JUMP for the sequencing task,
however, is less clear-cut. We see this as a strategic hypothesis to
test. Toes use of structured programming control constructs

facilitate only coding, only debugging, or both activities?

3.2 Indentation

Sime, Green, and Cuest [23] argue that indentation is beneficial
because it redundantly codes information that facilitates the tracing
task. Where there is no test, the next action is on the next 1line
with no change in 1indentation. Where there is a test, the action
satisfying the condition is on the next line, which is indented more,
and the NKOT condition is the next action on the same level of
indenting as the test. Green 59] argues that indentation also
facilitates the taxonomizing task in that relevant or irrelevant sets
of conditions can be identified quickly, simply by associating 1levels
of indentation. Clearly, therefore, Sime, Green, and Guest regard the
ability to indent a language as being an important factor affecting a

programmer's ability to carry out the tracing or taxonomizing tasks.

In terms of the experiments conducted by Cime, Green, and GCuest,
only the nested 1languages have been indented. Indeed, Time, Green,
and Cuest [23, p.115] argue: "JUNP has no indentation, and in fact it

cannot be successfullly indented unless the language is considerably

restricted” (our emphasis). Conversely, we argue that a slight
relaxation 1in the syntax of JUMP allows it to be indented at least

somewhat meaningfully. Again, the relaxstion involves wusing an

Center for Digital Economy Research
Sterm School of Business

Working Paper [8-82-74
: I

Page 14

unconditional GCTO to represent the NCT branch in the decision tree --
the same adaptation proposed in the previous section. Table 5 shows
the indented form of the modified JUMP syntax applied to the decision

table shown in Table 2.

[Insert Table 5 about here]

Whether or not the advantages of the nested languages over JUiP
with respect +to the tracing and taxonomizing tasks would disappear,
given the indented modified form of JUMP, is a research issue. We
suspect they would decrease but not disappear. Even with the indented
modified form of JUMP, it is still impossible to choose a set of
predicate truth-values that enables a programmer to trace through the
program in a sequence comprising physically contiguous instructions.
4 physical "jump” is unavoidable. Thus, we suspect the indented JULP
is still more difficult to understand. llevertheless, as we show
later, further modifications to the JUNP syntax enable even more

meaningful indentation to be effected. OCf course the research problem

is to compare the "best" JUMP syntax with the "best" nested syntax.

In the current research we do not evaluate the effects of the
indented form of JUMP on performance in the tracing and taxonomizing
tasks. As discussed in the previous ssction, the primary focus of the
research is the sequencing task. levertheless, since Zime, Green, and
Guest have argued that indentation is a majeor factor affecting
programmer performance, we attempt to control this factor by

evaluating both the indented and unindented forms of the languages.

Center for Digital Economy Research
Sterm School of Business

Working Paper [8-82-74
: I

Page 15

4. Languages Investigated

In light of our arguments in the previous section, in this
research we did not investigate the JUMNF language proposed by Cime,
Green, and Guest £22]. Instead, we examined & modified version of
Julrp, JUMP-Ii, which permitted an unconditional GCTO so the LOT
condition in a decision tree could be implemented easily. The three
nested languages, NEST, NEST-BEE, and NEST-ILE, were essentially the
same, although there were some minor modifications made that we will

explain below.

Table 7 shows the indented language implementations {of the
decision table shown in Table 6) that were investigated in this
research. To distinguish the indented forms from the unindented
forms, the languages have been labeled JUMP-M-I, NEST-I, NEST-BE-I,
and KREST-INE-I. The unindented forms of the languages are the same,

except that each new line starts flush with a common left-hand margin.

[Insert Tables 6 and 7 about here]

Consider, first, JUNP-M. It differs in four respects from the
original JUNP. First, note how an unconditional COTC has been used
for each NOT branch in the decision tree; for example, GCTC 14 for
the NOT branch of "IF juicy." Cecond, the unconditional GOTC has been
used, also, to branch to the end of the logic, which may be the end of
the program or the start of a new set of logic. Again, we argue this
modification makes the language more representative of existing
JUMP-style languages. Third, the labels used are numeric rather than

alrhanumeric (such as L14), consistent with languages such as EAZIC

Center for Digital Economy Research
Sterm School of Business

Working Paper [S-82-74

Page 16

and FCRTRANK. "Fourth, wunlike JUMNP, JU¥P-}M can be indented easily.
Note how a nested structure now exists in the language, although it
still does not seem &s clear-cut as the structure existing in the
other three languages. DNevertheless, by using an unconditional GOTC
to branch to the end of logic {e.g. GOTO 17), this indented form of
JUNP appears to provide a neater (and more realistic) nested structure

than the first indented version of JUHP shown in Table 5.

Consider, next, the nested languages. IEST-BE has been modified
by deleting "THEN" from "IF-THEN" in the original syntax. KEST-INE
has been modified by inserting "THEN" after an IF-test in the original
syntax. There are two reasons for these modifications. First, a
performance measure used in the current research is time taken to
perform the sequencing task. Presumably time taken will be affected
by the number of words that have to be written in the program
solution. With the above modifications, the NEST-BE and NEST-IH
solutions for Table € each contain 67 words; thus, timing differences
between these two languages can be attributed to other factors.
Second, given that an action or another test is signaled by a "EEGIX"
in NEST-BE, including a "THEK" is redundant. In the original syntax
of NEST-INE, however, there is no key-word {such as THEN) to =signal

the forthcoming action or further test.

Hopefully the above modifications to the nested languages do not
affect too much the extent to which our results can be generalized to
the syntax wused by Sime, Green, and Cuest. We believe the
modifications to be minor. The modifications to the JUMP syntax,

however, are more serious. C(Clearly it is an impossible research task

Center for Digital Economy Rese
Sterm School of Business
er [8-8

Workin

oy

74

sarch

Fage 17

to evaluate the performance consequences of all possible syntactic
variations that might be made to a single programming language. If
researchers are to evaluate different languages, they will save
themselves substantial work if they can approach the "optimum" syntax

for a particular language as soon as possible.

Finally, there is one aspect of the sequencing task that has not
been mentioned so far but which Table 6 illustrates; namely, the
procedure to be followed when an action is common to several rules in
the decision table. The procedure is simple. As Table 6 shows, the
programmer circles the common action and the common set of condition
entries that invoke the action. As soon as the condition is tested
and the relevant entries hold, the action(s) is written in the
sequence of code (see Table 7). Thus, the action is taken
irrespective of the entries for all lower level tests within the

branch of the decision tree.

5. Theory and liypotheses

This section describes the theory that underlies our research and
the hypotheses derived from the theory that we test empirically. The
theory is in a primitive state; it represents a first pass, although
it is based on the earlier work of Sime, Green, and Guest. We attempt
to predict a priori how the four languages, JUMP-N, NEST, NEST-BE, and
NEST-INE, will affect programmer performance during the sequencing
(and hence the coding) task. We attempt also to predict the effects
of wusing the indented versus unindented forms of the four languages.

The scope of the theory is restricted. We assume programmers start

Center for Digntal Economy Resear
Sterm School of Business

Working Paper [S-82-74

1
ch

Fage 18

with a common- program design 2and they know how fo perform the
sequencing task. The theory covers performance up to the point where
the first version of +the code has been written. Performance is
assessed in terms of five criteria: the time taken to write the first
version of the code; the number of different types of syntax errors
made; the total number of syntax errors made; the number of semantic

errors made; and the number of error-free programs per subject.

5.1 Time Taken to Perform the Sequencing Task

In this research the time taken to perform the sequencing task is
the elapsed time between subjects being presented with a decision
table and their completing a coded solution for the decision table.
It comprises the time to construct the decision tree and to convert
the tree to code. For reasons that will be explained later, subjects
did not check their solution; thus, the time taken ends after the

first pass at writing a coded solution.

5.1.1 Unindented Language Form

We postulate that three factors primarily affect the time taken
to perform the sequencing task. The first factor is the number of
words that must be written for each solution. Given the syntax of the
four languages, JUMP always exceeds NEST-BE and NEST-INE, which have

equal word counts, and these two languages always exceed NEIT.

The second factor is whether or not the language syntax permits

users to proceed straight down a branch or whether it forces them to

r

jump to an alternate branch before proceeding. To illustrate this

Center for Digital E
Stern School of Bus

Page 1€

point, consider the JUMP-M solution in Table 7. The first instruction

tests the truth-value of "juicy". If "true" exists, the 1left branch

of the decision tree is taken. ~ & next instruction, however, is not
for the left branch. It is for the right branch -- the "false"
truth-value. Thus, the programmer must flip branches before

proceeding down the left branch. We postulate this mental operation
slows the sequencing task. None of the nested languages suffer this

problem.

The third factor is the cognitive complexity of the grammatical
structural wunit used to represent the "true" and "false" branches of
the decision tree. Here we postulate INEST-EE and NEST-INE to be more
complex than JUKP-M and NEST. The complexity arises because in both
languages each branch of the tree must be terminated with an ENC. As
the number of levels of nesting increases, remembering the EKL is
needed to terminate each branch reguires extra mental operations and
slows the sequencing task. For example, in the NKEST-EEZ solution to
Table 6, there is a tendency to forget the second EKD needed +to
terminate the 1leftmost branch of the decision tree after the "chop"
action is taken and terminated by END. NEST-INE suffers a similar
problem, although it is not as serious since the redundant predicate
associated with each END acts as =z memory cue. In JUMP-M and ©NEIT,
the programmer does not have to purposefully terminate the branch. In
JUMP-M the branch terminates when = new IF or GOTC is encountered; in

NECT it terminates when s new IF or OTHERWISE is encountered.

Center for Digital Economy Research
Stem School of Busimess

Working Paper [S-82-74

rage 20

We postulate that the complexity of the language structural unit
is the primary factor affecting time taken in the sequencing task
since it imposes the most onerous mental operations. Thus, in terms
of time taken, NEST-BE will exceed DNEST-INE which, in turn, will
exceed JULP-M and NEST. Furthermore, JUNP-M will exceed NEST because
it requires more words to be coded, but more importantly because it
does not allow coding to occur by proceeding straight down a branch.

This analysis leade to the following hypothesis:

i Har ’ Hir 7 Mg 7 Myp

where: - = average time taken for NEST-EE
- = average time taken for NEST-INE
uJT = average time taken for JUMP-H
Uy = average time taken for NEST

~

5.1.2 Indented Language Form

Indenting is an extra operation that must be performed in +the
sequencing task. When 1is indentation useful? We postulate that
indentation is useful when the spatial pattern provided by indentation
signals to the programmer that some sequencing operation is needed
which otherwise would be obscure. Recall that in the previous section
we argued the need for an END was sometimes an obscure aspect of
coding in NEST-BE and NEST-INE. Thus, we ©predict that indentation
will facilitate the sequencing task in these two languages. For
JUKP-Ii and NEET, however, we predict that indentation will inhibit
rather than facilitate the sequencing task. The problems associated
with using the END termination do not exist in these languages; thus,

use of indentation constitutes an overhead. This analysis leads to

Center for Digital Economy Researcl
Sterm School of Business

Working Paper [8-82-74

1

the following hypotheses:

H2 (a): e
(a) Harp Hpp
T 4"]
H2 (0): yoq ¥ Bop
H2 {(¢): = > i
Hgr JT
42 (d): « ¥ oy
HNT NT

wvhere the terms have the usual meaning and the +tilde signifies the

mean for the indented language form.

5.2 Number of Types of Syntax Errors

The number of types of syntax errors 1is measured simply by a
count of the different forms of syntax error that exist in the code
produced. Two factors affect this variable: (2) the number of
possible error types that can be made, given the syntax of the
language; and (b) the probability of each type of syntax error being
made. It is important to recogrize that this measure is an expected
value. One language may have more syntactic rules that can be broken
than another language, but 1if the probability of each rule in the
former language being violated is small, fewer types of syntax error

may be made using it compared with the latter language.

We do not attempt a rigorous analysis of why certain types of
syntax errors are more prevalent than others. This would require an
exhaustive listing of all types of syntax error that could be made
with a language and development of a psychological theory that would
predict the error proneness of each syntactic rule. While linguistics
research has made substantial progress in this area in terms of

natural language, developments in terms of artificial languages have

Sterm School of Business

Working Paper [8-82-74

Center for Digital Economy Research

I-‘
'DJj
m
@
M
mn

been slow in forthcoming. DMNoreover, there are few empirical studies
of programming languages that provide the data to test a theory or the
basis upon which a theory might be constructed (see, 2.g., [12,14]).

Thus, the analysis below is founded upon our intuition and experience.

5.2.1 Unindented Language Form

We postulate that the number of types of syntactic error made
when using a language is primarily a function of the complexity of the
syntax of the basic structural unit in the language. NEST-BE has the
most complex structure:

o

BEGIN __ END

ELSE

BEGIN __ END
Compared with the other languages, there is more scope (degrees of
freedom) for forgetting a BECIN, END, or ELSE, particularly when

several levels of nesting exist or the IOT branch of 2 decision tree

is being coded.

FEST has the simplest structure:
IF THEN

OTHERWISE __

Indeed, no syntactic aspects of this structure seem especially

error-prone.

For both JUMP-M and NEST-INE, only one type of syntax error seems

likely. The structure of JUNF-KE is:

Center for Digital Economy Research
Sterm School of Business
Working Paper [8-82-74

Page 23

IF __ GOTO

GOTO

(true branch)

___ (false branch)
We predict that the most likely error will be forgetting a label on

the true or false branch statement.

The structure of NEST-INE is:

We predict that the most likely error will be forgetting an END,
again, especially when several levels f nesting exist or the NOT

branch in a decision tree is being coded.

This analysis leads to the folleowing hypothesis:

A ¥ Mag = Py ? Wge
where:uBS = average number of types of syntax error for NEST-BE
Mg = average number of types of syntax error for HEST-IKE
ﬁJs = average number of types of syntax error for JUMP-I{
M = average numter of types of syntax error for NEST

5.2.2 Indented Language Form

Indentation increases the scope for a syntax error in that
irdentation might be forgotten, the wrong levels of indentation may bte
used or matched, etc. We postulate that indentation will reduce the
number of types of syntax error made, only if if counteracts the

tendency to make an error type in the unindented form of the language.

Center for Digital Economy Researcl

Sterm School of Business

Working Paper [8-82-74

Fage Z4

Given that we have argued few aspects, if any, of the NEST syntax
are error-prone, we predict that indentation will increase the number
of error types made. OCn the other hand we predict that indentation
will reduce the number of types of syntax error made in KEST-BE and
WEET-IHNE, in that there is less likelihocd of a BEGCIN, ELSE, or ERKD
being forgotten. The redundant structure provided by indentation acts

as a cue to remind the programmer of the key-words needed.

Predicting +the effects of indentation on JUNP-H is more
difficult. We have argued previously that forgetting a line label is
the most likely type of error. Will indentation help the rprogrammer
to remember a label 1is needed? We do not see how. Indeed,
indentation seems problematic in any language where a straightforward
linear flow of logic cannot be established via each sequential
instruction. To illustrate this point, consider the JUMP-F-I syntax
in Table 7. The first level of nesting, which starts at line label 1,
applies not to instruction 2 but to instruction 1. Similarly, the
level of nesting that starts at line label 14 applies to instruction
2. In other words, a level of nesting does not immediately follow the
motivating instruction; other instructions intrude in the meantime.
We predict that this interference makes correct indentation somewhat

difficult in JUMP-M-I.

This analysis leads to the following hypotheses:

. v
k4 (a): Boe > Mg
v
H4 (B): Mg > Mg
\
4 (c) H g > Mg
QY
H4 (d): n > u
NS NS

Center for Digital Economy Researcl
Sterm School of Business

Working Paper [8-82-74

1

where the terms and the tilde have the usual meaning.

5.2 Kumber of Syntax Errors

The number of syntax errors is measured by counting the total
number .of syntax errors made in the code produced, irrespective of
error type. Presumebly this measure is correlated with the number of
types of syntasx error made. levertheless, the number of types of
syntax error made may be small in a language but a particular type may

be especially error prone so the number of syntax errors made is high.

Again, in the absence of a refined psychological theory of
programming languages, our analysis below is in a primitive state. It

primarily reflects our intuition and experience.

5.%.1. Unindented Language Form

Given the simple structure of the four micro-languages
investigated, our predictions with respect to the number of syntax
errors made are the same as our predictions for the number of types of
syntax errors made. Again, we postulate that NEST-BE has the most
complex structure, and, as a consequence, the greatest number of
syntax errors will be made with this language. The simple structure
of NEST leads to the prediction that few syntax errors will bte made.
.LST-INE and JUMP-M are the intermediate cases; we predict some
errors will be made in terms of a missing ENTC or a missing label

respectively.

Center for Digital Economy Research
Sterm School of Business

Working Paper [S-82-74

This analysis leads to the following hypothesis:

H5: uBN >HIN =UJN > Han
where: Hpy = average numter of syntax errors for NEST-BE
Wiy = average number of syntax errors for NEST-INE
) HJN = average number of syntax errors for JUMP-M
H NN = average number of syntax errors for NEST

5.3.2. Indented Language Form

Similarly, our predictions for the indented form of the language
are the same as those for the number of types of syntax error measure:
indentation will facilitate use of NEST-BE and NECT-IKE but inhibit

use of JUMP-IK and NEET. Hence, we propose:

Ny
E6(a) : Bow > Mgy
N
HE(B) : Min > My
Y]
HE(c) : My > Han
ny

HE(d}r H UNN > uNN

where the terms and the tilde have the usual meaning.

5.4 Number of Semantic Errors

Given that programmers are presented with an accurate and
complete program design (decision table), semantic errors are those
errors made during the construction of the decision tree or the first
pass of the coding task that would cause incorrect logic to be

executed.

Center for Digital Economy Research
Sterm School of Business

Working Paper [S-82-74

Page 27

5.4.1 Unindented Language Form

We postulate that two factors primarily affect the number of
semantic errors made using the micro-languages. The first factor is
whether or not the language syntax permits users to proceed straight
down a branch in the decision tree or whether it forces them to jump
to an alternate branch before rproceeding. This factor has been
discussed already. In essence we argue that " jumping branches" is a
cognitively complex process that is both syntactically and

semantically error prone.

The second factor is the error proneness of the language with
respect to syntax. To the extent that users have to concentrate more
to prevent syntax errors, they are more 1likely to make semantic

Errors.

With respect to the first factor, JUNP-F 1is at a disadvantage
relative to the nested languages. With respect to the second factor,
we have argued already that NEST will outperform NEST-INE and JUKP-H,
which will in turn outperform MNEST-BE. We postulate that the first
factor has the major influence on the number of semantic errors made.

This analysis leads to the following hypothesis:

H7 + Mgy > Ham> Him> Yy

where: . = average number of semantic errors for JUMP-M
T = average number of semantic errors for NEST-EE
ey T BVETAEE number of semantic errors for NEST-INE
Mo = average number of semantic errors for NEST
Center for Digital Economy Research
Sterm School of Business

Working Paper [8-82-74
: I

Page 26

5.4.2 Indented lLanguage Form

Since indentation dces not affect the first factor that we
predict will affect the number of semantic errors, we postulate that
any effects will occur through the second factor. Jince we Thave
argued .previously that indentation facilitates coding in NEST-EE and
NLST-INE but inhibits coding in JUNHP-I and KEST, this 1leads to the
following hypothesis:

) N
He(a) : MM ? H M

e

He(b) :Hpy BM

"
s .
HE{c) sy > Moy
\ v
He(d) tHam 2 HMum

where the terms and the tilde have the usual meaning.

5.5 Number E£ Error-Free Programs

This variable measures the number of times that code is free of
syntactic or semantic errors after the first pass of the sequencing
task across several programming problems. Clearly it 1is correlated
with the wvariables that measure the number of syntax errors and the
number of semantic errors that are likely to occur. DNevertheless, the
relationship is not perfect; the probability of at least one
syntactic or semantic error cccurring may be somewhat unrelated to the

total number of syntactic or semantic errors made.

Center for Digital Economy Research
Sterm School of Business

Working Paper [S-82-74

5.5.1 Unindented Langusge Form

The analysis underlying the variables that measure the number of
syntactic errors and the number of semantic errors is relevant here.
Given the rote nature of the sequencing task, we rpostulate that
syntactic errors are more likely to occur than semantic errors. In
light of hypotheses 5 and 7, therefore, we propose the following:

HOS Bpee D lopg D Wgp iy

where: Myp = average number of error-free programs for NEST
. = average number of error-free programs for MEST-IKE
- = average number of error-free programs for JUKP
- = average number of error-free programs for LEST-BE

5.5.2. Indented Language Form

Again, our analysis of the effects of indentation on the number
of error-free programs follows from our analysis of the effects of
indentation on the number of syntax errors and the number of semantic
errors: indentation will facilitate use of NEST-BE and NEST-INE and
inhibit use of JUMP-M and FEST. This znalysis leads to the <following
hypotheses:

v
H10(a) : MHgp > Hgp

H10(b) I
Hip ° M1F
H10(e) : g
(e T O Har
H10(d) : %
‘) Har © MaF

where the terms and the tilde have the usual meaning.

Center for Digital Economy Research
Sterm School of Business

Working Paper [8-82-74

Fage %C

6. FEesearch Methodology

To test the hypotheses described in the previous section, a
leboratory experiment was conducted. The experimental design used was
a mixed design involving two factors and a repeated measure. The two
between—éubjects factors were type of language used and indentation.
The former was measured at four levels, each level representing one of
*he four micro-languages. The 1latter was measured at two levels:
indented or unindented. The within-subjects variable was measured =at
three levels, each level representing one of three consecutive trials

at the experimental task.

6.1 Subjects

Subjects in the experiment were volunteers from a first-year
undergraduate introductory accounting class. The rules for human
experimentation in our university prohibit us from having students act
as experimental subjects as a compulsory part of their degree. Thus,
researchers have no control over subject selection, and the ususl
threats to external validity apply (see [3]). Nevertheless, students
who participate 1in experiments are moctivated to undertake the
experiment, so the limitations of compulsory participation tend not to

exist.

There were two requirements for students participating in the
experiment: first, they had to be available for three hours
continuously; second, they had to have 1little or no programming
experience. With respect +to this latter requirement, we decided to

run the experiment with inexperienced subjects because we did not wint

Center for Digital Economy Research
Sterm School of Business

Working Paper [S-82-74

Page 31

the results to be confounded by a subject's experience with a
particular language. Training requirements for the micro-languages

are not severely onerous, and so we opted for inexperienced subjects.

Fight time slots initially were made available during which
volunteers could undertake the experiment. They were asked to
indicate their first three preferences. in attempt was made to
balance the groups in terms of numbers. The eight slots proved
insufficient; consequently, a further five time slois were made
available. An attempt was then made to balance the groups in terms of
sex ratio and the ratio of full-time to part-time students.
Unfortunately, these attempts to balance the groups proved
unsuccessful. Because of the three-hour time requirement, part-time
students could participate primarily only on evenings and weekends.
Full-time students were loathe to participate at these times. The
treatments were =sallocated randomly to the first eight time slots;
then, depending on subject numbers in the respective groups, the
remaining five time slots were allocated to the treatments. This
resulted in JUNP-M-I being allocated three time slots and NEST-INE-I,
JEST-BE, and NEST each being allocated two time slots. On our first
attempt to solicit students, we obtained 59 volunteers out of a class
size of 600. Two more attempts to obtain further volunteers from the

class failed.

Center for Digital Economy Research
Sterm School of Business

Working Paper [S-82-74

v}
i)
0q
m
WM
A%

6.2 Materials

Three sets of materials were developed for the experiment. The
first set comprised training exercises that were used to teach
subjects how to write code using either the indented or the unindented
form of a particular language. The materials for each exercise
consisted of two sheets of paper stapled together. The front page of
the first sheet contained a space for the subject's code number and
the date of the experiment. The inside page of +the first sheet
contained a decision table -- the program design. The inside page of
the second sheet was blank except for a single vertical 1line if the
subject was to use the unindented form of the language, or seven
vertical lines if the subject was to use the indented form. These
lines provided the left-hand margins for code. Thus, the arrangement
of the materials allowed the subject to view the decision table on the
left-hand sheet while writing code on the the right-hand sheet. There

were seven training exercises developed.

The second set of materials comprised three exercises for the
experiment proper. The exercises were arranged in the same way as the
training materials so subjects could view the decision table at the
same time as they wrote the code. The decision tables for each
exercise contained eight conditions, nine rules, six levels of
nestin, . &end nine actions. Table 6 is one of the exercises used in

the experiment proper.

The selection of a decision table to represent the program design
is purposeful. If structured methodologies are used to implement a

system, the output of the system design phase 1is either a decision

Center for Digital Economy Research
Sterm School of Business
Working Paper [8-82-74

Page 37

table, decision-tree, or structured English as a representation of the
logic to be coded (see, e.g., {4]). We chose decision tazbles because
we believe they provide the clearest represention of the logic to be
coded. TFurthermore, as discussed earlier, they are amenable to the
sequencing task via the technique of creating a decision tree to
partition the table. The number of conditions in the decision table
also was limited +to eight since proponents of the structured
methodologies advocate choosing "chunks" of 1logic that can be
represented on a single page -- an acknowledgement of the limitations

of short-term memory (see, e.g., [4)).

The third set of mnaterials comprised a short debriefing
questionnaire that asked subjects to 1indicate whether they were
full-time or part-time students, whether they had computer experience

and, if so, the nature of that experience.

6.7 Administration

g

The experiment was administered in two stages. The first stage
was a pilot study in which each of the eight treatments (4 languages X
2 levels of indenting) was tested. INo modifications were required to
the experimental materials. However, some practice was needed before
the experiment could be administered smoothly. Furthermore, in 1light
of questions asked by the pilot subjects and their results, training

was modified to highlight areas that were error-prone or ambiguous.

The second stage was the primary study. It, in turn, consisted

of two phases. The first phase was a training session involving seven

practice exercises. The exercises progressively increased in

Center for Digital Economy Research
Sterm School of Business
Workin er [8-82-74

difficulty from decision tables involving three conditions and code
involving three levels of nesting to decisiorn tables involving eight
conditions and code involving five levels of nesting. The training
session started with +the experimenter showing subjects how to
partition the decision table and to construct the decision tree. The
subjects were told that time was to be a performance variable and, as
they gained facility with the tasks, they should attempt to perform
them more quickly. They then were given the first threes exercises.
llext they were shown how to perform the sequencing task in the
particular language that they had been assigned. They then coded the
first three exercises on which they had worked already. The fourth
exercise involved them undertaking the complete experimental task. To
ensure consistency of style, they were told to write rather than print
the code. At the start of the sixth exercise, subjects were told they
would be timed. Their objective was to be complete coding accuracy in
minimum time. To motivate them to comply with this objective, they
were informed that their results would be discarded unless complete
accuracy was achieved. In addition, they were told that for the final
three exercises they were not to check back over their code once it
was written. Thus, they should strive to write the code correctly on

tre first pass.

After the sixth exercise, subiects were given a short rest break.
’ % g

i

After the break, the second phase of the primary study commenced.
Subjects were given a warm-up exercise administered as though it were
a final experimental trial. Then they were given the final three
trials, which represented the experiment proper. Between each trial,

subjects were given a short rest break while their answers were

Center for Digital Economy Research
Sterm School of Business
Workin er [8-82-74

collected.

Several aspects of the methodology need further explanation.
First, seven practice exercises were given because our pilot study
indicated that subjects needed about four exercises before they had
achieved some proficiency. By about the fifth or sixth exercise,
learning usually had ceased. Illevertheless, as a check for a learning
effect {or fatigue), we conducted three experimental trials. Second,
after each training exercise, subjects could ask questions. Turing
the early exercises, they were also given some time to examine their
answers and assimilate the knowledge required to perform the task.
The experimenter used an overhead projector with colored pens to show
the answers to exercises. Third, subjects were seated well apart in
the room where the experiment was conducted. They were told to signal
their completion of an exercise by raising a finger, and then to sit
quietly S0 they would not disrupt other participants. The
experimenter used a seating chart to record times from a stop watch.
If more than six subjects participated in an experimental session, =
research assistant recorded times for half +the group. Fourth, by
telling subjects that complete accuracy was needed for their results
to be used, an attempt was made <to have subjects manifest their
performance through time. &As Green [9] points out, time and accuracy
are problematic performance measures since subjects can trade off one
measure against the other. Fifth, subjects were told not to check
their results since the extent of checking carried out by a subject
would confound the effects of the type of language used on the
performance measures. £ subject's tolerance for ambiguity or

propensity for risk taking, for example, may affect the zmount of

Center for Digital Economy Research
alerm schod
Working Paper [S-82-74

] of Business

Page 36
checking he/she undertakes.

As a final issue, the pilot study and primary study were
administered by only one of us. There is evidence that indicates
different experimenters can produce different effects and some form of
control,l such as the one we used, is needed (see EE}}. Furthermore,
it required some practice before the experiment could be administered
proficiently. Cince practice opportunities were limited, it seemed
important that only one of us should conduct the experiment. The
experiment was administered 22 times: 9 pilot administrations

(NEST-BE was repeated) and 13 primary administrations.

7. Lata Analysis

Lata was analyzed in two steps. First, a doubly multivariate
analysis of covariance with repeated measures mcdel was fitted to the
data for time taken, the number of types of syntax errors made, the
number of syntax errors made, and the number of semantic errors made
(see [1]). Recall that each subject performed the experimental task
three times, and on each occasion they were measured on the above four
criteria. Cince the variables are correlated, a multivariate analysis
is necessary. The covariate used was a subject's tertiary education
score (TE). This score is calculated on the basis of their high
school performance and is the primary admission criterion for entry to
the university and its respective departments. We thought that this
variable might be a surrogate measure of programming ability for naive

and novice programmers.

Center for Digital Economy Research
Sterm School of Business

Working Paper [S-82-74

Page 37

The second-step in the analysis was to fit an analysis of
variance model to the data for the number of error-free programs that
a subject prepared. Though this is a separate statistical model, the
dependent measure 1is correlated with the other four dependent
measures; thus, the results described below should be treated with

caution.

7+1 The Multivariate liodel

The multivzriate model zllows all main effects and interactions
to be investigated. There were three main effects -- language (L),
indentation (I), and trial (7). Consequently, there were three
first-order interactions -- LI, LT, and IT -- and one second-order

interaction LIT.

Table 8 shows the means and standard deviations for the
performance mneasures (averaged over the three trials) for each
language type-indentation comtination. Since all measures were
moderately right-skewed, they were transformed to correct for this
non-normality. Time taken was transformed using the formula logl0 X
and the other three variables were transformed using the formula logy g
(x+1) (see [11]). Appendix A contains the means and standard

deviations for the untransformed variables.

[Insert Table & about here]

Center for Digital Economy Research
Sterm School of Business

Working Paper [S-82-74

Page 38

At the .05 significance level, only three effects were
significant wusing the approximation to the F-test -- L, I, and LI.
Thus, there is no evidence of a learning effect or a fatigue effect
across the three trials of the experiment or an interaction tetween
the within- and between-subjects factors. Since the LI interaction is
significant, the main effects must be treated cautiously and the cell

means must be examined individually.

While the overall tests of significance indicate a difference
exists between the vectors of means for the performance measures, they
do not indicate which of the dependent measures produce the
significant effects. To determine which dependent measures produced
the significant multivariate effect for the interaction term LI, we
used a procedure decribed by Messmer and Homans [15]. Easically the

rocedure involves a series of step-down tests whereby a single
criterion variable is first introduced into a univariate analysis of
variance model and the F-statistic calculated. This criterion
variable then becomes a covariate in a univariate analysis of
covariance model and a secon criterion variable 1is tested for
significance. This criterion variable then joins the first as a
covariate and a third criterion variable is tested for significance.

Progressively all except the 1last criterion variable enter as

covariates in the model.

To use the approach it is necessary for the researcher %o have

some a riori ordering of importance of the criterion variables. In
priori P

terms of the experiment conducted, we postulated that any treatment

differences would be manifested primarily in terms of the time needed

Center for Digital Economy Research
Sterm School of Business
Working Paper [S-82-74

o

v
U\‘i

0]
el
o

to complete the-task. The relative importance, however, of the number
ot types of syntax error, the number of syntax errors, and the number

of semantic errors was not clear-cut.

Table 9 shows four different orders of step-down tests wused and

the significance 1levels attained for the LI interaction. GSince TE
score was not significant as a covariate in the overall FALCCVA model,

it was removed from the step-down models to increase the degrees of

freedom. available for the tests.

Given that the individual tests of significance for each
criterion variable are related, the Eonferroni inequality can be used
to calculate the individual statement levels of significance that must
be attained [17]. Using & .C5 family level of significance, the

individual statement levels of significance are given by:

o
w

h
-

1
Pl
2

[

Using o« = .01 , Table 9 shows that only time taken reaches
significance. Two other performance measures approach significance:
number of types of syntax errors for the first step-down order and
nunber of syntax errors for the second step-down order. Thus, in
terms of the level of significances zattained, there is strong support
for the LI interaction having an effect on time taken and weak support
for an effect on the number of types of syntax error and the number of

syntax errors.

Center for Digital Economy Research
Stem School of Busmess
Working Paper [S-82-74

FPage 4C

Figure 1 shows the nature of the interaction for each of these
three dependent measures. In terms of time taken, the interaction
arises because indentation facilitates use of NEST-BE and NEST-INE but
inhibits wuse of JUMP-I and NE3T. Thus, the direction of the means
supports the analysis underlying hypothesis 2. For the wunindented
form of the language, NECT outperformed JUNP-Ii, and JUMP-L
outperformed HNEST-BE and NEST-INE. Except that the means for NEST-EE
and NEST-INE are equal, these results support the analysis underlying

hypothesis 1.

[Insert Figure 1 about here|

In terms of the number of types of syntax error, the interaction
term was significant because indentation facilitated use of NEZT-EE
but inhibited use of JUMP-M, IEST, and NEST-INE. Except for the
NEST-INE result, the direction of the means supports the analysis
underlying hypothesis 4. For the unindented form of +the languages,
from best +to worst performance, the order is NEST, LEST-INE, JUKNF-L,
and NEST-BE. Ageain, apart from the NEST-INE result, the direction of

the means supports the analysis underlying hypothesis 3.

In terms of the number of syntax errors made, indentation
facilitates wuse of NEST-BE only and inhibits use of JUFP-I, NEST, and
NEST-IKE. Except for the NEST-INE result, the direction of the meuans
supports the analysis underlying hypothesis 6. TFor the unindented

form of the language, from best to worst performance, the order is

Center for |)i'-__'-rl\1| Economy Research
Sterm School of Business
Working Paper [S-82-74

Page 41

NEST, [KEET-INE; JUNP-H, and NEST-BE. Again, apart from the NECT-INE
result, the direction of the means supports the analysis wunderlying

hypothesis 5.

Since the numbter of semantic errors was not sigrnificant for the
LI interaction effect, there is no support for hypotheses 7 and S.
Nevertheless, it is interesting to note that in terms of NEST-BE and
KEST-INE, the previous effect of indentation on the two syntax error
measures was preserved: 1indentation facilitated use of REZT-EE but

T oo m

inhibited use of REST-IEE.

In summary, given the ccrrelated nature of the dependent
variables and the number of comparisons of means that must be made,
the significant interaction term in the multivariate model has arisen
primarily because of differences in the time taken for the various
treatments. “he number of types of syntax error and the number of
syntax errors have weaker levels of significance and, as =z
consequence, may be due to chance. Foreover, it 1is primarily the
effects of indentation on JUMP-1{ and FBEST that have produced the

significant interaction effect for time taken.

7.2 The Analysis of Variance lodel

Since the TE score was not significant in the multivariate model,
it was not included in the analysis of variance model used to
determine the effects of language and indentation on the number of
programs that a subject coded correctly over the three trials. Table
10 shows the means and standard deviations for the various

language-indentation combinations. The main effects vere

Center for Digital Economy Research
Sterm School of Business
Working Paper [S-82-74

Fage 42

insignificant, but the LI interaction was significant (F = 3.164; df

= 3,51; p = .03%) indicating a cross-over effect.

[Insert Table 10 about here |

For the unindented language form, from best to worst performance,
the order is RKEST-INE, REST, JUKP-M, =and NEST-BE. Except that
KEST-IKE outperformed NEST, the direction of the means supports the

anzlysis underlying hypothesis 9.

When the indented forms of the languages are used, Figure Z shows
a familiar pattern. Indentation has facilitated use of NEST-BE but
inhibited use of NEST and BFEST-INE. Performance using JUMF-I improves
slightly when indentation is used. Thus, there is partial support for
the analysis underlying hypothesis 10.

[Insert Figure 2 about here]

Again, these results should be treated with caution. Because the
dependent variables are correlated and a large number of pairwise
comparisons of means have been undertaken, the stability of these

results 1s suspect.

8. Discussion Ef Results

Wnat, then, are the implications of the results for the way in
which conditional statements should be implemented in programming
languages? The following sections draw some conclusions based on our

findings.

Center for Digital Economy Research
Sterm School of Business

Working Paper [S-82-74

a7)
[
o
(4]
5
p

£.1 Helative Capabilities‘gi the Languages Investigated

Based on their two studies, Sime, Green, and Cuest [23 P 1141
concluded: "It is always easier to draft a semantically correct
program in a nesting language, whether multiple actions are required
or notj; but when they are reguired, the likelihood of 2 syntactic
mistake goes up -- particularly in KEST-BE." ©ERecall, from Table 1,
NEST had outperformed JUMP on all criteria, but the results for JUNP,
NEST-BE, and NEST-INE were equivocal: more subjects had successfully
completed each problem in JUXF, there were more error-free problems
per subject in JUMP, and JUNMP had outperformed NEST-BE in terms of the
number of syntactic errors per problem and error-lifetimes. However,
more semantic errors per problem had been made in JUMF. lNote, not all

the differences were statistically significant.

Cur results are somewhat contradictory. Consider, first, the
three nested languages. In terms of the indented form of the
languages (the form used by Sime, Green, and GCuest), NKEST-BE
outperformed NEST and DNEST-INE in terms of all five dependent
measures. Lxcept for the number of error-free problems per subject,
it also outperformed NEST. We find this to be s surprising result
since we have argued NEST-EE is the most complex language. To some
extent the results are affected by outliers, but Sime, Green, and
Guest seem to have had this problem too -- they had non-normal
distributions that led them to use non-parametric statisties. For
whatever reason, subjects had more difficulty using NEST and FEST-INE.
In terms of syntax errors, for example, subjects using NECT-INE forgot

4 THEK, inserted an extra THEN after the IOT condition, and missed an

Center for Digital Economy Research
Sterm School of Business

Working Paper [S-82-74

Page 44

ENL. In NEST, +they forgot a THEN or an CTHERWISE, misplaced &n
OTHERWISE, and ironically one subject frequently misspelled the
predicates, which we counted as s syntax error. In HNEST-EE, the
anticipated errors -- forgetting a BEGIN, END, ELSE -- were not

prevalent.

When the unindented forms of these languages were used, however,
the syntax difficulties experienced with NKEST and NLEST-IKE were
substantially reduced. Indeed, NEST consistently turned out to be the
best 1language across the first four performance criteria. For the
number c¢f error-free problems performance measure, KEST-INE

outperformed XEST, which in turn cutperformed NEST-EE.

With respect to JUMNP-l, in general it appears to perform neither
substantially worse nor substantially better than the unindented form
of the nested languages, except in terms of the time +taken with the

indented form of JUMP-M. We discuss this issue below.

There are several possible reasons why our results tend to differ
from those obtained by OJime, Green, and Guest. TFirst, in many cases
we are comparing simple differences in means rather than evaluating
statistically significant differences. Thus, the results may reflect
sampling variability. DPNoreover, in =zll the research conducted so far,
the sample sizes have been small; thus, the power of the statistical
tests is low. GSecond, though we wvaried +the syntax of the nested
languages only in minor ways, perhaps +this had an effect on the
results. Third, and probably most important, our experimental task
differed from the task wused by Sime, Creen, and Guest. Whereas we

provided subjects with a common program design and showed them how to

Center for Digital Economy Research
Sterm School of Business

Working Paper [S-82-74

g
3

0g
m
I
1

perform the coding task, Zime, Green, and Guest had subjects undertake
some program design and did not provide them with s coding paradigm.
As we have argued earlier, differences among the languages may
dissipate if subjects are first shown design and coding paradigms that

are independent of the language used.

In summary, for the sequencing task we find 1ittle evidence in
favor of nested languages over a branch-tc-label language. lNoreover,
in light of our results, we question the stability of the prior
research findings that show NESET-BE to be syntactically error-prone
and branch-to-label languages to be semantically error-prone. The
relative performance of these languages for the +tiracing and
taxonomizing tasks, however, 1is another issue. Given Green's
research, we suspect that the argument for nested languages must be
couched in terms of their superiority for debugging and modification
tasks and not design and coding tasks. levertheless, in light of our
criticisms of the JUMP syntax, Green's experiments need to be

replicated with JUMP-H.

#.2 Usefulness gf Indentation

The data provides at least some support for our analysis that
predicts indentation will be beneficial when the syntactic structure
used to implement a conditional structure is complex. Indenting
facilitated use of NEST-BE, which had the most complex syntactic
structure. It seems, however, that the basic syntactic structure of
HEST-INE is sufficiently simple that indentation as an overhead

inhibits the sequencing task. The results for NEET were in the

Center for Digital Economy Research
Sterm School of Business
Working Paper [S-82-74

"
%
o
T

I=

[

predicted direction.

Indentation in JUKP-H caused particular problems. Subjects had
substantial difficulty determining the appropriate level of
indentation for the second GOTO representing the INOT branch of the
cecision tree (see Table 7). Even with the modified JUNP syntax, it
still seems as if branch-to-label languages are not especially
amenable to indentation. The difficulties are manifested primarily in

the time taken to perform the experimental task.

Earlier we criticized Sime, Green, and Cuesz: for their failure to
control indentation as a factor that may affect programmer
performance. Cur results support this view. Eecazuse of their simple
structure, we hypothesized that NEET and NEST-INE would be the
superior languages. These hypotheses were supported, only for ths
unindented forms of the languages. Thus, it now seems important when
comparing nested languages and branch-to-label languages to specify
whether +the indented or unindented forms of the languages are being
evaluated. Again, these results are confined to the sequencing task,
but they motivate a re-examination of the relative performances of the

languages for the tracing and taxonomizing tasks.

G. Limitations EE the Hesearch

Aside from the primitive nature of the theory that drives our
research, there are several methodological limitations that undermine
the generality of our results. We discuss these 1limitations in the
sections below under the classification scheme proposed by Cook and

Campbell [3].

Center for Digital Economy Research
Sterm School of Business

Working Paper [S-82-74

Page 47

g.1 Statistical Conclusion Validity

Statistical conclusion validity meazns that it 1is reasonable to
draw conclusions about covariation between variables based on the
statistical model wused. For +this research the major threat to
statistical conclusion validity is the low power of the tests caused

by the small sample sizes.

Table 11(a) shows the cell sizes for the different treatments.
They are small. Unfortunately this problem is difficult to overcome
because time reguirements for the experiment are substantial.
Consequently, it 1is difficult to get subjects to participate in the
research. Cime, Green, and Guest experienced similar problems. To
some extent, use of repeated measures designs helps overcome the

effects of small sample sizes.

[Insert Table 11 about here}

8.2 Internal Validity

in experiment is internally velid if covariation Dbetween two
variables can be attributed to the variable being manipulated.
Unfortunately, our inability to carry out randomization procecdures
undermines the internal wvalidity of the experiment. Thus, the

- - - - - . - - - a
experimental design is not a true design; it 1s a quasi-design L}j.

Table 11 shows descriptive statistics for various characteristics
of the subjects in each cell. The cells are imbalanced, sspecially

with respect to the number of part-time students in each cell, and to

Center for Digital Economy Research
Sterm School of Business
Working Paper [S-82-74

Page 4C

a lesser extent, with respect to the number of females and the number
of subjects having some computer experience. This imbalance
potentially confounds the results; for example, it may be that some

computer experience facilitates {or inhibits) task performance.

-

We cannot prove or disprove that a confounding has occurred. In
our opinion, however, the effects of these different characteristics
or task performance, if any, have been minimal. As a covariate, TE
score turned out to be insignificant. When we examined the debriefing
questionnaire, computer experience was either exgposure to the wuse of
computer reports or a brief introduction to BASIC at high schoel. To
some extent the variables also counteract each other. For example,
consider the unindented KEST-INKE cell. It comprised only part-time
students and the proportion with computer experience was higher than
the other «cells, thereby potentially biassing task performance
positively. Dut it also had the lowest average TE score and the
highest proportion of females. We gpostulated that TE score is
positively related to task performance, and historically, females have
outperformed males in terms of verbal ability but performed less well
in terms of analytical ability. Again, it 1is unfortunate that the
cells are imbalanced, but we argue that task characteristics rather

than individual differences have been the primery determinants of

performance.

Center for Digital Economy Research
Sterm School of Business

Working Paper [S-82-74

)
o
g
(]
i~
(U]

§.% External Validity

An experiment has external wvalidity if its results can be
generalized to the larger population of individuals in which one is
interested and to other envirconmental conditions. Thus, there is an

issue of population validity and an issue of ecological validity.

With respect to population validity, our research has strengths
and weaknesses. We are concerned with the population of individuals
who potentially will carry out some programming in their lives. Cur
subjects were volunteers who indicated they were motivated to
participate in the experiment because of their developing interest in
computers. Thus, they were members of the population in which we were
interested. llevertheless, we were unable to select randomly from the
volunteer group, and clearly our volunteer group is not a random

semple from the entire target population wanting to learn to program.

With respect to ecological validity, there are several issues.
First, the experiment has been conducted with micro-languszges.
Whether the results would generalize %o lunguages containing & full
range of programming capabilities is another question. Second,
programming 1involves using other logicsl constructs besides the
conditional construct. The ways in which these constructs interact
may be important. Third, we have irvestigated performance only for a
limited range of tasks -- varicus cooking problems. Cther types of

tasks need to be investigated.

Center for Digital Economy Research
Sterm School of Business
Working Paper [S-82-74

Page 50
10. Conclusions

The primary objective of our research was to gain insight into
the relative advantages and disadvantages of two ways of imrlementing
cenditional structures in rrogramming languages: via nested
implemenfations or via branch-to-label implementations. The research
is relevant tc the ongoing debate within the structured programming

literature as to the merits of prohibiting the GOTC statement.

We have argued that the prior research carried out by Zime,
Green, and Guest has two limitations: first, it has confounded design
issues with coding and debugging issues, especially in terms of +the
way conditionals can be implemented in the syntax of JUMP; second, it
has failed to control adequately for the effects of indentation. Ey
modifying the syntax of JUMF to increase its "ecological validity" and

to enable indentation to be controlled, and by confining the

experimental task to coding, we have attempted to extend their work.

Cur results are somewhat in conflict with those obtained by Sime,
Green, and Guest. CGCiven inexperienced programmers start with a common
program design and given they are trained in how to perform the coding
tasks, we find no clear-cut evidence in favor of the nested
conditional over the branch-to-label conditional for the sequencing
(coding) task, unless the indented or unindented form of each language
is considered also. If it is accepted that JUNP-II 1is a more
ecologically valid implementation of conditional constructs using the
GCTO statement than JUMP, further research needs to be undertaken in
terms of the 1tracing and taxonomizing tasks. We suspect that the

superiority of the nested conditionzl will ©be estazblished in these

Center for |)i'-__'-rl\1| Economy Research
Sterm School of Business
Working Paper [S-82-74

tasks.

™2

Two other issues arise from our research. irst, 1like Sime,
Green, and Cuest, our results show that the relative advantages and
disadvantages of the nested conditional versus the branch-to-label
conditional cannot be considered independently of the language in
which the constructs are implemented. The syntax of the languszge
appears to be =z critical factor affecting the error proneness of the
language. Unfortunately we know of no way to investigate the "pure"

constructs independently of the languages in which they are

implemented.

Finally, our results show the issue of indentation cannot be
ignored. This finding runs contrary to the findings of prior research
which, as yet, has been unable to establish a significant effect for
indentation, 1in spite of the researcher's prior beliefs (see [21] for
& summary of the research). Cur results suggest that indentation may
be Dbeneficial when redundancy is needed to cope with a complex

grammatical structure in a language.

Center for Digital Economy Research
Sterm School of Business
Working Paper [8-82-74

Page 52

=

‘Cime, Green, and Guest [22'

{
Py

No. subjects who completed experiment : KECZT >> JUMP
lio. semantic errors per protlem : JUMP >> NEST
Time tzken per problem : JUKP >> HEET
lo. prbblems per subject taking longer : JUMP >> NEET

W
(=)

Sime, Green, and Guest |2

lioc+ subjects successfully

completing each problem : JUKP > NEST-INE >NEST-B
lo. semuntic errors per problem : JUKP >> NEST-BE >NEST-INE
No. syntactic errors per problem : KEST-EE >> JUEFP > NEST-IXE
Error-free problems per subject : JUMP > NEST-INE >> NEST-BE
Error lifetimes : BECT-INE >>JUMF > HEST-BE

Green {9]

JUEP >> NZET-INE > NELT- EE

.

Time for tracing task
Time for taxonomizing task : JUMP >>NEST-EE >> NEST-INE

liote: »>> indicates a statistically significant difference
> indicates a difference that is not statistically significant

Table 1: Summary of Research Desults from
Experiments by Sime, CGreen, and Cuest

Center for Digital Economy Research
Sterm School of Business
Working Paper [8-82-74

AT
\

F']é; &

tle Z2:

ar

T yi 8 T 5

¥

. 9 - b -1
L

L 1 L I

¥

S L ’ 4 5

=

. = + 2

Pecision Table Representation of
iy

Problem 5 in fime et gl. [2%

Center for Digital Economy Research
Sterm School of Business
Working Paper [8-82-74

NEST
IF hard THEN peel
IF green THEN roast
OTHERWISE grill
OTHERWISE

IF tall THEN chop fry

CTHEEWISE

IF juicy THEK boil

TR TT T

CTHERWISE roast

Table Z%:

NEST-EE
IF hard THEN
BEGIH peel

IF green THEN

BEGIK roast
EKRD
SLSE
EECIK grill
END

EKD

=T o
Lodno

EEGIN
IF tall THEN

BEGIL chop fry

END
ELSE

. o
oL I'.'s

IF juicy THER
BECIN boil

END
ELSE

BEGIN roast

ENC
END
ENL

Nested Conditional

Page 54

MESCHR.TWY
LIE\.—' a."-l.l-‘E

IF hard peel
IF green roast
NOT green grill
END green
KGT hard
IF tall chop fry
NCT tall
IF juicy boil
KCT julcy rcast
END juicy
EKT tall
EXD hard

Jolutions for

Froblem 5 in Cime, et al. [25:

Center for Digital Economy Research
Stem School of Business
Working Paper [8-82-74

JUMP
IF hard GOTC L1
IF tall GCTC L2
IF Jjuicy GOTO L3
roast stop
IF green GOTO L4
peel grill stop
chop fry stop
boil stop
peel roast stop

Table 4:

o
o
o
Lg+]
W
(S

MCCIFIED JUKP

I¥ hard GOTC L1
GOTC L4

L1 IF green GOTC L2
GOTO L3

L2 peel roast stop

% peel grill storp

L4 1IF tall GOTO LS
GOTC L6

L5 chop fry stop

Lé IF juiey GOTC L7
GOTC L&

L7 beil stop

L& roast stor

Branch-to-Label Solutions for
Problem 5 in Cime et al. [23}

Center for Digital Economy Research
Sterm School of Business
Working Paper [8-82-74

L1

I
—
L3

L4

L5
LE

L7
L&

INDENTET LCDIFIED JUMP

Table 5:

IF hard GOTC L1

GOTC L4
IF green GOTC L2
GCTC L3

peel roast stop
peel grill stop
IF tal11 GOTC LS
GOTC Le
chop fry storp
- IF juiey GCTC L7
GOTC L&
boil stop
roast stog

Indented Eranch-to-Label Solu}ion
for Problem 5 in Sime et zl. L23]

s
o
g
[}
\vt
401

Center for Digital Economy Research
Sterm School of Business
Working Paper [8-82-74

Page B7

JUICY " ¥ ¥ g ¥ _gim, ¥
215
TALL Y e - | -
3|4
LEAFY T T
6 (13
RED I Y Y Y —xly - -
7112
HARD i 4 s 1 -] -
811

CRISP 4 4 v xtyx 1 1 -] -
9{ 10

ROCT 4 = owdle L o4 4 o w

G l 15] 16

YELLCW - - & yl__.w

CHCF 4 3 4+ 4 t 1

FRY 4 i + 4 1 1

1

GRILL + & 4 b 4 x 4 4 3

RCAST 3 4 1)

PEEL 4 4 2 4 L 4 | A
i

STEA] 1 1 1 %] I
i

ECIL 4 4 + L 2 + X 1

KINCE] X £ k] + + |

SLICE + 4 - + L L I L 4

Table 6:

Decision Table Representation
of Experimentazl Problem

Center for Digital Economy Research
Sterm School of Business
Working Paper [8-82-74

0

10

11

i

15

1€
17

JUKP-H-I NECT-I
IF juicy GOTO 1 IF juicy THER
COTC 14 IF tall THEN
IF tall CCTC 2 IF leafy THEN
GOTC 5 roast
IF leafy GOTO 3 CTHERWISE
GOTC 4 ctop
roast OTHERWIGE
GOTC 17 IF' red THER
chop IF nard THEXN
GOTO 17 mince
IF red GOTC € IF crisp THEN
GOTC 13 IF root THLXN
IF hard GOTO 7 reel
COTO 12 OTHERWISE
mince fry
IF crisp GOTC 8 CTHERWIEE
GOTC 11 steam
IF root CCTC 9 OTHERWISE
GOTC 1C grill
peel OTEERWISE
GCTC 17 slice
fry CTHERWISE
GCTC 17 IF yellow THEXN
steam boil
GOTO 17 OTHERWISE
grill grill peel
GOTC 17
slice
GOTC 17
IF¥ yellow GOTC 15
GOTC 16
boil
GOTC 17
grill peel
Table 7: lLanguage Solutions to Lecision
Table Shown in Table 6
Center for Digital Economy R
Sterm School of Business

Working Paper [8-82-74

esearch

NEET-BE-I
IF juicy
EEGIN
IF tall
BEGIN
IF leafy
EECIN roast
END
ELSE
EEGIN chop
EN
END
ELSE
BEGIN
IF red
EEGIN
IF hard
EEGIN mince
IF crisp
EEGIN
IF root
EECLI peel
ENT
ELSE
EEGIN fry
END
EXD
ELSE
EEGIN steam
END
END
ELSE
EEGIN grill
END
END
ELSE
BEGIN slice
END
END
ELSE
BEGIN
IF yellow
BEGIK boil
ENT
ELSE
BEGIN grill peel
EID
ELD

Page 5¢

IF juicy THEN
IF tzl11 THEN
IF leafy THEK
roast
KCT leafy
chorp
END leafy
NOT tall
IF red THEN
IF hard THEN
mince
IT' crisp THEX
IF root THER
reel
NCT root
fry
EKNT root
KOT crisp
steam
END crisp
ICT hard
grill
END hard
XOT red
slice
EXND red
END tall
KCT juicy
IF yellow THEN
boil
NOT yellow
grill peel
ERD yellow
END juicy

Table 7 (cont'd): Language Solutions to Tecision
Table Chown in Table 6

Center for Digital Economy Research

1 of Business
aper [8-82-74

Stermn Sch
Working |

Page 6C

JUMP-I NEST KEST-RE KEST-INE

Indented 2.61 2.38 2.35 2.36
(.C82) (.CT1) (.055) («125)

Unindented 2. 359 2.21 241 241
(.C96) (.045) (.cog) (-112)

(a) Time Taken

Indented « 186 o R 070 w251
{-175) (.197) («14%) (+277)

Unindented 152 .03%6 180 + 057
(.167) (<113) {213} Cet21)

(b) DNumber of Types of Syntax Error

Indented 227 . 244 CT7 « 277
(.243) (<317 (+159) (.428)
Unindented 152 . 052 «1G62 . CBE
(.167) (.187) (.238) (.143)

(¢) Number of Syntax Errors

Indented <413 e231 . 100 « 2354
(.248) (+330) (.029) (.274)
Unindented . 150 . 144 « 137 « 057
(.262) (.239) (.198) (154

(d) Number of Semantic Errors

Table 8: IlMeans and Ctandard Ceviations for Tependent leasures
{(Logarithmic Transformation)

Center for Digital Economy Research
Sterm School of Business
Working Paper [8-82-74

Fage 6

Performance 1st Crder 2nd Crder Zrd Crder 4th Crder
Measure Order P Crder E Crder E Crder r
Time Taken 1 .00 1 Sele] 1 . G0 1 . CO
Mo. of Types 2 .02 3 .69 % .10 4 76
of Syntax Error .

lo. of Cyntax 3 .88 2 .C3 4 .89 % 13
Errors

Tio. of Zemantic 4 o 4 BT z .08 2 .C8
Errors

Table 9: Step-Lown Tests for Performance Measures

Center for Digital Economy Research
Sterm School of Business
Working Paper [S-82-74

JUMP-M KEST
Indented 1.29 1.67
(.95) (.08)

Unindented 1.14 1.8
(1.35) (1.¢3)

Fage €2

NEST-INE

.67
(1.03)

2.14
(.6S)

Table 10: Ieans and Standard Deviations for liumber of Error-Free

Problems per Subject

Center for Digital Economy Research
Sterm School of Business
Working Paper [8-82-74

Page 63

JUMP-I REET NEST-BE KEST=-1IKE
Indented T 6 8 6
Unindented 7 10 8 T

(a) Cell Sizes

Indented g45.0 023.7 96%.1 927.3
(33.54) (37.37) (34.16) (38.9%)

Unindented 947.9 947.2 943%.S 90%.6
(20.47) (42.48) (25.86) (29.81)

(b) TE Score - lNean and Standard Deviation

Indented 473 e .50 N7

Unindented 473 .50 50 57

(¢) Percentage of Females

Indented 0]

(@]
(@]
@]

Unindented 0 . 40 .63 1

(d) Percentage of Part-Time Students

Indented .14 17 . 50 «50

Unindented .29 « 50 «5C . 8€

(e) Percentage of Ctudents with Some Computer Experience

Table 11: Characteristics of Ctudents Participating in Experiment

Center for |)i'-__'-rl\1| Economy Research
Sterm School of Business
Working Paper [S-82-74

2.6]-

2.4

2.0

- - - e = o

—

- Unindented

Indented

Page 64

: JUMP-M

NEST

NEST-BE NEST-INE

(a) Time Taken

Figure 1: Language by Indentation Interaction Ef

Page 65

.4
.3
Indented
.2
‘\
.1 N
LY
i N
. = v Unindented
Y - »
-
LI 4
‘e
JUMP-M NEST NEST-BE NEST-INE
(b) Number of Types of Syntax Error
.4
il
g - | F——
AR | S
. ’ . .
.. ': “wUnindented
JUMP-M NEST NEST-BE NEST-INE

(c) Number of Syntax Errors

Figure 1 (cont'd): Language by Indentation Intex

2.5
Unindented
!..
Zul) ‘
S .
1.0
Indented
.5 —y

Page 66

JUMP-M NEST NEST-BE NEST-INE

Figure 2: Number of Error{?;ﬁghgroblems

.

Page 67

Appendix A:-Means and Standard Deviations for Dependent Measures

Indented

Unindented

Indented

Unindented

Indented

Unindented

Indented

Unindented

JUKP-N NEST NEST-BE
418.6 244.4 223%.1
(79.17) (41.36) (29.61)
242.0 162.6 260.6
(57.59) (16.89) (55.33)
(a) Time Taken
n67 -67 '25
(+73) (.84) (<53)
«5H2 13 « 71
(.60) {.43) (-91)

(b) XNumber of Types of Syntax

1.00 1.39 .29
(1.45) (2.34) (.62)
.52 33 .83
(.60) (1.47) (1.24)

(¢c) Number of Syntax Errors

-67 1'33 '38
(1.98) (2.57) (+71)
.81 S0 .54
(1.89) (1.58) (.93)

(d) Number of Semantic Errors

237.8
(76.28)

265.6
(81.89)

1411
(1.61)

.19
(.40)

Error

2.72
(3.3€)

.24
(.54)

1.11
(1.61)

.24
(.70)

Center for Digital Economy Research
Sterm School of Business
Working Paper [8-82-74

A

1C.

15.

16.

Page 68

REFERENCES

Bock, R.L. Multivariate statistical methods in behavioral

research, McGraw-Hill, New York, 1975.

Christensen, L.E. Experimental methodology, 2nd ed., Allyn and
Bacon, Boston, 1980.

Cook, T.D. and Campbell, D.T. Guasi-experimentation: design and
analysis issues for field settings, Rand lclally, Chicago, 1979.

DelMarco, T. Structured analysis and system specification,
Prentice-Hall, Englewood Cliffs, NJ, 1979.

Elshoff, J.L. A numerical profile of commercial PL/I programs.
Soft. -- Prac. and Exper., 6, 4(Oct.-Dec. 1976), 505-525.

NJ, 1970.

Floyd, R.W. The paradigms of programming. Comm . ACM, 22, 8
(Aug. 1979), 455-460.

Gilb, T. Structured programming. Computing, 16, OCct. 16, pp-
12-13; QOet. 23, p. 13.

Gildersleeve, T.E. Decision tables and their practical
application in data processing, Prentice-Hall, Englewood Cliffs,

Creen, T.R.G. Conditional program statements and their
comprehensibility to professional programmers. J. Occup.

Psychol., 50 (1977), 93-109.

Information EBuilders, Inc. 1982 Focus Users DManual, Info.
Builders, New York, 1982.

Kirk, R.E. Experimental design: Procedures for the ©behavioral

sciences, Erooks, Belmont, Calif., 1968.

Knuth, D.E. An empirical study of FCRTRAN programs. Soft. --
Prac. and Exper., 1, 2, {April - June 1971), 105-13%3.

Knuth, D.E. Structured programming with go to statements.
Comput. Sur., 6, 4, (Dec. 1974), 261-301.

Litecky, C.R., and Davis, G.B. A study of errors, error-proneness
and error diagnosis in COBCL. Comm. ACM, 19, 1, (Jan. 1976),
3%5=3T.

Messmer, D.J., and Homans, R.E. lMethods for analyzing experiments
wih multiple criteria. Dec. Sc., 11, 1(Jan. 1980), 42-57.

lational CSS. Nomad II Reference Manual, National CSS, Wilton,
Ct., 1981.

17.

18.

19-

20.

21.

22.

no
A

24.

Page 69

Neter, J., and Wasserman, W. Applied linear statistical models,
Irwin, Homewood, Ill., 1974.

Read, N.5., and Harmon, D.L. Assuring li1IS success. Datamation,
27, 2(Feb. 1981), 109-120. - =

Saal, H.J., and Weiss, Z. An empirical study of APL programs.
Comput. Lang., 2, 3(1977), 47-59.

Sheil, E.A. The psychological study of programming. Comput .

Sur., 13, t(Mar. 1981), 1C1-12C.

Shneiderman, B. Software psychology: Human factors in computer
and information systems, Winthrop, Cambridge, Mass., 1980C.

Sime, M.E., Green, T.R.G., and Guest, L.Jd. Psychological
evaluation of two conditional structures wused in computer
languages. Int. J. MNan-Fach. Stud., 5, (1973), 123-143.

Sime, M.E., Green, T.R.G., and Guest, D.J. Scope marking in
computer conditionals -- A psychological evaluation. Int. J.
Man-Mach. GStud., 9 (1977), 107-118.

Welty, C., and Stemple, T.VW. Human factors comparison of a
procedural and a nonprocedural query language. ACK Trans.
Database Systems, 6, 4(Dec. 1981), 626-649.

