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Abstract
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1 Introduction

Optimal policies in traditional inventory theory are generally evaluated for exogenous demand func-

tions with the assumption that consumer behavior and demand are unaffected by the operational

decisions of the firm. In many cases, however, common assumptions of independence between con-

sumer behavior and operational decisions are not desirable or reasonable. In practice, customers do

react substantially and negatively to poor service (e.g., stockouts) which may lead them to switch

retailers on subsequent trips (Fitzsimons 2000), and which may have a significant adverse effect on

future demand (Anderson, Fitzsimons, and Simester 2003). On the other hand, satisfied customers

are likely to continue to buy from the same firm (Anderson and Sullivan 1993). These findings

raise an important research question: Can the inventory decision of a firm be improved by endoge-

nously incorporating consumer response to uncertain service? Further, it is well-documented in

the behavioral research literature that consumers are biased and react asymmetrically to satisfying

and unsatisfying experiences (e.g., Kahneman and Tversky 1979; Tversky and Kahneman 1991).

The impact of asymmetry in consumer response on inventory decisions has not been studied in the

existing literature.

This paper presents a model to analyze competitive inventory decisions by explicitly recognizing

the above findings. We make four key assumptions based on consumer behavior theory. First, a

consumer is not well informed about product availability at the marketplace. Instead, the con-

sumer learns about the firm’s service level from her prior shopping experience and modifies her

future shopping behavior in response to the service level provided by the firm. Thus, a consumer

switches retailers as a result of the history of service she actually receives at various retailers, rather

than as an immediate response to poor service at the current retailer. Second, consumers are bi-

ased and respond differently to positive and negative experiences. This bias reflects asymmetric
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response to gains versus losses documented in behavioral literature. Third, we consider the notion

of diminishing sensitivity over time, i.e., consumers weigh recent experiences more heavily than

older experiences. Finally, consumers exhibit diminishing sensitivity to service level, i.e., they react

less positively to satisfying shopping experiences when they perceive the service level to be very

high. Under this consumer model, we analyze the effect of asymmetry in consumer learning on

inventory competition between retailers at the marketplace.

We use a stylized model of a retailer in which each retailer maintains a constant fill-rate over

an infinite time horizon. Retailers differ in their costs but are price-takers at the marketplace.

Thus, fill-rate is the only dimension of competition in the market. Product availability is a funda-

mental issue in marketing and operations management. Many practitioners have documented the

importance of fill-rate practices in retail firms, and researchers have considered fill-rate strategies

in analytical models. For example, Germain and Cooper (1990) find that firms set target fill-rates

as relatively long-term strategic variables; Elman (1989) documents in-stock levels for grocery re-

tailers; and Bass (1989) conducts a similar study on general merchandize catalogers. Dana (2001)

describes a nice experiment to estimate product availability at video rental stores and finds that

the sampled movie titles were available 86% of the time at Blockbuster and 60% of the time at

competing stores, consistent with Blockbuster’s advertising campaign emphasizing high fill-rates

(e.g., “Go Home Happy”). See also Bernstein and Federgruen (2003) for other examples.

We show that under the assumption of constant fill-rates, our choice model yields a steady-state

distribution of the consumers’ share of purchases at various retailers as a function of the service

levels of all retailers and the degree of asymmetry in consumer learning. We then formulate a

non-cooperative game at the steady-state between retailers competing on the basis of their service

levels. The analysis of this game yields the following findings:

• A retailer always benefits from considering the dependence of its demand on its service level
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and provides a higher service level than if its demand were exogenous. This result is consistent

with the existing literature.

• There is a unique pure strategy Nash equilibrium in the inventory competition.

• Inventory competition results in a reduction in total industry profits and an increase in

total inventory levels at the marketplace compared to the case where the retailers treat their

demands as exogenous.

• Consumer learning bias is an important component of the optimal service levels, market shares

and profits of the retailers. When consumers are biased towards negative experiences, the

firms offer higher optimal service levels. Further, the total inventory in the industry increases

and the total expected profit decreases. Individual firms’ inventory and expected profit may

increase or decrease depending on cost asymmetry.

• When retailers have different costs, consumer learning bias also determines the extent of

competitive advantage enjoyed by the lower cost retailer. The firm with the higher cost

suffers more erosion in market share and profit when consumers are biased towards negative

experiences than when they are biased towards positive experiences.

Our results demonstrate that there is an interaction between consumer learning bias and the

impact of differing costs for competing retailers. Low cost retailers have greater market power when

consumers are biased towards negative experiences than when they are biased towards positive ex-

periences. Further, we show that inventory decisions can be significantly improved by modeling the

interaction between marketing (asymmetric consumer response to uncertain service) and operations

(inventory costs). For optimal inventory planning decisions, therefore, it would be important to

properly evaluate the extent of consumer response to uncertain service at the marketplace.
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The remainder of the paper is organized as follows. Section 2 reviews related literature. Section

3 presents the consumer demand model and derives the steady-state market share of each retailer.

In §4, we investigate a non-cooperative game between two retailers and further analyze the market

equilibrium based on the parameters of interest. We discuss the limitations of our model and

conclude with directions for future research in §5. All proofs are provided in Appendix B unless

otherwise noted.

2 Literature Review

There has been considerable research in recent years on operational decisions under endogenous

demand models in a variety of competitive settings. Demand endogeneity could arise from stock-

outs causing overflow of customers to competing firms or from consumer choice driven by price,

service or quality levels. Endogenous demand models have been studied at both aggregate market

and individual consumer levels. Among individual-level models, significant advances have been

made on consumer choice under perfect information as well as consumer learning under imper-

fect information. Distinguishing characteristics of models studied in this stream of research are as

follows.

Gans (2002) models consumer learning and choice in response to random variation in the quality

provided by competing suppliers. He develops an individual-level consumer demand model in which

consumers use Bayesian updating to learn from their own experiences with the quality levels offered

by suppliers. In each period, a consumer picks the supplier for which the consumer has the highest

expectation of service level. Gans derives the steady-state characterization of this demand model

when suppliers choose static quality policies and analyzes the competition between service providers

competing on quality of service.
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Hall and Porteus (2000) consider consumer response to operational decisions using finite-horizon

models of both quality and inventory competition. Unlike Gans, they consider dynamic policies

wherein a firm can change its service level in each period in response to changes in its market

share. Moreover, in their consumer behavior model, a consumer switches suppliers as an immediate

response to a service failure, rather than as a result of the history of service received at competing

suppliers. The rate of switching is mediated by an external loyalty parameter.

In the inventory literature, Dana and Petruzzi (2001) consider a single-period model of inventory

and price decisions when consumers have perfect information about the price and inventory level

offered by a subject retailer but not about each other’s valuation of the good. Consumers choose

between visiting the retailer and an outside option with given valuation in order to maximize

their expected utility. Deneckre and Peck (1995) consider a non-cooperative game between several

retailers under a similar information structure. Dana (2001) considers a generalization of Deneckre

and Peck, where consumers do not observe the firms’ inventory decisions but realize that firms with

higher prices are likely to offer higher service levels.

While the above models examine consumer responses to stocking decisions with and without

consumer learning, researchers have also studied competitive inventory decisions using aggregate

demand models. For instance, Bernstein and Federgruen (2003) analyze inventory and price com-

petition in an infinite horizon setting using a demand model based on attraction models of market

share. They show the existence of a Nash equilibrium of stationary strategies, i.e., service level

and price are chosen by each retailer at the outset and kept constant throughout the time horizon.

Tsay and Agrawal (2000) consider a single-period model of a two-stage distribution system with

one manufacturer and two retailers. Retailers compete on price and service levels given that each

retailer’s demand is a linear function of the prices and service levels offered by both retailers. Li

(1992) examines the optimal choice between make-to-stock and make-to-order policies when con-
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sumers arrive according to a Poisson process and choose between firms based on price, quality and

delivery time. Cachon and Netessine (2003) conduct a survey of applications of game theory to

supply chain analysis, and specifically, newsvendor games.

Several researchers have considered demand substitution (overflow) due to stockouts, i.e., con-

sumers switch from one retailer to another within the same period when their first-choice retailer

is out of stock. Parlar (1988), Karjalainen (1992), Lippman and McCardle (1997), and Netessine

and Rudi (2003) (see also references cited therein) analyze single-period models of demand substi-

tution. The initial demand at each retailer is exogenous, but the demand in excess of inventory is

allocated to competing retailers in deterministic proportions. These papers find the existence of

Nash equilibria wherein retailers stock more inventory than if excess demand were not allocated

to the competition. Netessine, Rudi and Wang (2003) model the allocation of excess demand in

a multi-period setting, wherein unsatisfied demand at the end of a period may be lost, or may be

back-ordered according to a menu of allocation rules for delivery in a subsequent period. Anupindi,

Dada and Gupta (1998) present a methodology by which the parameters of the demand substitu-

tion model can be estimated from augmented sales data. Mahajan and van Ryzin (2001) consider

an individual-level model of demand substitution in which a stochastic sequence of heterogeneous

consumers choose dynamically between competing retailers using utility maximization criteria.

It is to be noted that operations models analyzing the effect of service level on long-run demand

and optimal inventory levels have a long history in the literature. Schwartz (1966; 1970) was

probably the first to consider the concept that a stockout may not impose an immediate penalty on

the retailer but may affect the distribution of its future demand. He computes optimal inventory

order-up-to policies when mean demand and standard deviation of demand are stylized functions

of the service level offered. Ernst and Cohen (1992) and Ernst and Powell (1995; 1998) extend this

research to two-stage supply chains.
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Our paper differs from the existing research in that we consider demand derived from an

individual-level consumer learning and choice model. Our model has innovative features of consumer

learning, asymmetric response to positive and negative experiences, and diminishing sensitivity over

time and levels of satisfaction. While these findings on consumer behavior are well established in

behavioral literature, their effects on operational decisions have not been evaluated in the existing

research. Further, we employ the multinomial logit model to explain store choice. As a result,

consumers in our model seek variety in their shopping trips and have a non-zero probability of

shopping at the retailer for which they do not perceive the highest expected service level. Like

Gans (2002) and Bernstein and Federgruen (2003), our paper is based on a steady-state characteri-

zation of the inventory competition, i.e., retailers choose their service levels at the start of the game

and maintain the same service levels throughout. We obtain parametric results to demonstrate the

impact of asymmetric learning on the optimal strategies and equilibrium outcomes not only when

the retailers have identical costs but also when they have asymmetric costs.

3 Model Formulation

3.1 Notation and Assumptions

We consider a model with two retailers selling a single item to a fixed population of N consumers.

At discrete time periods, t = 1, . . . ,∞, each consumer demands one unit of the item with probability

ω, 0 < ω ≤ 1, and chooses a retailer to visit. The selling price of the item, denoted r, is constant

over time and identical across both retailers. Thus, there is no competition based on price. Instead,

the retailers compete with each other based on service levels.

We define the service levels offered by the retailers similar to Dana and Petruzzi (2001) and

Deneckere and Peck (1995). Let X̃st denote the aggregate demand at retailer s at time t, λst denote
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the mean of X̃st, and qst denote the inventory level of retailer s at time t. The ex ante service level

provided by retailer s, denoted fs, is defined as the ratio of expected sales to mean demand:

fs ≡
E[min{qst, X̃st}]

λst
, for all t . (1)

We use the fact that the ex ante expectation of the service level experienced by a consumer who

decides to visit retailer s at time t is identical to fs.1 To see this, note that the unconditional

probability that consumer i visits retailer s at time t is λst/N and the conditional probability that

consumer i visits retailer s at time t, given that X̃st equals k, is k/N . Therefore, from Bayes’

Theorem, if consumer i decides to visit retailer s at time t, the expected service level observed by

consumer i is given by:

E

[
min{qst, X̃st}

X̃st

∣∣∣∣∣ consumer i visits retailer s at time t

]

=
N∑

k=0

min{qst, k}
k

Pr[X̃st = k|consumer i visits retailer s at time t]

=
N∑

k=0

min{qst, k}
k

Pr[X̃st = k](k/N)
λst/N

= fs .

We use the terms service level and fill-rate interchangeably. We assume that fs is time-invariant,

i.e., each retailer makes a strategic decision about its service level and provides the same service

level throughout the time horizon. We show that, under this assumption, our consumer behavior

model yields steady-state distributions of aggregate demand at each retailer. Thus, we shall ignore

transient behavior and formulate a single-period non-cooperative game between the retailers to

determine equilibrium outcomes.

1Service level can alternatively be defined as Pr[X̃st ≤ qst], see for example Bernstein and Federgruen (2003).

Since we consider an individual-level demand model, we use the definition in (1) because it gives the expected service

level experienced by a consumer if she decides to visit a particular retailer.
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The central aspect of this paper is that consumers do not know the value of fs for any retailer

in advance. Instead, each consumer forms a private belief about the service level offered by each

retailer through her prior shopping experience at that retailer. She then chooses the retailer to

shop at in each period and updates her beliefs after the visit. Thus, the demand faced by each

retailer depends on its own and its competitor’s service levels. Section 3.2 specifies the consumer

choice model.

The remaining assumptions and notation are as follows. While the selling price is identical

across retailers, the cost parameters may be different. For retailer s, let cs denote the procurement

cost per unit of the item, and ss denote the salvage value per unit of the inventory left over at the

end of each period. Here, r > cs > ss. We assume that inventory is not carried over from one

period to the next. Hereafter, the word ‘store’ is used interchangeably with ‘retailer’. We index the

decisions of the subject retailer by s and its competitor by s̄. Where convenient, we refer to the

subject retailer as retailer 1 and its competitor as retailer 2. All results of this paper apply when

there are more than two retailers at the marketplace.

3.2 Consumer Demand Model

We now describe how a consumer buys a focal product at the marketplace and utilizes her shopping

experience in her future behavior with respect to store choice. Let pi
st denote consumer i’s estimate

of the service level at retailer s at time t. A visit to a retailer is called satisfying if the consumer does

not experience a stockout and unsatisfying otherwise. In each period t when consumer i decides

to purchase the item, she chooses the retailer to visit using the values of pi
st, and then computes

pi
s,t+1 based on the outcome of her visit. The consumer choice and learning process are as follows.
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Step 1: Store choice Our model of store choice is based on the multinomial logit model (e.g.,

McFadden 1974). We assume that consumer i’s indirect utility from retailer s at time t is given by

the additive form,

ui
st = wi

st + εi
st , (2)

where wi
st and εi

st are the deterministic and random components of ui
st, respectively. The determin-

istic component is specified by wi
st = α + β · r + log(pi

st), where α is the consumer’s nominal utility

from purchasing the item, β · r incorporates the effect of price, and log(pi
st) incorporates consumer

i’s estimate of the service level offered by retailer s at time t. A logarithmic form is used for the

service level because (1) when pi
st = 0, we have log(pi

st) = −∞, implying that if retailer s offers a

zero service level, retailer s will never be preferred to its competitor; (2) an increase in pi
st represents

decreasing disutility from retailer s; (3) when pi
st = 1, we have log(pi

st) = 0 so that the consumer’s

utility is determined entirely by the nominal utility and the effect of the price. It is well-known

that, under the assumptions of utility maximization and an independent and identically distributed

type I extreme value distribution for εi
st, the probability that consumer i chooses retailer s at time

t is given by:

ηi
st =

pi
st

pi
st + pi

s̄t

. (3)

Thus, the probability that a consumer visits a given retailer is increasing in the consumer’s estimate

of the service level at that retailer. From (3), note that the consumer in our model seeks variety in

her shopping trips and has a non-zero albeit smaller probability of visiting the store with the lower

pi
st. The multinomial logit model represents a very flexible choice model for consumer demand, such

has been employed in a variety of research disciplines (see for example, Ben-Akiva and Lerman 1985;

Guadagni and Little 1983; McFadden 1974; van Ryzin and Mahajan 1999).
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Step 2: Consumer learning At each shopping occasion, the consumer updates pi
st by the rule,

pi
s,t+1 =



(1− θu) · pi
st + θu satisfying visit to store s at time t,

(1− θd) · pi
st unsatisfying visit to store s at time t,

pi
st no visit to store s at time t,

(4)

where θu ∈ (0, 1) is a weight attached by the consumer to a satisfying store visit and θd ∈ (0, 1)

is a weight attached to an unsatisfying store visit. If the visit to store s is satisfying for consumer

i, her estimate of the service level at store s increases by θu · (1 − pi
st), otherwise it decreases by

θd · pi
st. The value of pi

st remains unchanged if the consumer does not visit store s at time t. Since

both θu and θd are between zero and one, we have 0 < pi
st < 1 for all t. We denote the ratio θu/θd

by θ.

This model captures both positive and negative biases in consumer learning. We note that the

consumer is biased towards positive experiences if θu > θd, and towards negative experiences if

θu < θd. If θu is equal to θd, there is no bias and our model is identical to simple exponential

smoothing.

As noted earlier, the updating rule specified in (4) exhibits diminishing sensitivity over time

and over levels of satisfaction. With respect to time, a recent experience is weighted more heavily

than an older experience. With respect to levels of satisfaction, the marginal impact of a satisfying

visit to a retailer is decreasing in the consumer’s estimate of the service level at that retailer.

The parameters θu and θd can be estimated by comprehensive marketing research. In practice,

both parameters may vary across product categories. For a necessity item such as milk, for instance,

consumers may react more strongly to a stockout than to a satisfying visit since they might take it

for granted that such items should always be in stock. For a search item such as fashion clothing,

on the other hand, consumers may weigh a satisfying visit much more than a stockout of one of

the variants because they expect to search for these items. Further, the parameters of consumer
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learning may be specific to individual consumers. To achieve a parsimonious analytical framework,

we consider a homogeneous population of consumers, i.e., the learning parameters are common

across individuals.

We assume that if the consumer’s visit to a retailer in period t is unsatisfying, then she decides

not to purchase the item in period t and does not visit competing retailers in that period. In other

words, we do not allow demand substitution across retailers within the same period. For research

on inventory models with demand substitution, see Lippman and McCardle (1997), Mahajan and

van Ryzin (2001), Netessine and Rudi (2003), Parlar (1988) and the references cited therein. For

research using an alternative assumption that excess demand is backlogged, see Bernstein and

Federgruen (2003). Since our paper is among the first attempts to develop a competitive inventory

model with asymmetric consumer learning and consumer choice at the individual level, we seek to

keep the model as parsimonious as possible to highlight the key aspects of inventory competition.

3.3 Steady-state Aggregate Demand

We first compute the steady-state distribution of demand for each retailer. To this end, we analyze

the convergence of the sequence {pi
st} for any consumer i and retailer s as t goes to ∞. Proposition

1 shows that if a retailer provides a constant non-zero service level, the retailer is visited infinitely

often by each consumer.

Proposition 1 Given fs > 0, if pi
s1 > 0 for any consumer i, then consumer i visits retailer s

infinitely often, and the expected time between successive visits by consumer i to retailer s is finite.

We note that Proposition 1 holds for a retailer even when consumer i perceives a perfect service

level at the competing retailer. As a result, the competitor of retailer s cannot force retailer s to

exit the market by temporarily offering a very high service level. Therefore, each retailer can have
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a non-zero expected market share as t goes to ∞.

Proposition 2 shows that, for all consumers i, pi
st converges in distribution to a random variable,

ps, as t goes to ∞.

Proposition 2 There exists a random variable ps, 0 < ps < 1, such that pi
st converges in distribu-

tion to ps for each consumer i as t →∞. Further,

E[ps] =
θu · fs

θd + (θu − θd) · fs
=

θ · fs

1 + (θ − 1) · fs
. (5)

According to (5), θu > θd implies E[ps] > fs, and θu < θd implies E[ps] < fs. Thus, the consumers’

propensity to place different weights on positive and negative experiences results in their overesti-

mating the service level provided by each retailer if θu > θd (i.e., θ > 1), and underestimating it

otherwise. Thus, Proposition 2 shows that θu and θd shape near-term behavior in such a way as to

create long-term differences between actual and perceived service levels. Therefore, to determine

the inventory policies of retailers, it is critical to properly consider how consumers learn and update

their private beliefs regarding the service levels at the marketplace.

4 Inventory Competition

In this section, we model the retailers’ inventory decisions and analyze the competition at the

steady-state as a non-cooperative game. We assume that the retailers’ cost parameters as well as

the market parameters, N , ω, θu and θd are common knowledge. Each retailer sets its service level

at the outset. The service levels offered by the retailers jointly determine their long-run average

market shares and profits. The long-run average profit of retailer s is given by

lim
T→∞

1
T

[
T∑

t=1

πst

]
= lim

T→∞

1
T

[
T∑

t=1

r min{X̃st, qst} − csqst + ss max{qst − X̃st, 0}

]

where X̃st and qst are as defined in §3.1, and πst denotes the profit realized by retailer s at time

t. Since Proposition 2 shows that pi
st converges in distribution to ps for all customers i, it can
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easily be shown that there exists a random variable X̃s such that the aggregate demand at retailer

s, X̃st, converges in distribution to X̃s as t tends to infinity. Additionally, since qst is measurable

with respect to the information available up to time (t− 1), it is a Cauchy sequence and converges

to a stationary value qs in the limit as t tends to infinity. Then, the convergence of the profit

function in distribution follows from weak convergence theory (Durrett 1996:§2.2). Therefore, the

long-run average profit maximization problem of each retailer reduces to a single-period problem

at the steady state. Letting πs denote the profit of retailer s for the single-period steady-state

problem, we have

lim
T→∞

1
T

[
T∑

t=1

πst

]
= E

[
r min{X̃s, qs} − csqs + ss max{qs −Xs, 0}

]
≡ E[πs(q1, q2)].

According to the individual-level demand model described in §3, the probability that a given

consumer visits retailer s in the steady-state is a function of ps and ps̄, which are random variables.

Thus, the steady-state aggregate demand for each retailer is the sum of the outcomes of Bernoulli

trials across all the consumers at the marketplace. (Note that the values of pi
st are not independent

of each other even though they have the same limiting marginal distribution, ps.) While this detailed

model can be used in numerical studies, it is not directly amenable to obtaining analytical results

regarding the retailers’ inventory levels. Therefore, for analytical tractability, we approximate X̃s

by a continuous-valued random variable denoted Xs. Also let X ≡ Xs+Xs̄ denote the total steady-

state market demand, with probability density function g(x) and cumulative distribution function

G(x). Note that E[X] = Nω from the definition of the market in §3.1. We assume that g(x) is

positive on a compact subset of <+ and 0 elsewhere in order that the optimal inventory policy is

uniquely specified.

We further make the following three assumptions:

Assumption 1 Using (3) and Proposition 2, the probability that any consumer chooses retailer s
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at the steady-state is approximated by the expression,

vs =
E[ps]

E[ps] + E[ps̄]
. (6)

Assumption 2 The aggregate demand at each retailer s is scaled by that retailer’s market share.

In other words, Xs = vsX with expectation E[Xs] = vsE[X] = vsNω.

Assumption 3 θ ≥ 0.5.

Assumption 1 enables us to derive the steady-state aggregate demand at each retailer as a

function of the service levels offered by both retailers. We interpret vs as the market share of

retailer s at the steady-state. Equation (6) is consistent with the attraction models of market share

(e.g., Cooper and Nakanishi 1988; Bernstein and Federgruen 2003) and further incorporates our

consumer learning model since E[ps] and E[ps̄] are functions of fs, fs̄ and θ as shown in Proposition

2.

Assumption 2 enables us to compute the inventory level corresponding to a given service level

in closed form, and thus, obtain comparative statics results. Using Assumptions 1 and 2 in (1), the

service level at retailer s corresponding to inventory level qs at the steady-state can be written as:

fs =
E[min{qs, Xs}]

vsNω
=

E[min{Qs, X}]
Nω

,

where Qs = qs/vs. Qs can be interpreted as the level of inventory offered by retailer s to achieve

service level fs if retailer s were the only retailer in the market. Note that there is a one-to-one

correspondence between fs and Qs. Finally, Assumption 3 limits extreme biases toward negative

experiences in consumer behavior, i.e., scenarios where θd > 2θu.

To examine the implications of Assumptions 1 and 2, we conduct a comprehensive simulation

study comparing the theoretical distribution of demand, obtained from Assumptions 1 and 2, with

the empirical distribution of demand obtained from the individual-level model in §3. Appendix A
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presents the results of this study. Further, to avoid potential limitations imposed by Assumption 2,

we do not use this assumption in the numerical analysis to be described later in §4.2. Instead, we

approximate the total market demand by a Poisson distribution with mean Nω and the demand

for retailer s by a Poisson distribution with mean Nωvs for s = 1, 2.

The expected profit of retailer s at the steady-state corresponding to inventory levels q1 and q2

can now be written as:

E[πs(q1, q2)] ≡ E[πs(Q1, Q2)] = rE[min{qs, Xs}]− csqs + ssE[max{qs −Xs, 0}]

= (r − ss)vsE[min{Qs, X}]− (cs − ss)Qsvs

= vshs(Qs), (7)

where hs(Qs) = (r − ss)E[min{Qs, X}] − (cs − ss)Qs is the familiar newsvendor profit function

with exogenous demand X. Thus, the expected profit is a product of a scale variable and a

scale-independent profit function. We note that similar profit functions have been used in other

contexts, e.g., when price is endogenous (Agrawal and Seshadri 2000; Petruzzi and Dada 1999),

when demand is an aggregate-level function of the service level (Dana and Petruzzi 2001; Bernstein

and Federgruen 2003), and in a service competition when there are no economies of scale (Gans

2002). However, the form of the scale variable differs across all these models including ours.

We use the notation v′s, v
′′
s , h′s and h′′s to denote derivatives with respect to Qs. The following

properties of vs are useful in the subsequent analysis.

Lemma 1 For given Qs̄, vs is strictly increasing and concave in Qs.

4.1 Myopic Versus Strategic Retailers

A retailer is called strategic if it recognizes that its demand distribution depends on its inventory

level through consumer learning. The strategic retailer chooses Qs to maximize (7) subject to (6)
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treating vs as endogenous. Let Fs(Q1, Q2) denote the first derivative of πs with respect to Qs.

Thus, the first-order condition is:

Fs(Q1, Q2) ≡ ∂E[πs(Q1, Q2)]
∂Qs

+
∂E[πs(Q1, Q2)]

∂vs

dvs

dQs
= 0 , (8)

where

∂E[πs(Q1, Q2)]
∂Qs

= vsh
′
s(Qs) = vs[(r − ss){1−G(Qs)} − (cs − ss)] ,

and

∂E[πs(Q1, Q2)]
∂vs

dvs

dQs
= hs(Qs)

E[ps̄]
[E[ps] + E[ps̄]]2

θ

[fs(θ − 1) + 1]2
1−G(Qs)

Nω

= hs(Qs)vs(1− vs)
E[ps]
f2

s θ

1−G(Qs)
Nω

.

Let QS
s (Qs̄) denote the optimal value of Qs for retailer s as a function of Qs̄, and vS

s (Qs̄) and

qS
s (Qs̄) denote the corresponding market share and inventory level, respectively.

For comparison, a retailer is called myopic if it does not recognize the dependence of its demand

distribution on its inventory level, but instead, takes its demand distribution as given and naively

follows the traditional newsvendor policy. The first-order condition of the myopic retailer is:

∂E[πs(Q1, Q2)]
∂Qs

= vs[(r − ss){1−G(Qs)} − (cs − ss)] = 0 .

This has a unique solution independent of vs,

QM
s = G−1

(
r − cs

r − ss

)
.

with corresponding service level fM
s = E[min{QM

s , X}]/(Nω), market share vM
s (Qs̄), and inventory

level qM
s (Qs̄) = vM

s (Qs̄)QM
s . Here, the superscript M denotes the myopic retailer.

Proposition 3 contrasts myopic and strategic behavior. It shows that for a given service level

offered by the competitor, a retailer is better off by taking the strategic decision than by taking the
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myopic decision. This result is analogous to that found by Dana and Petruzzi (2001) in a single-

period non-competitive newsvendor setting, and can be obtained as a special case of Proposition 2

in their paper.

Proposition 3 For a given value of Qs̄, QS
s > QM

s , vS
s > vM

s , qS
s > qM

s and E[πs(QS
s , Qs̄)] >

E[πs(QM
s , Qs̄)].

Proof: Note that, for all Qs such that ∂E[πs]/∂Qs ≥ 0, we have dE[πs]/dQs > ∂E[πs]/∂Qs.

Therefore, QS
s > QM

s . Since Qs̄ is fixed, Lemma 1 gives vS
s > vM

s . Further, applying qs = vsQs,

we get qS
s > qM

s . E[πs(QS
s , Qs̄)] > E[πs(QM

s , Qs̄)] follows since QS
s is the unique value of Qs that

optimizes E[πs(Qs, Qs̄)]. 2

4.2 Competitive Interaction

We now characterize the set of Nash equilibria and discuss their nature as a social outcome. We

then describe the effects of bias in consumer learning and cost parameters of the retailers on the

set of equilibria.

Consider the profit maximization problem of the strategic retailer. Let Qs be the value of Qs at

which hs(Qs) intersects 0, so that hs(Qs) > 0 for all Qs < Qs, and hs(Qs) ≤ 0 otherwise. Clearly,

QM
s < Qs and QS

s < Qs. Further, Proposition 3 shows that QS
s > QM

s for all Qs̄. Therefore, QS
s

lies in the non-empty interval (QM
s , Qs) for all Qs̄. Lemma 2 shows that QS

s is uniquely defined for

given Qs̄.

Lemma 2 The best response function πs(Q1, Q2) of the strategic retailer is strictly concave in its

inventory level Qs for all Qs ∈ (QM
s , Qs).

Lemma 2 is useful for proving the existence of a Nash equilibrium. Lemma 3 below is useful for

proving the uniqueness of the Nash equilibrium.
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Lemma 3 dQS
s /dQs̄ > 0.

We now obtain the following result.

Proposition 4 There exists a unique pure strategy Nash equilibrium in the inventory game.

We contrast the results in Propositions 3 and 4 to show the implications of inventory competition

between the retailers. According to Proposition 3, strategic behavior dominates myopic behavior

for each retailer. However, at the Nash equilibrium, when both retailers behave strategically, we

find that this has a dramatic impact on the inventory levels and expected profits of the two retailers

compared to the scenario when they behave myopically.

To examine this phenomenon in detail, consider the case when the retailers have equal costs. If

both retailers are myopic, QM
1 is equal to QM

2 . Thus, each retailer receives the same market share

and payoff (in units of expected profit). If both retailers are strategic, QS
1 is equal to QS

2 , which also

yields the same market share and expected profit for each retailer. However, E[πs(QM
1 , QM

2 )] >

E[πs(QS
1 , QS

2 )] because vM
s = vS

s and hs(QM
s ) > hs(QS

s ). Thus, each retailer’s expected profit

is higher and inventory level is lower under myopic behavior than under strategic behavior from

both retailers. Thus, inventory competition results in a reduction in the total industry profits and

an increase in the total industry inventory level at the marketplace compared to the case if both

retailers treated their demands as exogenous.

When the retailers have unequal costs, it is no longer true that both retailers are worse off due

to competition. Table 1 illustrates a numerical example of the two retailers for different values of

θ (0.5 and 2.0) and c2 (0.2, 0.5, 0.8) with c1 = 0.2.2 The table quantifies the % change in the total
2The remaining parameters are as follows: N = 5000, ω = 0.2, r = 1 and s1 = s2 = 0. We use these parameters for

all numerical results reported in §4. In this analysis, we approximate total market demand by a Poisson distribution

with mean Nω. Thus, we relax Assumption 2. We also relax Assumption 3 by considering θ < 0.5, and obtain

numerical results consistent with the propositions in the paper.
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industry inventory level and the % change in expected profits for each retailer by comparing the

scenario when both retailers are myopic with the scenario when both retailers are strategic. We

find that inventory competition increases the total industry inventory level regardless of the degree

of cost asymmetry or the value of θ. For example, the % increases in inventory levels are 5.36%,

5.13% and 4.94%, respectively, when c2 is 0.2, 0.5 and 0.8 and θ is 0.5.

Insert Table 1 about here

Table 1 also shows a counter-intuitive result that the higher cost retailer (retailer 2) gains market

share and increases its expected profit when both retailers are strategic than when they are myopic.

Correspondingly, the lower cost retailer (retailer 1) loses market share and decreases its expected

profit due to inventory competition. The intuition for this result is as follows. When both retailers

are myopic, the lower cost retailer provides a higher service level (than the higher cost retailer) and

consequently acquires a higher market share. However, the higher cost retailer can, by stocking a

little more inventory, improve its market share and thereby reduce the competitive advantage of

the lower cost retailer. The lower cost retailer cannot effectively counter the higher cost retailer

because market share is concave in service level resulting in diminishing returns. Table 1 further

details that the % gain to the higher cost retailer from being strategic decreases as θ increases.

Thus, the higher cost retailer has a greater incentive to behave strategically when consumers are

biased towards negative experiences than when they are biased towards positive experiences.

4.2.1 Effect of Bias in Consumer Learning

The effect of θ on the service levels of the two retailers at equilibrium can be decomposed into the

following two components by applying Implicit Function Theorem:

dQs

dθ
= − ∂Fs

∂θ

/
dFs

dQs︸ ︷︷ ︸
Effect of Consumer Learning

− dFs

dQs̄

dQs̄

dθ

/
dFs

dQs︸ ︷︷ ︸
Effect of Inventory Competition

.
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The first term on the right-hand side can be interpreted as the direct effect of learning bias on

the service level of retailer s. As θ increases, consumers tend to be more patient about negative

experiences, while they react positively and significantly to satisfying shopping trips. Thus, θ could

affect service levels in two ways. On the one hand, a higher value of θ implies that a retailer could

provide a lower service level to retain market share. Thus, an increase in θ may result in a decrease

in Qs. On the other hand, a higher value of θ implies that a retailer could gain substantially more

market share with a small increase in service level. Thus, an increase in θ may result in an increase

in Qs.

The second term on the right-hand side can be interpreted as the indirect effect of inventory

competition. In this term, ∂Fs/∂Qs < 0 from Lemma 2. Further, it can easily be shown that

∂Fs/∂Qs̄ > 0. Thus, the indirect effect of θ on Qs depends on the sign of dQs̄/dθ. If the service

level of the competing retailer increases with θ, the effect on the service level of retailer s is positive,

else negative.

We find that both the direct and the indirect effects of an increase in θ lead to a reduction in

the service level of each retailer, as shown in Proposition 5.

Proposition 5 The service levels offered by the two retailers at equilibrium are decreasing in θ.

Now consider the effect of learning bias on the market shares, inventory levels and expected

profits of the two retailers. When costs are equal, it is clear that market shares of the retailers are

equal regardless of the value of θ. Thus, by applying Proposition 5, as θ increases, the inventory

levels of the retailers decline, and their expected profits increase.

When costs are unequal, on the other hand, the effects of consumer learning on market shares,

expected profits and inventory levels at the steady-state are not straightforward. We illustrate

these effects through numerical analysis using values of θ between 0.5 and 5.0, and two cases with
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different costs for the retailers: in the first case, we assign c1 = 0.2 and c2 = 0.5, and in the second

case, c1 = 0.2 and c2 = 0.8. The remaining parameters are as specified earlier in §4.2.

We find that the expected profit of each retailer increases as θ increases. Further, Figure 1

shows the effect of θ on the market share of each retailer. We find that as θ increases, the market

share of the lower cost retailer (retailer 1 in both cases) decreases while the market share of the

higher cost retailer (retailer 2) increases. Thus, the higher cost retailer suffers more market erosion

and the lower cost retailer enjoys greater market power when consumers are negatively biased than

when they are positively biased. Viewing this result in conjunction with Table 1, we find that the

higher cost retailer has a greater incentive to be strategic when θ is small. However, despite this,

the lower cost retailer still enjoys greater power when θ is small. Figure 2 shows the effect of θ on

the equilibrium inventory levels of both retailers. We find that the inventory levels of both retailers

decline as θ increases.

In summary, both the analysis of the retailers with equal costs and the numerical examples of

the retailers with unequal costs show that a negative bias in learning decreases the industry profits

and increases the total inventory level. Further, the lower cost retailer has a greater competitive

advantage and higher market share when consumers are negatively biased than when they are

positively biased.

Insert Figures 1 and 2 about here

4.2.2 Effect of Cost Asymmetry

Since we assume that cost parameters could be different across retailers, we now examine the effect

of cost asymmetry on the nature of the equilibrium. The dynamics are as follows. Holding c2 and

the market parameters (e.g., θ) constant, when c1 increases, we would expect that the service level

of retailer 1 should decline. Consider the effect of this decline on retailer 2. On the one hand,
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retailer 2 could maintain its market share by reducing its service level as retailer 1 reduces its

service level. On the other hand, retailer 2 could gain market share by maintaining or increasing

its service level. Therefore, there are competing arguments for both an increase and a decrease in

the service level of retailer 2 as a result of the increase in c1. Further any change in the service

level of retailer 2 will have a feedback effect on the optimal service level of retailer 1 as well.

We obtain the following result regarding the changes in the service levels of the two retailers.

Proposition 6 The service levels offered by the two retailers at equilibrium are decreasing in c1

and c2.

Proof: Similar to Proposition 5. Thus, omitted. 2

We now illustrate the effects of an increase in c1 on the market shares, inventory levels and

expected profits of both retailers at equilibrium through numerical analysis. The unit cost of

retailer 2, c2, is kept fixed at 0.2 while the unit cost of retailer 1, c1, is varied from 0.1 to 0.8. The

remaining parameters are as in §4.2.1. Equilibria are computed for two values of θ, 0.5 and 2.0.

Figures 3 and 4, respectively, show the changes in the market shares and inventory levels of

the two retailers at equilibrium as c1 increases. The market share and inventory level of retailer

1 decline as expected. Interestingly, the inventory level of retailer 2 increases with c1. Combining

this observation with Proposition 6, we find that, with an increase in c1, retailer 2 provides a lower

service level but stocks more inventory as it gains market share. Another significant result is that

the slopes of the market share and the inventory level with respect to c1 vary with θ. In particular,

Figure 3 shows that the impact of a change in c1 on market shares is much less when θ = 2.0 than

when θ = 0.5. Figure 4 shows that retailer 2 increases its inventory by a smaller amount when

θ = 2.0 than when θ = 0.5. Thus, the degree of inventory competition intensifies significantly

when consumers are negatively biased, and competitive pressure on inventory levels become more
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important at the marketplace. This result is plausible mainly because consumers become more

impatient about negative shopping experiences when θ is low.

Insert Figures 3 and 4 about here

5 Conclusions

We have proposed a model of consumer learning that reflects empirical findings established in be-

havioral research. Under this model, we obtain a closed-form solution for the share of purchases at

the various retailers as a function of their service levels and the degree of asymmetry in consumer

learning and then analyze inventory decisions for competing retailers. Our results show how asym-

metric consumer learning affects the optimal service levels, market shares and expected profits of

the retailers. More significantly, when retailers have unequal costs, asymmetric consumer learning

affects the degree of competitive advantage enjoyed by the lower cost retailer.

Our paper extends the work of Gans (2002) on consumer learning by capturing the effects of bias

in learning. It also extends the work of Dana and Petruzzi (2001) and Bernstein and Federgruen

(2003) by demonstrating how consumer learning drives inventory competition. The proposed model

can be extended to study several marketing-operations interface issues. For example, our consumer

model could be applied to areas other than inventory competition, such as service competition or

quality competition. Our model could also be extended to include the effects of price and switching

costs on consumer behavior. Finally, our model illustrates that further analytical and empirical

research which incorporates consumer behavior in operational models would be useful to find ways

of managing the effects of consumer learning.

Our model has some limitations that can be addressed in future research. First, we approximate

the steady-state market share of each retailer as shown in equation (6). Due to this assumption,
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the variance of demand in our model is larger than the variance of true demand. Therefore, our

model might yield more conservative service levels than required by consumer learning. Second, we

assume that the coefficient of variation of the demand at each retailer does not change with market

share. If, instead, the coefficient of variation of demand were to change as mean demand increases,

it would affect the equilibrium service levels and expected profits of the retailers. Third, we do

not consider time-varying service levels. Such inventory policies might create situations where one

retailer is forced to exit the market, providing new insights.
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Appendix A: Simulation study to evaluate Assumptions 1 and 2

This appendix presents the results of a simulation study conducted to validate Assumptions 1

and 2 in §4. We simulated our consumer behavior model for a wide range of values of the

parameters: fs, fs̄ ∈ [0.5, 0.99] in increments of 0.01, θu, θd ∈ [0.2, 0.8] in increments of 0.1,

N ∈ {1000, 2000, 5000}, and ω ∈ [0.1, 0.5] in increments of 0.1. With regard to Assumption 1,

the simulation results show that E[ps]
E[ps]+E[ps̄]

and E
[

ps

ps+ps̄

]
are not statistically different. The sta-

tistical significance was ascertained based on paired-t test statistics (t-value = 0.33 and p-value =

0.7418). On average, we found that the difference is less than 0.0005, which shows that bias may

be ignored. This shows that the expression for market share given in Assumption 1, E[ps]
E[ps]+E[ps̄]

, is

a valid approximation for E
[

ps

ps+ps̄

]
.

We then compared the theoretical distribution of demand, obtained from Assumption 2, with

the empirical distribution of demand obtained from the simulation of the individual-level consumer

behavior model defined in §3 across the values of model parameters defined above. The comparison

of distributions is done using a Kolmogorov-Smirnov two-sample test of goodness of fit. The

simulation results show that, for any retailer, the difference between the two distributions of demand

is not statistically significant (p-value = 0.4360) when the retailer stocks more inventory than its

mean demand. This corresponds to the retailer’s fill-rate being generally higher than 0.7 for our

parameter values. The test shows a poor fit for a retailer only when its service level drops below

0.7 and its competitor’s service level increases above 0.98. This is an unlikely scenario. In cases

of a poor fit, we find that our proposed approach gives a more conservative assessment of the

competition: It results in under-estimating the inventory level (and over-estimating the profit) of

the retailer with the lower fill-rate, and over-estimating the inventory level (and under-estimating

the profit) of the retailer with the higher fill-rate. Thus, we find that Assumption 2 is valid across

a wide range of parameter values and is practically relevant.
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Appendix B: Proofs

Proof of Proposition 1: Given any time t, let P i
st denote the probability that customer i will

visit retailer s at time t or later and µi
st denote the expected number of time periods till the next

visit to retailer s. We show that given fs > 0, (i) if pi
st > 0, then P i

st is equal to 1 and µi
st is finite;

(ii) pi
st does not go to 0 as t increases. These two facts prove the required results.

Step 1: Consider a modified system wherein pi
s̄t = 1, i.e., the competitor of retailer s offers a 100%

service level. Model this system as a Markov chain with two states representing retailers s and s̄,

respectively. In this chain, the probability that consumer i ever visits retailer s at time t or later

is given by

P̂ i
st =

∞∑
τ=t

[(
1

1 + pi
st

)τ−t pi
st

1 + pi
st

]
= 1, (9)

and the expected number of time periods till the next visit to retailer s is given by

µ̂i
st =

∞∑
τ=t

[
(τ − t)

(
1

1 + pi
st

)τ−t pi
st

1 + pi
st

]
=

1 + pi
st

pi
st

. (10)

Here, we used the facts that pi
st > 0, and that pi

st is not updated until the next visit of consumer

i to retailer s. From (9) and (10), it follows that state s is positive recurrent in the Markov chain,

i.e., P̂ i
st = 1 and µ̂i

st < ∞.

Now consider the case when pi
s̄t < 1. The probability of visiting retailer s in this case is always

greater than the probability of visiting retailer s in the above Markov chain, i.e.,

vi
st =

pi
st

pi
s̄t + pi

st

>
pi

st

1 + pi
st

. (11)

Thus, it can be shown by induction over the number of time periods that P i
st ≥ P̂ i

st and µi
st ≤ µ̂i

st.

Combining with (9) and (10), we find that pi
st > 0 implies that P i

st is equal to 1 and µi
st is finite.

Step 2: Now consider only the subsequence of time periods {tk} when consumer i visits retailer
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s. Let Y i
stk

be 1 if the consumer’s visit at time tk is satisfying, and 0 otherwise. We have

pi
s,tk+1 =

[
(1− θu)pi

stk
+ θu

]
Y i

stk
+ (1− θd)pi

stk
(1− Y i

stk
). (12)

Define a Markov chain over this subsequence of time periods with two states, Y i
stk

= 0 and 1.

The transition probabilities of this embedded Markov chain are determined by fs. Since fs is

strictly positive, Y i
stk

= 1 is a positive recurrent state. Therefore, (12) implies that pi
stk

> 0 with

probability 1 as k tends to ∞. This further implies that pi
st > 0 with probability 1 as t tends to ∞

because pi
st is constant between successive visits to retailer s. On the other hand, if fs = 0, then

pi
s,tk+1 = (1− θd)pi

stk
so that pi

stk
goes to 0 with probability 1 as t tends to ∞. 2

Proof of Proposition 2: Let Xiω
t be 1 if customer i visits the retailer at time t along the sample

path ω, and 0 otherwise. Let Y iω
t be 1 if the visit is satisfying, and 0 otherwise. Let Xω

t be the

vector of store visits across all consumers at time t, and Y ω
t be the vector of outcomes of store visits

across all consumers at time t. A state of the world ω is a sequence of pairs (Xω
t , Y ω

t ), t = 1, ...,∞.

Let pi
st(p

i
s1, ω) be consumer i’s estimate of the fill-rate at retailer s at the start of period t,

as a function of consumer i’s initial estimate of the fill-rate, pi
s1 and the sample path ω. Let F i

st

denote the distribution function of pi
st. We wish to show that there exists a random variable ps

with distribution function Fs such that F i
st(x) → Fs(x) for every x where Fs is continuous. To

prove this, we show that F i
st(x) is a Cauchy sequence in [0, 1], i.e., for all ε > 0, there exists T such

that
∣∣F i

s,t+τ (x)− F i
st(x)

∣∣ < ε for all t ≥ T, for all τ .

We only need to consider the subsequence of time periods {tk} when consumer i visits retailer s.

From Proposition 1, this subsequence is infinite. Thus, the subscript k is suppressed for convenience.

The superscript i is also ignored to simplify the notation. The updating rule (4) gives the stochastic
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recursion,

ps,t+1 = [pst(1− θu) + θu]Yst + pst(1− θd)(1− Yst)

= θuYst +
[
(θd − θu)Yst + (1− θd)

]
pst .

Expanding this for ps,t+τ , we get

ps,t+τ = ps,τ+1u(t, τ) + v(t, τ), (13)

where ps,τ+1 is consumer i’s estimate of the service level at the start of period τ + 1, and

u(t, τ) ≡
t−1∏
k=1

[
(θd − θu)Ys,t+τ−k + (1− θd)

]
,

v(t, τ) ≡
t−1∑
i=1

i−1∏
k=1

[
(θd − θu)Ys,t+τ−k + (1− θd)

]
θuYs,t+τ−i.

Thus,

Fs,t+τ (x)− Fst(x) = Pr [ps,τ+1u(t, τ) + v(t, τ) ≤ x]− Pr [ps1u(t, 0) + v(t, 0) ≤ x]

≤ Pr [v(t, τ) ≤ x]− Pr [ps1u(t, 0) + v(t, 0) ≤ x] , (14)

where the inequality follows since ps,τ+1u(t, τ) > 0. Consider the second term on the right hand

side of (14). Let δmax = max{1− θu, 1− θd}. Since
[
(θd − θu)Yst + (1− θd)

]
is equal to (1− θu)

if Yst = 1 and (1− θd) otherwise, we have that u(t, 0) ≤ δt−1
max. Thus,

Fs,t+τ (x)− Fst(x) ≤ Pr [v(t, τ) ≤ x]− Pr
[
ps1δ

t−1
max + v(t, 0) ≤ x

]
≤ Pr

[
x− δt−1

max ≤ v(t, 0) ≤ x
]
.

Here, v(t, τ) can be replaced by v(t, 0) in the second inequality because the retailer maintains

constant service level and Y i
st are iid random variables. Since Pr

[
x− δt−1

max ≤ v(t, 0) ≤ x
]
→ 0 for

all t sufficiently large, we obtain the required result. Thus, there exists a random variable ps such

that pi
st

D→ ps as t →∞. From symmetry, the limiting distribution is identical for all consumers.
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The expectation of ps is now directly obtained from the updating rule (4) or from the expansion

(13) since convergence in distribution implies convergence in expectation. 2

Proof of Lemma 1: We have

dvs

dQs
=

E[ps̄]
(E[ps] + E[ps̄])2

θ

[fs(θ − 1) + 1]2
1−G(Qs)

Nω
> 0 .

Thus, vs is increasing in Qs for given Qs̄. Further, with some algebraic manipulation, the second

derivative of vs with respect to Qs can be written as

d2vs

dQ2
s

= − E[ps̄]
(E[ps] + E[ps̄])2

θ

[fs(θ − 1) + 1]2

×

[
g(Qs)
Nω

+
(

1−G(Qs)
Nω

)2 2{θ − (1− θ)E[ps̄]}
E[ps̄] + fs{θ − (1− θ)E[ps̄]}

]
.

All the terms in the above expression are positive, with the exception of θ − (1− θ)E[ps̄], which is

negative if E[ps̄] > θ/(1− θ). However, θ ≥ 0.5 implies that θ/(1− θ) ≥ 1. Thus, θ − (1− θ)E[ps̄]

is non-negative since E[ps̄] ≤ 1 by definition. Therefore, vs is concave in Qs. 2

Proof of Lemma 2: From the profit function (7), we have

d2E[πs]
dQ2

s

= v′′sh(Qs) + vsh
′′(Qs) + 2h′(Qs)v′s .

For Qs ∈ (QM
s , Qs), we have h(Qs) > 0, h′(Qs) < 0 and h′′(Qs) < 0. By Lemma 1, we further have

vs > 0, v′s > 0 and v′′s < 0. Therefore, d2E[πs]/dQ2
s < 0 for Qs ∈ (QM

s , Qs). 2

Proof of Lemma 3: Applying the Implicit Function Theorem to the first order condition (8),

we get

dQS
s

dQs̄
= − dFs/dQs̄

dFs/dQS
s

.

It can easily be seen that dFs/dQs̄ > 0. Further, dFs/dQS
s < 0 from the concavity of E[πs] for all

Qs ∈ [QM
s , Qs]. Thus, dQS

s /dQs̄ > 0. 2
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Proof of Proposition 4: Existence: The strategy spaces of the retailers are non-empty, compact,

convex subsets of the real line and each retailer’s response function is continuous and strictly concave

in the inventory level. Therefore, from Debreu (1952), the result follows.

Uniqueness: We need to show that the reaction curves of the two retailers intersect at most

once, so that there is at most one fixed point and the equilibrium is unique. Equivalently, we show

that there is at most one point that satisfies the first order conditions of both retailers.

The first order conditions of the two retailers can be rewritten as

vs̄ = − h′s(Qs)
hs(Qs)φ(Qs)

, for s = 1, 2,

where φ(Qs) ≡ E[ps] · (1 − G(Qs))/(f2
s θNω). Suppose that the solution to these simultaneous

equations is not unique, and there exist two distinct equilibria, (Q1, Q2) and (Q′
1, Q

′
2). Assume,

without loss of generality, that Q′
1 > Q1. This implies that Q′

2 > Q2 since dQ2/dQ1 > 0 by Lemma

3.

Note that h′s(Qs) is negative and decreasing in Qs, and hs(Qs) and φ(Qs) are both positive and

decreasing in Qs. Thus, −h′s(Qs)/[hs(Qs)φ(Qs)] is positive and increasing in Qs. Therefore, we

have

− h′s(Q
′
s)

hs(Q′
s)φ(Q′

s)
> − h′s(Qs)

hs(Qs)φ(Qs)
, for s = 1, 2.

Adding the inequalities for s = 1 and 2 gives

v1(Q′
1, Q

′
2) + v2(Q′

1, Q
′
2) > v1(Q1, Q2) + v2(Q1, Q2) .

But this is an impossibility since v1(Q1, Q2) + v2(Q1, Q2) = 1 for all (Q1, Q2). Therefore, it must

be that (Q1, Q2) = (Q′
1, Q

′
2) and there is at most one Nash equilibrium. 2
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Proof of Proposition 5: Q1 and Q2 are implicit functions of θ defined by the first order condi-

tions of the two retailers given in (8). The derivative of (8) with respect to θ gives

∂Fs

∂θ
+

dFs

dQs

dQs

dθ
+

dFs

dQs̄

dQs̄

dθ
= 0, for s = 1, 2.

By solving these simultaneous equations, the derivative of Qs with respect to θ is obtained as

dQs

dθ
= −

dFs̄
dQs̄

∂Fs
∂θ − dFs

dQs̄

∂Fs̄
∂θ

dF1
dQ1

dF2
dQ2

− dF1
dQ2

dF2
dQ1

. (15)

Recall that

dFs

dQs
< 0, and

dFs

dQs̄
> 0. (16)

Additional inequalities are established by the following Lemmas:

Lemma 4

∂Fs

∂θ

∣∣∣∣
Fs=0

< 0.

Proof: Differentiating condition (8) with respect to θ and simplifying, we get

∂Fs

∂θ

∣∣∣∣
Fs=0

= hs(Qs)
E[ps]vs̄

fsθ2(E[ps] + E[ps̄])[fs(θ − 1) + 1]
1−G(Qs)

Nω

×
[
E[ps]

(
1− θ − 1

fs

)
+ E[ps̄]

(
−1− θ +

1
fs̄

)]
. (17)

Here,

E[ps]
(

1− θ − 1
fs

)
+ E[ps̄]

(
−1− θ +

1
fs̄

)
=

θfs

fs(θ − 1) + 1
fs − 1− fsθ

fs
+

θfs̄

fs̄(θ − 1) + 1
1− fs̄ − fs̄θ

fs̄

= −θ +
θ(1− fs̄ − fs̄θ)
fs̄(θ − 1) + 1

=
−2fs̄θ

2

fs̄(θ − 1) + 1

< 0 .

Since all other terms in (17) are non-negative, the result follows. 2
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Lemma 5

dF1

dQ1

dF2

dQ2
− dF1

dQ2

dF2

dQ1
> 0. (18)

Proof: From (8), note that

dFs

dQs
= h′′s(Qs)vs + 2h′s(Qs)v′s + hs(Qs)v′′s ,

dFs

dQs̄
= h′s(Qs)

dvs

dQs̄
+ hs(Qs)

d2vs

dQsdQs̄
.

Simplifying (18) using the fact that dvs̄/dQs = −v′s, we get

dF1

dQ1

dF2

dQ2
− dF1

dQ2

dF2

dQ1
=

(
h′′1(Q1)v1

dF2

dQ2
+ 2h′1(Q1)h′′2(Q2)v′1v2 + h1(Q1)h′′2(Q2)v′′1v2

)
+

(
4h′1(Q1)h′2(Q2)v′1v

′
2 − h′1(Q1)h′2(Q2)v′1v

′
2

)
+

(
2h1(Q1)h′2(Q2)v′′1v′2 + h1(Q1)h′2(Q2)v′1

d2v1

dQ1dQ2

)
+

(
2h′1(Q1)h2(Q2)v′1v

′′
2 + h′1(Q1)h2(Q2)v′2

d2v2

dQ1dQ2

)
+

(
h1(Q1)h2(Q2)v′′1v′′2 − h1(Q1)h2(Q2)

d2v1

dQ1dQ2

d2v2

dQ1dQ2

)
.

Denote the terms in the five sets of brackets as A,B, C, D, E, respectively. A is positive because

hs(Qs) and vs are positive and concave, h′s(Qs) < 0, v′s > 0 and dFs/dQs > 0. B is positive since

h′s(Qs) < 0 and v′s > 0.

The following additional facts are useful to analyze C,D and E.

v′s = vsvs̄φs

v′′s = (vs̄ − vs)v′sφs + vsvs̄φ
′
s

d2vs

dQsdQs̄
= (vs − vs̄)v′s̄φs = (vs − vs̄)v′sφs̄,

where φs = E[ps] · (1−G(Qs))/(f2
s θNω) is positive and decreasing in Qs. Thus, C gives

(
2v′′1v′2 + v′1

d2v1

dQ1dQ2

)
h1(Q1)h′2(Q2) =

(
v′′1v′2 + v1v2v

′
2

dφ1

dQ1

)
h1(Q1)h′2(Q2) > 0.
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D is analogous to C. Thus, it can be shown that D > 0. E gives

v′′1v′′2 −
d2v1

dQ1dQ2

d2v2

dQ1dQ2
= v′′1v′′2 − φ1φ2v

′
1v
′
2(v1 − v2)(v2 − v1)

= v′′1v′′2 + φ1φ2v
′
1v
′
2(v1 − v2)2

> 0.

This proves the required inequality. 2

Applying (16) and Lemmas 4 and 5 to (15), it follows that dQs/dθ < 0 for s = 1, 2. 2
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% Change in Total Industry % Change in Expected Profit
Inventory Level of Each Retailer[

qS
1 +qS

2

qM
1 +qM

2
− 1

] [
πS
1

πM
1
− 1,

πS
2

πM
2
− 1

]
c2 = 0.2 c2 = 0.5 c2 = 0.8 c2 = 0.2 c2 = 0.5 c2 = 0.8

θ = 0.5 5.36 5.13 4.94 [-1.17,-1.17] [-6.27,1.60] [-12.04,6.26]
θ = 2.0 2.39 2.12 1.85 [-0.15,-0.15] [-0.46,0.04] [ -1.08,0.54]

Table 1: Comparison of Strategic Behavior with Myopic Behavior of Retailers (c1 = 0.2)
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Figure 1: Effect of Learning Bias on Market Share
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Figure 2: Effect of Learning Bias on Inventory Level
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Figure 3: Effect of Cost Asymmetry on Market Share (c2 = 0.2)
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Figure 4: Effect of Cost Asymmetry on Inventory Level (c2 = 0.2)
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