DBMS TRANSACTION TRANSLATION

Yannis Vassiliou
and

F.H. Lochovsky

Computer Applications and Information Systems Area
Graduate School of Business Administration
New York University

Working Paper Series

CRIS #17
GBA #81-09 (CR)

Published in COMPSAC 80 Conference Proceedings, Chicago, October 1980.

DBMS TRANSACTION TRANSLATION

Yomis Vassiliou
Graduate School of Business Administration
New York University

F. B,

Lochoveky

Computer Systems Research Group
University of Torento

Abstract

Data transiation and transaction translation are
twn major problems that have to be solved in order to
achieve the coexislence of helerogeneous disiributed
datzbzses. In this paper we discuss the problem of
transaction transiation. The nature of the problem is
explored by developing direct transletions of transac-
tions between the relationa!, and hierarchical and net-
work models. Methods for mapping 2 hierarchical or
neiwork schema lu an equivalen! relational schema are
presented. The relational operators projection, selec-
tion, join, insertion. deietion and update are transiated
to equivalent hierarchical and network operations.

1. Introduction o

Centralized systems have largely dominated the
computer field for a number of years. While centralized
svstems are the appropriate choice for many organiza-
Lfons. there are some organizalions such as banks,
governments and large corporations that may find
decentiralized systems more suiled to their processing
requirerments. Technological advances such as better
network communications and cheaper processing power
may alss point to a cistribuled system sojution to data
management and daiz processing problems. However,
even though the deta and processzing are distributed, wc
mzyv still want to view the system 2s a whole [Deppe
1976, Rothnie 1977b. Adita 1573]. There are several
wave in which the data can be distributed in such a sys-
term.

One appreach assumes that there exists a global
database which 15 distributed 1n a controlied fashion to
the diferent nodes of a network [Rothnie 1877a, Rothnie
1920]. In this case there is one data model and one data
language which 15 used at every node. Access to any
dala ir: Lbe syslemn is done w1 a uniform way. This situa-
tion assumnes that it is feasible to convert all the data of
an organization to the DBMS of the distributed system
or that this situsiicn elready exisis. There may be
situations where such a scenazrio is not realistic.

In any large organization that has existed for some
time, Lhe dzia may be disiributed over meany depart-
ments and perbaps even over several geographic loca-
tions. The different departments or locations may have
computerized on an individual besis, choosing different
DEMSs that me! their particular needs. The trend in
information systems is increasingly towards providing
an integrated view of an organization's data. As these
organizations move tn integraie their daia, they are
faced with the need for communication and cooperation
between heterogeneous, distrinuted databases [Adiba

1977].

Data transiation and transaction translation are
two major problemns that have Lo be solved in order to
achieve the coexistence of helerogeneous databases.
For an on-line, fast response environment, data transla-
tion per se does nol provide a compleie soiution. The
restructuring and transmission of large amounts of data
may not be economical. A more promising approach
may bec to translate transactions from one DBMS to
another, and to process the transactions in the environ-
ment of the DEMSs where the data reside. In this way,
only transaction: and the retrieved dztz pesed to be
translated and shipped over the network, not the entire
databases, and database translstion and re-l.n.::tunn.g
ia minimized or avoided entirely.

As a first step in the investigation of this approach,
we assume the case where the language of database
integration is relational-like. That is. whenever we want
to perform global operalions in a helervgeneous, dislri-
buted systemn, these operations are expressed in a
relational-like language. We further assume that the
databases in the sysiem are structured according to
only the hierarchical, network or relational data models.
In this case, it is necessary to translate hierarchizal and
petwork schemas to relational schemas and transac-
tions from the relational-like language to eguivalent
hierarchical or network operations. By specilying gen-
eric mlgorithms for these translations we will illustrate
the nature of the transaction transiation problem for
heterogeneous, distributed databases. Not =all algo-
rithms are presented in this paper because of space
limitations. For an extencec version of this paper the
reader is referred to [Lochuvsb 1979)].

2. Framework

We consider a database as consisting of a schemna, a
set of states and a set of cperations [Klug 1978). The
schema has generally two parts, 2 naming part (strue-
tures) and a constraint part. The constraints (proper-
ties of the database) may be classified 25 exphcut
(declared in the schema), inherent (expressed by the
structure) or imgplici! (implied by other existing con-
straints) [Brodie 19?8} A database state is determined
by the wvalues of & set of objccts. For instance, a
hierarchical database state is determined by the data-
base proper, the position pointer, etc.

We say that a database is schema—eguivalent to
another database if there exists a mapping that maps
the schema &, of the secocnd database to the schema
&y of the first database such thal all constraints in Sy,
that are essential in the context of the fret dalabase,
can be preserved in S,. There may be socme properties
in the schemna ol S, that are immaterizl in the contex!

of £,. For insiance, tbe set ordering for a network
scheme is immaterial in the reiztional model. In this
respect, the schema mapping is nol reversible. We say
thet & datzbasec is operaiiom—eguircicn? to another
datztase if 1t is schema-ecuivalent. and every operation
on the first database can be mapped to (a series of)
operations on the second database such that the con-
sistcncoy of the databasce stales is preserved. We show in
this paper bow, for any hicrarchical or network dala-
base, we can generale an operation-equivalent relational
datzbese. Firsl we show the scheme eguivelence, and
thern we map the basic relational operations (projection,
seiection, Join, insertion, deletion and update) to
hierarchical or nelwork vperalions,

¥e define the network and hierarchical schemas by
simple inductive rules appiied to the schema structures.
The struciurec in a hierarchical schema are segment
types and hierarchical links (parent-child relationships)
[IBM 1975]. The structures in e network schema are
record types and network links (set types) [CODASYL
1971).

To mep network and hierarchical schemas to rela-
tional schermnas we need lo specify constraints in the
reletional schema [Zenioclo 1978, 1978]. Constraints are
specified procedurally. A basic constraint that will be
used exiensively in the mappings is the foreign-key
dependency constraint or simply foreign-key con-
strain:. Our notation for this constraint is:

FCy .= value FK(R,)in R; dependent on value K(R,)

The term FK{R;) means that the key of R; is a
foreizn key in R,. The lerm K(R) refers to the key of
R,. Tne consequences of this consiraint are:

1.- etell times. values FE(R,) in R; Cvalues K(R,):

2.- if we insert 2n X, tuple, then the £, tuple wilk key
value FK(R,} in R; must exist or the insertion is not
allowed;

3.- if we delete an R, tuple, then we must also delete

2ll Ry tuples where K{R;)=FK(R;) in R;.

The foreign-kev constraint does not allow for null
values in FK(R;). I null values are to be used, a new
constreint, denoted by AFC,; is impesed. This new con-
straint only implies that if the value for the foreign key
specified in en insertion is not null, then it must appear
as< a key value in the relation R,. It has no other implicit
consequences. We elaberate more on this constraint in
section 4.

Since we 2re mapping generic operations, we do not
peed to be confned to a particular relational data mani-
puiation ienguage. We assume a language in which we
are able to specify 2 target list (attributes whose values
are to be retrieved) and a gualification term.

3. Hierarchical Mappings

3.1. Schema Transforms

The hierarchice! to relationz]l schema mapping is
base2 on the process of normalization introduced by
Codd [Codd 197C]. We assume that all the fields in the
hierarchical schema are named uniguely and Lhzl each
segment type in the hierarchical schema has a
hierarchizal key. A hierarchical key is a key, in the
relationel sense, the values of which are unigue within a
perent segment in the database. This corresponds to an
IMS-like database [IBM 1975], The schema mapping
elgorithm transforms each segment type into a relation

and propagates the hierarchical keys of all the ancesto-
segment types of any particular scgment into the rela-
tior generated from that segmeni. The hierarchica:
keys propagaled inlo s reialion vorrespond lo foreigy,
keys of the relation. More formally:

Let § be a hierarchical schema with k segment
types and m hierarchical links. The schema mapping is:

1.- For each root segment type H; define a relation R,
such that

1.1 R, contains one attribute for each field of H;

1.2 thc key of Ry is equal to the hierarchical key of
H,.

2.- Recursively, for each dependent segment type Hy,
for which a relation R; has been generated for its
parent segment type A, and the hierarchical link
in which it is & child, define & relation R; such that

2.1 R; conlains one atiribute for each feld of Hy,
and the attributes of Lhe key of R;:

2.2 the key of R, is egual to the hierarchical key of
H; plus the key of R,;

2.3 the constraint FCy, is introduced,

3.2. Operation Transforms

For the hierarchical system, we will assume an
DdS-like record-at-a-time navigation language. The
basic commands are get-next and get-next-within-
parent We use a simple syntax in our query language to
avoid the initricacies of IMS. We assume an outpul com-
mand that makes available for further processing
specified field values of &an accessed segment
occurrence. For simplicily we make ihe assumptlion
that for all aigorithms the traversal of the hierarchical
database starts from the first hierarchical database
record. This condition can be easily guaranteed by
means of g suitable get-unique command in IMS. The
elgorithms assume a global enumeration of the segment
types in the hierarchical definition tree. Furthermore,
for each retrieval involving a target list and/or a
qualification term, a new enumeration of the referenced
segment types, according to their position in the hierar-
chy. is assumed. With these enumerations we are able
to present the algorithms in a concise form.

Projection

Projection of more than one attribute of a relation
based on a segmenti type generally reguires a recursive
wlgorilhm wilh exlensive sequentizl search of the data-
base. This is because a relztion can be generated from
the attributes contained in more than ore segment. type
due to hierarchical key propagation. To form the pro-
jection, first the segment types which contain the fields
corresponding to the projected attribules are deter-
mined. By construction of the relalions the segment
tvpes musl be in Lhe samne hierarchicel palh:. Suppose
that these segment types are H Hp - - ,H:. The seg-
ment type /, is the one at the highest level in the tree.

Informally. the z2lgorithm for projection is: For each
highest level referenced segment {of type ;) in the
database, retrieve the second highest-leve! referenced
descendant segments (of type A ;) and conlinue likewise
down the hierarchy until the lowest level referenced
segments are retrieved, Berause we assume an IMS-iike
hierarchical language, this retrieval will be according to
a preorder traversal of the databhase.

PROJECTION

get-next Ay segment
axit if none
owiput referenced fleld values
R=L-U (1.k) :
end oop *
recarnive procedure R-0-U (ik)
i+-i+1
i exitifi>k

locp
1 get-oext-withio-parent H‘- segment
exil if no rmore children
output referenced fleld vatlues
F-C-LU' (ik)
end loop

— -

The walgourilbiin for projection recursively nests get-
next-within-parent commands. Some hierarchical sys-
terns may not support such a feature. For these =ys-
temns, we may need seleclions on the maximum path
length Lhat can be referenced in & query. IMS/VE offers
a code option (D-option) that allows path calls, i.e., mul-
tiple segments in a hierarchical path are retrieved in a
single call. The retrieved segments are concalenaled in
the user's 1/0 area. Repeated path calls and a masking
of the unsperified fields would produce the desired
result of projection.

Selection s

¥e want to retrieve tupies of a relation according to
e wualification which is a Boolean (AND/0OR; of simple
conditions. We assume that the gualification f can be
partitioned into separate { terms where each t; applies
tc only one segment type &;. We have in the target list
reference to one or moere segment types [/; and in the
gualiification one or more terms f;. There are three
cases.

The first case is when the Boolean operalor between
t, terms is only AND. That is. the gualification is
ty AND 1, AND - - - AND t;, where the 4's are a series of
simple conditions on respectively the segment type H,.
IL may be that for a2 segment H; no qualification is
present. In this case the corresponding {; term evalu-
ates trivially to true for AND processing. The algorithm
for selecticn is similar to the one for projection. The
sirategy is to first visit the highest level segment and
evaluate the condition. If the evaluation results in a
{rue velue, the descendanis are accessed in turn for
further condition evaluation

-

SELECTION (only AND terms)

get-next Fy wegment where £
exdt if none qualifies
R-C-Q (1.k)

wnd loop

recardve procedure R-C-Q (L)
1 +-1i+]
exdtifi>k
loop
get-nest-within-parent 5| scgment where £
exit if ro more children quclify
if i=k then
outpul referenced field values
FR-C-Q (uk)
end loop

The second case arises when the Boolean operator
between f; terms is only OR. In this case it is necessary
to cvaluate thc condition on each &, until one thatl is
true is found. When a {; which is {rue is found, then all
descendants qualify regardless of the truth of their t;s.
Note that if no qualification is given for a segment A,
then the corresponding {; evaluates trivially to false for
OR processing.

SELECTION (enly OR terms)
loop
get-next 7y segment
exit if none
if ¢,
then R-C-U(1.k}
else RETRIEVE-CHILDREN (1.E)
end loop

recureive-procedure RETRIEVE-CH/LDREN (Lk)
i+ 1+1
exit if 1>k
loop
get-next-within-parent H; segment
exit if ne more children
TR
then R-C-U/ (i1)
elee RETRIEVE-CHILDREN (ik)
end loop

The final case arises when AND: and ORs are mixed
between &4 terms. In this case the guery can be
transformed to & normal form {conjunctive /disjunctive)
and the terms processed independently for each
hierarchica! path. The results of each path evalualion
are merged Lo form the response to the query. This of
course is & very expensive algorithm which may require
several passes over the entire database. We conjecture
that the semantics for such a query are very ambiguous
end thus it wouid rarely be asked.

Join

We will give algorithms that transiate natural joins
between two relations A; and R;. The Booleans between
join terms will be restricted to AND's since the appear-
ence of an OR conneclive will generally reguire a
sequential search. For simplicily, assume that the tar-
get ust may include domains from H, and H; only. We
consider two cases for our join algorithm:

Case (a) Both A, and H, appear 1n the same branch
of the hierarchical definilion trez. In this case we have
a branch Hy ---.H,. -+ .Hy where O=levellH;)
Slevel{H) <levei(/,). Dy consiruction of the relations

we have: K(R,) € K(R,)

We call 2 key —join—term Lhe join of the whole key
in RE; with the egquivalen! part in R;. The key-join-term
may or meay nol be included in the join qualification by
the user. There are, of course, different semantics in
each case. In addition, the processing of the gquery is
drastically different. The hierarchical organization of
the database is geared very well for the case where the
key-join-term is included. In such a case we join a seg-
ment occurrence with all its descendants. By contrast,
the absence of the key-join-term leads to an extremely
expensive algerithm for the join.

¥hen the key-join-term is included in the
gualification, the transiaiion algorithm is similar to
those given for projection and selection. By construc-
tion, we know that all descendants will qualify according
to the key-join-term. ln adcition, because of the unique-
ness of hierarchical keys along a hierarchical path, only
the descendants of & segment can be joined to & given
parent according to the key-join-term. Therefore, we
sequentially retrieve all higher level segments and join
each of them with their descendants according to the
join terms that are not part of the key-join-term. Sup-
pose that we have a join beiween f; and H; with m join
terms in addition to the key-join-term.

- JOIN (a) Key-jein-term included

get-oext H, segment
exit if none
loop
gel-next- -ilh.{n-pl.rent fy segment
where {rH—baEue (Fy 1}8 AND,
AND' (Fom=value (Fem))
exit if no more children
output referenced fleid values
end Joop
end loop

Suppose now, that the key-join-term is not included
in the gualification. If the join is between H; and H; we
basically need to sequentially retrieve each H; segment
and join it with all A, segments.

JOIN (b) Keydcin-term net tncluded
-
get-next H; segment
exil if none
resct currency Lo siert of databese i
loop |
get-next Ht segment |
where (Fg .=ba£ue (Fﬂ_ }) AND,
D' lF = value (Fom))
exit if none q..la..lues
outputl referenced field values
end loop i
res=t currency to last H; segment !
end loop

We note that suilable mechanisms must exist for
setting and reseiting the currency indicators as
reguired. We do not show these operations in detail in
our algorithm.

The two previous algorithms are for extreme cases.
In the firsl case we have all the hierarchical keys from
the root to the highest level segment type H,. appear-
ing in the qualification. In the second case we have no
‘keys. Different aigorithme are required for intermedi-
ate cases. For instance, if the equality of the root-key is

included in the qualification, then we only join segments
that are in the same database record. The last algo-
rithm can also bandle the case where we have H, and H,
appearing in different definition trees.

JOIN (ec) Commonoin-term included

get-next H oy segment
exit if none
loop

getnext-within-parent H; segment
exit if no more children

.tt-nr_:!. withio-parent /7, segment
tm-wzuem.» AND, - - -
AND (Fym=value(Fen))
exit if ne more chiidren gqualify
cutpul referenced fleld values
end loop
reset currency to last H; segment
end loop
end loop

e i T p—

Case (b) H; and H, appear in different brenches of
the same definition tree.

Let Hi, "‘.Hw. "'.H| and Hg. "‘.Hw. "’.Hg
be the two branches. By construction, both R; and R;
will have the hierarchical keys of H,, - - - ,H.: as com-
mon attributes (part of their relational key). If a join
term for these common attributes
(conmon —join—term) does nol appear in the
qualification, then we use seguential search (like algo-
rithm JO/N (b)). Otherwise, we join segments that
appear in the same hierarchical subtree, i.e., are des-
cendants of the same Ay, segment. We can easily
determine H . by tracing up the hierarchical defintion
tree from A, and H; until we reach a common ancestor.

Algorithms for intermediate cases, where the equal-
ity of only part of the common hierarchical key attri-
butes is included are not presented here. These algo-
ritbms depend on which part of the common-join-term
is present.
Deletion

In order to delete a tuple or tuples in a relation, we
first have to select the tuple(s). If we qualify on the key
of & reiation, we are guaranteed to selsct a tuple
uniquely. Otherwise, several tuples may qualify. To
select the segment(s) to be deieted. we can use the
algorithms for seleclion given earlier. Kowever, now at
the fina! level of seleclion. a get-hold retrieval command
is used. The tupie(s) is {are) then deleted by the com-
mand:

delete H segment

The hierarchical deletion of A triggers the deletion
of all descendants of H. However, this is expected by
the relational user because of the foreign-key con-
straints for the reiations.

Update

Like deletion, update of a relzation requires that the
tuple(s) to be changed first be =elected. The update is
then trivial.

replace field-value in A with given vaiue

Updates of key values in a relaticnal dzatabase are
usually not aliowed and this seiection is also important
for a hierarchical database using hierarchical kevs.

Insertion

.

The insert operation in a relational system is con-
ceptually simple. Tuples are specified and inserted
directly in a relation. There is no ordering among the
tuples. Inserting s segment in a hierarchical database
is & more complivaled vperalion. Il usuelly involves &
search for the appropriate place where the new segment
it to be placed. The search, in an IMS-like language, is
based on the hierarchical key values of ancestor seg-
ments. A hierarchical path is established and the seg-
ment is inserted at the end of the path.

For our transforms, the hierarchicel path for inser-
tion is implicitly provided by construction of the rela-
tions (propagation of hierarchical keys). Let
HyHz ' .Hy be segments in the same hierarchical
path, and Ry, Ap - - - ,R; be the corresponding relations.
Let V,Vg ---.,Vps be the values of all the attributes
corresponding to foreign keys in R, (those correspond
to the hierarchical keys of HyHg - -- ,Hpr). Suppose
we insert a tuple in R,. Unless all values for the
foreign-keys in &, exist in a hierarchical path, the inser-
tion will be invalid. The reason is tbe presence of the
foreign-key constraints for the relations RaRs - R}
in the relational schema.

INSERTION

if k=1 then {rooct scgment)
’ begin
insert M segment
terminate
end

i«1 *

if k=i+]1 then (second leve! segment)
begin

get-hold-next F segment where (K(H;)=Vy)
terminate if none qualifies (inlegrity error)
insert F, segment
terminate

tnd

get-next M, segment where (K(H,)=V,)
terminate ff pone qualifies (integrity errar)

1+i+1

exitifi=k-1

get-pext-within-parent f; segment
where (A (A, })=1,)

; terminzte if no mere children qualify

i (imiegrity error) i

end loop

get-bald-next-witbin-parent H, segment
where K (H,)=1})

terminate if 5o more children qualify
(integTiiy error)

insert [/, segmneanl

4. Network Mappings

4.1. Scbema Transforms

The meapping from 2 network to & relational schema
is bzsed on 2 one to one correspondence betiween
record types and relaticns, and between datla items and
attribules. For recoerd iypes thel are members in a net-
work link (set type), the corresponding relation has
addilional attricutes. These edditional attribules
express the relationships implied by the network links
and correspond to the data items that constitute the
keyv of the owner recerd type. Network lnks duffer {rom
hierarchical links in that they have flexible set member-
ship reguirements. Set memberslup may be either

aufornafic or manual. In addition, the connection may
be optional. mandalory or fired. The reader iz rem-
inded of the foreign-key constraint FC,; and its implicit
consequences. In conlrast to the hierarchical
transforms. values for the foreign-keys need nol neces-
sarily be specified in the network case. Therefore, the
constraint N/°Cy which allows for null values in the
foreign-key and has no implicit consequences mey
apply.

More formally, let S be a network schema with &
record types and m network links. The schema mapping
is:

1.- For each record type N, define a reletion R; such
that:

1.1 R, contains onc attributc for each data-item of

N":

1.2 if N; bas a key, then the key of R; is equal to
the key of A.; otherwise the key of R, is equal
to thec databasc key of N, which appears as an
explicit attribute of R;.

2. For each network link L, with ovner record A
and member record Ny, define relational integrity
constraints and change the existing relations such
that:

2.1 the key of A appears as a foreign key of Ny;

2.2 one of the following sets of constraints applies
depending on the type of set membership (R;
and R, are the relations corresponding to Ng
and N, respectively):

i. fixed sutomatic
FCy
Addilional conseguence:
(a) if we update an &, tuple, then the value of
FK{R,) in Ry cennot be changed.

ii. fixed manual
NFCy;
Ezplicit conseguences:
(a) if we delete an F; tuple, then we must also delete
all R; tuples where K (R,)=FK(R):
(b) if we update an R; tuple, then the value of FX(R;)
in R; cannot be changed, unless it is null.

iii. mandatory automatic
FCy

iv. mandatory manual
NFCy;
Ezrplicit consegquences:
(a) if we delete an R; tuple, then we must also delete
ell R; tuples where K (R,)=FK(R,):
(b) if we update an R; tuple. then the value of FX(Ry)
in Ry cannot be changed fo null

v. optional automatic
NFCyy
Ezplicit consequences:
(2) if we delete an R, tuple, then we must change all
R; tuples, such that FA(R,} iz R, tecomes null;
(b) if we insert an R, tuple, then the value of FK(R;)
in Ry cannot be null.

vi. optional manual
NFC,,
Lzplicit consequence: .
(a) if we delete an R, tuple, then we must change ell

R, tupies, such that FK(R;) in R; becomes null.

4.2. Operstion Transforms

The network language that we use for the transla-
tions is loosely based on the facilities of IDMS which is a
subset of the DBTG specifications [IDMS 1875). For sim-
plicity of illustration, we essume thet, in addition to the
diferent forms of the find command, we have a locate
commeand. This command is the combination of & find
commend and the programming language statements
for evaination of a qualification for the "found” record.
The guelification is a Boolean combination of simple con-
ditions on data-itemn vaivues. The retrieval algorithms
are only discussed here.

Projection

We discuss the general slgorithm for projection
translation where all attributes in s relation Ry which
corresponds Lo a recerd tvpe A; are projected. Assum-
ing that in general N; will participate as a member 1n
several sets, we sequentially retrieve all N; records. For
earn of them we also retrieve all owners &, in the set
types Ly in which the N, records participate as
members.

If an N, rccord occurrence is not currently a
member in a set type Ly, then the null value is output
for the foreign key. There may be other versions of this
algorithm depending on which attribute is projected.
For instance, if a foreign key is projected, it may be
betier to access all owner records N, sequentially and
then, if they have an A, member in the set they own,
output thecir key valuc. In general, even though the pro-
jection and its transiation are conceptually very simple,
the network cperations mzy prove to be very expensive.
The main reason is that, for at least one record type. all
occurrences in the database must be accessed seguen-
tially.

Selection

Basically, two strategies may be used in the trans-
lation of tke selection operation. In the first strategy,
the record type N}, (corresponging to R.) is used as an
"anchor” record type. In the second strategy the
record type N; which is the owner in a network link Lg
where N; participates as a member is the anchor record
type. It may not always be clear which strategy is the
besl [or a particular siluation. Eowever, as we will show,
there are some clear-cul cases.

Consider & network schema with two record types
N and N, a network link Ly and the corresponding
reisticnal schema. Assume that we have a selection
with the gualification term "f; and {;", where £ is & 5im-
ple condition on the foreign key in R, and & is a
gualification on any other attributes of R,. Clearly, if £
is of the form (FA(R,)=v) it may be better to use the
owmer as the anchor record. On the other hand, if ¢ 1=
of the form (K{R:)=v,) and ¢t; is of the form
(FK(R;)»=vz), it is very likely that the other approach is
less expensive. We also note that if ¢ is of the form
(FAE(R,)=nuii), then neither of the zbocve approeches
works. A new algorithm is needed which proceeds along
the lines of the zlgorithm which uses the member as
anchor, except it outputs referenced field values when
N, is not a member inaset L.

Qual:ifications with OR Booleans complicate the
trans.ation algoritnms. Consider again the previous
simpie network and relational schemas. Assume thal we
bave the selection on R, with the gualification term

"t, OR ¢,". For each N, record, we have to retrieve the
owner record irrespectively of the truth value of ;.

We have considered selections on relations that
involve only one foreign key. The general case, where
many foreign keys appear, is similar. Suppose that we
perform a selection on R;. We retlrieve seguentially all
N, records in the dalabase. For each of Lbe relrieved
records, we access the owners R, in cvery set Ly in

values. We may now evaluate the qualificaticn ané
decide whether to keep the retrieved values.
Join

In the relational model & join operation is allowed
between two relations if the joined attributes are com-
patible. Because of the freedom that the user has in
forming joins, he may form joins which are not meaning-
ful. Behind any meaningful join there is an inherent
relationship. According to current specification of the
network model (DBTG). the only inter-record relation-
ships ere the one’s that are explicitly expressed with a
set type declaration. The network DML is designed
around the set conceptl so that it can teke advanlage of
the underlying relationships. Hence, the only relational
joins whose translation would be efficient (where the
network DML commands can take advantage of the set
construct) are those that have the foreign-key equality
in the gualification. In this case we join only the records
that are in the same set occurrence (owner with its
members). Thus, we first retrieve an owner record N;
and then seguentially all of its member records N; for
agll owner records of Llype N,;. Every other join that
involves two or more rccord types will require sequen-
tial searches in the entire database.
Insertion

To insert a tuple intc a relalion R, we need to
specify values {or attributes of R;. The atiributes of R;
are composed of data-items [from the record type N,
plus data-iterns, corresponding to keys, of record types
N;, i=1, 2 -+ ,m, which are owners of the N, record
type in set type L. We denote by Vi Vo '+ ,Vy the
values of these latter atiributes which correspond to the
foreign keys in R;. The constraints for insertion are
those given previously for Lhe different types of set
membership.

In translating a tuple insertion, we first store the
record N;. We then manually imsert it into all sets in
which its membership is manual and 2 value has been
specified for the foreign key in A, of the owner &,. If no
such owner exicts, then an inlegrity error bas cocurred.
The recoré is automatically inserled into all set types
for which its membership is automatic according to the
set occurrence selection specified in the schema. Pro-
ccdurally, this latter process wili be similer to that for
manua! sel membership except that a value must be
supplied for the foreign key in N, of the owner record
Lypes.

INSERTION

store Nt record
exit If integrity error
for each set Ly in whick N, is a manual member
and V,=null
locate nazt A, record where (K (N,)=V;)
if none then

delete N, record
terminate {integrity errar)
end
tnsert N, recardinto Lg set
end for

If &y never participales as a member in a network
link, only the store operation will be executed.

Deletion

A simple delele only statement in the network sys-
temn corresponds to the relational delete on the given
reiational schema. In addition, a selection operation
may also have to be transiated to select the desired
records to be deleted. Note that the delete N, record
only statement bes Lthe [cllowing properlies:

pl. Removes an N, record from all sel occurrences in
which it participates as a member.

p2. Removes, but does not delete, 2ll optional members
for each set where N, participales as an owner.

p3. Deletes all fixed and mandatory members for each
set where A} participat‘e's as an owner. If any of the
deleted fixed or mandatory members is ilselfl the
owner of any set occurrences, then the delele
statement is exscuied on tnat record as if it was
the objzci record (A,) of adelete only statement
(i.e. triggersd delstion).
There is an analogy with the expectiations of the
reiational user when he deletes a tuple of a relation R;.
pl'. When a tuple is deleted, all atiributc values are
deleted, including the foreign keys (removal of N}
from ell sets as 2 member).
p2'. For optional merr'be"ship in sets, where N; is the
owvner, we have in the relaticnal scheme an asscr-
tion that fcreign key values in R, are updated to
null (optional members are removed).

p3'. For mandatory or fixed membership in sets, where

N; is tho owneor, we have an assertion in the rela-

tional schema that the delelion is triggered.

Update

Depending on the particular attribute that we want
to update, a reiaticnal update command will be translat-
ed to & simpie modify command or to a remove com-
meznd or to en inserl ccmmand or a combination of re-
move and insert commands.

Suppose we want to update the value of an attribute
A in the relalion R, with the valu= V. Basically, we con-
sider two cases. In the first case 4 corresponds to a
data item in the correspending record type ¥, and we
need & modify nelwork commend. In the second case A
is a fereign key. This translalion to network operalions
does not inciude changes of physical vaolues bul rems-
vals and,//or insertions in scl pccurrences.

UPDATE (a) 4 G not a foreignrksy
A=K(R)

then drop Lhe updale

alee modify Ny record with V

A is 8 foreign-key

case 1: fixed-suiomstic membership
drop the update

case 2: fived-manual membership
tf V=null or value (4)Itn.'u.ll
then drap the update
else begin
locate nezt N, record where (A =V)
Y none then

UPDATE (d)

terminate (integrity errer)
insert J\" record l.lll-DLH el
end

case 3° mandstary srlomatic membership
o V=null
theo drop the update
else rwitch sets for N waing V

case £ mandatory-manual membership
V=null
then drop the de
else lrvalue(.&)

then begin
locate nert N, record where (A =V)
if none then
terminate integrity error)
tnsert NV record into Ly set
end
else switch sets for N ueing V

case .'.1]" upuan.ll-urtomi.ic or manual membership
=null
then berin
locate next N, record where (A =FK(R,.))
remove N recerd from L, set
end
else begin
locate nezt Ny record where (4 =FK (R,))
if located
then remoye N recerd fram Ly e=t
locats nez! N record where (A=V)
Incated
then insert N, record into L;; =et
end

The switch sets statement transfers the record
from one owner to another owner with the same set
tvpe. This facility is avaiiable explizitly in some network
sysicms; in others it would have Lo ke implemented by &
procedure.

The easiesl way io deal with composite keys is to
treal them as a whole. For instance, a foreign compo-
site key in a relation is updated only if all atiributes in
the key are updated. In this way, we can avoid situa-
tions where a composite foreign key has some attributes
with null values and others with non-nuli values.

5. Concluding Remarks

A general framework for trensforming schemas and
mapping operations between relational and
hierarchical/network models is outlined. Rather than
translating specific schemas and operations. we present
generic transiation algorithms. The algorithms
presented mre by nc means complete or optimal
Oplimizalion of the transaclion translation algorithms is
a very important problem if they are to be useful.

There is e strong emphasis in the framework on the
concept of constraints on the databese and their

preservation in a schema or operation transform. The
model to be used for the expression of the mappings
must be very powerful in its treatment of couslrauits.
We bhad to extend the relational mode! for the descrip-
tion of just the inherent constraints of the
bierarchical/network structure.

Jt seems that null values will inevitably appear in
the mappings. However, the reader may have noticed
that in our approach no ectual physical sterage of null
values in the hierarchical, network database was neces-
sary. We assumed thal in our “virtual” relational inter-
face we could use null values in medifications, e.g.,
inserting & relation luple corresponding tc a recora
which 1s a8 member in an optional-manual =et. Als=o,
answers from the hierarchical/network database could
bave nuil vaiues. This does not imply though that a
mechanism existe for treating null values. In particular,

there is no indication that a database with null vaiues is,

queried or modified.

The capability to deal with nulls is necessary in
some cases. Cons:der, for instance, that there is no
“virtual” interface but that the relational user has an
actual underlying relational database with the same
description as & network database (operation-
equivaient). It is expected that the user does not distin-
guish beiween the twe databzases and cen ask for the
same transactions in either one. In such a case, null
values may be introduced in the underlying reiational
database.

Ways for dealing with null values range from rudi-
mentary ones, e.g., zeros. values like any other, to
more sophisticated ones [Codd 1978, Lipski 1979, Vassi-
liow 1978, Zanioclo 1579). We nole that the zbove work
considers oniy the retrieval aspects of the problem.
Tnat is, how queries are evaluated in the presence of
nul! values. More work is reguired nlong the lines of
examining how medifications and semantic consiraints
bebave in the presence of null values [Vassiliou 1980].

Cur direct mappings of transactions between
DBMESs is the frst step in determining the nature of the
interface problem for transaction transiation among
heterogeneous DEMSs. Because organizalions have a
high investment in current DEMS software, application
programs and data storage, we dc not foresee a wnole-
sale conversion to & common DBMS for distributed appli-
cations. Inste=ad, organizations will allow local installa-
tions to retain their data model and data language.
Eowever, mt the same time, they would also like to per-
mit some cooperation with other datzbases for purposes
of data integrztion and sharing. We believe that tran-
saction transiatinn can provide the facilities to support
the integration of heterogeneous, distributed DBMSs.

References

TAdibe 1977]
Adibe. M., and Delobel, C.. “The Probisr of Cooperation Setween
Dilfereni TS¥EE tn Archiieciure and mudeis in Jala Bose
Managemeni Sysiems, {Nijssen, G.M , ed)), pp 185-188.

“Adibe 1878]
Adibe. M.. Chupin [.C.., Dercolombe. R, Garderin, G., and le
Siler J., Toury i Jislribuied Dats Sese Management Systems:
A Technicel Overview,” Proc. ACK [nt Conf. Very Laorge Daic
Eases, pp 85110,

[Brodie 1978]

Srodie. M L, Specificaiion and Yerficafion ¢f Data Base Seman-
tic /ntegrity, PhD thesis, Department of Computer Seirmce
Unsvermty of Toronto.

[CODASYL 1871]
CODASYL Daia Basc Task Creup Repert, Conference on Date Sye-
terns Languages, ACH, New York.
{Codd 1970]
Codd. TF.. “A Relational Model of Dete for Zerge Shared Delz
Banks." CACM 13 pp. 377-287.
[Codd 1979)
Codd, EF., "Extending the Database Relsticnal Moge! o Capture
More Meaning.” ACV TODS 4 (&), pp 297-434
[Deppe 1978]
Deppe. M.E.. and Fry, J.P , "Distributed Deta Bases A Summary of
Research,” Computer Netwerks 1, pp. 130-138
By 1978)
INS/V5, Cenarcl Iniformation Manual, Th Fublicalen XNo
GH20-1280, [2M Corp.. White Plains, New York.
[DMS 1873]
IDMS - Cerwral Information Wenual, Cullinane Corparstion.
[Xug 1978]
Xug, T.. Theory of Data Bese Mcppings. PhD. thesis, Depart-
ment of Camputer Scienze, Univer=iy of Toronts.
[Lipsia 1979]
Lpmiq, WJr., “On Semantic Issues Connected with Incemplete in-
'forrmation Databases” ACK TODS 4 (3). pp. 262-298.
{Lochoveky 1979]
lochoveky. F.H., (editor), "A Panache of D3MS Ideas T, CSREC
Tech Repert 101, pp. 82-122.

[Rothnie 19772]
Rothnie, J.B., 2nd Goodman. N.. "An Overview of the Preliminary
Design of SUI-1: A Sysierm for DJistributed Dalabaszes.” Proc.
Herkeley Worlshep on Distriduled Dafa WManagement and Com-
puler Nelworks, pp. 35-57.

{Rolbnie 19770]
Rothnie, J.3.. end Goodman N, “A Survey of Research and
Development in Distribuled Databzss Mznzgement.” Proe. 4CM
Int. Conf Very Large Uaia Hases, pp. 4802

[Rothnie 1880)
Rothnie, J.3., ef al., "miredustien to a Syatem for Distributed
Datzbases (SDD3-1)." ACH TULS 5 (1). pp. 1-17.

Vasxilion 1978]
Vassiliou, Y., "Null Values in Databese Management - A Dencta-
tiona! Sermantics Approach,” Proc. ACM S/CMOD, pp 162-189

Vessiliou 1880]
Vesxliou, Y., "Functional Dependencies and Incomplete Informa-
ticn. " Prec ACH Int Conf. Yery Lerge Jzic Easec

[Zaniela 1978]

Zaniolo, C.. Relaticnal Vieus in o Date Sase Sysiem: Support for
Quaries, Sperty Ressarch Center, Sudbuoy, Mass.

[Zaniolo 1579)
Zaniolo, C., "Design of Relational Views Over Neiwork Schemas.”
Proc. ACM SICMNCD, pp 179190

